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Energy loss of fast gluons in a gluonic fluid
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We estimate the energy loss of a fast gluon propagating in a gluonic fluid due to the radiative
process: gg → ggg by relaxing some of the approximations used in previous works.
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The energy loss of high energy partons propagating
through quark gluon plasma (QGP) is a field of high
contemporary interest. Experimentally the energy dis-
sipation has been measured through the suppression of
the transverse momentum (pT ) distribution of hadrons
produced in Au+Au relative to the binary scaled p+p
collisions at the same centre of mass energy. The nature
of the suppression may be used as a tool for diagnosis of
QGP formation in nuclear collisions at Relativistic Heavy
Ion Collider (RHIC) and Large Hadron Collider (LHC).
The two most common mechanisms for the energy loss
are elastic and in-elastic or radiative processes. Among
the various in-elastic processes involving quarks and glu-
ons, the process g + g → g+ g+ g plays the leading role.
The momentum spectrum of the radiated gluon can be
used to estimate the energy loss of fast partons propagat-
ing in QGP. The momentum distribution of the radiated
gluons from the above process, considered by Gunion and
Bertsch (GB) [1] long ago, has drawn some attention re-
cently [2, 3]. In the present work, we will estimate the
energy dissipation due to the processes g+ g → g+ g+g
by relaxing some of the approximations considered ear-
lier [1–3]. The results obtained here may be extended
for other partonic processes such as q + q → q + q + g,
q + g → q + g + g etc.
We consider the process, g(k1)+g(k2) → g(k3)+g(k4)+

g(k5), the square of the invariant amplitude for this re-
action can be written as [4]:

|Mgg→ggg|2 =
1

2
g6

N3
c

N2
c − 1

N
D

× [(12345) + (12354) + (12435)

+ (12453) + (12534) + (12543)

+ (13245) + (13254) + (13425)

+ (13524) + (14235) + (14325)], (1)

where

N = (k1.k2)
4 + (k1.k3)

4 + (k1.k4)
4

+ (k1.k5)
4 + (k2.k3)

4 + (k2.k4)
4 + (k2.k5)

4

+ (k3.k4)
4 + (k3.k5)

4 + (k4.k5)
4; (2)

D = (k1.k2)(k1.k3)(k1.k4)(k1.k5)(k2.k3)

× (k2.k4)(k2.k5)(k3.k4)(k3.k5)(k4.k5), (3)

and

(ijklm) = (ki.kj)(kj .kk)(kk.kl)(kl.km)(km.ki). (4)

Nc(= 3) is the number of colors, g =
√
4παs is the colour

charge and αs is the strong coupling.
The quantity, |Mgg→ggg|2 after simplification can be

written as (see appendix):

|M |2gg→ggg = 12g2|Mgg→gg|2GB

1

k2⊥

× [(1 +
t

2s
+

5t2

2s2
− t3

s3
)

− (
3

2
√
s
+

4t

s
√
s
− 3t2

2s2
√
s
)k⊥

+ (
5

2s
+

t

2s2
+

5t2

s3
)k2⊥)], (5)

where |Mgg→gg|2GB = (9/2)g4s2/t2, s = (k1 + k2)
2, t =

(k1 − k3)
2, u = (k1 − k4)

2, k⊥ is transverse momentum
of the radiated gluon. Although the term O(k−2

⊥ ) is the
most dominant one for the soft gluon emission, the other
terms in Eq. 5 make non-negligible contributions to glu-
onic energy loss and hence has crucial importance for the
phenomenology of heavy ion collisions at ultra-relativistic
energies. In consequence of this, the spectrum of the ra-
diated gluon, derived by using the ratio of the amplitude
square of the radiative process, gg → ggg to that of the
elastic process, gg → gg, becomes,

dng

d2k⊥dη
=

[

dng

d2k⊥dη

]

GB

[(1 +
t

2s
+

5t2

2s2
− t3

s3
)

− (
3

2
√
s
+

4t

s
√
s
− 3t2

2s2
√
s
)k⊥

+ (
5

2s
+

t

2s2
+

5t2

s3
)k2⊥)], (6)

where η is the rapidity of the radiated gluon, the sub-
script GB has been used to indicate the gluon spectrum
obtained using the approximation considered in [1] (see
also [5]) which is given by,

[

dng

d2k⊥dη

]

GB

=
CAαs

π2

q2⊥
k2⊥[(k⊥ − q⊥)2 +m2

D]
, (7)

mD =
√

2π
3
αs(T )(CA + NF

2
)T , is the thermal mass of

the gluon [6], NF is the number of flavors contributing
in the gluon self-energy loop, CA = 3 is the Casimir in-
variant for the SU(3) adjoint representation, αs is the
temperature dependent strong coupling [7] and q⊥ is the
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transverse momentum transfer. The thermal mass in the
denominator of Eq. 7 has been introduce to shield the in-
frared divergence arising from the massless intermediary
gluon exchange.
The energy loss of a gluon passing through the QGP

medium can now be calculated using the gluon spectrum
of Eq. 6. The energy loss per collision can now be esti-
mated as:

ǫ =

∫

d2k⊥dη
dng

d2k⊥dη
k0θ(Λ

−1 − τF )

× θ(E − k⊥coshη), (8)

where k0 = k⊥coshη is the energy of the radiated gluon
and τF is the formation time of the gluon. The first θ-
function in Eq. 8, involving Λ−1 or interaction time, is
introduced for the LPM effect. The effect is actually due
to a characteristic destructive interference phenomenon
caused by finite formation time of the radiated gluon with
4-momentum k5 = (k0, k⊥, kz) defined by τF ∼ 1/∆E,
where ∆E is the energy lost by the particle in a sin-
gle collision. In effect, τF is the minimum time needed
to resolve the transverse wave-packet of the quanta with
∆x⊥ ∼ 1/k⊥ from its high energy parent(E >> k0). In a
nutshell, the radiated gluon must have a formation time
greater than the mean free time. τF in Eq. 8 is the for-
mation time, given by: τF = coshη/k⊥. It is the time
within which another interaction, if occurs, results in the
suppression of the emission of the gluon. Destructive
interference among the radiation amplitudes associated
with multiple scattering is expected when the formation
time is larger than the mean free path, λ. When τF >> λ
the scattering centers cannot resolve the emitted quanta
and the incoherent contribution of each scattering breaks
down. This effect is called Landau-Pomeranchuk-Migdal
(LPM) suppression. This suppression imposes some re-
striction on the phase space of the radiated gluon. The
second θ-function sets the upper limit for the energy of
the radiated gluon.
To proceed further, we replace q2⊥ by its average value

evaluated as follows:

〈q2⊥〉 =
1

σel

∫ s

4

m2

D

dq2⊥
dσel

dq2⊥
q2⊥, (9)

where

σel =

∫ s

4

m2

D

dq2⊥
dσel

dq2⊥
. (10)

For dominant small angle scattering (t → 0),

dσel

dq2⊥
= Ci

2πα2
s

q4⊥
. (11)

Ci is 9/4, 1 and 4/9 for gg, qg and qq scattering. 〈q2⊥〉 is
then obtained as,

〈q2⊥〉 =
sm2

D

s− 4m2
D

ln(
s

4m2
D

). (12)

For
√
s → ∞, i.e. in the high-energy limit one can make

the replacement t ∼ −q2⊥ [8]. In contrast to the previous
works [2, 3] where the value of s was taken as s ∼ 18T 2

we put s ∼ 6ET in Eq. 12, allowing the possibility for
the incident gluon to remain out of thermal equilibrium
(E 6= 3T ). With all the above ingredients we are now
ready to evaluate energy loss (dE/dx) of a fast gluon in
the QGP as follows:

− dE

dx
= ǫ · Λ. (13)

The interaction rate, Λ has been evaluated by using the
procedure similar to [9].
We have displayed the results of the ratio,

|M |2gg→ggg/|Mgg→gg|2GB for the approximations used
in Refs. [2, 3] in Fig. 1 and compared the results with
the present calculation. We observe that for a 10 GeV
incident gluon the ratios obtained in the present calcu-
lation differ by 5-10% from that of Ref. [3] for the range
of temperature considered here. The corresponding
difference is about 2-8% when we consider the matrix
element of Ref. [2].
The energy loss of a fast gluon moving in a gluonic

plasma has been estimated by using Eqs. 8 and 13. The
result is displayed in Fig. 2. We find that the magnitude
of energy loss with the current gluon spectrum (Eq. 6)
is larger than the one obtained with spectrum of Ref. [1]
for gluon energy above 20 GeV. This will have crucial
consequences on the heavy ion phenomenology at RHIC
and LHC collision energies.
In the evaluation of the energy loss, dE/dx, the gluon

spectrum is required as an input. In Fig. 3 we compare
the temperature variation of dE/dx (normalized by the
dE/dx for GB approximation) with those obtained by
using the gluon spectra of Refs. [2, 3]. The importance of
the terms O(k−1

⊥ ) and O(k0⊥) is evident from the results
displayed in the figure for E = 10 GeV.
In summary, we perform a comparative study of the

radiative energy loss of a high energy gluon propagating
through a thermal gluonic medium by taking the mo-
mentum spectrum of the radiated gluons from Eq. 6 and
Refs. [2, 3]. We find that the previously neglected terms
O(k−1

⊥ ) and O(k0⊥) may play crucial role in energy loss
of gluons in a gluonic plasma.

Appendix

In this appendix we derive Eq. 5 for the square of the
invariant amplitude for the radiative process, gg → ggg

upto order O(k⊥
0) and O( t

3

s3
). Consider the reaction:

g(k1) + g(k2) → g(k3) + g(k4) + g(k5), (14)

where k5 is the four-momentum of the radiated gluon.
The Mandelstam variables for the above process are de-
fined as:

s = (k1 + k2)
2, t = (k1 − k3)

2
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FIG. 1: (color online) Variation of the ratios of radiative to
collisional matrix element square with temperature.
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FIG. 2: (color online) Energy loss of a gluon propagating
through a thermal gluonic medium at temperature, T = 300
MeV.

u = (k1 − k4)
2, s′ = (k3 + k4)

2

t′ = (k2 − k4)
2, u′ = (k2 − k3)

2. (15)

Gluons being massless we can write:

k1.k2 =
s

2
, k1.k3 = − t

2

k1.k4 = −u

2
, k3.k4 =

s′

2

k2.k4 = − t′

2
, k2.k3 = −u′

2
. (16)

We also have the relations:

k1.k5 =
s+ t+ u

2
, k2.k5 =

s+ t′ + u′

2

0 0.2 0.4 0.6 0.8
T(GeV)

0.8

0.9

1

1.1

1.2

1.3

R

dE/dx(PRESENT)/dE/dx(Ref. [1])
dE/dx(Ref.[3])/dE/dx(Ref. [1])
dE/dx(Ref[2])/dE/dx(Ref.[1])

E=10 GeV
 

FIG. 3: (color online) Variation of dE/dx (normalized by the
dE/dx for GB approximation) with T . Solid line indicates
the result for the present work. Dashed (dotted) line depicts
the energy loss obtained from the gluon spectrum of Ref. [3]
( [2]).

k3.k5 =
s+ t′ + u

2
, k4.k5 =

s+ t+ u′

2
. (17)

For soft gluon emission:

s+ t+ u+ s′ + t′ + u′ = 0. (18)

The matrix element square of the radiative process
gg → ggg is given by [4]:

|Mgg→ggg|2 =
1

2
g6

N3
c

N2
c − 1

N
D

× [(12345) + (12354) + (12435)

+ (12453) + (12534) + (12543)

+ (13245) + (13254) + (13425)

+ (13524) + (14235) + (14325)], (19)

where Nc is the number of colors, g =
√
4παs is the

strong coupling,

N = (k1.k2)
4 + (k1.k3)

4 + (k1.k4)
4

+ (k1.k5)
4 + (k2.k3)

4 + (k2.k4)
4 + (k2.k5)

4

+ (k3.k4)
4 + (k3.k5)

4 + (k4.k5)
4, (20)

D = (k1.k2)(k1.k3)(k1.k4)(k1.k5)(k2.k3)

× (k2.k4)(k2.k5)(k3.k4)(k3.k5)(k4.k5), (21)

and

(ijklm) = (ki.kj)(kj .kk)(kk.kl)(kl.km)(km.ki). (22)

Simplifying Eq. 19 we get,
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|Mgg→ggg|2 = 16g6
N3

c

N2
c − 1

N

× [
1

s′(s+ u+ t)(s+ u′ + t′)
[
1

tt′
+

1

uu′ ]

+
1

s(s+ u+ t)(s+ u′ + t)
[
1

tt′
+

1

uu′ ]

− 1

t′(s+ u+ t)(s+ u+ t′)
[
1

uu′ +
1

ss′
]

− 1

u′(s+ u+ t)(s+ u′ + t)
[
1

tt′
+

1

ss′
]

− 1

u(s+ u′ + t′)(s+ u+ t′)
[
1

tt′
+

1

ss′
]

− 1

t(s+ u′ + t′)(s+ u′ + t)
[
1

uu′

+
1

ss′
]; (23)

and N can now be written as:

N =
1

16
[s4 + t4 + u4 + s′

4
+ t′

4
+ u′4

+ (s+ t+ u)4 + (s+ t′ + u′)4 + (s+ t′ + u)4

+ (s+ t+ u′)4]. (24)

For a soft gluon emission (k5 → 0), s → s′, t → t′,
u → u′. We can express the transverse momentum of
the emitted gluon as:

k2⊥ = 4(k1.k5)(k2.k5)/s

= (s+ t+ u)(s+ t′ + u′)

= (s+ t+ u)2/s

. (25)

Using Eqs. 23, 24 and 25, the square of the matrix ele-
ment can be written as:

|M |2gg→ggg =
27

2
g6(s4 + t4 + u4 + 2s2k4⊥)

1

sk2⊥

× [
1

s
(
1

t2
+

1

u2
)

− 1

t
(
1

s2
+

1

u2
)

− 1

u
(
1

t2
+

1

s2
)]

= g2(
27

2
g4s4)(1 +

t4

s4
+

u4

s4
+ 2

k4⊥
s2

)

× 1

s2k2⊥t
2
[1 +

t2

u2
− t

s
− st

u2
− s

u
− t2

us
]

= g2(
9

2
g4

s2

t2
)(3 + 3

t4

s4
+ 3

u4

s4
+ 6

k4⊥
s2

)
1

k2⊥

× [1 +
t2

u2
− t

s
− st

u2
− s

u
− t2

us
]

= g2(
9

2
g4

s2

t2
)(3(1 +

u4

s4
) + 3

t4

s4
+ 6

k4⊥
s2

)

× 1

k2⊥
[1− s

u
− (1 +

s2

u2
)
t

s
+ (

s2

u2
− s

u
)
t2

s2
]

= g2|Mgg→gg|2GB(3(1 +
u4

s4
) + 3

t4

s4
+ 6

k4⊥
s2

)

× 1

k2⊥
[(1− s

u
)− (1 +

s2

u2
)
t

s

+ (
s2

u2
− s

u
)
t2

s2
], (26)

where the subscript GB stands for the approximation
used by Gunion and Bertsch [1]. For the elastic process,

|Mgg→gg|2GB =
9

2
g4

s2

t2
. (27)

On simplifying Eq. 26 we obtain,

|M |2gg→ggg = g2|Mgg→gg|2GB

× 1

k2⊥
[(3− 3

s

u
+ 3

u4

s4
− 3

u3

s3
)− (3

t

s
+ 3

st

u2

+ 3
u4t

s5
+ 3

u2t

s3
)

+ (3
t2

u2
− 3

t2

us
+ 3

u2t2

s4
− 3

u3t2

s5
)

+ (3
t4

s4
− 3

t4

us3
)

− (3
t5

s5
+ 3

t5

u2s3
) + (3

t6

u2s4
− 3

t6

us5
)

+ (6
k4⊥
s2

− 6
k4⊥
us

)− (6
k4⊥t

s3
+ 6

k4⊥t

u2s
)

+ (6
k4⊥t

2

u2s2
− 6

k4⊥t
2

us3
)]. (28)

In the proposed kinematic limit we set terms which are
linear in k⊥ to zero and keep terms O(k0⊥),O(k−1

⊥ ) and

O(k−2
⊥ ) in |M |2gg→ggg. We also neglect terms O( t

4

s4
) and

higher order in the matrix element. To proceed further
one needs to express the Mandelstam variable, u in terms
of s, t and k⊥ by using the following relation:

k⊥
2 =

(s+ t+ u)2

s

⇒ u =
√
sk⊥ − s− t

⇒ 1

u
=

1

(
√
sk⊥ − s− t)

⇒ 1

u
= −1

s
[1− (

k⊥√
s
− t

s
)]−1

⇒ 1

u
≈ −1

s
[1 + (

k⊥√
s
− t

s
)
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+ (
k⊥√
s
− t

s
)2

+ (
k⊥√
s
− t

s
)3

+ (
k⊥√
s
− t

s
)4

+ (
k⊥√
s
− t

s
)5 + ....... (29)

The binomial expansion of [1 − ( k⊥√
s
− t

s
)]−1 converges if

( k⊥√
s
− t

s
) < 1. For the kinematic limit mentioned above

i.e. for k⊥ → 0 and keeping terms upto O( t
3

s3
), the in-

equality ( k⊥√
s
− t

s
) < 1 is satisfied. We have checked that

terms beyond ( k⊥√
s
− t

s
)5 in the expression of 1

u
are not re-

quired for the kinematic limit under consideration. With
all these we get,

1

u
= −1

s
[(1− t

s
+

t2

s2
− t3

s3
)

+ (
1√
s
− 2t

s
√
s
+

3t2

s2
√
s
)k⊥

+ (
1

s
− 3t

s2
+

6t2

s3
)k2⊥]. (30)

Similarly 1/u2 can be written as

1

u2
=

1

s2
[(1− 2t

s
+

3t2

s2
− 4t3

s3
)

+ (
2√
s
− 6t

s
√
s
+

12t2

s2
√
s
)k⊥

+ (
3

s
− 12t

s2
+

30t2

s3
)k2⊥]. (31)

For the assumed kinematic conditions u4/s4 can be ex-
pressed as follows:

u4

s4
= [(1 +

4t

s
+

6t2

s2
+

4t3

s3
)

− (
4√
s
+

12t

s
√
s
+

12t2

s2
√
s
)k⊥

+ (
6

s
+

12t

s2
+

6t2

s3
)k2⊥]. (32)

Similarly,

u3

s3
= −[(1 +

3t

s
+

3t2

s2
+

t3

s3
)

− (
3√
s
+

6t

s
√
s
+

3t2

s2
√
s
)k⊥

+ (
3

s
+

3t2

s2
)k2⊥]; (33)

and

u2

s2
= [(1 +

2t

s
+

t2

s2
)− (

2√
s
+

2t

s
√
s
)k⊥

+
1

s
k2⊥]. (34)

Putting Eqs. 30 to 34) in 28 we get,

|M |2gg→ggg = 12g2|Mgg→gg|2GB

1

k2⊥

× [(1 +
t

2s
+

5t2

2s2
− t3

s3
)

− (
3

2
√
s
+

4t

s
√
s
− 3t2

2s2
√
s
)k⊥

+ (
5

2s
+

t

2s2
+

5t2

s3
)k2⊥)]. (35)

The terms O(k−1
⊥ ) and O(k0⊥) contributes to the energy

loss of the gluons in a gluonic plasma and hence are
important for heavy ion phenomenology at RHIC and
LHC energies. These terms were absent in the previous
work [3] (also in [2])
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