
ar
X

iv
:1

10
6.

38
05

v1
  [

nu
cl

-t
h]

  2
0 

Ju
n 

20
11

APS/123-QED

Multifragmentation at the balance energy of mass asymmetric colliding nuclei.
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Using the quantum molecular dynamics model, we study the role of mass asymmetry of colliding
nuclei on the fragmentation at the balance energy and on its mass dependence. The study is done by
keeping the total mass of the system fixed as 40, 80, 160, and 240 and by varying the mass asymmetry
of the (η = AT −AP

AT +AP
; where AT and AP are the masses of the target and projectile, respectively)

reaction from 0.1 to 0.7. Our results clearly indicate a sizeable effect of the mass asymmetry on the
multiplicity of various fragments. The mass asymmetry dependence of various fragments is found to
increase with increase in total system mass (except for heavy mass fragments). Similar to symmetric
reactions, a power law system mass dependence of various fragment multiplicities is also found to
exit for large asymmetries.

PACS numbers: 24.10.Cn, 24.10.Lx, 25.70.-z, 25.75.Ld

I. INTRODUCTION

The main goals in the study of heavy-ion collisions
at the intermediate energies are the determination of the
bulk properties of nuclear matter, or the nuclear equation
of state, and the understanding of the collision processes,
which vary over the large range of energies available to-
day. These goals are related to each other and an im-
proved insight into one can lead to a better understand-
ing of the other. The study of multifragmentation in the
intermediate energy range gives us a possibility to under-
stand the properties of nuclear matter at extreme condi-
tions of temperature and density. The detailed experi-
mental and theoretical studies clearly point towards the
dependence of the reaction dynamics on entrance channel
parameters such as incident energy, impact parameter as
well as mass asymmetry of the colliding nuclei [1–6].

It is well known that the reaction dynamics for sym-
metric and asymmetric reactions are entirely different.
The former leads to higher compression whereas the lat-
ter has a large share as thermal energy [7]. In a re-
cent study by Puri and collaboration, a detailed analysis
is presented on the effect of mass asymmetry of collid-
ing nuclei on the collective flow and its disappearance,
nuclear stopping, elliptical flow, multifragmentation (at
fixed energies), and nuclear dynamics (at the balance en-
ergy Ebal; i.e. energy at which collective flow disappears)
by keeping the total mass of the system fixed and at dif-
ferent impact parameters [8, 9]. A sizeable role of mass
asymmetry has been found in all the cases. Unfortu-
nately, the role of mass asymmetry of the colliding nuclei
on the fragment structure at the balance energy is not
presented in the literature. A similar attempt was made
by Dhawan and Puri [10], but it was limited for sym-
metric colliding nuclei only. Therefore, in the present
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work, we aim to see the effect of mass asymmetry of the
colliding nuclei on the fragment structure and its mass
dependence by simulating the reactions at their corre-
sponding balance energies. The mass asymmetry of the
reaction is varied by keeping the total mass of the system
fixed. The quantum molecular dynamics (QMD) model
[1–3, 5–12] is used for the present study and is explained
in section II. Section III is devoted to the results and
discussion followed by summary in section IV.

II. THE MODEL

In quantum molecular dynamics model [1–3, 5–12], nu-
cleons (represented by Gaussian wave packets) interact
via mutual two- and three-body interactions. Here each
nucleon is represented by a coherent state of the form:

φi(~r, ~p, t) =
1

(2πL)
3/4

e[−{~r−~ri(t)}
2/4L]e[i~pi(t)·~r/~]. (1)

The Wigner distribution of a system with AT +AP nu-
cleons is given by

f(~r, ~p, t) =

AT+AP
∑

i=1

1

(π~)
3 e

[−{~r−~ri(t)}
2/2L]e[−{~p−~pi(t)}

22L/~2]
′

,

(2)
with L = 1.08 fm2.
The center of each Gaussian (in the coordinate and mo-

mentum space) is chosen by the Monte Carlo procedure.
The momentum of nucleons (in each nucleus) is chosen

between zero and local Fermi momentum [=
√

2miVi(~r);
Vi(~r) is the potential energy of nucleon i]. Naturally, one
has to take care that the nuclei, thus generated, have
right binding energy and proper root mean square radii.
The centroid of each wave packet is propagated using

the classical equations of motion:

d~ri
dt

=
dH

d~pi
, (3)
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d~pi
dt

= −
dH

d~ri
, (4)

where the Hamiltonian is given by

H =
∑

i

~p2i
2mi

+ V tot. (5)

Our total interaction potential V tot reads as

V tot = V Loc + V Y uk + V Coul + VMDI , (6)

with

V Loc = t1δ(~ri − ~rj) + t2δ(~ri − ~rj)δ(~ri − ~rk), (7)

V Y uk = t3e
−|~ri−~rj|/m/ (|~ri − ~rj |/m) , (8)

with m = 1.5 fm and t3 = -6.66 MeV.
The static (local) Skyrme interaction [13] can further

be parametrized as:

ULoc = α

(

ρ

ρ o

)

+ β

(

ρ

ρ o

)γ

. (9)

Here α, β and γ are the parameters that define equation
of state. The momentum dependent interaction is ob-
tained by parameterizing the momentum dependence of
the real part of the optical potential. The final form of
the potential reads as

UMDI ≈ t4ln
2[t5(p̃i − p̃j )

2 + 1]δ(r̃i − r̃j ). (10)

Here t4 = 1.57 MeV and t5 = 5 ×10−4MeV −2. A param-
eterized form of the local plus momentum dependent in-
teraction (MDI) potential (at zero temperature) is given
by

U = α

(

ρ

ρ0

)

+β

(

ρ

ρ0

)

+ δln2[ǫ(ρ/ρ0)
2/3+1]ρ/ρ0. (11)

The parameters α, β, and γ in above Eq. (11) must be
readjusted in the presence of momentum dependent in-
teractions so as to reproduce the ground state properties
of the nuclear matter. The set of parameters correspond-
ing to different equations of state can be found in Ref.
[1].

III. RESULTS AND DISCUSSION

For the present work, we simulated the central reac-
tions of 17

8 O +23
11 Na (η = 0.1), 14

7 N +26
12 Mg (η = 0.3),

10
5 B +30

14 Si (η = 0.5), and 6
3Li+

34
16 S (η = 0.7) for ATOT

= 40, 36
18Ar +44

20 Ca (η = 0.1), 28
14Si +

52
24 Cr (η = 0.3),

20
10Ne+60

28Ni (η = 0.5), and 10
5 B+70

32Ge (η = 0.7) forATOT

= 80, 70
32Ge +90

40 Zr (η = 0.1), 54
26Fe +106

48 Cd (η = 0.3),
40
20Ca+120

52 Te (η = 0.5), and 24
12Mg +136

58 Ce (η = 0.7) for
ATOT = 160, and 108

48 Cd+132
56 Ba (η = 0.1), 84

38Sr+
156
66 Dy

(η = 0.3), 60
28Ni +180

74 W (η = 0.5), and 36
18Ar +204

82 Pb
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FIG. 1: Snapshots of a single event in the phase space (x,z),
left side, and (px, pz), right side, for fixed system mass ATOT

= 240 and η = 0.1, 0.3, 0.5, and 0.7 at their corresponding
balance energies.

(η = 0.7) for ATOT = 240, at their corresponding theo-
retical balance energies (taken from Ref. [8]). The bal-
ance energies at which these reactions are simulated were
calculated using a momentum dependent soft equation
of state with standard energy dependent cugnon cross-
section. The reactions are followed uniformly up to 500
fm/c. A simple spatial clusterization algorithm dubbed
as minimum spanning tree (MST) method is used to clus-
terize the phase space [1].
In Fig. 1, we display the snapshots of the final phase-

space (i.e.; x-z (left column) and px-pz (right column))
of a single event at the balance energy for η = 0.1-0.7 by
keeping the total mass of the system fixed asATOT = 240.
We see a isotropic emission of nucleons for nearly sym-
metric colliding nuclei whereas a binary character starts
emerging out as η increases. One can say that phase-
space is less homogenous for large asymmetries. The be-
havior is similar in spatial and momentum spaces. The
above picture is quite similar for large number of different
events indicating a uniform distribution.
In Fig. 2, we display the time evolution of the largest

fragment survived Amax, free nucleons, the light charged
particles (LCP’s) 2 ≤ A ≤ 4, the medium mass fragments
(MMF’s) 5 ≤ A ≤ 9, the heavy mass fragments (HMF’s)
15% ≤ A ≤ 30% as well as the intermediate mass frag-
ments (IMF’s) 4 ≤ A ≤ 30% (of the largest between
target and projectile). The results are displayed for dif-
ferent mass asymmetries by keeping the total mass fixed
as ATOT = 240. In order to avoid unwanted and artificial
heavy fragments for large asymmetries and lighter collid-
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FIG. 2: (Color Online) Time evolution of the largest fragment
Amax, free nucleons, LCP’s (2 ≤ A ≤ 4), MMF’s (5 ≤ A ≤ 9),
HMF’s (15% ≤ A ≤ 30%) and IMF’s (4 ≤ A ≤ 30%) for
fixed system mass ATOT = 240 and η = 0.1, 0.3, 0.5, and 0.7
at their corresponding balance energies. The solid, dashed,
dotted, and dashed-dotted lines, correspond to η = 0.1, 0.3,
0.5, and 0.7, respectively.

ing nuclei, the percentages are taken in HMF and IMF
definitions. As expected, Amax has a peak around 20-80
fm/c for all η. The excited compound nucleus formed
in the early stage is independent of η and decays by the
emission of nucleons and fragments. Therefore, the free
nucleons and LCP’s display a constant rise in their mul-
tiplicity. The MMF’s, HMF’s, and IMF’s are unstable
and decay at a later time. The size of largest fragment
at final stage increases with increase in η whereas a re-
verse trend is seen for free nucleons, LCP’s, MMF’s, and
IMF’s. This is because of a decrease in the participant
zone and hence net nucleon-nucleon collisions, with in-
crease in η. The trend that HMF’s follows with η is
different. It is clear from the figure that the multiplic-
ity of HMF’s increases with time for larger asymmetries.
Also, since balance energy for large asymmetric colliding
nuclei is larger than that in small asymmetric nuclei, it
takes small time for large asymmetric colliding nuclei to
saturate.
In Fig. 3, we display the time evolution of average

binding energy per nucleon of LCP’s and IMF’s for η =
0.1-0.7 by keeping the total mass fixed as 240. It is clear
from the figure that independent of η, all fragments are
reasonably bound. The average binding energy/nucleon
is around -4 MeV/nucleon for LCP’s, whereas it increases
to around -8 MeV/nucleon for IMF’s.
In Fig. 4, we display the normalized rapidity distri-
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FIG. 3: (Color Online) The average binding energy per nu-
cleon of LCP’s and IMF’s as a function of time for fixed sys-
tem mass ATOT = 240 and η = 0.1, 0.3, 0.5, and 0.7 at their
corresponding balance energies. Lines have same meaning as
in Fig. 2.

bution ((dN/dY)norm) as a function of scaled rapidity
(Yc.m./Ybeam) for η = 0.1-0.7 by keeping the system mass
fixed as ATOT = 40-240. The rapidity is defined as:

Y (j) =
1

2
ln

E(j) + pz(j)

E(j)− pz(j)
. (12)

Here E(j) and pz(j) are, respectively, the total energy
(nucleon) and longitudinal momentum per nucleon for
the jth nucleon. The parameter Yc.m./Ybeam = 0 corre-
sponds to the mid-rapidity (participant) zone and, hence,
is responsible for the hot and compressed zone. On the
other hand, Yc.m./Ybeam 6= 0 corresponds to the spec-
tator zone, (Yc.m./Ybeam < -1 corresponds to target-like
(TL) and Yc.m./Ybeam > 1 corresponds to projectile-like
(PL) distributions). We see that the rapidities of nucle-
ons emitted for η = 0.1-0.7 are not similar. Due to large
balance energy for larger asymmetries, single broader
Gaussian is observed that is peaked around the target ra-
pidity, as the major contribution is due to the target in all
cases. As mass asymmetry decreases, the balance energy
decreases, therefore, one find peaks at target and pro-
jectile rapidities indicating a non-equilibrium situation.
However, if the reactions would have been simulated at
a fixed incident energy, the peak shifts toward the mid-
rapidity with the decrease of the mass asymmetry and
a greater thermalization would have been observed in
the case of a nearly symmetric collision compared to an
asymmetric collision. The same trend is seen for all fixed
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FIG. 4: (Color Online) Normalized rapidity distribution
1

AP +AT

dN

dY
as a function of scaled rapidity Yc.m./Ybeam for η

= 0.1-0.7 by keeping the system mass fixed as ATOT = 40-240.
Lines have same meaning as in Fig. 2.
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FIG. 5: (Color Online) The multiplicities of Amax, free nu-
cleons, LCP’s, MMF’s, HMF’s and IMF’s as a function of
mass asymmetry of colliding nuclei. The results for different
system masses ATOT = 40, 80, 160, and 240 are represented,
respectively, by the open squares, circles, triangles and in-
verted triangles. Lines are the linear fits (∝ mη); m values
without errors are displayed.
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FIG. 6: (Color Online) Same as Fig. 5, but as a function of
total mass of the system. The results for different asymme-
tries η = 0.1, 0.3, 0.5, and 0.7 are represented, respectively,
by the solid squares, circles, triangles and inverted triangles.
The lines are power law (∝ Aτ

TOT ) fits to the calculated re-
sults. The values of the power factor τ are displayed in the
figure for various quantities.

system masses.
In Fig. 5, we display the mass asymmetry dependence

of different fragments shown in Fig. 2 for ATOT = 40-
240. Lines are the linear fits (∝ mη). The values of m
are displayed in figure. The mass of the largest fragment
increases with increase in η for each ATOT , whereas an
opposite trend is seen for free nucleons, LCP’s, MMF’s
(except ATOT = 40), and IMF’s (except ATOT = 40).
The multiplicity of HMF’s show entirely different behav-
ior. It is clear from the figure that η dependence increases
with increase in system mass. This is because of decrease
in balance energy with increase in ATOT . At low incident
energies, the Pauli-principal hinders the nucleon-nucleon
collisions and the increase of mass asymmetry further
adds the same effect. While at large incident energies for
smaller ATOT , the role of η decreases compared to large
system masses.

Similar to Fig. 5, we display the mass dependence of
various fragments in Fig. 6. The mass asymmetry of the
reaction is varied from 0.1 to 0.7. Lines are power law fits
(∝ Aτ

TOT ); where values of power factor τ are displayed
in the figure. Similar to mass symmetric reactions [10], a
power law system mass dependence for various fragment
multiplicities exits for larger asymmetries. All the quan-
tities except HMF’s show increasing trends for each η. It
is clear from the values of τ that, for Amax, free nucleons,
and LCP’s; the mass dependence increases with increase
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in η, whereas opposite trend is seen for MMF’s, HMF’s,
and IMF’s. The trend of MMF’s, HMF’s and IMF’s with
change in η from 0.1 to 0.7 in the lighter mass range gets
reversed as one goes to higher mass range. This is be-
cause for lighter system mass, the incident energy is large
compared to heavier system mass, therefore, large mass
asymmetric colliding nuclei will produce more heavy frag-
ments. The situation is entirely opposite for heavier sys-
tem mass.

IV. SUMMARY

We presented the study of role of mass asymmetry
of colliding nuclei on the fragmentation at the balance
energy and on its mass dependence using quantum

molecular dynamics model. The analysis was done by
keeping the total mass of the system fixed as 40, 80,
160, and 240 and by varying the mass asymmetry of the
colliding nuclei from 0.1 to 0.7. We find a sizeable effect
of the mass asymmetry on the multiplicity of various
fragments. Our finding at the balance energy clearly
point towards a power law system mass dependence of
different fragment multiplicities for each mass asymmet-
ric colliding nuclei..
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