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Oscillations of hot, young neutron stars:
Gravitational wave frequencies and damping times
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We study how the frequencies and damping times of oscitlataf a newly born, hot proto-neutron star de-
pend on the physical quantities which characterize thegsiasi-stationary evolution which follows the bounce.
Stellar configurations are modeled using a microscopictémuaf state obtained within the Brueckner-Hartree-
Fock, nuclear many-body approach, extended to the finitgéeature regime. We discuss the mode frequency
behaviour as function of the lepton composition, and of thieapy gradients which prevail in the interior of
the star. We find that, in the very early stages, gravitatiarxe emission efficiently competes with neutrino
processes in dissipating the star mechanical energy adsifithe gravitational collapse.

PACS numbers: 04.30.Db, 97.10.Sj, 97.60.Jd, 26.60.Kp

I. INTRODUCTION losing energy due to electron captures and thermal neutrino
emission. The supernova explosion lifts off the stellaresnv
ope and, in a few tenths of seconds, due to extensive neutrin
osses, the lepton pressure decreases and the envelope con-
tracts. At this stage the PNS radius is about 20-30 km; the
subsequent evolution can be described as a sequence of equi-
librium configurations; this quasi-stationary evolutianthe
phase of interest for us.

The birth of a proto-neutron star (PNS) in a core collapsi
supernova is a very difficult phenomenon to model, since i
requires not only accurate descriptions of the micro-ptyysi
of the collapsing matter, in particular of neutrino trangpmd
related processes, but also of the violent dynamical peases
occurring in the contracting-exploding star, which neetd¢o
treated in the framework of general relativity (see [1] for a Simulations show that the diffusion of high-energy neutri-
recent review). nos (of the order of a few hundred MeV) from the low-entropy

The description of the subsequent PNS evolution is alsgore to the high-entropy envelope, from which they finally es
challenging, because a PNS is a hot and rapidly evolving obsape with energies of the order of a few tens of MeV, gen-
ject. The physical processes which contribute to the staleco erates a large amount of heat within the star, producing tem-
ing and contraction, such as nuclear and weak interactiongeratures up to several tens of MeV;, as a result, the core en-
and energy and lepton number transport by neutrino diffysio tropy approximately doubles, whereas the entropy of the en-
have to be included in dynamical simulations. Thus, mosvelope decreases. In a few tens of seconds the PNS becomes
simulations of gravitational core collapse to a PNS endthor lepton poor, but it is still hot. The net number of neutrinos
after the core bounce and the launch of the supernova expld? the interior is low, but thermally produced neutrino jsair
sion — typically after a few hundreds of milliseconds — andof all flavors are abundant, and dominate the emission; the
only a few dynamical simulations extend to the first minute ofstar cools down and entropy gradients are gradually smdothe
the PNS life [2-5]. out, while the average neutrino energy decreases, and-neutr

In this paper we are interested in this latest phase of th80S mean free path increases; after approximately one eninut
PNS life, when shock waves, neutrino winds, convection init becomes comparable to the stellar radius, and the star be-
stabilities, and accretion flows are no longer dominant hedt COMeSs neutrino transparent. By this time, the temperatse h
star cooling and contraction proceed on timescales of siscon dropped to 1-5 MeV# 1-5x10'° K) and the star has radi-
so that the evolution is quasi-stationary. In particularyant ~ ated off almost all of its binding energy, becoming what we
to study how the frequencies and damping times of the PNgall @ neutron star (NS).
quasi-normal modes of oscillation depend on the star inter- This brief summary of the first minute of the PNS life is de-
nal structure. The main motivation is that the oscillatiofis [iberately imprecise, because the details of the evolutien
a newly born PNS may be associated to gravitational wavgend on the assumptions on which the simulation is based.
signals with sizeable amplitudes, and with frequencie®low For instance, in [2+4], where the first minute after the core
than those typical of mature neutron stars. This would favoupounce is considered, the evolution is treated as a sequence
their detection by the next generation of ground-based-inte of quasi-stationary states: the thermodynamical variabiel
ferometers LIGO/Virgo and their future version (ET)|[6-8].  the lepton fractions are determined by solving evolutiomeeq

The available dynamical simulations of the post-bouncdions (for instance Boltzmann’s equation to model neutrino
evolution of a PNS indicate that, typically, the star goestransport), whereas at each time-step the stellar strigsur
through the following main steps. After the core bounce, afound by solving the Tolman-Oppenheimer-Volkov equations
shock wave propagates through the outer PNS mantle, leavirlg [5], instead, all quantities are determined through atim
behind a low-entropy core in which neutrinos are trapped, su evolution core-collapse code, which has been extended in or
rounded by a low-density, high-entropy envelope. The neantl der to describe the first 20 s of the post-bounce processes.
accretes matter from the outer layers and rapidly contractdHowever, there are features which are common to different
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studies; indeed, starting from an initial configurationrelta c¢c=G=1)
terized by a low-entropy core and a high-entropy envelope, e o\ o
due to neutrino processes the star goes smoothly through the ds” = —e¥ (1+ r"Ho™Yemeé ) dt

following phases: .
ap +é (1— réHmegme"*") dr?
the entropy increases in the core while decreasing in the ;
* envelopepy J —2iwr THH{MY, ddtdr
2(q _ et ot 2 o 2
e entropy gradients gradually smooth out while the star is +r (1 rKNime )(dﬁ +si8d¢?), (1)
still hot; wherew is the frequencyY;m(3,¢) are the scalar spherical
. harmonics, andi/™(r), K‘M(r) describe the metric perturba-
e the star progressively cools down, and the overall en-. . b . ¢
tropy decreases; tions with polar parity, i.e., those transforming(asl)‘ under
' a parity transformation. In this paper we do not consider per
« the evolution ends in the “cold”, zero entropy, neutronturbations with axial parity, which transform &s1)**. The
star configuration. functionsy(r), A (r) describe the unperturbed metric, and are
found by solving the Tolman-Oppenheimer-Volkov equations
We remark that both in_[2+-4] and in![5] the equation of The four-velocity of the generic fluid element is
state (EOS) of baryonic matter is a finite-temperature, field u ) _ )
theoretical model solved at the mean field level. U = uff + 8uH = (e7%/2,0,0,0) +iwe ¥/2(0,&,&5,y),

In this paper, instead, we employ a microscopic EOS _ _ _ _ (2
obtained within the Brueckner-Hartree-Fock (BHF) nuclearwhere¢y, is the fluid element Lagrangian displacement, ex-
many-body approach extended to the finite temperatur@anded in vector spherical harmonics
regime, as we shall discuss in Sed. Ill. We stress that our aim /20— Tyl oot
is not to model the PNS quasi-stationary evolution; we mrathe Gtrd.¢)= ¢ . ré w (r)ng(3,¢)é ’
want to explore how the frequencies and damping times of the Ey(t,r,9,0) = —r'V™M(r)0sYim(8, ),

PNS quasi-normal modes depend on the physical quantities Ep(t,r,9,0) = —rVI™(r)dpYim(, 9)e. (3)
which characterize the quasi-stationary configuratiosciv o . _

are essentially the entropy profile (which will appear tolie t ~ The fluid is also characterized by its pressure and energy
most important in this respect) and the lepton composition. density

PNS are expected to be rapidly rotating; however in our P S0 S.B) = b(r) + 'S0 WYm(S . d )
study we neglect rotation, since we are primarily intergste P(r)+0p(t,1, 3, ¢) = p(r) + . pEm( Wim(3,9) o
in the effects of the thermal and chemical evolution on the &()+0&(t,r,&,¢) = &(r) +r'0e™(r)Yim(8,¢)e“ . (4)

star oscillation frequencies, and in comparing the resuilts  \ve denote withs the Eulerian perturbations, and withthe

those of previous works which use different EOSs to mOdel_agrangian perturbations, so that for instance the Lagaang

the PNS. o ) ) perturbation of the pressure is
The article is organized as follows. In SE¢. Il we briefly ex-

plain how to compute the complex values of the quasi-normal A= 5 ;0P 5
mode frequencies using the relativistic theory of stellar-p p=0p+¢ or’ ®)
turbations. In Se€¢_ Il the derivation of the equation ofeiaf

hot nuclear matter used to model the PNS evolution is shortl;'/e"

illustrated. In Sed_1V we discuss how the different stages o e /2 ap

a PNS quasi-stationary evolution are simulated by conistruc Ap™=5p™M+ TWZmE , (6)

ing stellar configurations with appropriate entropy anddap
fraction profiles. In Se¢.V we compute and discuss the stelEinstein’s equations, linearized in the perturbations|dyia
lar parameters and the quasi-normal mode frequenciesdor tisystem of ordinary differential equations for the pertatbe
various configurations. Conclusions are drawn in Sec. VI.  functions. Different equivalent sets of equations havenbee
derived in the literature, using different gauge choicedifr
ferent combinations of the relevant equatians [9-12]. Ia th
Il. THE QUASI-NORMAL MODESOF NEUTRON STARS paper we use the formulation of Lindblom and Detweiler
[1Q,[11], consisting of a system of four first-order differen
tial equations (hereafter, the LD equations) for the fuodi

A. Stellar perturbations
P {H{m KM wm XM where

In order to find frequencies and damping times of the xim _ —e"U/ZApEm, @)
guasi-normal modes (QNMs) of a star, we need to solve the
equations describing non-radial perturbations of a (dpay ~ and algebraic relations which allow to compute the remain-
symmetric) star in general relativity, which we briefly réca  ing functions{H{™, Hs™ V‘™} in terms of the others (see Ap-
The perturbed spacetime metric is expanded in tensgpendix[8). To close the system, an EOS, relating the energy
spherical harmonics, as (we use geometrized units, asgumimensitye and the pressung, has to be assigned.
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B. Thequasi-normal mode frequencies also needed. In Eq[](9M is the baryon number density,
s= S/Ais the entropy per baryon, angd= n; /nis the fraction

A QNM is a solution of the perturbation equations, which Of thei-th particle. Usually matter is locally in beta equilib-
is regular at the center, continuous on the surface, andwhiclum and neutrinos are trapped, therefore the dependence on
behaves as a pure outgoing wave at infinity. Since in generdh® composition{x;} reduces to a dependence on the lepton

relativity a non-radial oscillation is associated to gtational ~ fractionYe = Xe + Xy, only.

wave emission, such solutions belong to complex frequencie  The perturbed equation§ (A1) depend explicitly on the
sound speed?, which relates the Lagrangian perturbations

w=0+ T'_ 7 (8) of pressure and energy density,
GW

whereg = 2mv andv is the pulsation frequencygw is the

damping time of the mode due to gravitational wave emis<Z is defined as the following thermodynamical derivative

sion. If the mode is unstable, its imaginary part is negative

and— gy is the growth time of the instability. 2 (@) (11)
The procedure to find the QNM frequencies is the follow- S 0€ ) adiabatic

ing: (i) We choose a value dfand a complex value of

(since the background is spherical, the equations do not d

Ap=c2Ac. (10)

Where “adiabatic” means that the derivative is performed

pend on the indexn). (ii) We integrate EqsL{A1), by impos- keep_ing fi>_<ed the entropy and t_he fractions c_>f those particle
ing that the solution is regular at the center and that= 0  SPeciesvhich do not change during the pulsatifirs].

at the stellar surface [EqE_(ASLIA4)]. (i) We impose tha To clarify this statement, let us consider a fluid element os-
the solution and its first derivative are continuous on tké st Cillating with periodtosc about the equilibrium position. The

lar surface, and find the metric perturbations outside tie st following equation holds:
(iv) In vacuum, the perturbed equations reduce to a simple, ap ap ap
second-order differential equation (the Zerilli equat{fg)), p= (5) Ag+ (%) As+ Z (a) Ax . (12)
which we integrate up to radial infinity. (v) We check whether SXi €% I €8

the solution satisfies the outgoing wave boundary condéton  gince we are considering adiabatic perturbations, the dleid

infinity (A8) which identifies a quasi-normal mode; we then pent does not exchange heat with its surrounding@\sreo.

repeat the procedure for different valueswfThe values olo Fyrthermore, the displaced fluid element has a composition

which satisfy the outgoing wave condition can be found usingjiterent from the surrounding fluid even though nucleacrea

a Newton-Raphson method. _ _ tions, acting on a timescalgac tend to eliminate this differ-
The polar QNMs are classified, following a scheme intro-gpce. The two limiting cases are:

duced by TG Cowlingin .Newtonla.n theory [13], on thg bas.|s i) treact™> tosg in this case the fluid element composition

of the restoring force which prevails when the generic fluidyges not change during the oscillation, i#x = 0, and by

element is displaced from the equilibrium position. Thusacombining Eqs[{10) an@{12) we find

we have ag-mode if the restoring force is mainly provided

by buoyancy or gp-mode if it is due to a pressure gradient. > [(0p 13

The frequencies of thg-modes are lower than those of the G = de ox : (13)

modes, and the two sets are separated by the frequency of the ’

fundamental {-) mode, which is related to a global oscillation i) treact < tosg the fluid element composition changes, be-

of the fluid. In general relativity there exist further moges coming that of the surrounding fluid. By replacing the com-

namedw-modes|[14], that are purely gravitational, since theyposition profilex; = xi(,s,Ye) in (9), it is possible to express

barely excite the fluid motion. Other classes of modes are aghe EOS ap = p(&,s,Ye). Egs. [ID) and (12) then give

sociated to NS features which are not included in the present

model, like rotation, magnetic fields, the crust rigidity. c§ - (?) ) (14)
€ sYe
C. Sound speed for beta-stable, neutrino-trapped matter.

For the PNSs in quasi-stationary evolution we consider in

A neutron star at the end of its evolution is cold and isen-thIS paper, typical oscillation periods are of the ortjgg~

3 . ) ; . fyom|
tropic, matter is in beta-equilibrium and can be described b 107"s, while weak interactions timescales are [16]

barotropic EOS = p(¢). Conversely, when the star is young 1) 5x10°s B 20s

and hot the EOS cannot be expressed in a barotropic form, treact™ T/10°K)6 treact™ T/10K)? (15)
since the pressure depends non-trivially on the entropyand

the composition, i.e., for modified and direct Urca processes, respectively. In the

X R (1 1 (1,2)

b= pE,SX). ) first seconds of a PNS Iif€ ~ (1—4) x 10" K, thustyg; <
tose Therefore the stellar pulsations always occur in locadbet

Therefore, to solve the perturbed equations the profiles-of e equilibrium. Timescales of strong nuclear reactions aenev

tropy and particle fractions, respectivedfn) andxi(n), are  smaller.
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D. Some considerationson the f- and g-modes we may expect that highegmode frequencies correspond to
larger entropy gradients.

For old, cold neutron stars, the frequency of thenode,
v, isin the range 1-3 kHz, and the damping timg,is of the
order of a few tenths of seconds. According to the Newtonian E. Thedamping time of quasi-normal modes
theory of stellar pulsationsys scales as the square root of
the star average density, and this behaviour is maintaimed i A QNM of a PNS is characterized by the pulsation fre-
the relativistic theory, according to which the dampingeim quency and by the damping tintew. Its value is important
scales asy ~ Rt/M? [17-19]. because it shows how fast the pulsation energy can be dis-
The g-modes are directly related to the thermodynamicakijpated through gravitational wave emission, and it must be
properties of the star. Indeed, their presence can be trace@mpared to the timescataiss associated with other dissipa-

back to the Schwarzschild discriminant/[20], tive processes which may compete with GW emission. These
dp de  dp 2 include viscosity, heat transport, neutrino diffusiort, €phe-
S(r) = ar —Cga =dr < — C—ZS) , (16) nomena which we are neglecting in our model). In the first
0

minute of life of a PNSTgiss ~ 10— 20 s [23, 24] (see also
Wherec_fo — dP/9" The radial acceleration of a fluid element the discussion in_[6]). Thus, ifew < Tdiss the oscillations

displaced_frg%déquilibrium bir is are mainly damped by gravitational wave emission, and vicev
ersa. We also remark that, if a QNM is unstable, the instgbili
e 2 |dp can grow only iftow < Tgiss
= " et pac|ar S(r)Ar. a7) As long astew < Tgiss When a star oscillates in a QNM,
the pulsation energy changes in timelas [9]
Therefore, ifS(r) > 0 the fluid element oscillates about the
equilibrium position, whereas i§(r) < 0 it is accelerated Epuis(t) = Epuis(0)e™2/Tow, (21)

away from equilibrium. It follows that, if in some region of

the starS(r) < 0, this region is convectively unstable and the and the power radiated in gravitational waves is

star admits a set of unstaldemodes, otherwise thgemodes

are stable. I§(r) vanishes identically, the star does not hgvg Low = _Epuls% 2Epuis/ Tow - (22)
g-modes (allg-modes degenerate to zero frequency). This is

the case if the neutron star is cold and old, since the EOShus, smaller QNM damping times are associated with a more
is barotropic andZ = £-. Similar information is contained efficient gravitational wave emission. In the case of col&NS
in the Brunt-Vaisala frequency which, in a relativistiame-  the f-mode has always the smallest damping time, but this is

work, is defined as [21] not always the case for PNSs, as we shall discuss later.
WA Although we shall compute the damping times of all modes
Nz(r) _ & Yr r. (18) by directintegration of the perturbed equations, it is ubtf
(+p)c3 2 give some approximate formula which will allow us to explain

It has been shown that, although the Brunt-Vaisala feegy ~ Some results of the next sections. From Eg] (22) we find

changes by many orders of magnitude throughout the star, it

allows to estimate somg-mode frequencies of Newtonian Tew ~ 2Epuis/Lew - (23)
stars. For instance, in_[22] the frequency of higher-ogler ) .

modes of main sequence stars is computed using the followinghe (@pproximate) expressions Bus and Lew (the latter

formula iS obtained using the quadrupole formalism) can be found in
R [21,126] and are, in terms of the perturbation functions asfin
0y ~ ((t+1) / gr N ’ (19)  inthis paper,
(2k+0+ne+3) T Jo r .
i iU i E e So2 dr r?‘(g+ p)eA—¥)/2
whereR s the stellar radiusg is the order of thg-mode, and puls = 5 0 p
ne is the effective polytropic index of the outer layers of the
star. However, the Brunt-Vaisala frequency cannot teslus X {|W£m|2 +0(0+1) |V£m|2} (24)

estimate neutron stggmode frequencies [21]; these frequen-
cies can only be found by solving the perturbation equationsand
as we do in the present paper. Nevertheless the following con

siderations will be useful to interpret the results we whlbs/ AT ¢ R 4 m ?
in the following. Eq.[(ZD) indicates that higher frequeney-v Low ~ 757 /o drrioe ’ (25)
ues correspond to larger values3jf) (i.e., of [N(r)|) inside
the star. Since we shall assumhé,/dr = 0 (see Sed_1V), we Where
have w2 Aj2
5= 9P (@) de _ (@) ds o em= ! leTxme,rewam] . (26)
dr 0e ) gy, dr 0s /¢y, dr’ s
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I11. THE EQUATION OF STATE OF HOT NUCLEAR (my, neutron mass). Since at zero temperature the non-
MATTER relativistic microscopic approaches do not correctly oepr
duce the nuclear matter saturation poing,~ 0.17 fm 2,
A. BHF many-body approach E/A~ —16 MeV, three-body forces (TBF) among nucle-

ons are usually introduced in order to correct this defigienc

One of the most advanced microscopic approaches to tHgiven the current lack of a complete microscopic theory of
EOS of nuclear matter is the Brueckner thedry [27], recently! BF, we have adopted the phenomenological Urbana model
extended to the finite-temperature regime within the Bloch{3C]; which consists of an attractive term due to two-pion ex
De Dominicis formalism[[28]. In this approach, the essen-change with excitation of an intermedigieresonance and a
tial ingredient is the two-body scattering mati which, repulsive phenomenological central term. For simplicig,

along with the single-particle potentidl, satisfies the self- reduce the TBF to a density-dependent two-body force by av-
consistent equations eraging over the position of the third particle, assumirgg th

the probability of having two particles at a given distange i
(12IK(W)[34) = (12|V[34) reduced according to the two-body correlation functione Th
1-n"(3)[1-n"(4 corresponding EOS at zero temperature reproduces the nu-
+Re /<12|V|3/4/>[ W_EE?’,)]_[ E4/+i(£ ) (F4|K(W)[34) clear matter saturation point correctly [31:-33], and figlfil
3.4 several requirements from the nuclear phenomenologyl In al
(27)  calculations presented in this paper we use the Argdfge
and nucleon-nucleon potential [34] together with the phenooaen
E logical Urbana TBF.
u@)= gn (2) (12/K(W)[12)4 , (28) Results for symmetric nuclear matter and purely neutron
_ ) ~ matter have been obtained for different values of the temper
where 12,... generally denote momentum, spin, and isospinatyre, and are discussed inl[35-38]. In particular, in K3 [
HereV is the two-body interactionW = Ei + E; repre-  yseful numerical parametrizations of the EOS are given that
sents the starting energy, aBd= k?/2m +U (k) the single-  gre employed in the current work.
particle energyn” (k) is the Fermi distribution at finite tem-  The Bryeckner approach provides a realistic modeling of
perature. For assigned partial densities and temperaturgy,clear matter only at densities above about half normal nu-
Egs. [27) and[(28) have to be solved self-consistently alongjear matter density. Below this threshold, clusterizaiets
with the following equations for the auxiliary chemical pot in, and the system becomes inhomogeneous. Therefore, in

tials i, this “low-density” regime another theoretical approach ta
E 1 be used, and we employ the EOS of Shen [39], which is es-
ni = Zni (k) = Z BEWN ) 41’ (29) sentially a liquid-drop-type model at finite temperature.
o Of course, since two different theoretical descriptions of
and the baryon number densitynis= 3 ; ;. the same state of matter are involved, the joining of the two

At finite temperature the EOS, and all thermodynamicale0Ss requires the thermodynamical observables to be eontin
quantities, can be obtained from the grand-canonical poten,ous functions of the baryon density. In practice we perfarm
tial densityc. In the Bloch-De Dominicis approachy can  Maxwell construction by equating pressure and chemical po-
be written as the sum of a mean-field term and a correlatiogentials of the low- and high-density sectors, and verifytth

contribution [2¥1.28], the other thermodynamic variables do not exhibit significan
1 B(Ei) F discontinuities at the transition point. In this way, a vesige
w= _Z [E In (1+e ) +n (kU (k)] range of baryon density is spanned, from the iron density at
the surface up to 8-10 times the nuclear saturation density i
+} ZnF(k)U (k). (30)  the core. Further details are discussed in the following sub
2 section.

In this framework, the free energy density is

f=w+ni, (31) B. Composition and EOS of hot stellar matter

and all remaining thermodynamical quantities of interest,

namely, the “true” chemical potential, pressurep, entropy In neutrino-trappegB-stable nuclear matter, the chemical
per baryors, and energy density can be computed fromitas potential of any particlé = n, p,| is uniquely determined by
_ of (32) the conserved quantities, baryon numBgrelectric charge
H=%n Qi, and weak charges (lepton numbdrs}, L*):
a(f/n
= ”Z—% ) —un-t, (33) (@ ()
Lot Hi = Bittn — Qi(tn— Mp) + L7 Hye + L7 1y, . (36)
= - noT’ (34) For stellar matter containing nucleons and leptons asaatev

e=f+Tns+myn (35) degrees of freedom, the chemical equilibrium conditiorslre



explicitly as entropy profile

o — , , ,
Hn — Hp = He — Hve = My + My, - (37) P35090
At given baryon number density these equations have to be

solved together with the charge neutrality condition 4
> Qx =0, (38)
I “ gL
and those expressing conservation of lepton numbers
Yi=X—X+Xy—Xy, l=eu. (39) ol

T (MeV)

I I I

1.2 1.4

When neutrinos have left the system, their partial dersséiel
chemical potentials vanish and the above equations siynplif ‘ ‘ ‘ ‘ ‘ ‘ ‘
accordingly. We fix the muon fractions ¥, = 0, and letYe 0 02 04 08 e, 12 14
assume a finite value different from zero in neutrino-trappe temperature profile
matter. _ _ _ 40F ' ' ' ' ' Dippe—
The nucleon chemical potentials are obtained from the free P>'30.30
energy densityf, Eq. [31),
i) = 90 i=np, (40)
N Nii /
i#
and the chemical potentials of the non-interacting leptoes 20
obtained by solving numerically the free Fermi gas model at
finite temperature. Once the hadronic and leptonic chemical
potentials are known, one can proceed to calculate the compo |
sition of the-stable stellar matter, and then the total pressure
p through the usual thermodynamical relation
0= 29(/n) _ S ni— . (41) R ROY(
on ! FIG. 1. (Color online) The profiles of entropy (upper paneifa
An important feature of the low-density domain is the temperature (lower panel) are plotted versus the encloaggbhbic
treatment of neutrino trapping. Physically, neutrinosagsc E%SS for the modelBy 50,35 (R = 303 km) andP; 3030 (R =165
rapidly from the low-density matter during the PNS evolatio '
and the lepton number is not conserved anymore. This effect
can be roughly modeled by introducing a neutrino-sphere in-
side which neutrinos are trapped. Typical model-dependendtow the stellar parameters and the quasi-normal mode fre-
values for the location of the neutrino-sphere found in theduencies change during the evolution. As discussed in the in
literature are 2« 103 fm—3 [40], 6 x 104 fm—3 [41], and  troduction, the quasi-stationary evolution typicallyrsgawith
2x 1075 fm~3 [42]. Given these variations, we choose the configurations characterized by a low entropy per baryon in
following “natural cutoff” procedure: when imposing a con- the core (order o6 ~ 1 at the center, see for instance [2])
stantY, at any density, at a certain threshold number den2nd a large entropy per baryon in the envelope (orderob
sity n, ~ 1075 — 10-%fm~3, the electron fractior, becomes  ©r larger). Thus, we shall consider as “initial” the configur
equal toYe, and neutrinos disappear naturally. For lower dention with an entropy per baryon profile made of two constant
sities we consider the matter untrapped. This simple procetiecessc = 1 in the core ande = 5 in the envelope, with a
dure avoids making assumptions about the neutrino-sphergmooth junction between them. Furthermore, as discussed in
although a more satisfactory treatment of neutrino trapjsn  Sec.[II[B, to model neutrino trapping we shall assume that
required; but this is beyond the main goal of the presentipapethe lepton fractior¥e is constant throughout the star (up to a
threshold density, below whichh = xg).
As long as the evolution proceeds, entropy gradients are
IV. PROTO-NEUTRON STAR STELLAR MODEL S: gradually smoothed out: the core entropy increases, the-env
ENTROPY AND LEPTON FRACTION PROFILES lope entropy decreases, neutrinos escape from the surfdce a
the star progressively cools down. To model this evolutiom,
We shall now construct equilibrium stellar models, all with construct EOSs and stellar configurations correspondiimg to
a fixed baryonic maddlg = 1.5M,, (a conserved quantity dur- creasing values ok, decreasing values @& and decreasing
ing the stellar evolution), and with different entropy amare ~ lepton fraction; then, to decreasing values of bgths, and
position profiles. These configurations will be used to simu-decreasing lepton fraction. Each configuration dependsen t
late the quasi-stationary evolution of a PNS, and to computéhree constants,, S, Ye, and it is labeled by, s, ve-



TABLE |. Stellar models with fixed baryonic maddg = 1.5M,, TABLE II. Frequencies (in Hz) and damping times (in s) of the

corresponding to different entropy profiles and leptontfoas. The  QNMs gy, f, p1 for different stellar models with baryonic mass

gravitational mas#, radiusR, central temperaturé®, and central  1.5Mg, lepton fractior¥e = 0.32, and different entropy profiles. The

neutrino fractions, are tabulated for each profile. central temperatur&® (in MeV) and the stellar radiuR (in km) are
also shown.

S| Ye [[M/Mo]R(Km)[TC (MeV)] xj

1.0{5.0] 0.38 || 1.43 | 315 | 19.8 |0.052
1.0{5.0| 0.35 || 1.43 | 30.3 | 20.2 |0.041
1.0{5.0| 0.28 || 1.42 | 29.4 | 21.2 |0.020
1.5(4.5| 0.33 || 1.43 | 246 | 30.3 |0.035
1.5(4.5 0.32 || 1.42 | 24.4 | 305 |0.031
2.0(4.0[ 0.32 || 1.43 | 21.5| 405 [0.033
2.0[4.0[ 0.30 || 1.43 | 21.3| 41.0 [0.027
2.0[3.0{ 0.30 || 1.42 | 165 | 41.2 [0.026

S|s|As| TC| R vy | 19 | vi |16 | vp | T
1.0|5.0| 4 |20.6{29.6/906| 6.27 |1194|4.42/15280.75
1.5/4.5| 3 30.5/24.3/910| 42.9 [1346|0.76|1845/0.55
1.0{4.0| 3 20.2/18.4/870| 793 [1741/0.27/2574/0.99
2
1

2.0|4.0| 2 |40.5/21.5|669|2x 10° | 1449|0.45|2097|0.72
2.0/3.0| 1 |40.7|16.8/492|6x 10 |1714{0.25/2977|1.64

2030 0281l 141 | 164 | 418 |0.021 Let us consider the dependence on the entropy profile first,
2.0/2.0l 028 || 1.41 | 145 41.6 |0.020 and fix the value of the lepton fraction ¥ = 0.32. We
2.0/2.0 0.23 || 1.40 | 141 | 429 |0.010 compute and compare the mode frequencies and damping
1.0{1.0] 0.23 || 1.37 | 12,5 | 20.2 |0.007 times of the following stellar configurationB; 5 .32, P1.4.0.32,
1]1|x=0]] 1.36 ] 122 ] 209 ]0.000 P1545032 P24,032 andP,3032. The core-envelope ‘entropy
T=0 135) 119 ] 0.00 [0.000 jumps’ areAs = 4,3,3,2,1, respectively. In Tablelll we show

for each profile the central temperature, the radius, and the
frequencies and damping times of the QN&sf, p;. These

To describe the latest stages of the PNS evolution we alsgata allow us to discuss how the different quantities change
consider two constant entropy profiles: (i) one vith=se = with the entropy profile.

1 and no neutrino trappind?. 1 x,—0, With Ye varying from As a general rule, the radius is larger if the star is hotter,
temperature profile with no neutrino trappirfés—o, which  indeed confirmed comparing for example the profiteso -
describes a cold, old NS, with electron fraction varyingiiro andp, , 5, The temperature (entropy) at the center is the
0.09 at the center to 0.44 at the surface. same, but the first model has larger entropy and temperature

We show in Fig[lL the profiles of the entropy per baryonin the envelope; its radiu® = 29.6 km, is larger than that of
(upper panel) and of the temperature (lower panel) as a funghe second modeR = 18.4 km. This behaviour is confirmed
tion of the enclosed baryonic mass, for the mod@lsoss by comparing 4032andP. 3032 In a similar way, the radius
(radiusR = 30.3 km) andP,30.30 (radiusR = 16.5 km). In  depends on the entropy in the core, although the dependence
order to avoid sharp transitions from the core to the enelopjs weaker, because the envelope has more freedom to expand
region, we adopt a cubic interpolation for the entropy befwe than the core; for instance, the configuratin s, has a
the two regions. Thus, the entropy is a continuous functfon oradjusR = 21.5 km, larger tharR = 18.4 km 0f P14 0.32.
the density. However, as a consequence of the Maxwell con- Ag discussed in Sectidn 1D, the frequency of the figst
struction used to join the Shen EOS (low-density region) tdnode depends mainly on the core-envelope entropy jump:
the BHF EOS (high-density region), as discussed in the previhigher values of\s = s, — s correspond to largeg-mode fre-
ous section, there is a weak discontinuity both in the egtrop quencies. Furthermore, as argued|in [25], ¢hmode fre-
and in the temperature profile, when plotted as a function ofyency has also a (weaker) dependence on the central temper-
the enclosed mass as in Hig. 1. We have checked that the rgpre: indeed, the configuratioRss 4.5,0.32 andPy 4. 3» have
discontinuities. temperaturd ¢ and largeg-mode frequency.

In Table[] we show the quantities which characterize the Taple[T] shows that, as the entropy jump decreases, the
stellar models associated to different profiles, namelyiga  damping time of the firsg-mode increases dramatically: for
tional mass, stellar radius, temperature and neutrindidrac Pisoaz it is Ty, = 6.27 s, forPagoa it is Tg, = 6 x 10P s.
at the center of the star. The dependence of the stellar parargince the evaluation of the damping time is more sensitive to
eters on the temperature and lepton fraction profiles will bghe numerical procedure than that of the mode frequency, we
discussed in the next Section. have also computed this quantity by using the approximate

formula given in Eq.[(28), and indicate its value 8" we

find a reasonable agreement with the data of Table II:
V. RESULTS

As=4: Epus=1.047km Lew=0.377, 13=5.555

In this section we discuss thg beh_aviour of the stellar adiupg—1 : Epuis=0.111km Loy =3.8 1078, Tsstzgx 10%s.
and of frequencies and damping times of the QNMs com-
puted for stellar models with different entropy profiles andThus, the sharp increase of, as As decreases is due to
lepton/neutrino fraction content, in order to understand h the sharp decrease of the gravitational luminokityy [see
these quantities are affected by the PNS internal structure Eq. (23)]. As shown in Eq[{25).cw is (modulo a numerical



S.=15,=5 1,°%=5.55 5 — TABLE Ill. Frequencies (in Hz) and damping times (in s) of the
572 5¢=3 1965‘:58320 s | QNMs gy, f, p1 for stellar models with baryonic masssIMg,, en-
tropy per baryon in the corg = 1 and in the envelops = 5, and
different values of the lepton fractiorp. The radius of the star (in

km) and its gravitational mass (in solar maskks) are also shown.

I / | Ye || R| M |vg |Tg | Vi | Tf | Vp, | Tpy
\//_// 0.38((31.5{1.43|863(6.78/1116/9.75/ 1415/ 1.00

0.36||30.6/1.43883|6.62( 1147|6.83| 1463 0.89
0.32]|29.6/1.42|906(6.25{1194(4.44/15270.75

0.30({29.4{1.42/910|5.99/1209|4.01{ 1543/ 0.73
0.28]|29.4{1.42|908|5.71{1216|3.96| 1546/ 0.72

0.001 -

Re(&) (km™)
o

-0.001 -

I ! !

0 5 10 15 20 25 30 while the damping time decreases; however, bgttand 7¢

r('fm) ' ' do not follow quantitatively the cold star scaling laws. The

5=15,=5  1,°'=5.555 — first p-mode frequency has a behaviour similar to that offthe

725,73 T1,7=58320's mode, whereas the damping time seems to be quite insensitive
to changes of the entropy profile.

of 1 Finally, we consider a sequence of stellar models with a

fixed entropy profile, i.e.sc = 1 in the core ands =5 in

the envelope, and lepton fraction varying in the raiYge-

0.38,...,0.28. The frequency and the damping times of the

r 1 01, f, andp;-modes are shown in Tallellll, together with the

radius and the gravitational mass of the star. From these dat

we see that the star radius is a slightly decreasing funation

the lepton fraction, and that the behaviour of theand p;-

frequency as a function of the star radius is similar to that

) ) ) ) described above. Overall, the data show that the dependence

0 S 10 r(l%) 20 25 30 of the QNMs eigenfrequencies on the lepton fraction is much

weaker than that on the entropy profile.

1e+10 T T

Re(lgy) (km™)

-2e+10

T

FIG. 2. (Color online) Comparison of the perturbed energysitg
o¢(r), Eq. [28), (upper panel) and of the functitgy(r) given in

Eq. (42) (lower panel) for thg-mode of the stellar configurations a_ QNM eigenfrequencies and PNS quasi-stationary evolution
Py 5,0.32 andP, 3 0 32. Both functions have been normalized in such a

way that the mode pulsation energyEg,s= 1 km. . . . . . .
As mentioned in the Introduction, numerical simulations

show that in the early phases of a PNS life the entropy profile
has a characteristic evolution which mainly depends on neu-
trino diffusion processes, and which can be divided in three
low = Vortde™, (42)  essential steps:

factor) the squared integral of the function

1. the entropy per baryon is initially (a few tenths of sec-

wherev is the mode frequency ariit is the perturbed energy ! :
onds after bounce) larger in the envelope and lower in

density for the considered mode.
In order to understand whiygw decreases so much when the core;
the entropy jump decreases, we plot in Eigh&(upper panel)
andlgy (lower panel) as functions of for the stars with pro-
files Py 5032 andPo 3032, It is obvious that due to the larger
radius of the former configuration and the presence of the fac 3. the entropy decreases throughout the star, which even-

2. the entropy increases in the core and decreases in the
envelope, reaching a roughly uniform profile;

tor r* in Eq. (25), the emitted poweigy is much larger (in- tually becomes a cold neutron star.
deed the main contribution comes from the envelope), and the
damping time is strongly reduced. In addition, thmode fre- The entire process takes about a minute, but we cannot as-

guency is also larger in the former configuration, and this co sign precise temporal labels to each step, because thegdiepe
tributes further to a larger gravitational wave emissiongs  on the details of the initial conditions after the bounce and
low ~ V3. the dynamical modeling of the evolution, which is beyond the
Let us now consider thé-modes. For a cold neutron star, scope of our work (an example of this evolution is shown in
the f-mode frequency scales as the average density of the st&ig. 9 of Ref. [2]).
and the damping time scalesgs~ R*/M3. From the data of In this section we construct a sequence of stellar configura-
Table[Tl we see that; increases as the radius decreases (théons, listed in Tabl€1V, which captures the main qualitati
gravitational mass is nearly the same for all configuradions features of a PNS evolution described by steps 1 to 3. Each



TABLE IV. Frequencies (in Hz) and damping times (in s) of the
QNMs gy, f, p1 for a sequence of stellar models which mimic the 4|
quasi-stationary evolution of a PNS with constant baryaniss

1.5Mg. The star radius (in km) is shown in column 5. 51
i|sc|S| Ye R |vg| Tg Vi | Tf | Vp, | Ty _al
1/1.0{5.0] 0.35|{30.3{890| 6.54 |1162/5.89(14840.84 X
2(1.5|4.5| 0.32 ||24.4/910| 42.9 |1346|0.76/1845/0.55 =<
3(2.0/4.0] 0.30 |[21.3/667|2.3x103|1452/0.44|2125/0.73 >3
4(2.0/3.0| 0.28 ||16.4/485|7.6x10%|1717/0.25/3133/1.80 ol e
5(2.0]2.0] 0.23 ||14.1] O - 1790/0.23/4134[2.59) 7| e
6(1.0/1.0{x, =0(|12.2] O - 1896/0.21/58792.98 ] ‘mode — |
7 T=0 119 0 - 1898]0.21/6006|3.52 —\ %_mode
0 ) ) ) p-mode -
1 2 3 4 5 6 7

profile is labeled by a numbéy which gives the ordering in 150000
time of the simulated evolution. Configurations from 1 to

i = 4 (envelope entropy larger than core entropy) refer to the
transition from step 1 to step 2, which ends with configuratio
5, for which the entropy distribution becomes uniform, i t
star is still hot. Then it cools down (configurations 5 to 63lan
ends as a zero-temperature NS reaching configuration 7 (ste
3). During this “evolution” the lepton number decreases. We = 100
have also considered a different sequence, in which therept

10000

1000 ¢

fraction decreases “more rapidly,” but the results are gary 10
ilar to those obtained with the sequence shown in Table IV.

For each configuration we compute the frequencies and 1
damping times of the QNMgy, f, p1. Their values are given

in Table[TV, and are plotted in Fig.] 3 versus the number 01 ‘ ‘ ‘ ‘ ‘
which identifies the configuration as explained above. We 1
remark that, as shown in Figl 3, the gravitational damping . . -
time of theg;-mode sharply increases foE> 2, while the FIG. 3. (Color online) Frequencies (upper panel) and dagnpme_s
mode frequency sharply decreases. However, as discussed(pwer panel) of the QNMs;, f, p for stellar models corresponding
Secl[T), as soon ag, becomes comparable tgiss~ 10— 20 to a possible evolutive sequence of stationary configuratio
] ISS -

s, the mode becomes ineffective with respect to gravitation
wave emission, since the stellar oscillations are damped bg _ .

P ccinati f this point).
non-gravitational dissipative processes.

The most interesting result which emerges from Table Iv Furthermore, for=1 the damping times of themode and
and Fig[3 is that at earlier times, i.e., for 2, the frequen- g-mode are nearly coincident, showing that in the early stage

cies of thegy, f, p; modes cluster in a small region around theg-mode is as effective as tfemode as a source of grav-

1 kHz, and then tend quite rapidly to the values appropriatétmional waves. Indeed, the functid)@w given by_ Eq. I(42),
for a cold NS (remember that our entire sequence should covdf0Se square integral over the star is the gravitationabwav

approximately a minute of the PNS evolution). This behaviou fy:mlnfosr:ty, IS S'm'l?jr for the two rEot;ies dlf }O a similar pro-
is similar to that found in[[6], where the quasi-stationary''€ Of the energy density perturbation. At later “timeg

evolution sequence was obtained using a finite-temperatu&ecomes.mUCh. larger than and, as the PNS tends to the NS

EOS derived within the mean field approach, treating neaitrin [In@l configuration, thg-mode frequency tends to zero.

transport using the diffusion approximation. The fact timat

the very early stages the mode frequency is of the order of

1 kHz (or lower) is important for gravitational wave detec- VI. CONCLUSIONS

tion, because the sensitivity of ground-based interfetense

LIGO/VIRGO decreases quite significantly at larger frequen In this paper we have investigated how the frequencies

cies. and damping times of the quasi-normal modes of a proto-
Another interesting point to note is that during the earlyneutron star depend on the physical quantities which char-

evolution the damping time of all modes is smaller than 10 sacterize the stellar configurations during the quasitatiy

This means that gravitational wave emission is effectivelyevolution. The most important is the entropy profile inside

competing in removing energy from the star with dissipationthe star, whereas the dependence on the lepton composition i

processes related to neutrino viscosity, diffusivity, tretmal ~ weaker.

conductivity, since typical neutrino timescales are ofdhaer The most interesting result is that if the entropy gradient b

of 10—20 s (see also section 2.1/0f [6] for a detailed disoussi tween core and envelope is large, the frequencies of thgfirst
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Appendix A: The Lindblom-Detweiler equations

The system of the LD equatioris [10/ 11] consists of four frgter differential equations in the quantitigg™(r), K™M(r),
WEM(r), XM(r):

HJ™ = [M 14 % +4m%e (p— s)} + ¢ [Hém+ KM _ 16m(e + p)vf”‘} :
/

Kﬁm/ _ }Hém'i‘ é([-’-l)H £+1 LIJ Kﬁm 87T(£+ p)e)\_ng

r 2r r 2
WM — €+ X wim /2 e v m_ L+ 1)Vzm+}Hém+sz

(e+ p)ct r2 2
¢ (e+pe¥2|/1 ¢ y . L(+1) 3 1
mr . Tyedm -, v 24— /m o = /m
X rX +72 r+2 + [rwe *+ or Hi™+ 24/ ; K
(+1 2 Az N/
) rer )q/vfm <47T(£+ p)et/? 4 w?e /2 ¥ — 5 (e . w) )me]. (A1)

The remaining perturbation functiort${™(r), V‘™M(r), HiM(r), are given by the algebraic relations
—1)(+2 ’+1
0= {3M + %r +4nr3p} HY™ — 8rrde¥/2x M 4 {L;)(M +4mr3p) — w2r3e(“"’>} H{m

Je—ye+2)

r—w’rde ¥4 ?(M +4mr3p)(3M — 1 +4m3p)] KM,

/ W/2
XM — o2 (e 4 p)eW/2yim_ %r(wﬂ\)/zwszr eT(£+ p)HLM
H™ = H{m, (A2)

Equations[(All) and (A2) are solved numerically inside tlag, stssuming that the perturbation functions are non-sngear
the center. An asymptotic expansion of the equationsmnead shows that this requirement implies

w(o)
x“"<0>=[e<0>+p(0>}e"’<°>/2[(43 [£(0) +3p(0)] — ? < — )vvfm(0>+§r<fm<0>],
%Wm_aﬁ4ﬂmwwm+mﬂam+mmwmmﬂ. (A3)

On the stellar surface, = R, one assumes continuity of pressure perturbation, i.e.,
the perturbation functions and the vanishing of the Lagiamg m
XMR)=0. (A4)



In the exterior, the metric perturbations are describedniey t
Zerilli function

ey
~ nr+3Mm

/m

(Kf”‘ - e‘”Hfm) : (A5)

[wheren = (¢ — 1)(¢+ 2)/2], which is solution of the Zerilli
equation

dz + [w? = Vg(r)] 2™ =0 (A6)
dr2 ‘ N
withr, =r+2MIn(r/2M — 1) and
Vy—e? 2n2(n+1)r3 + 6n°Mr? 4 18nM?r + 18M3 (A7)

r3(nr+3M)?
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Finally, to describe free oscillations of the star we mustim
pose the outgoing wave boundary condition

Z'™(r) — e ' (r > o). (A8)

A solution of Egs.[(Al),[(AB) satisfying the boundary condi-
tions [A3), [A2), [A8) only exists for a discrete set of (com-
plex) values of the frequencyw = 2nv +i/t1: the quasi-
normal modes of the star.
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