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Plasma damping effects on the radiative energy loss of relativistic particles

M. Bluhm,1 P. B. Gossiaux,1 and J. Aichelin1
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The energy loss of a relativistic charge undergoing multiple scatterings while traversing an infinite,
polarizable and absorptive plasma is investigated. Polarization and damping mechanisms in the
medium are phenomenologically modelled by a complex index of refraction. Apart from the known
Ter-Mikaelian effect related to the dielectric polarization of matter, we find an additional, substantial
reduction of the energy loss due to damping of radiation. The observed effect is more prominent
for larger damping and/or larger energy of the charge. A conceivable analog of this phenomenon in
QCD could influence the study of jet quenching phenomena in ultra-relativistic heavy-ion collisions
at RHIC and LHC.
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The observed strong suppression of high transverse
momentum hadron-yields in relativistic nuclear colli-
sions [1, 2] has been interpreted as a signature for the
formation of a strongly interacting, deconfined and dense
quark-gluon plasma (QGP) [3, 4], in which energetic
partons suffer radiative and collisional energy loss [5–
10]. Important in the context of radiative energy loss
of relativistic particles, as realized by Landau, Pomer-
anchuk [11] and Migdal [12] for QED, and later on gen-
eralized to QCD [6, 13], is the possibility of a destruc-
tive interference between radiation amplitudes when the
charged particle undergoes multiple scatterings within
the formation time of radiation, resulting in a suppres-
sion of the radiation spectrum compared to the sum of
incoherent emissions at successive scatterings (LPM ef-
fect).

As pointed out by Ter-Mikaelian [14], the radiation
spectrum, and hence the energy loss, is also modified by
the dielectric polarization of the medium, which gives
rise to medium-modifications in the dispersion relation
of radiated quanta (TM effect). The QCD analog of the
TM effect was studied in [15, 16] by investigating the
gluon radiation spectrum in the QGP. These approaches
made use of dielectric functions either including a con-
stant thermal gluon mass [15] or being related to the hard
thermal loop (HTL) gluon self-energy [16]. In none of
these studies, however, the possible additional influence
of the damping of radiation in an absorptive medium was
taken into account. The intent of our Letter is to inves-
tigate this influence.

We study in linear response theory the energy loss
of an energetic point-charge in an absorptive, dielec-
tric medium. Polarization and radiation damping effects
are both taken into account by employing a complex
medium index of refraction. Following the original ap-
proach in [11], the charge’s velocity vector ~v(t) is mod-
elled to change with time due to successive scatterings in
an infinite medium. Our studies, however, also qualita-

tively apply in the case, in which the size of the medium
is large compared to the formation length of radiated
quanta. A detailed derivation and discussion of the re-
sults will be reported elsewhere. Here, we want to focus
on two essential findings: (i) Damping of radiation in an
absorptive medium can lead to a substantial reduction
of the radiative energy loss and (ii) the observed effect
intensifies with increasing medium damping and/or in-
creasing energy E of the charge. Our investigations, be-
ing strictly valid for electro-magnetic plasmas, represent
the classical, abelian approximation for the dynamics of
a color charge in the QGP. It may, thus, be conceivable
that radiation damping is also of some impact in parton
energy loss studies. Throughout this work natural units
are used, i. e. ~ = c = 1.

In line with [10], we determine the energy loss from the
negative mechanical work W performed on the charge by
its electric field. As W accounts for the total energy loss
of the charge, it incorporates in an absorptive medium
in particular both, the energy radiated out of and the
amount of energy dissipated inside the medium. Thus, a
study of W is particularly suitable for our purposes. It
is comfortably evaluated in the mixed spatial coordinate
and frequency representation of its integrand via

W = 2Re

(
∫

d3~r ′

∫ ∞

0

dω ~E(~r ′, ω)~j(~r ′, ω)∗
)

, (1)

where~j(~r ′, t) = q~v(t)δ(3)(~r ′−~r(t)) is the classical current

of charge q in space-time coordinates and ~E is the total
electric field of the charge inside the medium.

From Maxwell’s equations for a linear dispersive
medium, one obtains in Fourier-space

~E~k
(ω) =

iq

(2π)2

∫

dt′
eiωt′−i~k~r(t′)

ωǫ(ω)

×

{

~vL(t
′)k2

(ω2µ(ω)ǫ(ω)− k2)
−

~v(t′)ω2µ(ω)ǫ(ω)

(ω2µ(ω)ǫ(ω)− k2)

}

, (2)
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where ~vL = (~k ~v)~k/k2 is the longitudinal component of

~v with respect to the wave vector ~k, and ǫ(ω) and µ(ω)
denote permittivity and permeability of the matter, re-
spectively, which are defined to be complex in order to
account for the damping of (time-like) excitations in the
plasma [17]. For positive ω, one finds from (1) in differ-
ential form

dW

dω
= Re

(

−
iq2

8π4

∫

dt

∫

dt′
∫

d3~k
e−iω(t−t′)+i~k ~∆r

ωǫ(ω)

×

{

(~k ~v(t))(~k ~v(t′))

(k2 − ω2n2(ω))
−

~v(t)~v(t′)ω2n2(ω)

(k2 − ω2n2(ω))

})

, (3)

where ~∆r = ~r(t) − ~r(t′) and n2(ω) = µ(ω)ǫ(ω) is the
complex squared index of refraction.
In the following, we assume for simplicity ǫ(ω) and

µ(ω) to depend on ω only, i. e. spatial distortions in the
plasma are not considered. Then, dW/dω in (3) is sen-
sitive to simple poles in the complex momentum-plane
and the momentum-integrals in (3) can easily be evalu-
ated analytically by contour integration. The inclusion
of an explicit ~k-dependence in ǫ and µ is left for future
studies.
By decomposing the index of refraction into real and

imaginary parts, n(ω) = nr(ω) + ini(ω), and defining

~g = ωn(ω) ~∆r one obtains from (3)

dW

dω
= Re

(

iq2

4π2

∫

dt

∫

dt′
ω2n3(ω)

ǫ(ω)
e−iω(t−t′)A(t, t′)

)

(4)
with

A(t, t′) = (~v(t)~v(t′) + (∇~g ~v(t))(∇~g ~v(t
′)))

ei sgn(ni)g

g
.

(5)
This is the main result of our work. Essential here is the
exponential factor

ei sgn(ni)g = ei sgn(ni)ωnr∆re−ω|ni|∆r, (6)

which implies that irrespective of the sign of ni(ω),
sgn(ni), the mechanical work is exponentially damped
for |ni| 6= 0. This is a direct consequence of the fact
that, depending on sgn(ni), only one of the two sim-
ple poles in (3) contributes to the energy loss. Only the
phase factor in (6), associated with nr(ω), is affected by
sgn(ni).
Due to the symmetry property of A(t, t′) under vari-

able exchange, (4) can be written in a form such that
only t > t′ has to be considered in the time-integration.
Omitting as in [11] those terms stemming from the action
of ∇~g on 1/g in (5), A(t, t′) entering (4) reduces to

A(0)(t, t
′) =

1

g

(

~v(t)~v(t′)−
(~v(t)~g)(~v(t′)~g)

g2

)

ei sgn(ni)g .

(7)

For constant ~v, A(0)(t, t
′) = 0 and the corresponding en-

ergy loss determined via (4) vanishes.
Going beyond constant ~v, we study, as in [11], the case,

where the velocity ~v(t′) = v′ẑ is changed due to multiple
scatterings according to ~v(t′ + t̃) = v′ẑ cos θt̃+ v′~e⊥ sin θt̃
for t̃ > 0, i. e. where v2 remains constant. Assum-
ing the relative deflection angle, θt̄, to be small within
t̄ = t − t′, one obtains ~v(t)~v(t′) ≃ v′2(1 − θ2

t̄
/2) in (7).

Likewise, by omitting terms of order O(θ4), one finds
~∆r ≃ v′ẑt̄ − 1

2v
′ẑI2 + v′~e⊥I1 with I2 =

∫ t̄

0
θ2τdτ and

I1 =
∫ t̄

0 θτdτ . Averaging over the deflection angles, one

finds 〈∆r〉 ≃ v′ t̄
√

1− q̂t̄/(3E2) with q̂ = E2〈θ2
t̄
〉/t̄ in

units of GeV2/fm. The parameter q̂ is the mean accu-
mulated transverse momentum squared of the deflected
charge per unit time. Approximating dz = v′dt′ and us-
ing (7), one obtains from (4)

d2W

dzdω
≃ −Re

(

2iα

3π

q̂

E2

∫ ∞

0

dt̄
ωn2

ǫ
cos(ωt̄)

× exp

[

isgn(ni)ωnrβt̄

(

1−
q̂

6E2
t̄

)]

× exp

[

−ω|ni|βt̄

(

1−
q̂

6E2
t̄

)]

)

(8)

with β = v′ and coupling α = q2/(4π).
For q̂ = 0, i. e. when the charge suffers no deflections,

d2W/(dzdω) vanishes. Furthermore, in the vacuum limit,
i. e. when setting ǫ(ω) = µ(ω) = 1, (8) becomes the neg-
ative of the radiation intensity determined in [11]. Thus,
we interpret the negative of expression (8) as radiative
energy loss spectrum per unit length. We restrict our-
selves to the case sgn(ni) = sgn(nr) in order to account
for an actual loss of energy. Moreover, we do not distinct
in the following between longitudinal and transverse ex-
citations by setting µ(ω) = 1, which implies ǫL = ǫT = ǫ
for isotropic and homogeneous media [17]. A differenti-
ation between longitudinal and transverse excitations is
left for future investigations.
As the approach assumes small deflection angles for

arbitrary values of t̄, it is necessary to impose as physi-
cal constraint a natural upper boundary in the t̄-integral.
We restrict (8) to t̄ ≤ 2E2/q̂, i. e. exactly where 〈∆r〉/v′

reaches its maximum. Increasing the cut-off value reason-
ably does not influence our numerical results presented
below.
We use for the complex squared index of refraction

n2(ω) = ǫ(ω) the following formal ansatz

n2(ω) = 1−
m2

ω2
+ 2i

Γ

ω
. (9)

This structure is based on the assumption that radiated
quanta formed inside a medium follow medium-modified
dispersion relations of plasma modes, cf. [15, 16], acquir-
ing a finite in-medium mass m and being damped in the
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FIG. 1: (Color online) Radiative energy loss spectrum as
a function of ω for Γ = 0. The kinematic parameters are
chosen as E = 20 GeV, charge mass M = 1 GeV and
q̂ = 2.5 GeV2/fm. Black solid curve shows the vacuum
limit (setting m = 0), while the red long-dashed curves de-
pict the corresponding results for a medium with real n2(ω)
(m = 0.3, 0.6, 0.9 GeV from top to bottom, respectively).

absorptive medium with a rate related to Γ [18, 19]. Ex-
pression (9) is connected with a Lorentz-type spectral
function for intermediate hard quanta [18], where m and
Γ are in general free parameters, which may depend on
plasma temperature, coupling and/or frequency. The
corresponding dispersion relation of plasma modes fol-
lows from Re(k2 − ω2ǫ(ω)) = 0. This implies (i) the ab-
sence of radiation for ω < m (for ω → m+ the phase
velocity of the plasma modes vanishes), (ii) time-like
plasma modes and (iii) Im(ǫ) = 2Γ/ω 6= 0 for Γ 6= 0
with support in the ω-region, where the plasma modes
exist. Our ansatz for the dielectric function, therefore,
differs from an ǫ(ω) deduced from a leading-order HTL
self-energy expression, cf. [10, 16]. In this case, plasma
modes are also time-like [20–22], while the support of
Im(ǫ) is restricted to the space-like region. Only at next-
to-leading-order, the damping of plasma modes emerges
in HTL-based approaches.

We now want to quantify (8), simplifying however the
considerations by being restricted to constant Γ and m
values inspired by [23]. We discuss first the case of
a polarizable, non-damping medium employing n2(ω)
from (9) with Γ = 0. Fig. 1 exhibits the radiative en-
ergy loss spectrum for Γ = 0 as a function of ω for
m = 0.3, 0.6, 0.9 GeV (red long-dashed curves from top
to bottom, respectively). For comparison also the vac-
uum limit (m = 0) is shown (black solid curve). With
increasing in-medium mass an increasing reduction of
the spectrum is observed (TM effect, cf. also [15, 16]).
This reduction is more pronounced at small ω, while the
generic approach of the vacuum result with increasing ω
is hampered for increasing m.

The additional effect of radiation damping in an ab-
sorptive medium is shown in Fig. 2 for different values of
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FIG. 2: (Color online) Radiative energy loss spectrum as a
function of ω with the same kinematic parameters as in Fig. 1.
The black solid curve shows the vacuum limit and the red
long-dashed curve depicts the result for a medium with real
n2(ω) using m = 0.6 GeV. The blue short-dashed curves ex-
hibit the additional influence of radiation damping, employing
n2(ω) from (9) with Γ = 5, 10, 50 MeV (from top to bottom,
respectively).
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FIG. 3: (Color online) Ratio ∆ as a function of E for con-
stant ω = 3, 5, 7 GeV (solid curves from bottom to top, re-
spectively), and fixed Γ = 50 MeV and m = 0. Charge mass
M and parameter q̂ as in Figs. 1 and 2. ∆ → 1 for negligible
damping effects.

Γ = 5, 10, 50 MeV (blue short-dashed curves from top
to bottom, respectively) and fixed m = 0.6 GeV. Even
for small values of Γ (the maximal ratio considered in
Fig. 2 is Γ/m = 0.083), radiation damping leads to a
significant reduction of the radiative energy loss spec-
trum. This is a natural consequence of the sensitivity
of (8) on the poles in the complex k-plane determined
from ω2 − k2 − m2 + 2iΓω = 0, which implies a non-
negligible effect of Γ even for small Γ/m. In the limit
ω → m+, the behavior for a polarizable, non-damping
medium is recovered.

It is interesting to investigate the dependence of (8)
on the energy of the charge for a given Γ. In Fig. 3,
the ratio of the radiative energy loss spectrum between
an absorptive (Γ 6= 0) and a non-absorptive (Γ = 0)
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medium, ∆ ≡ d2WΓ6=0/d
2WΓ=0, is exhibited as a func-

tion of E for constant ω, Γ = 50 MeV and m = 0. This
allows for studying the relative importance of radiation
damping effects in an absorptive medium compared to
the vacuum. We observe a sensitive energy dependence
with increasing importance of radiation damping effects
for increasing E.
The observations made in Figs. 1-3 can be understood

by qualitatively analyzing (8). Here, we focus on the
discussion of observations made in the regime ω ≫ m ≫
Γ. In the case of a non-damping but polarizable medium,
the vacuum result will be approached with increasing ω
as the exponential damping factor in (8) is 1 and nr → 1
with increasing ω.
Analyzing (8) for Γ 6= 0, one finds from (9) that

ω|ni| → Γ and sgn(ni)ωnr → ω in the considered ω-
regime. In this limit, (8) gives

d2W

dzdω
≃

αωq̂

3πE2

∫ ∞

0

dt̄ exp

[

−Γβt̄

(

1−
q̂

6E2
t̄

)]

×

{

sin

[

ωt̄(β − 1)− ωβ
q̂

6E2
t̄ 2
]

+sin

[

ωt̄(β + 1)− ωβ
q̂

6E2
t̄ 2
]}

. (10)

The exponential damping factor in (10) is responsible for
the suppression of the spectrum compared to the Γ = 0
case. It is, unless Γ depends on ω, formally frequency
independent.
In order to elucidate the impact of the exponential

damping factor, it is necessary to study the formation
time tf of radiation from a relativistic charge, which in
general depends on ω. A detailed discussion of tf in a
polarizable and absorptive medium is presented in [24].
We determine tf from the phase factor Φ(t) of the dom-
inant sine-function in (10). As is well known, radiation
can be considered as decoupled from its emitter, once a
phase Φ(tf ) ∼ 1 has been accumulated. This leads to the
condition 1 ∼ ωtf(1 − β) + ωβ q̂ t2f/(6E

2). Accordingly,
tf is roughly given by the minimum of the two limiting

solutions, 2E2/(ωM2) and E
√

6/(ωq̂). The increase of
tf with E explains why a rather small Γ can lead to a
large suppression of radiation. The exponential damping
factor in (10) reduces from 1 at t̄ = 0 to approximately
exp[−Γtf ] within the formation time interval. This gives
rise to the observed sensitive Γ- and E-dependence of
the spectrum, unless tf is comparable to or larger than
another competing time scale td ∼ 1/Γ, cf. [24], where
the exponential damping factor becomes of order O(1/e),
such that the amplitude in (10) is damped away before
radiation could be formed.
In summary, we have shown that the radiative energy

loss of an energetic charge can be substantially reduced in
an absorptive medium (modelled by ni 6= 0). This effect
occurs in addition to the known TM effect, which leads to

a reduction of the radiative energy loss in a polarizable,
non-absorptive medium (described by nr 6= 0 and ni =
0). The observed effect increases with increasing medium
damping and/or increasing energy of the charge. Our
investigations, being restricted here to the regime ω ≪ E,
represent the classical, non-abelian approximation to the
dynamics of a color charge in the QGP. However, still
important effects specific to QCD are missing such as
gluon rescatterings. This will be explored in future work.
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