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Abstract

A simple model of non-femtoscopic particle correlations in proton-proton collisions is proposed.

The model takes into account correlations induced by the conservation laws as well as correlations

induced by minijets. It gives reasonable description of the two-pion non-femtoscopic correlations of

like-sign and unlike-sign pions in proton-proton collision events at
√
s = 900 GeV reported by the

ALICE Collaboration. We also argue that the similar non-femtoscopic correlations could appear

in hydrodynamic picture with event-by-event fluctuating non-symmetric initial conditions that are

typically associated with non-zero higher-order flow harmonics.

PACS numbers: 13.85.Hd, 25.75.Gz
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I. INTRODUCTION

The two-particle femtoscopy of identical particles allows one to analyze the space-time

structure of the particle emission from the systems created in heavy ion, hadron and lepton

collisions (for reviews see, e.g., Ref. [1]). It is established that specific transverse momentum

dependence of the femtoscopy scales - interferometry, or HBT radii - in heavy ion collisions

is caused by the collective expansion of the systems and are associated with the homogeneity

lengths [2]. As for elementary particle collisions, like p + p, where the collective (hydrody-

namic) behavior of the matter is open to quest, there is no unambiguous interpretation of

pT -dependence of the HBT radii. Moreover, the transverse momentum behavior of the fem-

toscopy scales extracted from hadron and lepton collisions depends on correlation baseline

assumption [3–5] about the strength and momentum dependence of the non-femtoscopic

correlations. Such correlations appear also between unlike particles and are, typically, long-

range in momentum space. As opposite to the femtoscopic (HBT) correlations, they are not

conditioned by the quantum statistics and are not directly related to the spatiotemporal

scales of the emitter or to the well studied Coulomb and strong final state interactions.

These correlations can appear because of various reasons, e.g., the well known example of

the non-femtoscopic correlations is the correlations induced by the energy and momentum

conservation laws (see, e.g., Ref. [6]). The correlations do not affect essentially the HBT

radii extracted from heavy ion collisions, but are rather noticeable for elementary particle

collisions.

Our aim here is to demonstrate with simple analytical models how the minijets, transverse

momentum conservation and event-by-event momentum spectra fluctuations (the latter can

be conditioned by the asymmetrically fluctuating hydrodynamical densities) contribute to

the two-pion correlations in p + p collisions. In particular, we show that simple analytical

model with minijets and momentum conservation induced correlations can fit the correlations

of unlike-sign pion pairs at
√
s = 900 GeV p + p collisions as well as non-femtoscopic

correlations of identical pions obtained from the PHOJET event generator [7] simulations

of p + p collision events at
√
s = 900 GeV, the latter has been utilized as the correlation

baseline by the ALICE Collaboration [3].
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II. DEFINITIONS AND PARAMETERIZATIONS OF TWO-PARTICLE CORRE-

LATIONS

The two-particle correlation function is defined as

C(p1, p2) =
P (p1, p2)

P (p1)P (p2)
, (1)

where P (p1, p2) is the probability to observe two particles with momenta p1 and p2 while

P (p1) and P (p2) designate the single-particle probabilities. Experimentally, the two-particle

correlation function is defined as the ratio of the distributions of particle pairs from the same

event and the pairs from different events. In heavy ion collisions almost all the correlations

between identical pions with low relative momentum are due to quantum statistics (QS) and

final-state (FS) interactions. Then

C(p1, p2) = CF (p,q), (2)

where p = (p1+p2)/2, q = p2−p1, and CF denotes the femtoscopic correlation function. In

the case of identical bosons CF is often parameterized (after corrections for FS correlations)

by the Gaussian form which for the one-dimensional parametrization looks like

CF (|p|, qinv) = 1 + λ exp (−R2
invq

2
inv). (3)

Here λ describes the correlation strength, Rinv is the Gaussian ”invariant” HBT radius, and

qinv =
√

(p2 − p1)2 − (E2 − E1)2 is equal to the modulus of the momentum difference in

the pair rest frame.

In elementary particle collisions additional (non-femtoscopic) correlations, like those aris-

ing from jet/string fragmentation and from energy and momentum conservation (see, e.g.,

Refs. [3–5]) can give also essential contribution. Then, assuming the factorization property,

C(p1, p2) = CF (p,q)CNF (p,q). (4)

Here CNF denotes the non-femtoscopic correlation function, and in the simplest case the

non-femtoscopic effects can be parameterized as, e.g., 2nd order polynomial

CNF (|p|, qinv) = a+ bqinv + cq2inv. (5)

This form can be used together with some parametrization of CF (e.g., with (3)) in order to

fit the correlation function C(p1, p2) for small systems, as this have been done, for example,
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by the STAR Collaboration for two-pion correlation functions in p+p collisions at
√
s = 200

GeV [5]. At c > 0 the phenomenological parametrization (5) explicitly reproduces the well

known effect of positive correlations between particles with large relative momenta |q| caused
by the energy-momentum conservation laws, see the EMCIC model for CNF [6]. Note that a,

b, and c in Eq. (5) depend, in general, on |p|, and they are defined typically by fitting of the

related results in complicated models with relatively high number of adjusting parameters.

Recently the ALICE Collaboration utilized some event generators for an estimate of the

correlation baseline (i.e., non-femtoscopic correlation function of identical pions) under the

Bose-Einstein peak [3, 4]. It was motivated by the reasonable agreement of the correspond-

ing event generator simulations with the experimental data for the correlation functions of

oppositely charged pions in proton-proton collision at LHC energies.1 Similarly the results

for non-identical pion correlation functions, the correlation baseline simulated by the event

generators at relatively low qinv decreases with qinv for relatively high pT and demonstrates

approximately flat in qinv behavior for low pT . It was conjectured in Refs. [3, 4] that such a

behavior is conditioned by the correlations induced by minijets created in the event generator

simulations.

In what follows we propose simple analytical model with the minimal number of parame-

ters for the two-pion correlations induced by minijets and transverse momentum conservation

law that can reproduce the above mentioned results and allows one to see clearly the phys-

ical mechanisms responding for the peculiarities of pT - and qinv- behavior of the unlike-sign

pion correlations as well as like-sign non-femtoscopic pion correlations. We make comparison

with the two-pion correlation functions in proton-proton collision at
√
s = 900 GeV [3]. For

convenience, we compare results with the PHOJET event generator2 simulations reported

in Ref. [3] for like-sign pion pairs. Note that the simulations carried out by the ALICE

Collaboration gave similar results for all utilized event generators [3, 4].

1 Note that unlike-sign pion pairs cannot be directly used for calculation of the correlation baseline for

identical pion correlations at least because of the different resonance contributions.
2 The PHOJET event generator [7] accounts for soft and hard processes, takes into account energy and

momentum conservation, and does not include the effects of quantum statistics.
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III. ANALYTICAL MODEL FOR MINIJETS AND MOMENTUM CONSERVA-

TION INDUCED CORRELATIONS

Let us assume that N particles of the same species (say, pions) are produced with mo-

menta p1, ...,pN in (N +X) multiparticle production events. Then N -particle probability

density, PN(p1, ..., pN), is symmetrical function as for all N ! permutations of the particle

momenta pi. For convenience, it is normalized by

∫
dΩpPN(p1, ..., pN) = 1, (6)

where dΩp =
d3p1
E1

...d
3pN
EN

. Then N ′-pion probability density, N ′ < N , is defined as

PN(p1, ..., pN ′) =

∫
dΩp∗E

∗
i δ

(3)(p1 − p∗
1)...E

∗
N ′δ(3)(pN ′ − p∗

N ′)PN(p
∗
1, ..., p

∗
N). (7)

Now, aimed to estimate non-femtoscopic pion correlations, we consider pions as distinguish-

able, yet equivalent particles with symmetrical probability density functions, and will not

make difference between different pion species neglecting, thus, the final state interactions.

A distinguishably of equivalent particles means that there is no quantum interference be-

tween possibilities that correspond to all N ! permutations of the particle momenta pi, then

the symmetrized N -particle probability density can be defined as

PN(p1, ..., pN) =
1

N !

N∑

i 6=... 6=k=1

∫
dΩp∗E

∗
i δ

(3)(p1 − p∗
i )...E

∗
kδ

(3)(pN − p∗
k)P̂N(p

∗
1, ..., p

∗
N), (8)

where non-symmetrized N -particle probability density, P̂N(p1, ..., pN), is normalized to unity,

and N ! in the denominator is required to guarantee the normalization condition (6). Then,

taking into account Eq. (7), we see that the single-particle probability, PN (p1), and the

two-particle probability, PN(p1, p2), can be written as

PN(p1) =
1

N

N∑

i=1

∫
dΩp∗E

∗
i δ

(3)(p1 − p∗
i )P̂N(p

∗
1, ..., p

∗
N), (9)

PN(p1, p2) =
1

N(N − 1)

N∑

i 6=j=1

∫
dΩp∗E

∗
i δ

(3)(p1 − p∗
i )E

∗
j δ

(3)(p2 − p∗
j )P̂N(p

∗
1, ..., p

∗
N). (10)

The non-symmetrized N -pion probability density in such events reads

P̂N (p1, ..., pN) =
1

K

∑

X

∫
dΩkδ

(4)(pa + pb −
N∑

i=1

pi −
X∑

j=1

kj)|MN+X(p1, ..., kX)|2, (11)
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where MN+X(p1, ..., kX) is non-symmetrized (N +X)-particle production amplitude, pa and

pb are 4-momenta of colliding particles (protons), and K is the normalization factor,

K =
∑

X

∫
dΩkdΩpδ

(4)(pa + pb −
N∑

i=1

pi −
X∑

j=1

kj)|MN+X(p1, ..., kX)|2. (12)

Expression (11) for P̂N(p1, ..., pN) is rather complicated because, in particular, it depends

on X particles that are produced in addition to N pions. It means also that one can hardly

expect that total energy or momentum of the pion subsystem are constants in the system’s

center of mass, instead, one can expect that they fluctuate in event-by-event basis. Here

we assume that the total transverse momentum of N pions is equal to zero in the system’s

center of mass (keeping, however, in mind that this constraint is, in fact, too strong and

can be weakened if necessary), and neglect the constrains conditioned by the conservation of

energy and longitudinal momentum supposing that the system under consideration is barely

N -pion subsystem in a small midrapidity region of the total system. Then, motivated by

Eq. (11), we assume that a non-symmetrized N -pion probability density can be written as

P̂N(p1, ..., pN) =
1

K
δ(p1, ..., pN)FN(p1, ..., pN), (13)

where FN(p1, ..., pN) is a non-symmetrized function of pionic momenta, δ(p1, ..., pN) denotes

average constraints on the N -pion states that appear due to energy and momentum conser-

vations in multiparticle production events, and we assume that

δ(p1, ..., pN) = δ(2)(pT1 + pT2 + ... + pTN), (14)

where pT1,pT2, ...pTN are transverse components of the momenta of the N particles. Then

the normalization factor is

K =

∫
dΩpδ(p1, ..., pN)FN(p1, ..., pN). (15)

If the only correlations are the correlations that associate with transverse momentum

conservation, we have

FN (p1, ..., pN) = f(p1)f(p2)...f(pN−1)f(pN), (16)

and calculations of single-particle and two-particle probability densities in large N limit

result in the special case of the EMCIC parametrization [6] of the correlations induced by

the energy and momentum conservation laws. However, such a simple prescription is not
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enough to reproduce the non-femtoscopic unlike-sign pion correlations as well as generated

by the event generators like PHOJET like-sign pion correlations. Based on the physical

background of such generators, one can conjecture that the corresponding non-femtoscopic

correlations can be caused by the jet-like and energy-momentum conservation induced cor-

relations. Then, to describe the non-femtoscopic pion correlations in a simple analytical

model, let us assume that there are no other correlations in the production of N -pion states

except the correlations induced by transverse momentum conservation and cluster (minijet)

structures in momentum space. For the sake of simplicity we assume here that the only

two-particle clusters appear. Then one can write for fairly large N ≫ 1

FN(p1, ..., pN) = f(p1)...f(pN)Q(p1, p2)...Q(pN−1, pN), (17)

where Q(pi, pj) denotes the jet-like correlations between momenta pi and pj; existence of

such correlations means that FN cannot be expressed as a product of one-particle distribu-

tions. Then, utilizing the integral representation of the δ-function by means of the Fourier

transformation, δ(2)(pT ) = (2π)−2
∫
d2rT exp(irTpT ), and accounting for Eqs. (9), (13),

(14), (17), the single-particle probability reads

PN(p1) =
1

(2π)2K

∫
d2rTGN (p1, rT ), (18)

where

GN(p1, rT ) =

∫
dΩp∗E

∗
1δ

(3)(p1 − p∗
1)e

irT (p∗

T1
+...+p

∗

TN
)FN(p

∗
1, ..., p

∗
N). (19)

A possibility of different cluster configurations of particles means, in particular, that reg-

istered particles with momenta p1 and p2 can belong either to different minijets or to the

same minijet. Then, taking into account Eqs. (10), (13), (14), (17), we get

PN(p1, p2) =
N

N(N − 1)
P 1jet
N (p1, p2) +

N(N − 1)−N

N(N − 1)
P 2jet
N (p1, p2), (20)

where

P 1jet
N (p1, p2) =

1

(2π)2K

∫
d2rTG

1jet
N (p1,p2, rT ), (21)

P 2jet
N (p1, p2) =

1

(2π)2K

∫
d2rTG

2jet
N (p1,p2, rT ), (22)

and

G1jet
N (p1,p2, rT ) =

∫
dΩp∗E

∗
i δ

(3)(p1 − p∗
1)E

∗
j δ

(3)(p2 − p∗
2)e

irT (p∗

T1
+...+p

∗

TN
)FN , (23)

G2jet
N (p1,p2, rT ) =

∫
dΩp∗E

∗
i δ

(3)(p1 − p∗
1)E

∗
j δ

(3)(p2 − p∗
3)e

irT (p∗

T1
+...+p

∗

TN
)FN , (24)
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here FN ≡ FN(p
∗
1, ..., p

∗
N). The first term in the right hand side of Eq. (20) is associated

with events where the two registered particles appear from the different minijets, and second

term corresponds to events when the particles belong to the same minijet. Evidently, the

latter happens relatively rare, however notice that the second term can be significant for

small systems with not very large N .

IV. RESULTS AND DISCUSSION

Now let us check whether this model can reproduce with reasonable parameters the non-

femtoscopic correlation functions of unlike-sign pions measured by the ALICE Collaboration

[3] and like-sign pions that are generated in PHOJET simulations and utilized as the cor-

relation baseline by the ALICE Collaboration [3]. Calculations within the model will be

deliberately as simple as possible just to demonstrate its viability. We do not use here

the approximate methods like the saddle point approach, instead we utilize appropriate

analytical parameterizations of the functions in interest, namely,

f(pi) = Ei exp

(
−
p2
i,T

T 2
T

)
exp

(
−
p2
i,L

T 2
L

)
, (25)

and

Q(pi, pj) = exp

(
−(pi − pj)

2

α2

)
, (26)

where TT , TL and α are some parameters, and in what follows we assume that TL ≫ TT . In

accordance with ALICE baseline obtained from the PHOJET event generator simulations,

we assume that only qinv is measured for each pT bin. Assuming that longitudinal com-

ponents of the registered particles are equal to zero, p1L = p2L = 0, we approximate q2inv

as

q2inv ≈ q2
T

(
m2 + p2

T sin2 φ

m2 + p2
T

)
, (27)

where φ denotes unregistered angle between pT and qT , pTqT = |pT ||qT | cosφ. Then

CNF (|pT |, qinv) =
∫ 2π

0
dφPN(p1, p2)∫ 2π

0
dφPN(p1)PN(p2)

(28)

and, taking into account Eq. (20), we get

CNF (|pT |, qinv) =
N − 2

N − 1

(
C2jet

N (|pT |, qinv) +
1

N − 2
C1jet

N (|pT |, qinv)
)
, (29)
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where

C2jet
N (|pT |, qinv) =

∫ 2π

0
dφP 2jet

N (p1, p2)∫ 2π

0
dφPN(p1)PN(p2)

, (30)

C1jet
N (|pT |, qinv) =

∫ 2π

0
dφP 1jet

N (p1, p2)∫ 2π

0
dφPN(p1)PN(p2)

. (31)

It is well known, see e.g. Ref. [6], that influence of exact conservation laws on single-

particle and two-particle momentum probability densities at the N -particle production pro-

cess depends on a value of N and disappears at N → ∞. Since one considers a subsystem of

N pions but not total system, to weaken influence of total transverse momentum conserva-

tion on pions we shall consider C1jet
M and C2jet

M with M > N instead of C1jet
N and C2jet

N in Eq.

(29). It is the simplest way to account for a weakened conservation law in our model. At the

same time the factor 1/(N − 2) in (29) is associated with combinatorics of distribution of

particles between clusters in momentum space (”minijets”), which happens no matter if one

weakens or not the total momentum conservation law. Also, for more exact fitting of the

data points in each average transverse momentum bin, we utilize the auxiliary factors, Λ,

when compared results of our calculations with ALICE two-pion correlation and simulation

data, these proportionality factors differ slightly from unit in our calculations (nearly 0.9).

Then Eq. (29) gets the form

CNF (|pT |, qinv) = Λ(pT )(C
2jet
M (|pT |, qinv) +

1

N − 2
C1jet

M (|pT |, qinv)). (32)

The results of our calculations of the non-femtoscopic correlation functions CNF are

shown in Figs. 1-10 in comparison with the non-femtoscopic correlation functions reported

by the ALICE Collaboration [3] for different transverse momentum of pion pairs (actually,

we performed calculations for the mean value in each bin). The data for unlike-sign pion

correlations as well as for PHOJET simulations of identical two-pion non-femtoscopic corre-

lation functions at midrapidity for total charged multiplicity Nch ≥ 12 bin in p+ p collisions

at
√
s = 900 GeV are taken from Refs. [3] and [8]. Our results are obtained for M = 50,

TT = α = 0.65 GeV (to minimize the number of fit parameters, we fixed TT = α for all

calculations)3, and the fitted values of N are different for like-sign and unlike-sign pion pairs,

namely, N±± = 20 for the former and N+− = 11 for the latter. The relatively high value of

3 Note that with these parameter values the mean transverse momentum, 〈pT 〉, is about 0.58 GeV.
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M can be interpreted as residual effect to pion subsystem of total energy-momentum con-

servation in multiparticle production process. The relation, N+− < N±±, between fitted N

values means that the magnitude of minijet induced correlations for unlike-sign pion pairs is

higher than for like-sign ones. It is natural for minijet induced two-pion correlations because

there is no local charge conservation constraint for production of oppositely-charged pion

pair and, therefore, one can expect less identically-charged pion pairs from the fragment-

ing minijets than oppositely-charged ones. It is worth to note that such a difference in the

strength of the two-pion correlations cannot be attributed to resonances: although it is easier

to produce an oppositely-charged pion pair from a resonance than an identically-charged one

because, again, of the charge conservation constraint, a resonance decay results, typically,

in back-to-back correlations of the produced particles according to local energy-momentum

conservation laws, see e.g. Ref. [9]. It is unlike to one-side correlations from the minijet

fragmentation. One can see from the figures that the behavior of the non-femtoscopic corre-

lation functions of pions, CNF , are reproduced well despite a simplicity of our model. This

is a result of the competition of the two trends: an increase of the correlation function with

qinv because of the momentum conservation and a decrease of it due to the fragmentation

of one minijet into the registered pion pair. Figures 5 and 10 demonstrate also the relative

contribution of the first and second terms in Eq. (32) to the non-femtoscopic correlation

functions.

Note, however, that the lower magnitude of the non-femtoscopic correlations for like-

sign pion pairs as compared to the correlations of unlike-sign pions is mainly caused by the

assumed mechanism of pions production through minijets fragmentation, and it can be not

the case for another production mechanisms. For example, hydrodynamic models are very

successful in description of heavy ion collisions and give reasonable description of elementary

particle collisions (see, e.g., Ref. [10] where it was demonstrated that EPOS model,4 that

includes hydrodynamical stage, can describe p+p collisions at LHC energies), typically do not

demonstrate noticeable minijets production at relatively low pT . The choice of model for non-

femtoscopic correlations is important for interpretation of physics in p+p collisions. Indeed,

the non-femtoscopic correlations of like-sign pion pairs obtained in PHOJET and similar

event generators are utilized by the ALICE Collaboration as baseline for HBT analysis of

4 EPOS model calculates flux tubes that are utilized as initial conditions for hydrodynamic expansion, and

the later rare hadronic stage is calculated by means of hadronic cascade model (UrQMD).
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the femtoscopic correlations, see Eq. (4), and this correlation baseline significantly affects

the interferometry radii [3, 4].

Then the question arises: whether the non-femtoscopic effects in two-pion correlations

are ultimately caused by minijets and conservation laws only, or the similar behavior can

be attributed to hydrodynamics also? On the other hand, if such a behavior is ultimately

related with minijets, it strongly restricts the area of applicability of the corresponding cor-

relation baseline to the processes where the matter, in grate extent, is produced through

emission of minijets. Note that if thermalization takes place in p+p collisions and hydrody-

namical evolution forms the soft spectra, then the PHOJET and similar models cannot give

adequate description of particles production in this momentum region and an utilization of

the corresponding correlation baseline for p+ p collisions can be in doubt.

Below we demonstrate that non-femtoscopic correlation functions in p + p collisions can

also appear in hydrodynamic models if one accounts for event-by-event fluctuating initial

conditions for hydrodynamic stage (in hybrid models this stage is matched with subsequent

hadronic cascade stage). Let us give here the illustrative example as for such a possibility.

First, note that there are no correlations induced by the exact global energy momentum con-

servation in hydrodynamic/hybrid models, and corresponding conservation laws are satisfied

only in average for particles that are produced at some hypersurface where hydrodynamics is

switched off. Then, one can expect that the only source of the non-femtoscopic correlations

in such models is event-by-event fluctuations of initial conditions for hydrodynamical stage.

These fluctuations result in fluctuations of the two-particle and single-particle momentum

spectra, and, as usual, effect of fluctuations is more pronounced for small systems. Then

P̂N(p1, p2, ..., pN) =
∑

i

w(ui)P̂N(p1, p2, ..., pN ; ui), (33)

where P̂N(p1, p2, ..., pN ; ui) is N -particle probability density for some ui-type of the initial

conditions and w(ui) denotes distribution over initial conditions,
∑

i w(ui) = 1. Let us

assume, for the sake of simplicity, uncorrelated particle emissions for each specific initial

condition. Then, accounting for δ(p1, ..., pN) = 1 in Eq. (13), one can write

P̂N(p1, p2, ..., pN ; ui) = f(p1; ui)f(p2; ui)...f(pN−1; ui)f(pN ; ui), (34)

where we normalize f(p; ui) as follows,
∫

d3p
E
f(p; ui) = 1, then K = 1, see Eq. (15). Two-
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particle non-femtoscopic correlation function, CNF , then reads

CNF (p1, p2) =

∑
iw(ui)f(p1; ui)f(p2; ui)∑

i w(ui)f(p1; ui)
∑

j w(uj)f(p2; uj)
. (35)

Evidently, the different type of fluctuations, i.e., the form of distribution w(ui), leads to

the different behavior of the non-femtoscopic correlations. To illustrate that fluctuations

can lead to the non-femtoscopic correlation functions that are similar to ones induced by

minijets, let us consider the toy model where

w(uT ) =
α2

π
exp(−u2

Tα
2), (36)

f(p;uT ) =
β2γ

π3/2
E exp(−(pT − uT )

2β2) exp(−p2Lγ
2), (37)

and normalization is chosen in such a way that
∫
d2uTw(uT ) = 1 and

∫
d3p
E
f(p;uT ) = 1.

Main feature of such a model is that event-by-event single-particle transverse momentum

spectra have maximum for event-by-event fluctuating pT values. Such momentum spectrum

fluctuations could take place, e.g., in hydrodynamics with highly inhomogeneous initial

energy density profile without cylindrical or elliptic symmetry. One can easily see that in

this case CNF decreases with q2T ,

CNF (p, q) ∼ exp(− β4

2(α2 + β2)
q2T ), (38)

and it means (after taking into account (27) and (28)) that CNF decreases with q2inv too,

that is similar to the behavior of CNF if the non-femtoscopic correlations are induced by

minijets. At the same time, unlike the latter, the hydrodynamical fluctuations lead to the

similar (up to the resonance contributions) correlations for like-sign and unlike-sign pion

pairs.

V. CONCLUSIONS

We can conclude that noticeable non-femtoscopic two-pion correlations can appear for

small systems as a result of the cluster (minijet) structures in final momentum space of

produced particles, or as a result of event-by-event fluctuating initial conditions for hydro-

dynamical stage; another source of the non-femtoscopic correlations is the global energy-

momentum conservation constraints. The latter typically results in an increase with qinv

for fairly high qinv of the non-femtoscopic two-pion correlation functions of small systems,
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whereas the former mostly determines a decrease of the ones at relatively low qinv. We

presented here the simple analytical model that takes into account correlations induced by

the total transverse momentum conservation as well as minijets, and show that the model

gives reasonable description of the two-pion non-femtoscopic correlations of identical and

non-identical pions in proton-proton collision events at
√
s = 900 GeV reported by the

ALICE Collaboration [3].

Although details of particle production processes affect the non-femtoscopic correlations,

the different types of multiparticle production mechanism could result in qualitatively similar

non-femtoscopic correlation functions. We presented some heuristic arguments that the

two-pion non-femtoscopic correlation functions calculated in hydrodynamics with event-by-

event fluctuating initial conditions can be qualitatively similar at relatively low qinv to ones

calculated in PHOJET like generators where the non-femtoscopic correlations for low qinv

are mainly caused by the minijets. Then non-symmetrical fluctuations of initial conditions

lead not only to non-zero v3 and higher flow harmonics (see, e.g., Ref. [11]), but can

also influence on the behavior of the HBT radii in inclusive measurements.5 It is worthy

noting the important difference between the non-femtoscopic correlations induced by minijets

and hydrodynamical fluctuations: while the former lead to higher magnitude of the non-

femtoscopic correlations for unlike-sign pion pairs as compared to like-sign pions, the latter

result in similar strength of the non-femtoscopic correlations for identical and non-identical

pions. This can result in the different predictions for the correlation baselines.
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FIG. 1. The non-femtoscopic correlation functions of like-sign pions in 0.1 < pT < 0.25 GeV bin

from a simulation using PHOJET [3, 8] (full dots) and that calculated from the analytical model:

minijets + momentum conservation (full line), see the text for details.
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FIG. 2. The same as Fig. 1 but in 0.25 < pT < 0.4 GeV bin.
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FIG. 3. The same as Fig. 1 but in 0.4 < pT < 0.55 GeV bin.
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FIG. 4. The same as Fig. 1 but in 0.55 < pT < 0.7 GeV bin.
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FIG. 5. Above thin horizontal line: the non-femtoscopic correlation functions of like-sign pions in

0.7 < pT < 1.0 GeV bin from a simulation using PHOJET [3, 8] (full dots) and that calculated from

the analytical model (full line). Below thin horizontal line: relative contribution to non-femtoscopic

correlation function by first (dotted line) and second (dashed line) terms of Eq. (32)
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FIG. 6. The non-femtoscopic correlation functions of unlike-sign pions in 0.1 < pT < 0.25 GeV bin

from Refs. [3, 8] (full dots) and that calculated from the analytical model: minijets + momentum

conservation (full line), see the text for details.
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FIG. 7. The same as Fig. 6 but in 0.25 < pT < 0.4 GeV bin.
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FIG. 8. The same as Fig. 6 but in 0.4 < pT < 0.55 GeV bin.
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FIG. 9. The same as Fig. 6 but in 0.55 < pT < 0.7 GeV bin.
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FIG. 10. Above thin horizontal line: the non-femtoscopic correlation functions of unlike-sign pions

in 0.7 < pT < 1.0 GeV bin from Refs. [3, 8] (full dots) and that calculated from the analytical

model (full line). Below thin horizontal line: relative contribution to non-femtoscopic correlation

function by first (dotted line) and second (dashed line) terms of Eq. (32).
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