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Non-Perturbative Prediction of the Ferromagnetic Transition in Repulsive Fermi Gases
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Itis generally believed that a dilute spif2lFermi gas with repulsive interactions can undergo a feagmetic
phase transition to a spin-polarized state at a criticapgaameterl(-a).. The perturbation theory fails to predict
quantitatively the ferromagnetic transition sinked). is not small. In this Letter we study the non-perturbative
effects on the ferromagnetic transition by summing the parcrticle ladder diagrams to all orders in the gas
parameter. To the leading order of theetive range expansion, such a resummation predicts acecdar
ferromagnetic phase transition. The predicted critical garameterkga). = 0.858 is in good agreement with
recent Quantum Monte Carlo resutté). = 0.86 for a nearly zero-range potential [S. Pilati,al, Phys. Rev.
Lett. 105, 030405 (2010)].
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Itinerant ferromagnetism is a fundamental problem in conUp to orderO((kra)?), the result is universal, i.e., independent
densed matter physics, which can be dated back to the basif the details of the short range interaction,
model proposed by Stoneél [1]. While the problem of itinerant )
ferromagnetism in electronic systems is quite complicatet! 1 s, 5 10ka 55 (k)
o oS > ey F9 = 501 +m) + —g =y + S5 ¢0m.m). (1)
the phase transition theory is still qualitative, a dilypensl/2 T 21x
Fermi gas with repulsive interactions may serve as a clesn Sywherem = (L+x¥3 andy, = (1 - x¥3. The Oth-order

tem to simulate the Stoner model. Itis generally thoughtt thaye;y corresponds to the kinetic energy, and the 1st-order te
the repulsive Fermi gas could undergo a ferromagnetic phas&)incides with the Hartree-Fock mean-field thecﬂy [2]. The

transition (FMPT) to a spin-polarized state with increased .o «sicient (n1.7,) in the 2nd-order term was first evaluated
teraction strengtl{[Z]. Recently, the experimentalistized by Kanno [4]. Its explicit form is

a two-component “repulsive” Fermi gas&fi atoms in a har-
i i i ic fi i mtm mtm
monic trap by using a nonadiabatic field switch to the upper £ = 22'7?77‘?(777 +) - 47#"1 _ 4771'”

branch of a Feshbach resonance with a positive s-wavescatte n
ing length [:B]. Therefore, it is possible to investigatediant 1
ferromagnetism in cold Fermi gases. + 5(’” =) mm, Gy + n)ILSGrt +rf) + L2m.]
The physical picture of the ferromagnetism in repulsive 7 4 2.2 'UT - Ul’
X " + =(p — + +n7+3 In (2
Fermi gases can be understood as a result of the competition 4(77T )"+ n) g+ 17, + 3neny) m+n 2)

between the repulsive interaction and the Pauli exclusion p
ciple. The former tends to induce polarization and reduee th
interaction energy, while the latter prefers balanced ppio-
ulations and hence a reduced kinetic energy. With incrgasin
repulsion, the reduced interaction energy for a polaritats .

will overcome the gain in kinetic energy, and a FMPT shouldoclcnu:2ea,iizor_de:r /F;TE] theHgv“\feT/Zrlst;IZirslgci%?g g:gﬁ[”ind
occur when the minimum of the energy landscape shifts tcfhe 2nd-order corrections, one finds a first order FMPT at

nonzero polarization or magnetization. . L
-p ) g S ) kra = 1.054 ﬁ]. This can be understood by noticing the

Quantitatively, to study the FMPT in dilute Fermi gasesnqon_analytical terme x*n|x| with positive codicient in the
at zero temperature, we should calculate the energy density, oi1x expansion of the cdgcient &r.ny). In fact, Be-
& as a function of the spin polarization or magnetizationji; ¢t a|. [8] have argued that the correlatioffexts or the
x = (0 —ny)/(n +ny) at given dimensionless gas parametercqpling of the order parameter to gapless modes generally
kea which represents the interaction stren@h_ [2]. H&esls  |eads to non-analytical terms in the free energy. The génera
the Fermi rz'nomentumlrelated to the total density i+, by o of the Ginzburg-Landau free energy then takes the form
n= @/(371 ) anda > 0 is the s-wave scattering length. Gener- foL(X) = 2 + vxnix + ax* + O(), where we can keep
ally, the energy density can be expresse8(@ = EnErf(X), o > 0. If the codficientw is positive, the phase transition is
whereEr = kz/(2M) is the Fermi energy wittM being the  gjways of first order. On the other hand, for negativave
fermion mass. The dimensionless functibfx), which de-  gways have a second order phase transition. Up to the order
pends on the gas parametes, represents the energy land- o((k:a)2), we find that the Fermi gas problem corresponds to
scape with respect to the magnetization the cases > 0.

Known results forf (x) are based on the perturbationtheory However, since the critical gas parameter of FMPT is not
(PTh) which treats the gas parameitga as a small number. small, there naturally arises a serious problem: Does the

Settingx = 0, we recover the well-known equation of state for

hard sphere Fermi gases, which was first obtained by Huang,

Yang, and Lee|]5] and recovered by Hammer and Furnstahl
] in recent years usingfiective field theory.
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Fermi gas problem really correspond to the case 0 if the
non-perturbative fects atkra ~ 1 are taken into account?
For the two-body problem in the vacuum, it is well known that ——--
an infinite set of bubble diagrams with the leading-ordercon @ (b)
tact interaction must be resummed if the two-body scaterin U
length is Iargel__[|9]. Therefore it is natural to extend thairas P, P
mation method to finite density so that the predicted eqnatio B
of state works well even &a ~ 1. The results from recent
Quantum Monte Carlo (QMC) SimulatiO@ 11] enable USFIG. 1: (a) The elementary particle-particle bublg;, p,) with
to judge how good the resummation theory is. external momentp; andp, for the two spin components. The solid

The main purpose of this Letter is to calculate the functiorine with arrow corresponds to the particle term of the pgzier
f(x) by resumming certain class of ladder diagrams. We re{3): The dashed line represents the interaction vegtefo) A typ-
quire that the resummation theory (RTh) satisfies the follow gzﬁérgimcle-pamcle ladder diagram contributing to finéeraction
ing two criteria: (i) The physical result does not dependhan t '
renormalization scale; (ii) The functiof{x) recovers Eq.[{1)
when we expand(x) to the ordeO((k-a)?).

For a short range interaction characterized by a momentur®1(s «) + Ri(s. ) + Ry (s «), whereR, (s, «) reads
scaleA, one can construct theffective field theoryl__[J9] de- 2 _(s+x)?
scribing scattering at momenkax A according to the f@ec- R (s k) = Io
tive range expansiokcots = —1/a+ A2 3% rn(k?/A2)™? 4s
for the s-wave scattering phase shiftwe will keep the first  and the functioriR; (s, «) is
termin this expansion and neglect theeetive range fect. In
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+ (k > —k) + 15, (6)

this universal case, it is possible to obtain a non-pertiwba R (s.4)
result of f (x) satisfying the criterions (i) and (ii). ~O(X)R, - O(-X)R; , 0<s< "ﬁ_;u‘
At finite den_5|ty, the free propagators for the two spin com- = Ki(s.k) + Ki(SK) . |m;m <s< ﬂzm 7)
ponents are given bﬂllZ] 0 . elsewhere.
O(kl-kZ) Ok — |k|) is defi
Go(ko, K) = kg " F 3) HereK, (s, «) is defined as

ko — wi +ie  ko—wg — i€’

e e U it
Tl : Ko(sk) = In
whereo =1, |, k2* = kenp,| are the Fermi momenta of the s r2_- g _ g2
two spin componentsy, = k?/(2M) is the free dispersion, K| e = S+k| S—1s 8
and®(z) is the Heaviside step function. For each spin compo- + 5 Ne — S—K tTo (8)

nent, the propagator describes two types of excitationsi- pa

cles with momentunk| > k and holes withk| < k. The =~ Wwherer? = (p? +1)/2. _ _ _
simplest resummation scheme which satisfies the crite(ipns ~ Particle-particle ladder diagrams which contribute toithe
and (ii) is to sum the particle-particle (pp) ladders [d,[14].  teraction energy can be built from the elementary bubble, se

The elementary pp bubble shown in Fig. 1(a) is given by  Fig.[l(b) for a typical example. All contributions form a geo
metric series and the interaction energy is given by
&k O(kil - KDO(kal - k)

= 3 3 T_ 1 _
B(p1.p2) = M (2r)3 PR -K2+ie (4) Sy = gf d pj:_s d p23 O(Ke — Ip1))O(kz — Ip2l)
(2n) (2n) 1-gB(p1.p2)

jyhere the running coupling constantis givendgy) = (-u +
1/a)~14x/M from the renormalization group equation in the
vacuuml[__b]. FinallySint is independent of the renormalization
scaleu, and the functiorf (x) can be expressed as

9)
whereki, = P + k. Herep; andp; are external momenta of
the two spin components, and we have defined their half su
P = (p1 + p2)/2 and half diferenceq = (p1 — p2)/2. Notice
that the imaginary part d8 vanishes automatically.

We can separatginto a vacuum part and a medium part us-
ing the identity®(—2) = 1 - ©(2). The vacuum part is linearly 1 80 [ 00
divergent and we choose the dimensional regularization wit () = 5(’7? +17) + o f 32de xdil (s, K)F (s, ), (10)
power divergence subtraction (PDQ) [9]. For convenienee, w 0 0
define two dimensionless quantities= |P|/ke andk = |q|/ke. ~ WhereF(s k) is given byF (s, «) = kea[1 — keaRop(s ) /7] 7%
The elementary pp bubble can be evaluated as The functionl (s, x) appears due to the angular integration. Its

explicit form is

My Mke
B =" 2 U8 R 1(59) = O = & = )0l - Is - KOG, ~ s~ &)
wherepu is the renormalization scale introduced in the PDS ’I% —(s+«x)?

RN

schemel[9]. The functioR,(s «) is defined afRy(s k) = % 25 OtKkmm)+lm —m)+x
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FIG. 2: (Color-online) The equation of state for the balahcase FIG. 3: (Color-online) The dimensionless inverse spin sptbility

x = 0. The blue squares are the QMC data for the hard sphere (HS)/y. The blue squares and red circles are the QMC {alta [10] for the
potential [10], the red circles for the upper branch (UB) siymare ~ HS and UB cases, respectively. The solid line is the residutzted

well potential [10], and the green diamonds for the uppentita  from RTh. The dashes line is the 2nd-order perturbativeltresu

(UB2) of an attractive short range potentiall[11]. For UB a2

cases, thefeective range is much smaller than the s-wave scatter-

ing lengtha. The solid line is the result calculated from RTh. The

dashed line is the 2nd-order perturbative resiilt [5]. Trshetiotted dero((kFa)3) even for the balanced cage- 0 in the PTth].

horizontal line corresponds to the energy of the fully piakd state, However, some definite conclusions can be drawn from our

Le., f(1) = 27 numerical results: (1) Higher-order terms in the gas parame
ter can also generate non-analytical tekmg*In|x| and may
generate other important non-analytical terms which ate no

To check the consistency with EG (1), we expand the funcknown due to the mathematical limitation; (2) The fim@ents

tion F asF = kea + (kea)2Rop/7 + O((ke@)?). One can check of the non-analytical terms generated by the higher-order ¢

o0 o0 o0 o0 tributions are certainly not always positive, and they ae-g
— 13,3 —
thatfo szdsfo kel = /72 andfo Szdsfo k0l Rpp = erally proportional to Kza)" for the n-th-order contributions.

&(m.1n,)/1680. Therefore we can compare the .results frornSince the phase transition occurs at a gas pararkete 1,
our RTh and the 2_nd—order PTh on the same footing and StUd%e non-perturbativeffects from the sum of the higher order
the non-perturbativeffects on the FMPT. contributions are very important. As we have shown numer-
To show the advantage of our RTh, we first compare thgcally, their efects are not only reducing the critical value of
equation of state for the balanced case=(0) with that ob-  the gas parameter but also changing the order of the phase
tained from the QMC simulations [10,]11]. The results aretransition.
s_hown in Fig.L2. While the 2nd-order perturbatn_/e result can A second order EMPT is precisely controlled by the spin (or
fit the QMC data only fokra < 0.4, our RTh can fit well the  5gnetic) susceptibility. To show this, we expand the func-
data up tokpa ~ Q.8 where the FMPT is estimated to occur gn f(x) nearx = 0 asf(x) = f(0)+t+---. The codficient
[1d]. With increasindca, the result of the 2nd-order PTh be- tis related to the spin susceptibility by= g)fo/)( [10] where
comes lower and Iower than the QMC data. Therefore, thg(o — 3n/(2E) is the spin susceptibility of a non-interacting
2nd-order PTh overestimates the critical gas parametelr, afkermj gas. Therefore, the second order FMPT occurs exactly
our RTh may predict the FMPT more accurately. when the inverse of the spin susceptibility vanishes. In the
The order of the ferromagnetic phase transition and the crit2nd-order PTh, the inverse spin susceptibility can be dinaly
ical gas parametekga). can be obtained by studying care- cally evaluated ag? = 1 - 2kea - %(k,:a)z [4], which
fully the behavior of the energy landscape, i.e., the functi vanishes ak-a = 1.058. This difers from the critical gas pa-
f(x). To very high numerical accuracy, we haven't found anyrameter kra). = 1.054 due to the fact that the FMPT is of first
maximum atx # 0 in the energy landscape. Instead, we find agrder in the 2nd-order PTh.
second order phase transitionkaa = 0.858 where the func-  The quantityyo/y can be calculated numerically from our
tion () starts to develop a minimum at+ 0. Thisisincon-  RTh. It is shown and compared with the QMC data in Fig. 3.
trast to the 2nd-order PTh which predicts a strong first ordefye find that the inverse spin susceptibility predicted by our
phase transition d=a = 1.054 [7] where the magnetization RTh deviates from the 2nd-order PTh result kea > 0.4.
jumps from zero to; = 0.573. Our RTh result agrees well with the QMC data for the upper
Since an analytical result for the functidiix) can not be  branch (UB) of the square well potential where tlkeetive
achieved in our RTh, we cannot understand clearly how theange is much smaller than the scattering length. Neverthe-
non-partuebativefects modify the order of the phase transi- less, the RTh result is also not bad for the hard sphere (HS)
tion. In fact, analytical results cannot be obtained fromdh-  case. The predicted critical gas paramekga), = 0.858 is
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in good agreement with the resultg4). = 0.86 for the UB  1/n; (2) An n-th-order ring diagram comes from closing two
case andkra). = 0.82 for the HS casdﬂO]. Two remarks open Mi-lines of am-th-order ladder diagram, which intro-
may help us understand the good agreements: (1) In a very imluces an integration over the allowed phase sfag¢e< k,T:
teresting papet [13], Steele suggested that the pp ladder SUand|p,| < kt, but does not contribute a factBs to the energy
is the leading-order contribution of th¢ expansion, where  as the naive expression does. These amendments lead to the
D is the number of space-time dimensions. All other contribucorrectn-th-order contribution to the interaction energy![16]:
tions like hole-hole ladder sum anffective range corrections  g"[(By + B; + B,)" — (Bg + B1)"]/(2iln). The summation over
are suppressed by a factofty; (2) In a recentwork [15], Liu  n leads to two complex-conjugated logarithms and the final
et al. found that for stficiently smalla > 0, the energy spec- result is real.
trum of three interacting fermions in the upper branch of the  Therefore, the functiorf(x) in this theory also takes the
Feshbach resonance can be interpreted as that of three “ieym (I0), while the functionF(s ) becomesF(s «) =
pulsively” interacting fermions. Therefore,_for mziny—lg,vod_ [In(1 - k;_aR + ikeal) — c.c]/(2il). We can also check that
Dol oy Sofve asa unhversal TEPUISNEL” s [ IR = ¢(y;,11)/1680, which reflects the fact
that the hh ladders start to contribute at ord2({(kra)°)
[Ia, B,Eﬁ]. Numerically, we also find a second order phase
transition, which occurs at a smaller gas paramkter =
0.786. We notice that the inclusion of hh ladders may not
Tt Tt T improve the quantitative result.
B B B In summary, we have studied the non-perturbati¥eats
on the ferromagnetic phase transition in repulsive Ferrséga
by summing the ladder diagrams to all orders in the gas pa-
FIG. 4: The elementary bubbles Ol’ganized in the number ofthe rameteﬂ(‘:a' The non_perturbativaﬁ':\cts not On|y reduce the
The solid line with a cut represents the Ml part of the propagand ¢ yitica| gas parameter but also change the order of the phase
the pure solid line corresponds to the vacuum part. - . ) .
transition. The resummation of particle-particle laddene-
dicts a second order phase transition occurrirgat 0.858,

In the final part we check whether our conclusion that then good agreement with the QMC reslilt[10]. The equation of
FMPT is of second order is changed by other contributionsstate and the spin susceptibility calculated from our resam
We consider the contribution of the hole-hole (hh) ladder di tion theory are also in good agreement with the QMC resullts.
agrams by summing the combined pp and hh ladders to afherefore, the resummation theory provides a more quanti-
orders inka while keeping the criteria (i) and (i) satisfied. ~ tative way to study the ferromagnetic transition in repuési

Following a recent work by Kaiset [116], we rewrite the Fermigases.
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elementary bubbles in this treatment are shown in[Big. 4. Th&oldt Foundation, and XGH is supported by the Deutsche
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PDS scheme. For our purpose of resummation, we are inter-
ested in the following two quantitieByp+ B; + B, andBy + By,
which are mutually complex conjugate. We have
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