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QCD phase diagram from finite energy sum rules
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We study the QCD phase diagram at finite temperature and baryon chemical potential by relating
the behavior of the light-quark condensate to the threshold energy for the onset of perturbative QCD.
These parameters are connected to the chiral symmetry restoration and the deconfinement phase
transition, respectively. This relation is obtained in the framework of finite energy QCD sum rules
at finite temperature and density, with input from Schwinger-Dyson methods to determine the light-
quark condensate. Results indicate that both critical temperatures are basically the same within
some 3% accuracy. We also obtain bounds for the position of the critical end point, µBc & 300 MeV
and Tc . 185 MeV.

PACS numbers: 25.75.Nq, 11.30.Rd, 11.15.Tk, 11.55.Hx

I. INTRODUCTION

In Quantum Chromodynamics (QCD) the strong in-
teraction among quarks depends on their color charge.
When quarks are placed in a medium this color charge
is screened with increasing density. The density can in-
crease either by raising the temperature, so that collisions
between quarks produce more quarks and gluons, or by
compressing the system, thereby increasing the baryon
density. If the density increases beyond a certain critical
value one expects that the interactions between quarks
no longer confine them inside a hadron, so that they are
free to travel longer distances and deconfine. This tran-
sition from a confined to a deconfined phase is usually
referred to as the deconfinement phase transition.

A separate phase transition takes place when the
realization of chiral symmetry shifts from a Nambu-
Goldstone phase to a Wigner-Weyl phase. In the mass-
less quark limit this is achieved by the vanishing of the
quark condensate, or alternatively the pion decay con-
stant. Qualitatively, one expects these two phase transi-
tions to take place at approximately the same tempera-
ture. An outstanding issue is whether this conclusion also
holds quantitatively. To address this, it has been custom-
ary to study the behavior of the order parameters of these
transitions as functions of the temperature T and the
baryon chemical potential µB, namely the Polyakov loop
L [2] and quark anti-quark condensate 〈ψ̄ψ〉 in the chiral
limit, respectively. In the confined phase the former pa-
rameter either vanishes in the limit of massless quarks, or
else it is exponentially suppressed for finite quark masses,
while it is finite in the deconfined phase. The quark con-
densate is finite in the confined phase, while it vanishes in
the deconfined phase at high enough temperature, and in
the limit of massless quarks. For finite quark masses chi-
ral symmetry is explicitly broken at the Lagrangian level

and therefore the phase transition is suppressed. This is
similar to what happens to a ferromagnet in the presence
of an external magnetic field. In this situation one might
need to specify to what extent one is still dealing with a
phase transition.

At finite T , and µB = 0, lattice QCD calculations pro-
vide a consistent quantitative picture of the above be-
havior, resulting in similar critical temperatures Tc for
both transitions in the range 170 MeV . Tc . 200 MeV,
for finite quark masses [3–5]. The situation is much less
clear cut when both T and µB are simultaneously non-
zero. Lattice QCD simulations cannot be used for µB 6= 0
because the fermion determinant becomes complex and
thus standard Monte Carlo methods fail, as the integrand
is no longer real and positive definite. However, these
techniques can still be adapted to extract some, though
not exact, information on the QCD phase diagram for
µB 6= 0 [7]. Therefore, one needs to resort either to
mathematical constructions to overcome the above lim-
itation [6], or to model calculations [8]. Of particular
recent interest is the search for a possible critical end
point [9] that signals the strengthening of the order of the
transition with increasing µB, indicating the beginning of
a true chiral symmetry restoring/deconfining phase tran-
sition. The results from Monte Carlo simulations and
model calculations, with and without Polyakov loop, or
its variants, seem to be in conflict. In fact, the former give
smaller (larger) values for the end point baryon chemi-
cal potential (temperature) than the latter. Things be-
come worse if one uses the imaginary chemical potential
method, a well established technique for not too large
values of µB. Indeed, this leads to a shrinking and weak-
ening region of chiral phase transitions with increasing
µB, thus suggesting that there is no critical end point
for µB . 500 MeV [10]. It has also been pointed out
that even if the transition weakens with increasing µB,
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the existence of the critical end point would not be ruled
out, although it would require a non-monotonic behav-
ior [11]. In view of this situation, alternative ways of
examining the QCD phase diagram are required.

One possibility is to look at variables that describe
deconfinement other than the Polyakov loop. A phe-
nomenological QCD parameter associated with decon-
finement was first proposed long ago in [12], and it is
the square energy (s0) beyond which the hadronic res-
onance spectral function becomes smooth and well de-
scribed by perturbative QCD (PQCD). At T = 0 this
continuum threshold lies in the range s0 ≃ 1 − 3 GeV2,
depending on the channel. At finite temperature one
expects s0 to decrease with increasing T and approach
the kinematical threshold at some critical value T = Tc,
to be identified with the deconfinement temperature. In
this scenario one expects stable particles (poles on the
real axis in the complex squared energy s-plane) to de-
velop a width as a result of absorption in the thermal
bath. At the same time, resonances (poles in the second
Riemann sheet in the complex s-plane) should develop
T -dependent widths, increasing with increasing temper-
ature. Such a resonance broadening mechanism was first
proposed in detail in connection with dimuon production
in heavy ion collisions [13].

The natural framework to determine s0 has been
that of QCD sum rules [14]. This quantum field theory
framework is based on the operator product expansion
(OPE) of current correlators at short distances, extended
beyond perturbation theory, and on Cauchy’s theorem
in the complex s-plane. The latter is usually referred
to as quark-hadron duality. Vacuum expectation
values of quark and gluon field operators effectively
parametrize the effects of confinement. An extension
of this method to finite temperature was first outlined
in [12]. Further evidence supporting the validity of
this program was provided in [15], followed by a large
number of applications [16]-[17]. Of particular interest
to the present work are the results obtained for s0(T )
in [16] using QCD Finite Energy Sum Rules (FESR)
for the (light-quark) axial-vector current correlator.
The leading dimension FESR relates s0(T ) to the pion
decay constant fπ(T ), and this in turn to the light-
quark condensate (using the Gell-Mann-Oakes-Renner
relation [18]). In the chiral limit it was found that
s0(T )/s0(0) ≃ fπ(T )/fπ(0) ≃ 〈ψ̄ ψ〉(T )/〈ψ̄ ψ〉(0), which
holds to a very good approximation. This relation
hints towards the possible coincidence of the critical
temperatures for deconfinement and chiral-symmetry
restoration. In this paper we extend this analysis to
finite density, thus obtaining s0(T, µB) from FESR using
as input the light-quark condensate at finite tempera-
ture and density determined in the Schwinger-Dyson
equations (SDE) framework.

The paper is organized as follows: In Sec. II we find the
relation between the quark condensate and the PQCD
threshold s0 using FESR for the axial-vector current cor-

relator. In Sec. III we compute the quark condensate at
finite T and µB from a convenient parametrization of the
quark propagator in the SDE framework. In Sec. IV we
present our analysis of the QCD phase diagram and show
that the deconfinement and chiral symmetry restoration
transitions take place at basically the same temperature
to some 3% accuracy, i.e. within the numerical precision
of the method. We finally summarize and discuss our
results in Sec. V.

II. FINITE ENERGY QCD SUM RULES

We begin by considering the (charged) axial-vector
current correlator at T = 0

Πµν(q
2) = i

∫

d4x eiq·x 〈0|T (Aµ(x)Aν(0))|0〉,

= −gµν Π1(q
2) + qµqνΠ0(q

2) , (1)

where Aµ(x) =: ū(x)γµγ5d(x) : is the axial-vector cur-
rent, qµ = (ω, ~q) is the four-momentum transfer, and
the functions Π0,1(q

2) are free of kinematical singulari-
ties. Concentrating on the function Π0(q

2) and writing
the OPE beyond perturbation theory in QCD [14], one
of the two pillars of the sum rule method, one has

Π0(q
2)|QCD = C0 Î +

∑

N=1

C2N (q2, µ2)〈Ô2N (µ2)〉 , (2)

where µ2 is a renormalization scale, the Wilson coeffi-
cients CN depend on the Lorentz indices and quantum
numbers of the currents and on the local gauge invari-
ant operators ÔN built from the quark and gluon fields
in the QCD Lagrangian. These operators are ordered
by increasing dimensionality and the Wilson coefficients,
calculable in PQCD, fall off by corresponding powers
of −q2. The unit operator above has dimension d = 0
and C0Î stands for the purely perturbative contribution.
Hence, this OPE factorizes short distance physics, en-
capsulated in the Wilson coefficients, and long distance
effects parametrized by the vacuum condensates. The
second pillar of the QCD sum rule technique is Cauchy’s
theorem in the complex squared energy s-plane

1

π

∫ s0

0

dsf(s)ImΠ0(s) = − 1

2πi

∮

C(|s0|)
dsf(s)Π0(s) ,

(3)
where f(s) is an arbitrary analytic function, and the ra-
dius of the circle s0 is large enough for QCD and the
OPE to be used on the circle (see Fig.1). The inte-
gral along the real s-axis involves the hadronic spec-
tral function. This equation is the mathematical state-
ment of what is usually referred to as quark-hadron du-

ality. Using the OPE, Eq.(2), and an integration kernel
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FIG. 1: FESR integration contour C(|s0|) in the complex
square energy s-plane. The QCD threshold s0 in the FESR
is the radius of the circle.

f(s) = sN (N = 1, 2, · · · ) one obtains the FESR

(−)N−1 C2N 〈Ô2N 〉 = 4π2

∫ s0

0

ds sN−1 1

π
ImΠ0(s)

− sN0
N

[1 +O(αs)] (N = 1, 2, · · · ) . (4)

For N = 1 the dimension d = 2 term in the OPE
does not involve any condensate, as it is not possible to
construct a gauge invariant operator of such a dimension
from the quark and gluon fields. Nevertheless, it is
a-priori conceivable to generate a d = 2 term in some
dynamical fashion, e.g. in PQCD at very high order
(renormalons). However, there is no evidence for such
a term (at T = 0) from FESR analyses of experimental
data on e+e− annihilation and τ decays into hadrons
[19]. At very high temperatures, though, there seems
to be evidence for some d = 2 term [20]. However, the
analysis to be reported here is performed at much lower
values of T , so that we can safely ignore this contribution
in the sequel.

The extension of this program to finite temperature is
fairly straightforward [12], [15], with the Wilson coeffi-
cients in the OPE, Eq.(2), remaining independent of T
at leading order in αs, and the condensates developing a
temperature dependence. Radiative corrections in QCD
involve now an additional scale, i.e. the temperature,
so that αs ≡ αs(µ

2, T ). This problem has not yet
been solved successfully. Nevertheless, from the size of
radiative corrections at T = 0 one does not expect any
major loss of accuracy in results from thermal FESR to
leading order in PQCD, as long as the temperature is
not too high, say T . 200MeV. Essentially all appli-
cations of FESR at T 6= 0 have been done at leading
order in PQCD, thus implying a systematic uncertainty
at the level of 10 %. One new feature at T 6= 0 is
the appearance of a new cut in the complex energy
ω-plane [12], and centered at the origin with extension

−|~q| ≤ ω ≤ |~q|. This is due to a contribution to the
current correlator in the space-like region (q2 < 0) which
vanishes at T = 0. Conceptually, this originates in the
scattering of the current by either quarks (antiquarks)
or by hadrons in the medium, in the case of QCD or the
hadronic representation, respectively. When considering
the rest-frame (~q → 0) this scattering term either
becomes a delta function of the energy or it vanishes
identically, depending on the channel. For instance, in
the case of the axial-vector current correlator, Eq.(1),
the QCD scattering term is proportional to δ(ω2). The
corresponding term in the hadronic representation is
non-zero but it is suppressed relative to the tree-level
pion contribution, as the axial-vector current can only
couple to an odd number of pions. Another new
feature at finite temperature is the possible existence of
non-scalar (Lorentz noninvariant) vacuum condensates.
This does not affect the present analysis, as we shall
only consider dimension d = 2 FESR.

In the static limit (~q → 0), to leading order in PQCD,
and for T 6= 0 and µB 6= 0 the function Π0(q

2) in Eq.(1)
becomes Π0(ω

2, T, µB); to simplify the notation we shall
omit the T and µB dependence in the sequel. A straight-
forward calculation of the spectral function in perturba-
tive QCD gives

1
π ImΠ0(s)|PQCD =

1

4π2

[

1− ñ+

(√
s

2

)

− ñ−

(√
s

2

)]

− 2

π2
T 2 δ(s)

[

Li2(−eµB/T ) + Li2(−e−µB/T )
]

, (5)

where Li2(x) is the dilogarithm function, s = ω2, and

ñ±(x) =
1

e(x∓µB)/T + 1
(6)

are the Fermi-Dirac thermal distributions for particles
and antiparticles, respectively. We have assumed mass-
less quarks, as quark mass corrections are negligible.
However, later when we determine the quark condensate
in Section III this approximation will be relaxed.
In the limit where T and/or µB are large, Eq. (5) be-

comes

1

π
ImΠ0(s)|PQCD =

1

4π2

[

1− ñ+

(√
s

2

)

− ñ−

(√
s

2

)]

+
1

π2
δ(s)

(

µ2
B +

π2T 2

3

)

. (7)

In the hadronic sector we assume pion-pole dominance of
the hadronic spectral function, i.e. the continuum thresh-
old s0 to lie below the first radial excitation with mass
Mπ1

≃ 1300 MeV. This is a very good approximation at
finite T , as we expect s0 to be monotonically decreasing
with increasing temperature. In this case,

1

π
ImΠ(s)|HAD = 2 f2

π(T, µB) δ(s), (8)
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FIG. 2: (Color online) Lattice data and parametrization of
the absolute value of the quark condensate as a function of T
in the phase transition region.

where fπ(T, µB) is the pion decay constant at finite T
and µB , with fπ(0, 0) = 92.21± 0.14 MeV [21].

Turning to the FESR, Eq.(4), with N = 1 and no
dimension d = 2 condensate, and using Eqs.(5) and (8)
one finds

∫ s0(T,µB)

0

ds

[

1− ñ+

(√
s

2

)

− ñ−

(√
s

2

)]

=

8f2
π(T, µB)− 8T 2

[

Li2(−eµB/T ) + Li2(−e−µB/T )
]

(9)

This is a transcendental equation determining s0(T, µB)
in terms of fπ(T, µB). The latter is related to the light-
quark condensate through the Gell-Mann-Oakes-Renner
relation [18]

f2
π(T, µB)

f2
π(0, 0)

=
〈ψ̄ψ〉(T, µB)

〈ψ̄ψ〉(0, 0) , (10)

where the quark and pion masses have been assumed in-
dependent of T and µB [22]. A good closed form approx-
imation to the FESR, Eq.(9), for large T and/or µB is

obtained using Eq.(7) with ñ+

(√
s
2

)

≃ ñ−
(√

s
2

)

≃ 0, in

which case

s0(T, µB) ≃ 8 π2 f2
π(T, µB)−

4

3
π2 T 2 − 4µ2

B . (11)

Using Eq.(10) this can be rewritten as

s0(T, µB)

s0(0, 0)
≃ 〈ψ̄ψ〉(T, µB)

〈ψ̄ψ〉(0, 0) − (T 2/3− µ2
B/π

2)

2f2
π(0, 0)

(12)

The quark condensate can be computed from the in-
medium quark propagator, whose non-perturbative prop-
erties can be obtained e.g. from known solutions to the
Schwinger-Dyson equations (SDE) as discussed in the
next section.

i mi (GeV) ri

1 -0.490 -0.112

2 0.495 0.352

3 -0.879 0.259

TABLE I: Parameters mi and ri, i = 1, 2, 3 to describe the
Lorentz covariant part of the quark propagator.

III. QUARK PROPAGATOR AND

CONDENSATE

The quark condensate can be computed from the quark

propagator S(k0, ~k) in Euclidean space. At finite T and
µB the condensate is given by

〈ψ̄ψ〉(T, µB) = −NcT
∑

n

∫

d3k

(2π)3

× Tr S[(2n+ 1)πT + iµB, ~k]

= −NcT
∑

n

∫

d4k

(2π)3
Tr[S(k0, ~k)]

× δ[k0 − (2n+ 1)πT − iµB]. (13)

Introducing the Poisson summation formula

∑

l

(−1)l exp{(ik0 + µB)l/T } =

(2π) T
∑

n

δ[k0 − (2n+ 1)πT − iµB], (14)

leads to

T
∑

n

∫

d3k

(2π)3
TrS[(2n+ 1)πT + iµB, ~k] =

∑

l

(−1)l
∫

d4k

(2π)4
Tr[S(k0, ~k)] exp{(ik0 + µB)l/T }

. (15)

Using this result in Eq.(13) gives

〈ψ̄ψ〉(T, µB) = −Nc

∑

l

(−1)l
∫

d4k

(2π)4

× Tr[S(k0, ~k)] exp{(iq0 + µB)l/T }.
(16)

Notice that from Eq. (16) the vacuum contribution to
the condensate comes from the term with l = 0. For this
we use the value

〈ψ̄ψ〉|0 = −(0.241 GeV)3. (17)
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FIG. 3: (Color online) Heat capacity for the quark condensate
as a function of T for µB = 0 (solid line) and µB = 300 MeV
(dash line). The critical temperature Tc corresponds to the
maximum of the heat capacity for a given value of µB .

The true matter contribution to the condensate is thus

〈ψ̄ψ〉(T, µB) = −Nc

∑

l 6=0

(−1)l
∫

d4k

(2π)4

× Tr[S(k0, ~k)] exp{(iq0 + µB)l/T }.
(18)

Due to the loss of Lorentz covariance at finite T and/or
µB, the general structure of the propagator is given by

S−1(k0, ~k) = Aγ0k0 +B~γ · ~k + C, (19)

where A, B and C are scalar functions of k0 and ~k. They
can be obtained from non-perturbative methods such as
solutions to SDE. We adopt this procedure here. Mo-
tivated by the success of the rainbow-ladder truncation
of the SDE and the effective interaction of Ref. [23] in
the description of light pseudo-scalar and vector mesons,
and the meromorphic representation of the quark propa-
gator [24], we consider the parametrization

S(k0, ~k) =

3
∑

i=1

(

ri
i 6k +mi

)

+
r4

iγ0k0 + ib~γ · ~k +m4

, (20)

and choose b, the masses mi, and the residues ri, i =
1 . . . 4, to be real numbers. In addition we seek T -
dependent values of b, m4 and r4. The Lorentz covari-
ant part of this parametrization is fitted by requiring
the propagator to reproduce key features of the rainbow-
ladder model [23] at T = 0. In particular, to match
the ultra-violet behavior of the gap equation for massive
u/d quarks, the value of the condensate in vacuum, and
the constituent quark masses, as dictated by the of so-
lutions to SDE. Table I shows the values thus obtained
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FIG. 4: (Color online) Heat capacity for the PQCD thresh-
old s0 as a function of T for µB = 0 (solid line) and
µB = 300 MeV (dash line). The critical temperature Tc cor-
responds to the maximum of the heat capacity for a given
value of µB .

for the parameters mi and ri, i = 1 . . . 3. The last term
in Eq. (20) is added to reproduce the Lorentz covari-
ance breaking effects of the heat bath at T 6= 0 and/or
µB 6= 0. The values of b, m4 and r4 are adjusted to
reproduce the light-quark condensate as a function of T
for µB = 0 [see Eq. (21) below] extracted from lattice
QCD [4] by means of a point-distance minimization pro-
cedure. Carrying out the integrations in Eq. (18), and
in terms of the parametrization of the quark propagator
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FIG. 5: (Color online) Transition temperatures for the quark
condensate and the PQCD threshold s0 as functions of the
baryon chemical potential.
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in Eq. (20), we obtain

〈ψ̄ψ〉(T, µB)|matt = −8TNc

π2

∞
∑

l=1

(−1)l

l
cosh

(

µBl

T

)

×
4

∑

i=1

rim
2
i

|bi|3
K1

(

l|mi|
T

)

, (21)

where K1(x) is a Bessel function, and for convenience
we have defined bi = 1 for i = 1, 2, 3, and b4 = b.
Figure 2 shows the lattice QCD data for the light quark
condensate as a function of T [4] together with the curve
obtained from the absolute value of the sum of Eqs. (17)
and (21) for µB = 0. This parametrization gives a good
description of the condensate for the range of tempera-
tures where the phase transition occurs.

IV. QCD PHASE DIAGRAM

With the parametrization of lattice data at finite T
and µB = 0, we proceed to extend the analysis to finite
µB. To explore the QCD phase diagram we make use of
the expressions for the light-quark condensate and of the
PQCD threshold s0 that describe the chiral and decon-
finement phase transitions, respectively. Next, we com-
pute the corresponding susceptibilities which are propor-
tional to the heat capacities, −∂〈ψ̄ψ〉/∂T and −∂s0/∂T .
For a given µB, the transition temperature is identified
as the value Tc where the heat capacity reaches a maxi-
mum. Figure 5 shows the transition temperatures for the
condensate and for s0. These temperatures are basically
identical within a small window of roughly 3 MeV around
T = 185 MeV, for all values of µB up to the maximum
value of µB = 300 MeV.

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied the QCD phase diagram
at T 6= 0 and µB 6= 0 based on the behavior of the light-

quark condensate and of the PQCD threshold as probes
of chiral symmetry restoration and deconfinement,
respectively. We have shown that these quantities are
related through a QCD FESR and found that they lead
to essentially equal transition temperatures. The quark
condensate, and thus the PQCD threshold, is computed
using the quark propagator in the SDE framework.
We have found it convenient to use a meromorphic
parametrization of this propagator in terms of real poles
and residues. These are fixed by demanding consistency
with the rainbow-ladder truncation of SDE at T = 0,
and a good description of lattice QCD data for the
quark condensate at finite T . With this simple scenario
we have been able to extend the analysis up to baryon
chemical potential µB ≃ 300 MeV. From our results
we can estimate the position of the critical end point
to be µBc & 300 MeV and Tc . 185 MeV, respectively.
A more precise location of the critical end point would
require a more refined treatment of the parametrization
of the quark propagator.
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Lett. B 643, 46 (2006); Y. Aoki, S. Borsányi, S. Durr,
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