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2Dipartimento di Fisica, “Sapienza” Università di Roma & Sezione INFN Roma1, P.A. Moro 5, 00185 Roma, Italy

We study how the frequencies and damping times of oscillations of a newly born, hot proto-neutron star de-
pend on the physical quantities which characterize the starquasi-stationary evolution which follows the bounce.
Stellar configurations are modeled using a microscopic equation of state obtained within the Brueckner-Hartree-
Fock, nuclear many-body approach, extended to the finite-temperature regime. We discuss the mode frequency
behaviour as function of the lepton composition, and of the entropy gradients which prevail in the interior of
the star. We find that, in the very early stages, gravitational wave emission efficiently competes with neutrino
processes in dissipating the star mechanical energy residual of the gravitational collapse.
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I. INTRODUCTION

The birth of a proto-neutron star (PNS) in a core collapse
supernova is a very difficult phenomenon to model, since it
requires not only accurate descriptions of the micro-physics
of the collapsing matter, in particular of neutrino transport and
related processes, but also of the violent dynamical processes
occurring in the contracting-exploding star, which need tobe
treated in the framework of general relativity (see [1] for a
recent review).

The description of the subsequent PNS evolution is also
challenging, because a PNS is a hot and rapidly evolving ob-
ject. The physical processes which contribute to the star cool-
ing and contraction, such as nuclear and weak interactions
and energy and lepton number transport by neutrino diffusion,
have to be included in dynamical simulations. Thus, most
simulations of gravitational core collapse to a PNS end shortly
after the core bounce and the launch of the supernova explo-
sion – typically after a few hundreds of milliseconds – and
only a few dynamical simulations extend to the first minute of
the PNS life [2–5].

In this paper we are interested in this latest phase of the
PNS life, when shock waves, neutrino winds, convection in-
stabilities, and accretion flows are no longer dominant and the
star cooling and contraction proceed on timescales of seconds,
so that the evolution is quasi-stationary. In particular, we want
to study how the frequencies and damping times of the PNS
quasi-normal modes of oscillation depend on the star inter-
nal structure. The main motivation is that the oscillationsof
a newly born PNS may be associated to gravitational wave
signals with sizeable amplitudes, and with frequencies lower
than those typical of mature neutron stars. This would favour
their detection by the next generation of ground-based inter-
ferometers LIGO/Virgo and their future version (ET) [6–8].

The available dynamical simulations of the post-bounce
evolution of a PNS indicate that, typically, the star goes
through the following main steps. After the core bounce, a
shock wave propagates through the outer PNS mantle, leaving
behind a low-entropy core in which neutrinos are trapped, sur-
rounded by a low-density, high-entropy envelope. The mantle
accretes matter from the outer layers and rapidly contracts,

losing energy due to electron captures and thermal neutrino
emission. The supernova explosion lifts off the stellar enve-
lope and, in a few tenths of seconds, due to extensive neutrino
losses, the lepton pressure decreases and the envelope con-
tracts. At this stage the PNS radius is about 20–30 km; the
subsequent evolution can be described as a sequence of equi-
librium configurations; this quasi-stationary evolution is the
phase of interest for us.

Simulations show that the diffusion of high-energy neutri-
nos (of the order of a few hundred MeV) from the low-entropy
core to the high-entropy envelope, from which they finally es-
cape with energies of the order of a few tens of MeV, gen-
erates a large amount of heat within the star, producing tem-
peratures up to several tens of MeV; as a result, the core en-
tropy approximately doubles, whereas the entropy of the en-
velope decreases. In a few tens of seconds the PNS becomes
lepton poor, but it is still hot. The net number of neutrinos
in the interior is low, but thermally produced neutrino pairs
of all flavors are abundant, and dominate the emission; the
star cools down and entropy gradients are gradually smoothed
out, while the average neutrino energy decreases, and neutri-
nos mean free path increases; after approximately one minute
it becomes comparable to the stellar radius, and the star be-
comes neutrino transparent. By this time, the temperature has
dropped to 1–5 MeV (≈ 1–5×1010 K) and the star has radi-
ated off almost all of its binding energy, becoming what we
call a neutron star (NS).

This brief summary of the first minute of the PNS life is de-
liberately imprecise, because the details of the evolutionde-
pend on the assumptions on which the simulation is based.
For instance, in [2–4], where the first minute after the core
bounce is considered, the evolution is treated as a sequence
of quasi-stationary states: the thermodynamical variables and
the lepton fractions are determined by solving evolution equa-
tions (for instance Boltzmann’s equation to model neutrino
transport), whereas at each time-step the stellar structure is
found by solving the Tolman-Oppenheimer-Volkovequations.
In [5], instead, all quantities are determined through a time-
evolution core-collapse code, which has been extended in or-
der to describe the first∼ 20 s of the post-bounce processes.
However, there are features which are common to different
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studies; indeed, starting from an initial configuration charac-
terized by a low-entropy core and a high-entropy envelope,
due to neutrino processes the star goes smoothly through the
following phases:

• the entropy increases in the core while decreasing in the
envelope;

• entropy gradients gradually smooth out while the star is
still hot;

• the star progressively cools down, and the overall en-
tropy decreases;

• the evolution ends in the “cold”, zero entropy, neutron
star configuration.

We remark that both in [2–4] and in [5] the equation of
state (EOS) of baryonic matter is a finite-temperature, field-
theoretical model solved at the mean field level.

In this paper, instead, we employ a microscopic EOS
obtained within the Brueckner-Hartree-Fock (BHF) nuclear
many-body approach extended to the finite temperature
regime, as we shall discuss in Sec. III. We stress that our aim
is not to model the PNS quasi-stationary evolution; we rather
want to explore how the frequencies and damping times of the
PNS quasi-normal modes depend on the physical quantities
which characterize the quasi-stationary configurations, which
are essentially the entropy profile (which will appear to be the
most important in this respect) and the lepton composition.

PNS are expected to be rapidly rotating; however in our
study we neglect rotation, since we are primarily interested
in the effects of the thermal and chemical evolution on the
star oscillation frequencies, and in comparing the resultswith
those of previous works which use different EOSs to model
the PNS.

The article is organized as follows. In Sec. II we briefly ex-
plain how to compute the complex values of the quasi-normal
mode frequencies using the relativistic theory of stellar per-
turbations. In Sec. III the derivation of the equation of state of
hot nuclear matter used to model the PNS evolution is shortly
illustrated. In Sec. IV we discuss how the different stages of
a PNS quasi-stationary evolution are simulated by construct-
ing stellar configurations with appropriate entropy and lepton
fraction profiles. In Sec. V we compute and discuss the stel-
lar parameters and the quasi-normal mode frequencies for the
various configurations. Conclusions are drawn in Sec. VI.

II. THE QUASI-NORMAL MODES OF NEUTRON STARS

A. Stellar perturbations

In order to find frequencies and damping times of the
quasi-normal modes (QNMs) of a star, we need to solve the
equations describing non-radial perturbations of a (spherically
symmetric) star in general relativity, which we briefly recall.

The perturbed spacetime metric is expanded in tensor
spherical harmonics, as (we use geometrized units, assuming

c= G= 1)

ds2 =−eψ
(

1+ rℓHℓm
0 Yℓmeiωt

)

dt2

+eλ
(

1− rℓHℓm
2 Yℓmeiωt

)

dr2

−2iωrℓ+1Hℓm
1 Yℓmeiωtdtdr

+r2
(

1− rℓKℓmYℓmeiωt
)

(dϑ 2+ sin2 θdϕ2) , (1)

whereω is the frequency,Yℓm(ϑ ,ϕ) are the scalar spherical
harmonics, andHℓm

i (r), Kℓm(r) describe the metric perturba-
tions with polar parity, i.e., those transforming as(−1)ℓ under
a parity transformation. In this paper we do not consider per-
turbations with axial parity, which transform as(−1)ℓ+1. The
functionsψ(r),λ (r) describe the unperturbed metric, and are
found by solving the Tolman-Oppenheimer-Volkovequations.
The four-velocity of the generic fluid element is

uµ = uµ
0 + δuµ = (e−ψ/2,0,0,0)+ iωe−ψ/2(0,ξr ,ξθ ,ξφ ) ,

(2)
whereξµ is the fluid element Lagrangian displacement, ex-
panded in vector spherical harmonics

ξr(t, r,ϑ ,ϕ) = eλ/2rℓ−1Wℓm(r)Yℓm(ϑ ,ϕ)eiωt ,

ξϑ (t, r,ϑ ,ϕ) =−rℓVℓm(r)∂ϑYℓm(ϑ ,ϕ)eiωt ,

ξϕ(t, r,ϑ ,ϕ) =−rℓVℓm(r)∂ϕYℓm(ϑ ,ϕ)eiωt . (3)

The fluid is also characterized by its pressure and energy
density

p(r)+ δ p(t, r,ϑ ,ϕ) = p(r)+ rℓδ pℓm(r)Yℓm(ϑ ,ϕ)eiωt ,

ε(r)+ δε(t, r,ϑ ,ϕ) = ε(r)+ rℓδεℓm(r)Yℓm(ϑ ,ϕ)eiωt . (4)

We denote withδ the Eulerian perturbations, and with∆ the
Lagrangian perturbations, so that for instance the Lagrangian
perturbation of the pressure is

∆p= δ p+ ξ r ∂ p
∂ r

, (5)

i.e.,

∆pℓm = δ pℓm+
e−λ/2

r
Wℓm∂ p

∂ r
. (6)

Einstein’s equations, linearized in the perturbations, yield a
system of ordinary differential equations for the perturbed
functions. Different equivalent sets of equations have been
derived in the literature, using different gauge choices ordif-
ferent combinations of the relevant equations [9–12]. In this
paper we use the formulation of Lindblom and Detweiler
[10, 11], consisting of a system of four first-order differen-
tial equations (hereafter, the LD equations) for the functions
{Hℓm

1 ,Kℓm,Wℓm,Xℓm}, where

Xℓm =−eψ/2∆pℓm , (7)

and algebraic relations which allow to compute the remain-
ing functions{Hℓm

0 ,Hℓm
2 ,Vℓm} in terms of the others (see Ap-

pendix A). To close the system, an EOS, relating the energy
densityε and the pressurep, has to be assigned.
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B. The quasi-normal mode frequencies

A QNM is a solution of the perturbation equations, which
is regular at the center, continuous on the surface, and which
behaves as a pure outgoing wave at infinity. Since in general
relativity a non-radial oscillation is associated to gravitational
wave emission, such solutions belong to complex frequencies:

ω = σ +
i

τGW
, (8)

whereσ = 2πν andν is the pulsation frequency;τGW is the
damping time of the mode due to gravitational wave emis-
sion. If the mode is unstable, its imaginary part is negative
and−τGW is the growth time of the instability.

The procedure to find the QNM frequencies is the follow-
ing: (i) We choose a value ofl and a complex value ofω
(since the background is spherical, the equations do not de-
pend on the indexm). (ii) We integrate Eqs. (A1), by impos-
ing that the solution is regular at the center and that∆p = 0
at the stellar surface [Eqs. (A3),(A4)]. (iii) We impose that
the solution and its first derivative are continuous on the stel-
lar surface, and find the metric perturbations outside the star.
(iv) In vacuum, the perturbed equations reduce to a simple,
second-order differential equation (the Zerilli equation(A6)),
which we integrate up to radial infinity. (v) We check whether
the solution satisfies the outgoing wave boundary conditionat
infinity (A8) which identifies a quasi-normal mode; we then
repeat the procedure for different values ofω . The values ofω
which satisfy the outgoing wave condition can be found using
a Newton-Raphson method.

The polar QNMs are classified, following a scheme intro-
duced by T.G. Cowling in Newtonian theory [13], on the basis
of the restoring force which prevails when the generic fluid
element is displaced from the equilibrium position. Thus,
we have ag-mode if the restoring force is mainly provided
by buoyancy or ap-mode if it is due to a pressure gradient.
The frequencies of theg-modes are lower than those of thep-
modes, and the two sets are separated by the frequency of the
fundamental (f -) mode, which is related to a global oscillation
of the fluid. In general relativity there exist further modes,
namedw-modes [14], that are purely gravitational, since they
barely excite the fluid motion. Other classes of modes are as-
sociated to NS features which are not included in the present
model, like rotation, magnetic fields, the crust rigidity.

C. Sound speed

A neutron star at the end of its evolution is cold and isen-
tropic, matter is in beta-equilibrium and can be described by a
barotropic EOSp= p(ε). Conversely, when the star is young
and hot the EOS cannot be expressed in a barotropic form,
since the pressure depends non-trivially on the entropy andon
the composition, i.e.,

p= p(ε,s,xi) . (9)

Therefore, to solve the perturbed equations the profiles of en-
tropy and particle fractions, respectivelys(n) andxi(n), are

also needed. In Eq. (9)n is the baryon number density,
s=S/A is the entropy per baryon, andxi = ni/n is the fraction
of the i-th particle. Usually matter is locally in beta equilib-
rium and neutrinos are trapped, therefore the dependence on
the composition{xi} reduces to a dependence on the lepton
fractionYe = xe+ xνe only.

The perturbed equations (A1) depend explicitly on the
sound speedc2

s, which relates the Lagrangian perturbations
of pressure and energy density,

∆p= c2
s∆ε . (10)

c2
s is defined as the following thermodynamical derivative

c2
s =

(

∂ p
∂ε

)

adiabatic
, (11)

where “adiabatic” means that the derivative is performed
keeping fixed the entropy and the fractions of those particle
specieswhich do not change during the pulsation[15].

To clarify this statement, let us consider a fluid element os-
cillating with periodtosc about the equilibrium position. The
following equation holds:

∆p=

(

∂ p
∂ε

)

s,xi

∆ε +
(

∂ p
∂s

)

ε,xi

∆s+∑
i

(

∂ p
∂xi

)

ε,s
∆xi . (12)

Since we are considering adiabatic perturbations, the fluidele-
ment does not exchange heat with its surroundings and∆s= 0.
Furthermore, the displaced fluid element has a composition
different from the surrounding fluid even though nuclear reac-
tions, acting on a timescaletreact, tend to eliminate this differ-
ence. The two limiting cases are:

i) treact≫ tosc; in this case the fluid element composition
does not change during the oscillation, i.e.,∆xi = 0, and by
combining Eqs. (10) and (12) we find

c2
s =

(

∂ p
∂ε

)

s,xi

. (13)

ii) treact≪ tosc; the fluid element composition changes, be-
coming that of the surrounding fluid. By replacing the com-
position profilexi = xi(ε,s,Ye) in (9), it is possible to express
the EOS asp= p(ε,s,Ye). Eqs. (10) and (12) then give

c2
s =

(

∂ p
∂ε

)

s,Ye

. (14)

for beta-stable, neutrino-trapped matter.
For the PNSs in quasi-stationary evolution we consider in

this paper, typical oscillation periods are of the ordertosc≈
10−3 s, while weak interactions timescales are [16]

t(1)react≈
5×106 s
(T/109K)6 , t(2)react≈

20 s
(T/109K)4 (15)

for modified and direct Urca processes, respectively. In the

first seconds of a PNS lifeT ≈ (1−4)×1011 K, thust(1,2)react ≪
tosc. Therefore the stellar pulsations always occur in local beta
equilibrium. Timescales of strong nuclear reactions are even
smaller.
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D. Some considerations on the f - and g-modes

For old, cold neutron stars, the frequency of thef -mode,
ν f , is in the range 1-3 kHz, and the damping time,τ f , is of the
order of a few tenths of seconds. According to the Newtonian
theory of stellar pulsations,ν f scales as the square root of
the star average density, and this behaviour is maintained in
the relativistic theory, according to which the damping time
scales asτ f ∼ R4/M3 [17–19].

The g-modes are directly related to the thermodynamical
properties of the star. Indeed, their presence can be traced
back to the Schwarzschild discriminant [20],

S(r) =
dp
dr

− c2
s
dε
dr

=
dp
dr

(

1−
c2

s

c2
s0

)

, (16)

wherec2
s0 =

dp/dr
dε/dr . The radial acceleration of a fluid element

displaced from equilibrium by∆r is

a=−
e−λ/2

(ε + p)2c2
s

∣

∣

∣

∣

dp
dr

∣

∣

∣

∣

S(r)∆r . (17)

Therefore, ifS(r) > 0 the fluid element oscillates about the
equilibrium position, whereas ifS(r) < 0 it is accelerated
away from equilibrium. It follows that, if in some region of
the starS(r) < 0, this region is convectively unstable and the
star admits a set of unstableg-modes, otherwise theg-modes
are stable. IfS(r) vanishes identically, the star does not have
g-modes (allg-modes degenerate to zero frequency). This is
the case if the neutron star is cold and old, since the EOS
is barotropic andc2

s =
p,r
ε,r . Similar information is contained

in the Brunt-Väisälä frequency which, in a relativisticframe-
work, is defined as [21]

N2(r) =
eψ−λ

(ε + p)c2
s

ψ,r

2
S(r) . (18)

It has been shown that, although the Brunt-Väisälä frequency
changes by many orders of magnitude throughout the star, it
allows to estimate someg-mode frequencies of Newtonian
stars. For instance, in [22] the frequency of higher-orderg-
modes of main sequence stars is computed using the following
formula

σg ≈

√

ℓ(ℓ+1)
(

2κ + ℓ+ne+
1
2

) π
2

∫ R

0
dr

|N(r)|
r

, (19)

whereR is the stellar radius,κ is the order of theg-mode, and
ne is the effective polytropic index of the outer layers of the
star. However, the Brunt-Väisälä frequency cannot be used to
estimate neutron starg-mode frequencies [21]; these frequen-
cies can only be found by solving the perturbation equations,
as we do in the present paper. Nevertheless the following con-
siderations will be useful to interpret the results we will show
in the following. Eq. (19) indicates that higher frequency val-
ues correspond to larger values ofS(r) (i.e., of |N(r)|) inside
the star. Since we shall assumedYe/dr = 0 (see Sec. IV), we
have

S(r) =
dp
dr

−

(

∂ p
∂ε

)

s,Ye

dε
dr

=

(

∂ p
∂s

)

ε,Ye

ds
dr

, (20)

we may expect that higherg-mode frequencies correspond to
larger entropy gradients.

E. The damping time of quasi-normal modes

A QNM of a PNS is characterized by the pulsation fre-
quency and by the damping timeτGW. Its value is important
because it shows how fast the pulsation energy can be dis-
sipated through gravitational wave emission, and it must be
compared to the timescaleτdiss associated with other dissipa-
tive processes which may compete with GW emission. These
include viscosity, heat transport, neutrino diffusion, etc. (phe-
nomena which we are neglecting in our model). In the first
minute of life of a PNS,τdiss∼ 10− 20 s [23, 24] (see also
the discussion in [6]). Thus, ifτGW ≪ τdiss, the oscillations
are mainly damped by gravitational wave emission, and vicev-
ersa. We also remark that, if a QNM is unstable, the instability
can grow only ifτGW ≪ τdiss.

As long asτGW ≪ τdiss, when a star oscillates in a QNM,
the pulsation energy changes in time as [9]

Epuls(t)≈ Epuls(0)e
−2t/τGW, (21)

and the power radiated in gravitational waves is

LGW =−Ėpuls≈ 2Epuls/τGW . (22)

Thus, smaller QNM damping times are associated with a more
efficient gravitational wave emission. In the case of cold NSs,
the f -mode has always the smallest damping time, but this is
not always the case for PNSs, as we shall discuss later.

Although we shall compute the damping times of all modes
by direct integration of the perturbed equations, it is useful to
give some approximate formula which will allow us to explain
some results of the next sections. From Eq. (22) we find

τGW ≈ 2Epuls/LGW . (23)

The (approximate) expressions ofEpuls and LGW (the latter
is obtained using the quadrupole formalism) can be found in
[21, 26] and are, in terms of the perturbation functions defined
in this paper,

Epuls≈
1
2

σ2
∫ R

0
dr r2ℓ(ε + p)e(λ−ψ)/2

×
[

|Wℓm|2+ ℓ(ℓ+1)|Vℓm|2
]

(24)

and

LGW ≈
4π
75

σ6

∣

∣

∣

∣

∫ R

0
dr r4δεℓm

∣

∣

∣

∣

2

, (25)

where

δεℓm =−rℓ
[

e−ψ/2

c2
s

Xℓm+ ε,r
e−λ/2

r
Wℓm

]

. (26)
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III. THE EQUATION OF STATE OF HOT NUCLEAR
MATTER

A. BHF many-body approach

One of the most advanced microscopic approaches to the
EOS of nuclear matter is the Brueckner theory [27], recently
extended to the finite-temperature regime within the Bloch-
De Dominicis formalism [28]. In this approach, the essen-
tial ingredient is the two-body scattering matrixK, which,
along with the single-particle potentialU , satisfies the self-
consistent equations

〈12|K(W)|34〉= 〈12|V|34〉

+ Re∑
3′,4′

〈12|V|3′4′〉
[1−nF(3′)][1−nF(4′)]

W−E3′ −E4′ + iε
〈3′4′|K(W)|34〉

(27)

and

U(1) = ∑
2

nF(2)〈12|K(W)|12〉A , (28)

where 1,2, ... generally denote momentum, spin, and isospin.
Here V is the two-body interaction,W = E1 + E2 repre-
sents the starting energy, andEi = k2

i /2mi +U(ki) the single-
particle energy;nF(k) is the Fermi distribution at finite tem-
perature. For assigned partial densities and temperature,
Eqs. (27) and (28) have to be solved self-consistently along
with the following equations for the auxiliary chemical poten-
tials µ̃i ,

ni = ∑
k

nF
i (k) = ∑

k

1

eβ (Ei(k)−µ̃i)+1
, (29)

and the baryon number density isn= ∑i ni .
At finite temperature the EOS, and all thermodynamical

quantities, can be obtained from the grand-canonical poten-
tial densityω . In the Bloch-De Dominicis approach,ω can
be written as the sum of a mean-field term and a correlation
contribution [27, 29],

ω =−∑
k

[

1
β

ln
(

1+e−β (Ek−µ̃)
)

+nF(k)U(k)

]

+
1
2 ∑

k

nF(k)U(k) . (30)

In this framework, the free energy density is

f = ω +nµ̃ , (31)

and all remaining thermodynamical quantities of interest,
namely, the “true” chemical potentialµ , pressurep, entropy
per baryons, and energy densityε can be computed from it as

µ =
∂ f
∂n

, (32)

p= n2 ∂ ( f/n)
∂n

= µn− f , (33)

s=−
1
n

∂ f
∂T

, (34)

ε = f +Tns+mnn (35)

(mn neutron mass). Since at zero temperature the non-
relativistic microscopic approaches do not correctly repro-
duce the nuclear matter saturation point,n0 ≈ 0.17 fm−3,
E/A ≈ −16 MeV, three-body forces (TBF) among nucle-
ons are usually introduced in order to correct this deficiency.
Given the current lack of a complete microscopic theory of
TBF, we have adopted the phenomenological Urbana model
[30], which consists of an attractive term due to two-pion ex-
change with excitation of an intermediate∆ resonance and a
repulsive phenomenological central term. For simplicity,we
reduce the TBF to a density-dependent two-body force by av-
eraging over the position of the third particle, assuming that
the probability of having two particles at a given distance is
reduced according to the two-body correlation function. The
corresponding EOS at zero temperature reproduces the nu-
clear matter saturation point correctly [31–33], and fulfills
several requirements from the nuclear phenomenology. In all
calculations presented in this paper we use the ArgonneV18
nucleon-nucleon potential [34] together with the phenomeno-
logical Urbana TBF.

Results for symmetric nuclear matter and purely neutron
matter have been obtained for different values of the temper-
ature, and are discussed in [35–38]. In particular, in Ref. [37]
useful numerical parametrizations of the EOS are given that
are employed in the current work.

The Brueckner approach provides a realistic modeling of
nuclear matter only at densities above about half normal nu-
clear matter density. Below this threshold, clusterization sets
in, and the system becomes inhomogeneous. Therefore, in
this “low-density” regime another theoretical approach has to
be used, and we employ the EOS of Shen [39], which is es-
sentially a liquid-drop-type model at finite temperature.

Of course, since two different theoretical descriptions of
the same state of matter are involved, the joining of the two
EOSs requires the thermodynamical observables to be contin-
uous functions of the baryon density. In practice we performa
Maxwell construction by equating pressure and chemical po-
tentials of the low- and high-density sectors, and verify that
the other thermodynamic variables do not exhibit significant
discontinuities at the transition point. In this way, a verywide
range of baryon density is spanned, from the iron density at
the surface up to 8-10 times the nuclear saturation density in
the core. Further details are discussed in the following sub-
section.

B. Composition and EOS of hot stellar matter

In neutrino-trappedβ -stable nuclear matter, the chemical
potential of any particlei = n, p, l is uniquely determined by
the conserved quantities, baryon numberBi , electric charge

Qi , and weak charges (lepton numbers)L(e)
i , L(µ)

i :

µi = Biµn−Qi(µn− µp)+L(e)
i µνe +L(µ)

i µνµ . (36)

For stellar matter containing nucleons and leptons as relevant
degrees of freedom, the chemical equilibrium conditions read
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explicitly as

µn− µp = µe− µνe = µµ + µν̄µ . (37)

At given baryon number densityn, these equations have to be
solved together with the charge neutrality condition

∑
i

Qixi = 0, (38)

and those expressing conservation of lepton numbers

Yl = xl − xl̄ + xνl − xν̄l , l = e,µ . (39)

When neutrinos have left the system, their partial densities and
chemical potentials vanish and the above equations simplify
accordingly. We fix the muon fractions toYµ = 0, and letYe
assume a finite value different from zero in neutrino-trapped
matter.

The nucleon chemical potentials are obtained from the free
energy densityf , Eq. (31),

µi({n j}) =
∂ f
∂ni

∣

∣

∣

∣

n j 6=i

, i = n, p , (40)

and the chemical potentials of the non-interacting leptonsare
obtained by solving numerically the free Fermi gas model at
finite temperature. Once the hadronic and leptonic chemical
potentials are known, one can proceed to calculate the compo-
sition of theβ -stable stellar matter, and then the total pressure
p through the usual thermodynamical relation

p= n2 ∂ ( f/n)
∂n

= ∑
i

µini − f . (41)

An important feature of the low-density domain is the
treatment of neutrino trapping. Physically, neutrinos escape
rapidly from the low-density matter during the PNS evolution,
and the lepton number is not conserved anymore. This effect
can be roughly modeled by introducing a neutrino-sphere in-
side which neutrinos are trapped. Typical model-dependent
values for the location of the neutrino-sphere found in the
literature are 2× 10−3 fm−3 [40], 6× 10−4 fm−3 [41], and
2× 10−5 fm−3 [42]. Given these variations, we choose the
following “natural cutoff” procedure: when imposing a con-
stantYe at any density, at a certain threshold number den-
sity nν ≈ 10−5−10−6 fm−3, the electron fractionxe becomes
equal toYe, and neutrinos disappear naturally. For lower den-
sities we consider the matter untrapped. This simple proce-
dure avoids making assumptions about the neutrino-sphere,
although a more satisfactory treatment of neutrino trapping is
required; but this is beyond the main goal of the present paper.

IV. PROTO-NEUTRON STAR STELLAR MODELS:
ENTROPY AND LEPTON FRACTION PROFILES

We shall now construct equilibrium stellar models, all with
a fixed baryonic massMB = 1.5M⊙ (a conserved quantity dur-
ing the stellar evolution), and with different entropy and com-
position profiles. These configurations will be used to simu-
late the quasi-stationary evolution of a PNS, and to compute
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FIG. 1. (Color online) The profiles of entropy (upper panel) and
temperature (lower panel) are plotted versus the enclosed baryonic
mass for the modelsP1,5,0.35 (R= 30.3 km) andP2,3,0.30 (R= 16.5
km).

how the stellar parameters and the quasi-normal mode fre-
quencies change during the evolution. As discussed in the in-
troduction, the quasi-stationary evolution typically starts with
configurations characterized by a low entropy per baryon in
the core (order ofs∼ 1 at the center, see for instance [2])
and a large entropy per baryon in the envelope (order ofs∼ 5
or larger). Thus, we shall consider as “initial” the configura-
tion with an entropy per baryon profile made of two constant
pieces,sc = 1 in the core andse = 5 in the envelope, with a
smooth junction between them. Furthermore, as discussed in
Sec. III B, to model neutrino trapping we shall assume that
the lepton fractionYe is constant throughout the star (up to a
threshold density, below whichYe = xe).

As long as the evolution proceeds, entropy gradients are
gradually smoothed out: the core entropy increases, the enve-
lope entropy decreases, neutrinos escape from the surface and
the star progressively cools down. To model this evolution,we
construct EOSs and stellar configurations corresponding toin-
creasing values ofsc, decreasing values ofse and decreasing
lepton fraction; then, to decreasing values of bothsc, se, and
decreasing lepton fraction. Each configuration depends on the
three constantssc,se,Ye, and it is labeled byPsc,se,Ye.
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TABLE I. Stellar models with fixed baryonic massMB = 1.5M⊙

corresponding to different entropy profiles and lepton fractions. The
gravitational massM, radiusR, central temperatureTc, and central
neutrino fractionxc

ν are tabulated for each profile.

sc se Ye M/M⊙ R (km) Tc (MeV) xc
ν

1.0 5.0 0.38 1.43 31.5 19.8 0.052
1.0 5.0 0.35 1.43 30.3 20.2 0.041
1.0 5.0 0.28 1.42 29.4 21.2 0.020
1.5 4.5 0.33 1.43 24.6 30.3 0.035
1.5 4.5 0.32 1.42 24.4 30.5 0.031
2.0 4.0 0.32 1.43 21.5 40.5 0.033
2.0 4.0 0.30 1.43 21.3 41.0 0.027
2.0 3.0 0.30 1.42 16.5 41.2 0.026
2.0 3.0 0.28 1.41 16.4 41.8 0.021
2.0 2.0 0.28 1.41 14.5 41.6 0.020
2.0 2.0 0.23 1.40 14.1 42.9 0.010
1.0 1.0 0.23 1.37 12.5 20.2 0.007
1 1 xν = 0 1.36 12.2 20.9 0.000

T = 0 1.35 11.9 0.00 0.000

To describe the latest stages of the PNS evolution we also
consider two constant entropy profiles: (i) one withsc = se =
1 and no neutrino trapping,P1,1,xν=0, with Ye varying from
0.10 at the center to 0.44 at the stellar surface; (ii) a zero-
temperature profile with no neutrino trapping,PT=0, which
describes a cold, old NS, with electron fraction varying from
0.09 at the center to 0.44 at the surface.

We show in Fig. 1 the profiles of the entropy per baryon
(upper panel) and of the temperature (lower panel) as a func-
tion of the enclosed baryonic mass, for the modelsP1,5,0.35
(radiusR= 30.3 km) andP2,3,0.30 (radiusR= 16.5 km). In
order to avoid sharp transitions from the core to the envelope
region, we adopt a cubic interpolation for the entropy between
the two regions. Thus, the entropy is a continuous function of
the density. However, as a consequence of the Maxwell con-
struction used to join the Shen EOS (low-density region) to
the BHF EOS (high-density region), as discussed in the previ-
ous section, there is a weak discontinuity both in the entropy
and in the temperature profile, when plotted as a function of
the enclosed mass as in Fig. 1. We have checked that the re-
sults presented in the next section are not influenced by these
discontinuities.

In Table I we show the quantities which characterize the
stellar models associated to different profiles, namely gravita-
tional mass, stellar radius, temperature and neutrino fraction
at the center of the star. The dependence of the stellar param-
eters on the temperature and lepton fraction profiles will be
discussed in the next Section.

V. RESULTS

In this section we discuss the behaviour of the stellar radius
and of frequencies and damping times of the QNMs com-
puted for stellar models with different entropy profiles and
lepton/neutrino fraction content, in order to understand how
these quantities are affected by the PNS internal structure.

TABLE II. Frequencies (in Hz) and damping times (in s) of the
QNMs g1, f , p1 for different stellar models with baryonic mass
1.5M⊙, lepton fractionYe= 0.32, and different entropy profiles. The
central temperatureTc (in MeV) and the stellar radiusR (in km) are
also shown.

sc se ∆s Tc R νg1 τg1 ν f τ f νp1 τp1

1.0 5.0 4 20.6 29.6 906 6.27 1194 4.42 1528 0.75
1.5 4.5 3 30.5 24.3 910 42.9 1346 0.76 1845 0.55
1.0 4.0 3 20.2 18.4 870 793 1741 0.27 2574 0.99
2.0 4.0 2 40.5 21.5 669 2×103 1449 0.45 2097 0.72
2.0 3.0 1 40.7 16.8 492 6×105 1714 0.25 2977 1.64

Let us consider the dependence on the entropy profile first,
and fix the value of the lepton fraction toYe = 0.32. We
compute and compare the mode frequencies and damping
times of the following stellar configurations:P1,5,0.32, P1,4,0.32,
P1.5,4.5,0.32, P2,4,0.32, andP2,3,0.32. The core-envelope ‘entropy
jumps’ are∆s= 4,3,3,2,1, respectively. In Table II we show
for each profile the central temperature, the radius, and the
frequencies and damping times of the QNMsg1, f , p1. These
data allow us to discuss how the different quantities change
with the entropy profile.

As a general rule, the radius is larger if the star is hotter,
or equivalently, if it has a larger entropy per baryon. This is
indeed confirmed comparing for example the profilesP1,5,0.32
andP1,4,0.32. The temperature (entropy) at the center is the
same, but the first model has larger entropy and temperature
in the envelope; its radius,R= 29.6 km, is larger than that of
the second model,R= 18.4 km. This behaviour is confirmed
by comparingP2,4,0.32 andP2,3,0.32. In a similar way, the radius
depends on the entropy in the core, although the dependence
is weaker, because the envelope has more freedom to expand
than the core; for instance, the configurationP2,4,0.32 has a
radiusR= 21.5 km, larger thanR= 18.4 km ofP1,4,0.32.

As discussed in Section II D, the frequency of the firstg-
mode depends mainly on the core-envelope entropy jump:
higher values of∆s= se−sc correspond to largerg-mode fre-
quencies. Furthermore, as argued in [25], theg-mode fre-
quency has also a (weaker) dependence on the central temper-
ature; indeed, the configurationsP1.5,4.5,0.32 andP1,4,0.32 have
the same entropy jump, but the former has a larger central
temperatureTc and largerg-mode frequency.

Table II shows that, as the entropy jump decreases, the
damping time of the firstg-mode increases dramatically: for
P1,5,0.32 it is τg1 = 6.27 s, forP2,3,0.32 it is τg1 = 6× 105 s.
Since the evaluation of the damping time is more sensitive to
the numerical procedure than that of the mode frequency, we
have also computed this quantity by using the approximate
formula given in Eq. (23), and indicate its value asτest

g ; we
find a reasonable agreement with the data of Table II:

∆s=4: Epuls=1.047km, LGW=0.377, τest
g =5.55s

∆s=1: Epuls=0.111km, LGW=3.8×10−6, τest
g =6×104s.

Thus, the sharp increase ofτg1 as ∆s decreases is due to
the sharp decrease of the gravitational luminosityLGW [see
Eq. (23)]. As shown in Eq. (25),LGW is (modulo a numerical
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FIG. 2. (Color online) Comparison of the perturbed energy density
δε(r), Eq. (26), (upper panel) and of the functionIGW(r) given in
Eq. (42) (lower panel) for theg-mode of the stellar configurations
P1,5,0.32 andP2,3,0.32. Both functions have been normalized in such a
way that the mode pulsation energy isEpuls= 1 km.

factor) the squared integral of the function

IGW = ν3r4δεℓm , (42)

whereν is the mode frequency andδε is the perturbed energy
density for the considered mode.

In order to understand whyLGW decreases so much when
the entropy jump decreases, we plot in Fig. 2δε (upper panel)
andIGW (lower panel) as functions ofr, for the stars with pro-
files P1,5,0.32 andP2,3,0.32. It is obvious that due to the larger
radius of the former configuration and the presence of the fac-
tor r4 in Eq. (25), the emitted powerLGW is much larger (in-
deed the main contribution comes from the envelope), and the
damping time is strongly reduced. In addition, theg-mode fre-
quency is also larger in the former configuration, and this con-
tributes further to a larger gravitational wave emission, since
IGW ∼ ν3.

Let us now consider thef -modes. For a cold neutron star,
the f -mode frequency scales as the average density of the star
and the damping time scales asτ f ∼ R4/M3. From the data of
Table II we see thatν f increases as the radius decreases (the
gravitational mass is nearly the same for all configurations),

TABLE III. Frequencies (in Hz) and damping times (in s) of the
QNMs g1, f , p1 for stellar models with baryonic mass 1.5 M⊙, en-
tropy per baryon in the coresc = 1 and in the envelopese = 5, and
different values of the lepton fractionYe. The radius of the star (in
km) and its gravitational mass (in solar massesM⊙) are also shown.

Ye R M νg1 τg1 ν f τ f νp1 τp1

0.38 31.5 1.43 863 6.78 1116 9.75 1415 1.00
0.36 30.6 1.43 883 6.62 1147 6.83 1463 0.89
0.32 29.6 1.42 906 6.25 1194 4.44 1527 0.75
0.30 29.4 1.42 910 5.99 1209 4.01 1543 0.73
0.28 29.4 1.42 908 5.71 1216 3.96 1546 0.72

while the damping time decreases; however, bothν f andτ f
do not follow quantitatively the cold star scaling laws. The
first p-mode frequency has a behaviour similar to that of thef -
mode, whereas the damping time seems to be quite insensitive
to changes of the entropy profile.

Finally, we consider a sequence of stellar models with a
fixed entropy profile, i.e.,sc = 1 in the core andse = 5 in
the envelope, and lepton fraction varying in the rangeYe =
0.38, . . . ,0.28. The frequency and the damping times of the
g1, f , andp1-modes are shown in Table III, together with the
radius and the gravitational mass of the star. From these data
we see that the star radius is a slightly decreasing functionof
the lepton fraction, and that the behaviour of thef - and p1-
frequency as a function of the star radius is similar to that
described above. Overall, the data show that the dependence
of the QNMs eigenfrequencies on the lepton fraction is much
weaker than that on the entropy profile.

A. QNM eigenfrequencies and PNS quasi-stationary evolution

As mentioned in the Introduction, numerical simulations
show that in the early phases of a PNS life the entropy profile
has a characteristic evolution which mainly depends on neu-
trino diffusion processes, and which can be divided in three
essential steps:

1. the entropy per baryon is initially (a few tenths of sec-
onds after bounce) larger in the envelope and lower in
the core;

2. the entropy increases in the core and decreases in the
envelope, reaching a roughly uniform profile;

3. the entropy decreases throughout the star, which even-
tually becomes a cold neutron star.

The entire process takes about a minute, but we cannot as-
sign precise temporal labels to each step, because they depend
on the details of the initial conditions after the bounce andon
the dynamical modeling of the evolution, which is beyond the
scope of our work (an example of this evolution is shown in
Fig. 9 of Ref. [2]).

In this section we construct a sequence of stellar configura-
tions, listed in Table IV, which captures the main qualitative
features of a PNS evolution described by steps 1 to 3. Each
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TABLE IV. Frequencies (in Hz) and damping times (in s) of the
QNMs g1, f , p1 for a sequence of stellar models which mimic the
quasi-stationary evolution of a PNS with constant baryonicmass
1.5 M⊙. The star radius (in km) is shown in column 5.

i sc se Ye R νg1 τg1 ν f τ f νp1 τp1

1 1.0 5.0 0.35 30.3 890 6.54 1162 5.89 1484 0.84
2 1.5 4.5 0.32 24.4 910 42.9 1346 0.76 1845 0.55
3 2.0 4.0 0.30 21.3 667 2.3×103 1452 0.44 2125 0.73
4 2.0 3.0 0.28 16.4 485 7.6×104 1717 0.25 3133 1.80
5 2.0 2.0 0.23 14.1 0 - 1790 0.23 4134 2.59
6 1.0 1.0 xν = 0 12.2 0 - 1896 0.21 5879 2.98
7 T = 0 11.9 0 - 1898 0.21 6006 3.52

profile is labeled by a numberi, which gives the ordering in
time of the simulated evolution. Configurations fromi = 1 to
i = 4 (envelope entropy larger than core entropy) refer to the
transition from step 1 to step 2, which ends with configuration
5, for which the entropy distribution becomes uniform, but the
star is still hot. Then it cools down (configurations 5 to 6) and
ends as a zero-temperature NS reaching configuration 7 (step
3). During this “evolution” the lepton number decreases. We
have also considered a different sequence, in which the lepton
fraction decreases “more rapidly,” but the results are verysim-
ilar to those obtained with the sequence shown in Table IV.

For each configuration we compute the frequencies and
damping times of the QNMsg1, f , p1. Their values are given
in Table IV, and are plotted in Fig. 3 versus the numberi
which identifies the configuration as explained above. We
remark that, as shown in Fig. 3, the gravitational damping
time of theg1-mode sharply increases fori & 2, while the
mode frequency sharply decreases. However, as discussed in
Sec. II, as soon asτg becomes comparable toτdiss∼ 10−20
s, the mode becomes ineffective with respect to gravitational
wave emission, since the stellar oscillations are damped by
non-gravitational dissipative processes.

The most interesting result which emerges from Table IV
and Fig. 3 is that at earlier times, i.e., fori ≤ 2, the frequen-
cies of theg1, f , p1 modes cluster in a small region around
1 kHz, and then tend quite rapidly to the values appropriate
for a cold NS (remember that our entire sequence should cover
approximately a minute of the PNS evolution). This behaviour
is similar to that found in [6], where the quasi-stationary
evolution sequence was obtained using a finite-temperature
EOS derived within the mean field approach, treating neutrino
transport using the diffusion approximation. The fact thatin
the very early stages the mode frequency is of the order of
1 kHz (or lower) is important for gravitational wave detec-
tion, because the sensitivity of ground-based interferometers
LIGO/VIRGO decreases quite significantly at larger frequen-
cies.

Another interesting point to note is that during the early
evolution the damping time of all modes is smaller than 10 s.
This means that gravitational wave emission is effectively
competing in removing energy from the star with dissipation
processes related to neutrino viscosity, diffusivity, andthermal
conductivity, since typical neutrino timescales are of theorder
of 10–20 s (see also section 2.1 of [6] for a detailed discussion

 0

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6  7

ν 
(k

H
z)

i

g-mode
f-mode

p-mode

 0.1

 1

 10

 100

 1000

 10000

 100000

 1  2  3  4  5  6  7

τ 
(s

)

i

g-mode
f-mode

p-mode

FIG. 3. (Color online) Frequencies (upper panel) and damping times
(lower panel) of the QNMsg1, f , p1 for stellar models corresponding
to a possible evolutive sequence of stationary configurations.

of this point).
Furthermore, fori = 1 the damping times of thef -mode and

g-mode are nearly coincident, showing that in the early stages
theg-mode is as effective as thef -mode as a source of grav-
itational waves. Indeed, the functionIGW given by Eq. (42),
whose square integral over the star is the gravitational wave
luminosity, is similar for the two modes due to a similar pro-
file of the energy density perturbation. At later “times”τg
becomes much larger thanτ f and, as the PNS tends to the NS
final configuration, theg-mode frequency tends to zero.

VI. CONCLUSIONS

In this paper we have investigated how the frequencies
and damping times of the quasi-normal modes of a proto-
neutron star depend on the physical quantities which char-
acterize the stellar configurations during the quasi-stationary
evolution. The most important is the entropy profile inside
the star, whereas the dependence on the lepton composition is
weaker.

The most interesting result is that if the entropy gradient be-
tween core and envelope is large, the frequencies of the firstg-
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mode, of the fundamental mode, and of the firstp-mode tend
to cluster in a small region near 1 kHz, whereas the damping
time of the firstg-mode and of thef -mode become compa-
rable. This means that during the initial phases of the quasi-
stationary evolution, when the core entropy is low and the en-
velope entropy is large, these two modes are competitive as
far as gravitational wave emission is concerned.

The damping times are of the order of a few seconds,
smaller than dissipative timescales associated to neutrino pro-
cesses, which are of the order of 10–20 s. Thus, if the star has
some mechanical energy to dissipate, it is likely that it will do
it through theg1 and f modes.
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Appendix A: The Lindblom-Detweiler equations

The system of the LD equations [10, 11] consists of four first-order differential equations in the quantitiesHℓm
1 (r), Kℓm(r),

Wℓm(r), Xℓm(r):

H lm′
1 =−

1
r

[

ℓ+1+
2Meλ

r
+4πr2eλ (p− ε)

]

+
eλ

r

[

Hℓm
0 +Kℓm−16π(ε+ p)Vℓm

]

,

Kℓm′ =
1
r

Hℓm
0 +

ℓ(ℓ+1)
2r

Hℓm
1 −

[

ℓ+1
r

+
ψ ′

2

]

Kℓm−8π(ε + p)
eλ/2

r
Wℓm ,

Wℓm′ =−
ℓ+1

r
Wℓm+ reλ/2

[

e−ψ/2

(ε + p)c2
s
Xℓm−

ℓ(ℓ+1)
r2 Vℓm+

1
2

Hℓm
0 +Kℓm

]

,

Xℓm′ =−
ℓ

r
Xℓm+

(ε + p)eψ/2

2

[

(

1
r
+

ψ ′

2

)

+

(

rω2e−ψ +
ℓ(ℓ+1)

2r

)

Hℓm
1 +

(

3
2

ψ ′−
1
r

)

Kℓm

−
ℓ(ℓ+1)

r2 ψ ′Vℓm−
2
r

(

4π(ε + p)eλ/2+ω2eλ/2−ψ −
r2

2

(

e−λ/2

r2 ψ ′

)′
)

Wℓm

]

. (A1)

The remaining perturbation functions,Hℓm
0 (r), Vℓm(r), Hℓm

2 (r), are given by the algebraic relations

0=

[

3M+
(ℓ−1)(ℓ+2)

2
r +4πr3p

]

Hℓm
0 −8πr3e−ψ/2Xℓm+

[

ℓ(ℓ+1)
2

(M+4πr3p)−ω2r3e−(λ+ψ)

]

Hℓm
1

−

[

(ℓ−1)(ℓ+2)
2

r −ω2r3e−ψ +
eλ

r
(M+4πr3p)(3M− r +4πr3p)

]

Kℓm ,

Xℓm = ω2(ε + p)e−ψ/2Vℓm−
p′

r
r(ψ−λ )/2Wℓm+

eψ/2

2
(ε + p)Hℓm

0 ,

Hℓm
0 = Hℓm

2 . (A2)

Equations (A1) and (A2) are solved numerically inside the star, assuming that the perturbation functions are non-singular near
the center. An asymptotic expansion of the equations nearr = 0 shows that this requirement implies

Xℓm(0) =
[

ε(0)+ p(0)
]

eψ(0)/2

[

(

4π
3

[

ε(0)+3p(0)
]

−ω2e−ψ(0)

ℓ

)

Wℓm(0)+
1
2

Kℓm(0)

]

,

Hℓm
1 (0) =

1
ℓ(ℓ+1)

[

2ℓKℓm(0)+16π
[

ε(0)+ p(0)
]

Wℓm(0)
]

. (A3)

On the stellar surface,r = R, one assumes continuity of
the perturbation functions and the vanishing of the Lagrangian

pressure perturbation, i.e.,

Xℓm(R) = 0 . (A4)
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In the exterior, the metric perturbations are described by the
Zerilli function

Zℓm =
rℓ+2

nr+3M

(

Kℓm−eψHℓm
1

)

, (A5)

[wheren= (ℓ−1)(ℓ+2)/2], which is solution of the Zerilli
equation

d2Zℓm

dr2
∗

+
[

ω2−VZ(r)
]

Zℓm = 0 (A6)

with r∗ ≡ r +2M ln(r/2M−1) and

VZ ≡ e−λ 2n2(n+1)r3+6n2Mr2+18nM2r +18M3

r3(nr+3M)2 . (A7)

Finally, to describe free oscillations of the star we must im-
pose the outgoing wave boundary condition

Zℓm(r)→ e−iωr∗ (r → ∞) . (A8)

A solution of Eqs. (A1), (A6) satisfying the boundary condi-
tions (A3), (A4), (A8) only exists for a discrete set of (com-
plex) values of the frequencyω = 2πν + i/τ: the quasi-
normal modes of the star.
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