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In this work, we predict two charged charmonium-like stumets close to thé&*D and D*D* thresholds,
where the Initial Single Pion Emission mechanism is intagtlin the hidden-charm dipion decays of higher
charmoniay (4040), »(4160),y(4415) and charmonium-like sta¥4260). We suggest BESIII to search for
these structures in thByx*, ¢(2S)x* andh,(1P)x* invariant mass spectra of tp€4040) decays intd/yn*n,
w(2S)n*n~ andh,(1P)x* 7. In addition, the experimental search for these structardee J/yx*, y(2S)7* and
he(1P)x* invariant mass spectra of thig4260) hidden-charm dipion decays will be accessible ateBamhd
BaBar.

PACS numbers: 13.25.Gv, 14.40.Pq, 13.75.Lb

I. INTRODUCTION ¥(4160) andy(4415) via the ISPE mechanism.
In this work, we will study the hidden-charm decays

In the past years, experimentalist has made big progress & Y(4260), which is an important charmonium-like state
the search for the charmonium-like states, the so-called XY observeoJIr by the BaBar Collaboration in tee” —
states, in thé meson decay, the'e collision, theyy fusion ~ Y1srRI/¢7"7~ process [19]. A nonresonant explanation for
process, which have aroused extensive interestin reggtalin Y (4260) was proposed in Ref. [20], where @260 struc-
underlying properties of the observed charmonium-likeesta tuUre can be repr+0(ﬂUced by tr:ejnterference of production am-
(see Refs. [1-5] for a review). The study of charmonium-likePlitudes of thee'e” — J/yn"x~ processes via direa’e

states is a research field full of challenges and opporagiiti ~ 2nnihilation and through intermediate charmaf{a160) and
hadron physics. ¥(4415) [20]. SinceY(4260) can be related to charmonia

¥(4160) and)(4415), studyingr(4260) hidden-charm decays
through the ISPE mechanism is an intriguing issue.

This work is organized as follows. After the Introduction,
we illustrate the hidden-charm dipion decays of higherchar
{nonia under the ISPE mechanisms. In Sec. Ill, the numerical
results are presented. The last section is the discussin an
conclusion.

Very recently the Belle Collaboration [6] reported two
chargedz, structures around 10610 MeV and 10650 MeV by
studying theY(nS)z* (n = 1, 2, 3) andhy(mP)z* (m = 1, 2)
invariant mass spectra af(5S) — Y(nS)x*n~, hy(mP)r* 7~
hidden-bottom decay channels (see Refs. [7-17] for theore
ical progress). In Ref. [17], we proposed the Initial Single
Pion Emission (ISPE) mechanism to explain the obseFged
structures. By emitting a pioft;(5S) decays intd3*) andB™
mesons with low momentum. TheB{” andB®*) mesons in-

teract with each other by exchangiB§’ meson and transit 1. THE HIDDEN-CHARM DECAYS OF HIGHER

into T(nS)z* or hy(mP)x*. Here, two structures near tiBs* CHARMONIA
andB*B* thresholds appear in thg(nS)=x* andhy(MP)z* in- .
variant mass spectra, which could correspon&10610) A. ThelSPE mechanism

andZ,(10650) [6].

Just indicated in Ref. [17], if the ISPE mechanism is an With (4040)— J/yn*n~ as an example, we first illustrate
universal mechanism existing in heavy quarkonium decay, wéhe possible decay mechanisms in the dipion hidden-charm
can naturally extend such physical picture to study hiddendecay of higher charmonium. As indicated in Refs. [21-23],
charm decays of higher charmonia due to the similarity be(4040) can directly decay intd/yn*z~. The QCD Multi-
tween charmonium and bottomonium families, and predictole Expansion method [21-23] is applied to calculate such
some novel phenomena similar to thestructures. direct decay process. The second mechanism is that the dip-

In Particle Data Book [18], six vector charmonia are estabiOn is from the intermediate scalar(600), fo(980)) or tensor
lished well, which are)/y, ¥/(2S), w(3770)4(4040),4/(4160) (f2(1270)) meson, where the hadronlc loops constructed by
andy(4415). Among these charmonia, oml{#040)4/(4160)  the D® mesons could be as a bridge to connget040) and
andy(4415) are higher than the thresholdsiib, DD* and ~ J/¥7"7 (see Ref. [24] for more details).

D*D*. Thus, we study the hidden-charm decays (£040), The remaining decay mechanism existing in the hidden-
charm dipion decays of higher charmonia is the ISPE mecha-

nism, which was first proposed in Ref. [17]. By the quark-

level diagram we give an explicit description (left-side di
*Corresponding author agram in Fig. 1) of the ISPE mechanism {4040) —
TElectronic addresstiangliu@lzu.edu.cn J/yn*n~ decay. The physical picture is that with a pion
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emissiony(4040) first dissolves intd® and D® mesons

with low momentum, which further turn intd/yz*. Here,
D®D® — J/yx* transition occurs via exchangimf) me-
son [17].

An equivalent hadron-level description is also presented i

the right-side diagram of Fig. 1, which can be as fedive
approach for dealing with the practical calculations.

Quark Level

Hadron Level

FIG. 1: (Color online.) The quark-level (left-side diagraemnd
hadron-level (right-side diagram) descriptions of the ESRecha-
nism existing in the hidden-charm decays of higher charemoni

B. Effective Lagrangian and coupling constant

We adopt &ective Lagrangian approach to calculate these

hadron-level diagrams listed in Fig. 1. Here, tiiieetive La-
grangians involved in the interaction vertexes in Fig. lude
[25-27]
Lypepwig
= —igyoDre” P ,0,D0,m35D + Qyp-pxY* (DD, + D7)
~igyp-0n8" D} 0nD}; — iNyp-p &8, DDy,
Loporr
= igp-pr(D}3#*7D — D#7D;) - Go- b2 3, D370, D,
Lypepe
= igypp¥,.(¢#' DD — D#D) — gy &P, (3,D;D
+Dd,D}) - igyp-o- {*(9,D”'D; - D*9,D})
+@4,D” = ¢,8,D”)D" + D™(¥"8,D; - 64" D))},
Lh.pop®
= Gn.o0M(D;,D + D;,D) + ign,p-p- £ d,he, D, Dj.

The values of the coupling constants can be determined by

the relations

Mp [Mp _ My
Oyop = OyoDr — = Oy | — = —>
my my  f
Mp=
Oh.DD: = —201 /My, MpMp-, Ohp-D+ = 201 —nl?hc’

Gooy = —or 20 o Mo 1
D*D*n \/W fﬂ? 1 3 f/\/wa

GeV can be approximately determined by the QCD sum rule
approach [27]. With the measured branching ratid6f—
Dr by CLEO-c [28] andf, = 132 MeV, one getg = 0.59
[29].

In Table. I, we list the concrete values of the coupling con-
stants.

TABLE I: The values of the coupling constants involved in ta-
culations.

DD DD DD
Jj 744 249 800
¥(2S) 1239 349 1333
he - 15211 -4.47
r - 1731 894

C. Decay Amplitudes

With these Lagrangians just listed above, we write out the
decay amplitude for the dipion transition betweg{040)
andJ/y.
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FIG. 2: (Color online.) The hadron-level diagrams ##040) —
J/yntn~ decays withD*D + h.c as the intermediate states.

When only considering the intermediaBeD + h.c. con-
tributions toy(4040) — J/yx*n~, there are twelve diagrams
just shown in Fig. 2. Among these diagrams, there are only six

wheref, = 0.416 GeV andf,, = 0.297 GeV are the decay independent diagrams if considerigy (2) symmetry, i.e.,

constants ofy andyco, respectively. In additionf,, ~ 0.51

Fig. 2 (i) can be transferred into Fig. 2-6) (i = 1,---,6)



by transformation®®* = D andD®- = D®°, Thus,
the total decay amplitude fa¥(4040) — J/yn*n~ with the
intermediatedD*D + h.c. contributions are expressed as

M[p(4040) > I/ym* 7 |p-pane. = 2 Z MOS o (@
i=1,-

where factor 2 reflect$U(2) symmetry mentioned above.
The subscripD*D + h.c. denotes thai(4040) — J/yn*n~

occurs via the intermediat@*D + h.c.. The expressions of (5) (6) (7) (8)
decay amplitudeMé‘{mh_Q (i=123)read as

FIG. 3: (Color online.) The hadron-level diagrams #(#040) —
J/yntn~ decays withD*D* as the intermediate states.
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The decay amplituded(’;. andM®);, are expressed as

7). (2)

o [ dq . _
MEs. = (')Sf (zn(;4[—'9¢o*o*n#‘p"ﬁe¢ﬂ(l Paa)

~ihyp-p-re™ €, (=i Poo)IligDDr (~ i Paa)]
) . + P P1p /MR, + Prp i /M3,
X[ng/c//DDEJ/./,(I P2y — IqV)] p1 “m X[~0a/yDDEsvay(( p5)63/¢,( |p2)]W
1 2/ 2 g’ + /m2.
rnz q2 rnz 7: (q ) (3) % g,B pZ'B p2 D TZ(qZ)’ (6)

p;-mi.  ?-md

MEL = 0 [ S liooone e

iy D02 &™” €4, (=1 Poa) [ ~F-0x ™™ (—i P15) (i)
X[~193/ypD €3, (=10 +1P2,))Gwa + (i Pse, +10)Gra
—¢" + P1pPre/ MG,

(3) ] v
M5 51ne = () IW[9¢D*DNE$][_9D*D*nge¢b (iq”)

X (=i PN~ Gawo08” (i Psp) €370 (—10a)]
X_gur + Py plr/sz* 1
pP-m. pi-mg

~Gso + Qslls/ M, +(=i P21 = 1Ps1) G0
T, @ -,
> ~g5 + PasPy /MR, —g + Quat/mB.
which correspond to the dipion transitions betwega040) X S e Fa). (7)
and J/y with a initial single pion £~) emission. M(D‘t)5+hc, 2 D
®) (6) i o_
My 5 he and My 5.he €N be obtained byMD*Bm.c.'

M@ and MY respectively if making the replace- Thys, by Egs. (6) and (7) we can easily obtain decay ampli-
mentps = psin Egs. (2)-(4). HereM“) .(j=4506)are tudesM(S) andMY corresponding to Fig. 3 (3) and (4),
decay amplitudes of the dipion transmons betwgga040)  where tltn)e transformatlope = py is performed.

andJ/y with a initial single pion £*) emission.
In the following, we extend the same framework to study

the dipion transition betweey(4040) andh.(1P). By re-
placing J/y with he(1P) in Fig. 2 (1), (3), (4), (6), (7). (9),
(10) and (12) and Fig. 3, we obtain all diagrams relevant to
¥(4040)— he(1P)x*n~ decay. The total decay amplitudes of
M[(4040) = Ijyr' 1 o5 = 2 Z M(Dw*)ﬁ«' (5) ¥(4040)— he(1P)n*n~ via D*D + h.c. andD*D* are

a=1-4

We also present the decay amplitude pf4040) —
J/yrtn~ via the intermediat®*D*.

We list all diagrams contributing t¢(4040) —» J/yn*n~ in L ®
Fig. 3. Among these eight eight diagrams, Fig.a2 ¢an be M[y(4040)— he(IP)" 7 ]ppine. = 2 Z AD 5:nc(8)
obtained by Fig. 24 + 4) (@ = 1, - - - , 4) if making the trans-

H )+ )0 #)— %)0 H H _ K
formatlo_nsD( )+ = DO andD®- = DMP, which results in M[¥(4040)— he(IP)r* 7 o5 = 2 Z AI(D)D’
factor 2 in Eq. (5) due t&U(2) symmetry.



respectively, where the concrete amplitude expressians ar

o 3 [ dig
e =0 [ Gl ]
. — 1
X[igp-pr( |plj,)][|gth*D*56v9¢(| ps)ehc] p% ~ m%
% _gﬁ + pz# pg/sz* _gg + qpqg/sz* 7_—2(q2) (10)
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) _ (13 d’q P 0
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~Qud + Pyl /M,

X(=i PN Gh-Denev]
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1 _gVT+qu/m2 2, .2
X F 11
Z-mE - (@), (11)
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. d* . . .
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X[~ 900+ r€sr06(—1 P (19) [ Gn,D 0+ Exvtw(C ps)en ]
i P p/me. —g + phpy/mE,

pi—m3, P —ms,
-g" +o’q!/mg,
X WD F2(). (13)
q — s«

After performing the transformatiops = pa, A|(31*)|5+hc'
(2) (1) (2) "
Aa*)ﬁmc A(S) andAE4) 56, AN be transferred mtAD Dehc!

Al 5ne Aols. @ndAL 5. respectively.

In the above expressions of decay amplitudegy’) de-
notes the monopole form factor, which is taken7a&p) =
(A? - m2)/(¢? - m2). Here, mg is the mass of the ex-
changed meson while the phenomenological paramater
can be parameterized @& = mg + SAqcp With Agep =
220 MeV. Such monopole form factor is introduced to de-
scribe the structurefiects of the interaction vertexes as well

as the d@-shell dgfects of the exchanged charmed mesons

for DODM - J/yn*, he(1P)n* transitions iny(4040) —
J/yntn, h(1P)x*n~ decays.

The diferential decay width foy(4040)— J/yn*n~
as

reads

11
3(277) 32m

1

————|M2dnG,,.dn?. (14)

¥(4040)

with m?

3w = (p3 + ps)?, where

= (pa + ps)” andn?.

the overline indicates the average over the polarizatidns o

4

the (4040) in the initial state and the sum over the polar-
ization of J/y(4040) in the final state. Replacimg,, - with
My(2s)r+ OF My (1P)+ , WE Obtain the dferential decay width for

Y (4040)— w(2S)n*n~ or y(4040)— ho(1P)n* 7.

When studying the hidden-charm dipion decay of other
higher charmoniay(4160), (4415) and charmonium-like
stateY(4260), we only need to replace the relevant coupling
constants and the masses in the formulism of/tf#940) de-
cays.

1. NUMERICAL RESULT

In this work, we are mainly concerned with the line shapes
of the diferential decay widths af(4040),4(4160),4(4415)
and charmonium-like stat&'(4260) decays intol/yn*n~,
Y(2S)r*n~ andh(1P)x*n~, which are dependent on the in-
variant mass spectra dfyn™*, y(2S)n* andhe(1P)x*. Thus,
we set the coupling constants @D®D®x as 1 in our cal-
culation. Besides these coupling constants listed in Table
other input parameters are the masses involved in our ealcul
tion, which are taken from Particle Data Book [18].

In Fig. 4, we present the results afl’/dmyy.-,
dr/dm/,(gs),r+ and dl"/dnhc(lp)n+ of 1/1(4040), lﬁ(4160),
¥(4415), Y(4260) decays intoJ/yntn~, w(2S)ntn,
he(1P)n*n~.

1. There exit sharp peak structures close to Bi®
threshold and the corresponding reflections in the distri-
butions ofdI'/dmyyy.+, dT'/dmy2s)+ anddl’/dmy,1pyr-
of w(4040) — J/yn*n~, Y(4040) — Y(2S)ntn~
and ¢(4040) — h(1P)z*n~ decays. We no-
tice that this structure appearing ofi(¢(4040) —
J/yntn~)/dmyy,+ is not obvious comparing with the
structure indl'(y(4040) — ¥(2S)r*n™)/dMy@s).+ OF
dr'(y(4040)— he(1P)r*z™)/dmy 1y~ distribution.

. Two sharp peaks appear in thal'(y(4160)
I/t am) [ dmy g and  dr'(y(4160) -
he(1P)7*7~)/dmnap)+  distributions,  which are
close theD*D threshold. The structure in th&ya*
invariant mass spectrum is more narrow than that in the
hc(1P)x* invariant mass spectrum.

-

3. In the hidden-charm dipion decaysy#415), we find
two sharp peak structures around tBeD and D*D*
thresholds appearing in thys* invariant mass spec-
tra. In addition, a sharp peak close teD* threshold is
observed in thén(1P)x* invariant mass spectrum dis-
tribution. In thedI'(y(4415)— y(2S)a*n™)/dmy2s)r+
distribution, a peak ned*D* with its reflection form a
broad structure. Under the ISPE mechanism, the inter-
mediateD*D can result in a very broad structure in the
he(1P)x* invariant mass spectrum distribution.

4. There exist the sharp peaks close 6D thresh-
old in the dI'(y(4260) — J/yn*n~)/dmy,,~ and
dr(y(4260) —  h(1P)n*n™)/dMyp)+ distribu-
tions, the structures around*D* threshold in
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FIG. 4: (Color online.) The invariant mass spectralopr*, ¢(2S)x* andh(1P)x* for the y(4040),y(4160),y(4415) andY(4260) decays
into J/yn*n~, y(2S)n*n~ andh,(1P)x*x~. Here, the solid, dashed correspond to the results coimsigietermediateDD* + h.c. and D*D*
respectively in Fig. 1. The vertical dashed lines and théeddines denote the threshholdDfD andD*D* respectively. Here, the maximum
of the line shape is normalized to 1.

the dI'(y(4260) —  y(2S)r*n")/dmyes)~ and '
dr(y(4260) — hc(1P)n*n)/dmy apy,+ distributions.
The peak close th®*D threshold and its reflection
overlap with each each to form a broad structure in the
hc* invariant mass spectrum.

We need to specify that the result presented in Fig. 4 are
obtained by taking3 = 1. Our study shows that the line
shapes in Fig. 4 are weakly dependent on the valugs\dfith
Y(4415)— her*n~ as an example, in Fig. 5 we illustrate the
B dependence dl'(y(4415) — he(1P)r*x~)/dmy 1p)- dis-
tribution, where the line shapes correspondingte 1,2, 3
remain almost unchanged.

mp o+

IV. DISCUSSION AND CONCLUSION
FIG. 5: (Color online.) The dependence df'(y(4415) —
he(1P)r*n~)/dMyapy,+ distribution on . Here, ¢(4415) —

In this work, we study the line shapes of th&eiential de- he(1P)z* 7~ occurs via the intermedia®@*D + h.c.

cay widths ofy(4040),y(4160),y(4415) and charmonium-
like state Y(4260) decays intod/yn*n~, (2S)n*x~ and
hc(1P)x*n~, where the ISPE mechanism is introduced. Fur-
thermore, we predict the sharp peak structures clo$z‘» The ISPE mechanism plays crucial role to form these novel
and D*D* thresholds appearing the correspondiigr*r, charged charmonium-like structures in the hidden-chapms di

Y (2S)x* andh(1P)n* invariant mass spectra. ion decays of higher charmonia. To some extent, these pre-



dicted structures are the charmonium analogue of two newlgspecially at Belle and BaBar.
observedz, structures in the hidden-bottom dipion decays of
T(5S) [6].

We suggest further experimental search for these pre-
dicted charmonium-like structures close to bie® andD*D*
thresholds. Recently, BESIII has stated accumulati@®40)
data with an aim to search for higher charmonia and the
charmonium-like states [30]. Our result shows the charged X.L.would like to thank Chang-Zheng Yuan for suggestive
structures around thB*D threshold in thel/yn*, y(2S)x* discussion. This project is supported by the National Netur
andh,(1P)x* invariant mass spectra @f(4040) decays into  Science Foundation of China under Grants Nos. 10705001,
J/yntn, Y(2S)r*n~ andhy(1P)x*n~, which are accessible No. 11005129, No. 11035006, No. 11047606, the Ministry of
at BESIII and could be considered in future studies. Education of China (FANEDD under Grant No. 200924, DP-

Since these charged charmonium-like structures also exi§IHE under Grant No. 20090211120029, NCET under Grant
intheJ/yn™, y(2S)n* andhy(1P)x* invariant mass spectra of No. NCET-10-0442, the Fundamental Research Funds for the
¥(4260) hidden-charm dipion decays, carrying out the searclentral Universities), and the West Doctoral Project of-Chi
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