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Abstract. We study the evolution of local event-by-event deviations from smooth

average fluid dynamic fields, as they can arise in heavy ion collisions from the

propagation of fluctuating initial conditions. Local fluctuations around Bjorken flow

are found to be governed by non-linear equations whose solutions can be characterized

qualitatively in terms of Reynolds numbers. Perturbations at different rapidities

decouple quickly, and satisfy (after suitable coordinate transformations) an effectively

two-dimensional Navier-Stokes equation of non-relativistic form. We discuss the

conditions under which non-linearities in these equations cannot be neglected and

turbulent behavior is expected to set in.

In recent years, hadronic transverse momentum spectra and their azimuthal

dependence with respect to the orientation of the reaction plane have provided tight

constraints on the fluid dynamic model of ultra-relativistic heavy ion collisions. With

the first data from the LHC, and with refined analyses of RHIC data, higher order

flow coefficients v3, v4, v5 and v6 are now starting to complement the measurements

of elliptic flow v2. This provides access to qualitatively novel features of the collision

dynamics. In particular, since event-averaged initial conditions of heavy ion collisions are

by construction symmetric with respect to the reaction plane at mid rapidity, the recent

measurements of non-vanishing odd harmonic coefficients v3, v5 provide unambiguous

evidence for the relevance of event-by-event fluctuations in the fluid dynamic evolution.

Remarkably, at least some of the models currently used to specify initial conditions of

fluid dynamic simulations can provide naturally for initial event-by-event fluctuations of

the phenomenologically required size [1]. First studies of the fluid dynamic propagation

of such geometric initial state fluctuations have resulted in marked improvements in the

comparison of fluid dynamic simulations with data [2].

Motivated by these developments, we are studying here the evolution of local event-

by-event deviations from smooth average fluid dynamic fields within the expanding

geometry characteristic for ultra-relativistic heavy ion collisions. We are for instance

interested in how a ’primordial’ spectrum of such fluctuations evolves, and which

modes of the fluctuation spectrum are damped on which time scales. Given that fluid

dynamic fluctuations measure deviations from equilibrium, we hope to gain in this

way novel access to the basic problem of how equilibration can proceed efficiently in

heavy collisions. We also wonder to what extent it is justified to propagate primordial

fluctuations in a linearized ansatz that by the nature of its approximation leaves no

room for the development of turbulent phenomena. Such an approach is well-motivated
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in the treatment of primordial fluctuations in cosmology, but as we shall discuss in the

following, the scales and flows in heavy ion collisions can support a qualitatively different

conclusion.

To be specific, we consider local fluctuations in the fluid dynamic velocity δuµ and

energy density δǫ on top of average fields ūµ and ǭ that satisfy Bjorken’s scaling solution.

We work in light cone coordinates, where ūµ = (1, 0, 0, 0) and ǭ = ǫBj(τ0) (τ0/τ)
4/3. In

general, one can split at fixed time τ an arbitrary velocity field uµ = ūµ + δuµ into an

irrotational part represented by the divergence

ϑ = ∂1u
1 + ∂2u

2 + ∂yu
y , (1)

and a solenoidal part represented by the vorticity field

ω1 = τ ∂2u
y −

1

τ
∂yu

2, ω2 =
1

τ
∂yu

1 − τ ∂1u
y, ω3 = ∂1u

2 − ∂2u
1 .

Because of the normalization uµuµ = −1, there are only three independent components

δuj which we choose to span the transverse plane and rapidity, j = 1, 2, y. The energy

density ǫ = ǭ + δǫ can be characterized in terms of temperature deviations from its

Bjorken value

d̂ = ln(T/TBj(τ)) . (2)

Within this set-up, we have derived evolution equations for δuj and δǫ from the

relativistic viscous fluid dynamic equations for uµ and ǫ.

We first comment on the linearized evolution equations for δuj, δǫ. In this case,

the equations for ϑ and d̂ are coupled and describe essentially the propagation of sound

(modulo modifications due to the expanding background, see Ref. [4]). The vorticity

modes satisfy a diffusion-type equation of motion that can be solved directly. In Fourrier

space, denoting by ky the wave number conjugate to rapidity,

ωj(τ, k1, k2, ky) = ωj(τ0, k1, k2, ky)

(

τ

τ0

)

hj

3
e
−

3 ν0

4τ
1/3
0

(k2
1
+k2

2
)(τ4/3−τ

4/3
0

)+
2 ν0

3τ
1/3
0

k2y

(

τ−2/3
−τ

−2/3
0

)

.

(3)

For this solution, we assumed a τ -independent ratio η/s that leads to a kinematic

viscosity ν0 = η/(ǫ + p) = η/(sT ) evaluated at time τ0. While the transverse vorticity

components (h1 = h2 = −2) fall off like 1/τ 2/3 for small wave-vectors or small kinematic

viscosity ν0, the vorticity mode ω3 grows algebraically in this region (h3 = 1). Therefore,

at least in a linearized description, there can be initial fluctuations that do not attenuate

within the phenomenologically relevant time scales of heavy ion collisions, see Fig. 1.

In general, a linearized formalism applies if perturbations are small δǫ/ǭ ≪ 1, d ≪ 1

and if Reynolds numbers are small,

Re =
uT l (ǫ+ p)

η
=

uT l s T

η
. (4)

Here uT is a characteristic velocity of fluctuations in the transverse direction and l

is the typical length scale over which it changes significantly. (For motion in the
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Figure 1. Vorticity amplitudes ω3(τ)/ω3(1fm/c) (solid lines) and ω1(τ)/ω1(1fm/c)

(dashed lines) for wave vectors with k2 = ky = 0, and k1 = 5 fm−1, k1 = 10 fm−1 and

k1 = 30 fm−1, respectively. Viscosity has been chosen as ν(τ)/τ = 10−3 at τ = 1 fm/c.

rapidity direction, there is a different Reynolds number [4].) If the Reynolds number

is large, then turbulent flow sets in and a linearized formalism fails. In this case, the

smallness of perturbations around an expanding background still leads to the important

simplification that the fluid can be treated as compression-less, ϑ = 0. This condition

does not mean that there are no sound waves present, but that the coupling between

sound and turbulence becomes negligible. The formal criterion is a small Mach number

Ma =

√

u1u1 + u2u2 + uyuy

cS
≪ 1 , (5)

where cS is the velocity of sound. It is conceivable that the condition Ma ≪ 1 for

compression-less turbulent flow is realized in heavy ion collisions.

In terms of a rescaled time t = 3τ 4/3/(4τ
1/3
0 ), temperature field d = (τ0/τ)

2/3d̂ and

velocity vj = (τ0/τ)
1/3uj, we find that the non-linear fluid equations (j = 1, 2, y) take

the form

∂tvj +
2

∑

m=1

vm∂mvj +
1

τ 2
vy∂yvj + ∂jd− ν0

(

∂2
1 + ∂2

2 +
1

τ 2
∂2
y

)

vj = 0 (6)

with the solenoidal constraint ∂1v1 + ∂2v2 +
1
τ2
∂yvy = 0. For late times, this becomes

effectively a two-dimensional Navier-Stokes equation of non-relativistic form for a two-

dimensional compression-less fluid. Therefore, the development of turbulent flow in

heavy ion collisions can be discussed on the basis of an equation about which much

is known already. In particular, for the three-dimensional Navier-Stokes equation, one

knows that kinetic energy cascades in the case of turbulence from large structures in

space to finer and finer ones where it is eventually dissipated. In contrast, in two

dimensions, turbulent kinetic energy is subject to an inverse cascade from microscopic

to more and more macroscopic structures. This plays a role for turbulent phenomena

in the essentially two-dimensional layer of the Earth’s atmosphere and it prompts us
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Figure 2. Illustration of turbulent kinetic energy as a function of the wave-number

for freely decaying turbulence according to Batchelors scaling theory.

to wonder whether (6) allows for a scale amplification mechanism of some fluctuating

modes in heavy ion collisions.

One way to characterize the inverse cascade is to study how the kinetic energy in

a fluid,

λ2 =
1

2
〈v21 + v22〉 =

∫

∞

0

dk E(k), (7)

is distributed over wave vectors E(k) as a function of time. Based on the theory for

turbulence developed by Kolmogorov in three and Kraichnan in two dimensions, there is

in particular a scaling theory for freely decaying two-dimensional turbulence that leads

to E(t, k) = λ3 t h(k λ t), where h(x) is conjectured to be universal [3]. In this case,

kinetic energy accumulates at small wave-vectors at late times, see Fig. 2.

The scaling theories of Kolmogorov, Kraichnan and Batchelor address turbulence

at very large Reynolds number. Estimates of Reynolds numbers realized in heavy ion

collisions are usually of the order Re ≈ s/η = O(10). This is too small for applying

results from fully developed turbulence, but it is sufficiently large to motivate a search

for the onset of turbulent phenomena involving fundamental quantum fields in heavy

ion collisions. This is a report on work in progress. We are currently exploring possible

signatures for the onset of turbulent phenomena in measurements of single inclusive

hadron spectra and two-particle correlation functions.
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