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The consequences of the spontaneous breaking of rotational symmetry are investigated in a field
theory model for deformed nuclei, based on simple separable interactions. The crucial role of the
Ward-Takahashi identities to describe the rotational states is emphasized. We show explicitly how
the rotor picture emerges from the isoscalar Goldstone modes, and how the two-rotor model emerges
from the isovector scissors modes. As an application of the formalism, we discuss the M1 sum rules
in deformed nuclei, and make connection to empirical information.
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I. INTRODUCTION

The common approach to describe deformed nuclei is
based on the mean field (Hartree) approximation, where
the rotational symmetry of the Hamiltonian is sponta-
neously broken[1, 2]. As a consequence of the broken
symmetry, Goldstone poles emerge in the Bethe-Salpeter
(BS) equation (or, equivalently, the RPA equation) for
a particle-hole pair[3], similar to the case of infinite
systems[4]. For finite systems with axial symmetry, these
intrinsic zero modes lead to the picture of collective rota-
tion of the whole system around an axis perpendicular to
the symmetry axis, thereby restoring the symmetry of the
original Hamiltonian[5]. The corresponding rotational
band is characterized by finite excitation energies. The
self consistency relations for the deformed mean fields[6]
provide the necessary conditions for the existence of the
Goldstone poles and the ground state rotational band.
These features, which will be elucidated in this paper by
using a simple field theory model for nucleons, were dis-
cussed transparently in models based on bosonic degrees
of freedom[7], and form the basis for the construction of
effective theories for deformed nuclei[8].

Besides these collective rotations of the whole sys-
tem, which can be called isoscalar rotations, there ex-
ist also rotational modes of isovector character, i.e., ro-
tational vibrations of protons against neutrons[9, 10].
These so-called scissors modes, which were predicted
originally in the 2-rotor model[11] and further investi-
gated by using sum rule methods[12] and the Interact-
ing Boson Model[13], can be excited by the isovector or-
bital part of the M1 operator, and decouple automati-
cally from the isoscalar rotational modes if the self con-
sistency relations are satisfied [6, 14]. Recent experimen-
tal investigations[15, 16] on the scissors modes have con-
centrated on magnetic sum rules, which are very impor-
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tant because they provide the connection of the collective
modes to quantities like the effective orbital g-factors or
moments of inertia, which can be determined by other
independent analyzes[17]. The experimental and theo-
retical works on the scissors modes and other magnetic
dipole modes at higher excitations energies[18] are sum-
marized in a recent extensive review[19].

The purpose of the present paper is threefold: First, we
wish to elucidate the importance of the Ward-Takahashi
identities[20] to describe the intrinsic isoscalar Goldstone
modes and the ground state rotational band. In particu-
lar, we wish to show that the results derived for example
in Ref.[6] can be obtained rather elegantly by using the
Ward-Takahashi identities without explicit reference to
single particle wave functions or truncations of the model
space. Second, we wish to discuss how the isovector scis-
sors mode, which corresponds to a RPA solution with
finite energy, leads to the two-rotor picture in a simple
model calculation. (To the best of our knowledge, a sim-
ple and direct derivation of the rotor picture from the
intrinsic Goldstone modes, and of the two-rotor picture
from the isovector scissors modes, has not yet been pre-
sented.) Third, we wish to investigate the inverse energy
weighted and energy weighted M1 sum rules, and discuss
the relation to recent experimental works on the scissors
modes. For these purposes, we will use a simple field the-
ory model based on a separable quadrupole-quadrupole
(QQ) interaction in the BS (RPA) framework, and con-
sider only the orbital motion of the nucleons. Our main
interest here is the physics of the rotational modes at low
energies in well deformed heavy nuclei, and there is evi-
dence both experimentally[19] and theoretically[10] that
these low energy modes are basically of orbital character.

It should be noted here that separable interactions
have widely been used to investigate deformed nuclei in
the RPA[21–23]. In order to perform quantitative calcu-
lations, it is well known that pairing plays an important
role. The Nambu-Gorkov formalism [24] actually pro-
vides a simple way to incorporate the effects of pairing
into the properties of quasiparticles. Our purpose here,
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however, is to gain analytic insights into the physics be-
hind the rotational states and the associated sum rules
in the most simple and transparent way. Therefore, the
pairing effects will not be included in the formulas, and
numerical results will not be presented in this paper. Our
hope is that the analytic approach described here can be
extended to more general types of interactions.
In Sect. 2 we will formulate the mean field approx-

imation and the BS equation for our model. In Sect.
3 we will use the Ward-Takahashi identities for angular
momentum conservation to derive several important rela-
tions and low-energy theorems for Green functions. The
connections to observables will be established in Sect. 4,
where we will discuss basic properties of transition matrix
elements, and in Sect. 5, where the M1 sum rules will be
derived. In Sect. 6 we will discuss the derivation of the
rotor picture from the isoscalar Goldstone modes, and
of the 2-rotor picture from the isovector scissors modes.
For the derivation of the ground state rotational band,
no further approximations are necessary, but in order to
derive the two-rotor picture we still find it necessary to
assume a harmonic oscillator potential for the spherical
part of the mean field. A summary and an outlook are
given in Sect. 7.

II. THE MODEL

The Hamiltonian of the model which we will use in this
paper is given by

H = h0p + h0n +
χpp

2

(

Q†
p ·Qp +Q†

n ·Qn

)

+
χpn

2

(

Q†
p ·Qn +Q†

n ·Qp

)

. (II.1)

Here h0τ =

∫

d3xψ†
τ (x)H0(x)ψτ (x), where

H0(x) = −∆/2M + U0(r) with M the nucleon mass
and U0(r) some spherical mean field. The quadrupole
operator is defined by

QK
τ =

∫

d3xψ†
τ (x)Q

K(x)ψτ (x) (τ = p, n), (II.2)

where QK(x) = r2Y2K(x̂) 1, and the products Q† · Q

in (II.1) are defined as Q† ·Q ≡
2
∑

K=−2

QK†QK . For the

coupling constants of the QQ force we assume χnn = χpp

and χpn = χnp. Because we treat protons and neutrons
as separate particles, the interaction in (II.1) is a mixture
of pure isoscalar (χpn = χpp) and pure isovector (χpn =
−χpp) type interactions.

1 For clarity, we will also use the notations QK
p (x) or QK

n (x) to
indicate whether the quadrupole field refers to protons or neu-
trons. In this paper, the labels τ , ρ, λ stand for protons (p) or
neutrons (n). If a sum over those labels is involved, it will be
indicated explicitly.

A. Mean field approximation

The mean field approximation is formulated as usual
by adding and subtracting a term −∑τ βτQ

0
τ + C in

(II.1), where the parameters βτ and the constant C will
be determined later by the requirement of self consis-
tency. In order to avoid mathematical ambiguities in the
low energy theorems to be discussed later, we also add the
terms −∑τ ετQ

0
τ , which explicitly break the rotational

symmetry. (In the final results the symmetry breaking
parameters ετ will be set to zero2.) In this way we obtain

H = H0p +H0n + C +
{

(βp − εp) Q
0
p + (βn − εn) Q

0
n

+
χpp

2

(

Q†
p ·Qp +Q†

n ·Qn

)

+
χpn

2

(

Q†
p ·Qn +Q†

n ·Qp

)

− C
}

, (II.3)

where

H0τ =

∫

d3xψ†
τ (x)

(

− ∆

2M
+ U0(x) − βτQ

0(x)

)

ψτ (x).

(II.4)

We now assume that the rotational symmetry is spon-
taneously broken, i.e., that only the K = 0 component
of the quadrupole operator has a finite ground state ex-
pectation value:

Q0
τ = 〈Q0

τ 〉+ : Q0
τ : , (II.5)

where the dots in the second term denote normal order-
ing. We require that the part {. . . } in (II.3) becomes
a “true” residual interaction, i.e; when (II.5) is inserted
into (II.3), this part has neither terms linear in : Q0

τ : nor
constant (c-number) terms. The first requirement leads
to the self consistency relations

βp = εp − χpp〈Q0
p〉 − χpn〈Q0

n〉,
βn = εn − χnn〈Q0

n〉 − χnp〈Q0
p〉, (II.6)

and the second requirement determines C as

C = −χpp

2

(

〈Q0
p〉2 + 〈Q0

n〉2
)

− χpn〈Q0
p〉〈Q0

n〉. (II.7)

Self consistency implies that the expectation values 〈Q0
τ 〉

in Eqs. (II.6) themselves depend on βτ . The Hamiltonian
finally becomes

H = H0p +H0n + C +
∑

τρ

χτρ

2

(

: Q†
τ :
)

· (: Qρ :) .

(II.8)

2 These symmetry breaking parameters ε should not be confused
with the single particle energies, for which we will use the symbol
ǫ.
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Q1
x’τQ1ρ x

FIG. 1: Graphical representation of the particle-hole interac-
tion kernel Eq.(II.9). In this and all following diagrams, time
can be visualized to run from left to right.

T = x x’ + + . . .x x’y’y

k0

k0 + ω

FIG. 2: Graphical representation of the particle-hole T-
matrix Eq.(II.10) in the ladder approximation.

If one employs a harmonic oscillator potential U0(r) =
(

Mω̃2/2
)

r2, it is sometimes convenient to define dimen-

sionless deformation parameters β̃τ by βτ =Mω̃2β̃τ , be-
cause then one can express the sum U0(x) − βτQ

0(x) in
(II.4) as a deformed harmonic oscillator potential and ap-
ply standard methods of the Nilsson model[25]. Except
for the last parts of this paper (Sect. 6.B), we will keep
the discussions general without specifying the form of U0.

B. Collective excitations

Here we consider the Bethe-Salpeter (BS) equation,
which is equivalent to the RPA equation, for a particle
and a hole in the K = 1 channel. 3

The residual interaction in (II.8) is separable in coor-
dinate space, see Fig.1. The corresponding Feynman rule
for the particle-hole interaction kernel is given by

Kτρ (x
′, x) = −iQ1

τ(x
′)χτρQ

1†
ρ (x). (II.9)

3 The K = −1 channel is degenerate with the K = 1 channel,
while the K = 0 and the K = ±2 channels have different ener-
gies. There is no mixing of those channels for the case of axial
symmetry. We consider the collective K = ±1 states here, be-
cause they correspond to the rotational states which are of main
interest in this paper.

The inhomogeneous BS equation then reads (see Fig.2)

Tτρ (x
′, x;ω) = Kτρ (x

′, x) +

∫

d3y′
∫

d3y

∫

dk0
2π

∑

λ

Kτλ (x
′, y′)Sλ (y

′, y; k0 + ω)Sλ (y, y
′; k0) Tλρ (y, x;ω) .

(II.10)

Here we work with a mixed representation of the Feyn-
man propagator:

Sτ (x
′, x;ω) =

∑

α∈τ

φτα(x
′)φ†τα(x)

ω − ǫτα + iδ
+
∑

i∈τ

φτi(x
′)φ†τi(x)

ω − ǫτi − iδ
,

≡ SτP + SτH , (II.11)

where φτα(x) and ǫτα are the eigenfunctions and eigen-
values of H0τ for particle (P) states, and φτi(x), ǫτi de-
note the corresponding quantities for hole (H) states 4.
Inserting the kernel Eq.(II.9) and the ansatz

Tτρ (x
′, x;ω) ≡ −iQ1

τ(x
′)tτρ(ω)Q

1†
ρ (x) (II.12)

into (II.10), we obtain the following simple matrix equa-
tion for the reduced T-matrix:

t(ω) = χ− χπ(ω) t(ω),

⇒ t(ω) =
1

1 + χπ(ω)
χ = χ

1

1 + π(ω)χ
. (II.13)

Here the matrices in charge space have the form

t =

(

tpp tpn
tnp tnn

)

, χ =

(

χpp χpn

χnp χnn

)

, π =

(

πp 0
0 πn

)

,

(II.14)

and the proton and neutron “bubble graphs” πτ (ω) are
given by (see Fig. 3 and Appendix A)

πτ (ω) = i

∫

dk0
2π

∫

d3x

∫

d3x′

×
[

Q1†
τ (x′)Sτ (x

′, x; k0 + ω)Q1
τ (x)Sτ (x, x

′; k0)
]

,

= −2
∑

(αi)∈τ

|〈α|Q1
τ |i〉|2

ωαi

ω2 − ω2
αi + iδ

. (II.15)

Here ωαi = ǫα − ǫi are the non-interacting particle-hole
energies.
From (II.13), the poles of the T-matrix (ω2 ≡ ω2

n) are
determined by the equation

Det (1 + χπ(ω)))

= (1 + πp(ω)χpp) (1 + πn(ω)χnn)− χ2
pnπp(ω)πn(ω),

= 0. (II.16)

4 Notations like α ∈ τ (or i ∈ τ) indicate that the single-particle
state α (or the single-hole state i) is a proton (τ = p) or neutron
(τ = n) state. We also remark that the states i in (II.11) are
actually the time-reversed of the occupied single particle states.
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π  (ω) =  i  
ω ω

k
0

k
0

ω+

τ

FIG. 3: Graphical representation of the bubble graph
Eq.(II.15).

Γn

ρ x Γ n
x’τ

Tτ ρ
ω2 ω2

n

ω2 ω2
n-

-i

FIG. 4: Graphical representation of the pole behavior of the
particle-hole T-matrix, Eq.(II.18). The double line represents
a collective state.

It is straight forward to use Eq.(II.13) to determine
the pole behavior of the T-matrix. The results for the
reduced and the full T-matrix are (see Fig. 4 for the full
T-matrix)

tτρ(ω)
ω2→ω2

n−→ Nτ (ωn)Nρ(ωn)

ω2 − ω2
n + iδ

, (II.17)

Tτρ(x
′, x;ω)

ω2→ω2

n−→
(−i)Γn

τ (x
′) Γn†

ρ (x)

ω2 − ω2
n + iδ

. (II.18)

Here the vertex functions for the collective K = 1 state
n (excitation energy ωn) are given by

Γn
τ (x) = Q1

τ (x)Nτ (ωn), (II.19)

Γn†
τ (x) = Q1†

τ (x)Nτ (ωn), (II.20)

with the normalization factors determined from5

1

Np(ωn)2
= π′

p(ωn) + π′
n(ωn)

Nn(ωn)
2

Np(ωn)2
, (II.21)

Nn(ωn)

Np(ωn)
=

1 + χppπp(ωn)

−χpnπn(ωn)
=

−χpnπp(ωn)

1 + χnnπn(ωn)
. (II.22)

5 We normalize the vertex functions Γ as the residues at the poles
in ω2, which corresponds to “covariant normalization” in rela-
tivistic field theory. The overall sign is chosen so that for a pure
isoscalar interaction (χpp = χpn) one has Nn/Np = 1, and for a
pure isovector interaction (χpp = −χpn) one has Nn/Np = −1.

Γn
xτ =

Γ n
y’ρ

y x

FIG. 5: Graphical representation of the homogeneous BS
equation, Eq.(II.24). The double line represents a collective
state.

Here the prime indicates differentiation w.r.t. ω2, i.e.,

π′
τ (ω) ≡

dπτ
dω2

= 2
∑

(αi)∈τ

|〈α|Q1
τ |i〉|2

ωαi

(ω2 − ω2
αi + iδ)

2 .

(II.23)

It is also straight forward to derive the above forms of the
vertex functions (except for the overall normalization)
from the homogeneous BS equation: Inserting the pole
behavior (II.18) into Eq. (II.10) and taking the limit
ω2 → ω2

n, one obtains the homogeneous BS equation (see
Fig. 5):

Γn
τ (x) = −i

∫

d3y′
∫

d3y

∫

dk0
2π

∑

ρ

×Q1
τ (x)χτρQ

1†
ρ (y)Sρ(y, y

′; k0 + ω)Sρ(y
′, y; k0) Γ

n
ρ (y

′).

(II.24)

Inserting here the ansatz Γn
τ (x) = Q1

τ (x)Nτ (ω), one
obtains the following matrix equation for the normaliza-
tion factors:

(

Np(ω)
Nn(ω)

)

= −
(

χppπp(ω) χpnπn(ω)
χnpπp(ω) χnnπn(ω)

)(

Np(ω)
Nn(ω)

)

.

(II.25)

This equation again leads to the pole equation (II.16)
with solutions ω = ωn, and to the relation (II.22).

III. WARD-TAKAHASHI IDENTITIES

We first note the following commutation rela-
tion [26] between the angular momentum operators
L±1 ≡ 1√

2
(Lx ± iLy) and a tensor operator T q

(k) of rank



5

k with spherical components q = −k . . . k 6:

[

L±1, T q

(k)

]

=
1√
2

√

k(k + 1)− q(q ± 1)T q±1
(k) . (III.1)

The commutator of H0τ (Eq.(II.4)) with the angular mo-
mentum operators then becomes

[

H0τ , L
±1
τ

]

=
√
3βτQ

±1
τ , (III.2)

and if we consider matrix elements of this identity be-
tween non-interacting particle-hole states, we obtain the
useful relation

〈α|L±1
τ |i〉 =

√
3βτ
ωαi

〈α|Q±1
τ |i〉, (III.3)

which will be used in later Sections. (Here (αi) ∈ τ .)
Let us now discuss the Ward-Takahashi identity which

follows from angular momentum conservation. We con-
sider the time derivative of the 2-point function with ex-
ternal Heisenberg operators Q1

τ (t
′) and L1(t) = L1

p(t) +

L1
n(t). Using the Heisenberg equation of motion

∂L1

∂t
= i
[

H,L1
]

= i
√
3
∑

τ

ετQ
1
τ , (III.4)

and the equal time commutator
[

L1(t), Q1†
τ (t),

]

from
(III.1), we obtain the Ward-Takahashi identity

∂

∂t
〈0|T

(

Q1†
τ (t′)L1(t)

)

|0〉

= i
√
3
∑

λ

〈0|T
(

Q1†
τ (t′)Q1

λ(t)
)

|0〉 ελ −
√
3δ(t− t′)〈Q0

τ 〉.

(III.5)

Let us define here the exact 2-point functions7 with
one arbitrary operator (K = 1 component A1) and the
quadrupole operator (Q1†):

〈0|T
(

Q1†
τ (t′)A1

λ(t)
)

|0〉 ≡ −iΠQA
τλ (t′ − t)

= −i
∫

dω e−iω(t′−t)ΠQA
τλ (ω). (III.6)

Then the Fourier transform of the Ward-Takahashi iden-
tity (III.5) can be expressed as
∑

λ

ωΠQL
τλ (ω) =

√
3
∑

λ

ΠQQ
τλ (ω)ελ −

√
3 〈Q0

τ 〉. (III.7)

6 The definition used here for the spherical components of the
angular momentum (L±1 = (Lx ± iLy)/

√
2) differs in sign for

the +1 component of any other vector (a1 = −(ax + iay)/
√
2,

a−1 = (ax−iay)/
√
2). Therefore, for the case T(1) = L in (III.1),

we have to use T±1
(1)

= ∓L±1 to get the correct commutation re-

lation
[

L1, L−1
]

= L0 = Lz.
7 We use the symbol Πλτ for the exact correlators and the correla-
tors in the chain (RPA) approximation, and πλτ = δλτπτ for the
non-interacting ones. Note that πQQ(ω) = π(ω) is the bubble
graph of the previous Section.

This is the basic identity which will be used in this pa-
per. In the chain (RPA) approximation, the correlators
(III.6) can be expressed in terms of the reduced particle-
hole t-matrix of Eq.(II.13) as follows (see Fig. 6):

ΠQA
τλ (ω) = δλτπ

QA
τ (ω)− πτ (ω)tτλ(ω)π

QA
λ (ω). (III.8)

For the case A = Q one can use Eq.(II.13) to simplify
this expression to

ΠQQ(ω) =
1

1 + π(ω)χ
π(ω), (III.9)

where we used the matrix notation of Eq.(II.14).

A. Identities for the Goldstone modes (ω → 0 first)

In the limit ω → 0 (but finite ε), Eq.(III.7) leads to
the following low energy theorem:

∑

λ

ΠQQ
τλ (0) ελ = 〈Q0

τ 〉. (III.10)

In the RPA, the correlator ΠQQ(ω) is given by (III.9).
Inserting this form into (III.10) and multiplying from left
by the matrix (1 + π(0)χ) we obtain

π(0)
(

β + χ〈Q0〉
)

= (1 + π(0)χ) 〈Q0〉,

where we used the self consistency relation (II.6) to elim-
inate ε. (In this notation, β and 〈Q0〉 are considered as
vectors in charge space.) We then obtain the identity

πτ (0)βτ = 〈Q0
τ 〉, (III.11)

which can also be shown directly by using the explicit
form (II.15) of the bubble graph, see Appendix B.
Using (III.11), the self consistency relation (II.6) can

be rewritten as

βτ = ετ −
∑

λ

(χτλπλ(0))βλ. (III.12)

In the limit of exact rotational symmetry (ετ = 0), this
relation becomes
(

βp
βn

)

= −
(

χppπp(0) χpnπn(0)
χnpπp(0) χnnπn(0)

)(

βp
βn

)

. (III.13)

This equation leads to the condition Det (1 + χπ(0)) = 0
for a nontrivial solution. Comparing this with the pole
equation (II.16), we see that in the limit of exact rota-
tional symmetry the self consistency relation guarantees
the existence of a Goldstone pole (ω0 = 0) in the K = 1
channel.
Let us now determine the vertex function for the Gold-

stone modes. From (II.25) and (III.13) we obtain the
relation

Np(0)

Nn(0)
=
βp
βn
. (III.14)
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-i Π     (ω) =    
ωτ λ ω

QA

ω +  . . .+
Α λ

1
Q τ

1 Α λ
1

Q τ
1

FIG. 6: Graphical representation of the 2-point function ΠQA
τλ , Eq.(III.8).

Therefore the vertex function (II.19) for the K = 1 Gold-
stone mode (n = 0) can be expressed as

Γn=0
τ (x) = N Q1

τ (x)βτ , (III.15)

where (see (III.14) and (II.21))

Nτ (0) ≡ Nβτ ,
1

N2
=
∑

τ

β2
τπ

′
τ (0). (III.16)

The derivatives of the bubble graphs at ω = 0 are ob-
tained from (II.23) and (III.3) as follows:

π′
τ (0) = 2

∑

(αi)∈τ

|〈α|Q1
τ |i〉|2

ω3
αi

=
2

3β2
τ

∑

(αi)∈τ

|〈α|L1
τ |i〉|2

ωαi

(III.17)

Comparing this with the Inglis formula for the proton
and neutron moments of inertia [27]

Iτ = 2
∑

(αi)∈τ

|〈α|L1
τ |i〉|2

ωαi

, (III.18)

we obtain the following important relations:

β2
τπ

′
τ (0) =

Iτ
3
, N =

√

3

I
, Nτ (0) =

√

3

I
βτ ,

(III.19)

where I = Ip + In is the total moment of inertia. The
Goldstone vertex function (III.15) then takes the form

Γn=0
τ (x) =

√

3

I
Q1

τ (x)βτ . (III.20)

The vertex function for the K = −1 Goldstone mode
is obtained from (III.20) by replacing Q1 → Q−1. It is
easy to confirm that the sum or difference of the K = ±1
vertex functions represents the change of the deformed
mean field (Uτ (x) = U0(x)−βτQ0

τ (x) in the Hamiltonian
(II.4)) under an infinitesimal rotation around the x or y
axes [4].

B. Identities for the Q− L correlator (ε → 0 first)

For exact symmetry (ετ = 0), the Ward-Takahashi
identity (III.7) becomes

ω
∑

λ

ΠQL
τλ (ω) = −

√
3 〈Q0

τ 〉. (III.21)

In the limit ω2 → ω2
n, where ωn 6= 0 is one of the

nonzero solutions of the eigenvalue equation (II.16), the
identity (III.21) gives

lim
ω2→ω2

n

(

ω2 − ω2
n

)

∑

λ

ΠQL
τλ (ω) = 0 (ωn 6= 0).

(III.22)

Inserting here the RPA form (III.8) and using the pole
behavior of the reduced T-matrix (II.17), we obtain

∑

λ

Nλ(ωn)π
QL
λ (ωn) = 0 (ωn 6= 0). (III.23)

It is straight forward to check the validity of this relation
by using the explicit form of the bubble graph πQL

τ (see
Appendix B).
Next, let us consider the limit ω → 0 of (III.21). For

this purpose, we have to isolate the Goldstone pole on
the l.h.s. Inserting the RPA form (III.8) of the correlator
ΠQL, and isolating the Goldstone pole by using (II.17),
i.e.,

tλ′λ =
Nλ′(0)Nλ(0)

ω2
+ (terms regular for ω → 0) ,

(III.24)

the identity (III.21) in the limit ω → 0 becomes

limω→0

∑

λ

πτ (0)Nτ (0)Nλ(0)

(

πQL
λ (ω)

ω

)

=
√
3 〈Q0

τ 〉.

(III.25)

Using here (III.11) and (III.16), we obtain

limω→0

∑

λ

(

πQL
λ (ω)

ω

)

βλ =
I√
3
. (III.26)

Again, it is easy to check this relation by using the ex-

plicit form of the bubble graph πQL
λ and the Inglis for-

mula, see Appendix B. Actually, because both sides of
(III.26) are one-loop quantities which consist of proton
and neutron pieces, the identity (III.26) holds for sepa-
rately for protons and neutrons:

limω→0

(

πQL
λ (ω)

ω

)

βλ =
Iλ√
3
. (III.27)

The identities (III.23) and (III.27) will be useful for the
discussion of transition matrix elements in the following
Section.
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ωnωn2

i Aτ
1 Ν  (    )τ ωn Qτ

1

FIG. 7: Graphical representation of the transition matrix el-
ement, Eq.(IV.1).

IV. TRANSITION MATRIX ELEMENTS

We first show that in the BS (RPA) framework the
transition matrix element of the K = 1 component of any
tensor operator A1

τ from the ground state to an excited
state (excitation energy ωn and K = 1) is given by (see
Fig. 7)

〈ωn,K = 1|A1
τ |0〉 =

1√
2ωn

πQA
τ (ωn)Nτ (ωn). (IV.1)

This formula reduces the determination of the summed
transition strength

B (Aτ ;K = 0 → |K| = 1) = 2
∑

n

|〈ωn,K = 1|A1
τ |0〉|2

(IV.2)

to a straight forward calculation of the Feynman diagram
of Fig.7. (The factor 2 comes from the contribution of
K = −1.)
To show (IV.1), we use the spectral representation of

the exact correlator (III.6):

ΠQA
τλ (ω)

= −
∑

n

[ 〈0|Q1†
τ |n〉〈n|A1

λ|0〉
ω − Ωn + iδ

− 〈n|Q1†
τ |0〉〈0|A1

λ|n〉
ω +Ωn − iδ

]

.

(IV.3)

Here Ωn are the exact excitation energies of the eigen-
states |n〉 ≡ |Ωn;K = 1〉 of the Hamiltonian H . We then
obtain for Ωn > 0

lim
ω→Ωn

(

ω2 − Ω2
n

)

ΠQA
τλ (ω) = −2Ωn〈0|Q1†

τ |n〉〈n|A1
λ|0〉.
(IV.4)

On the other hand, in the RPA we have from (III.8) and
the pole behavior of the t-matrix (II.17)

lim
ω→ωn

(

ω2 − ω2
n

)

ΠQA
τλ (ω)

= −πτ (ωn)Nτ (ωn)Nλ(ωn)π
QA
λ (ωn). (IV.5)

By comparing the r.h.s. of (IV.4) in the RPA (Ωn = ωn)
with the r.h.s. of (IV.5), and noting that both expressions

hold also for A = Q (where πQQ
λ = πλ), we immediately

arrive at (IV.1).

For the case A = L = Lp + Ln, the identity (III.23)
confirms that the total angular momentum operator can-
not excite a state with finite excitation energy:

〈ωn,K = 1|L1|0〉 = 0 (ωn 6= 0). (IV.6)

In fact, the state L1|0〉 has zero excitation energy because
of
[

H,L1
]

= 0, and (IV.6) confirms that this state is
orthogonal to all states with finite excitation energy.

For the transition matrix element (IV.1) of the oper-
ator Lτ to the Goldstone mode, we can use the form of
Nτ (0) from (III.19) and the identity (III.27) to obtain

〈ω0,K = 1|L1
τ |0〉 =

√

ω0

2I
Iτ (ω0 → 0) . (IV.7)

If we sum over protons and neutrons, we obtain an iden-
tity which follows also directly from angular momentum
conservation, Eq. (III.26):

〈ω0,K = 1|L1|0〉 =
√

ω0 I

2
(ω0 → 0). (IV.8)

This relation shows that the state L1|0〉 is orthogonal to
all RPA states, including the Goldstone mode. Actually,
we will see in Sect. 6.A that Eq.(IV.8) is nothing but the
normalization of the Goldstone state vectors.

V. M1 SUM RULES

As an application of the above formalism, we consider
the inverse energy weighted (IEW) and energy weighted
(EW) sum rules for the K = 1 component of the orbital
magnetic moment (M1) operator8

M1 = gℓp L
1
p + gℓn L

1
n, (V.1)

where gℓτ are the orbital g-factors for τ = p, n. (The free
nucleon values are gfreeℓp = 1, gfreeℓn = 0.)

If we define the exact 2-point function with external
M1 operators by

ΠMM(ω) = i

∫

dτ eiωτ 〈0|T
(

M1†(t′)M1(t)
)

|0〉,

= −2
∑

n

|〈n|M1|0〉|2 Ωn

ω2 − Ω2
n + iδ

, (V.2)

where τ = t′ − t and we use the notations of Eq.(IV.3)
for the state vectors and energies, the IEW and EW sum

8 Generally [19], a factor
√

3/(4π) is included in the definition of
the M1 operator. This factor is not included in our definition.
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rules can be expressed as follows[17] 9 :

SIEW ≡ 2
∑

Ωn>0

|〈n|M1|0〉|2
Ωn

= lim
ω→0

ΠMM (ω), (V.3)

SEW ≡ 2
∑

Ωn

|〈n|M1|0〉|2 Ωn = − lim
ω→∞

ω2 ΠMM (ω).

(V.4)

To evaluate these sum rules in our BS (RPA) formal-
ism, we introduce the correlator ΠLL

τλ(ω), which has ex-
ternal operators L1†

τ and L1
λ. The form of ΠLL

τλ(ω) in the
RPA is (cf. Eq.(III.8))

ΠLL
τλ (ω) = δτλπ

LL
τ (ω)− πLQ

τ (ω)tτλ(ω)π
QL
λ (ω). (V.5)

Here the first term on the r.h.s. is the non-interacting
bubble graph. (For the explicit form, see Eq.(A.6).)
Concentrating first on the IEW sum rule, we note from

the Inglis formula (III.18) that πLL
τ (0) is identical to the

moment of inertia:

πLL
τ (ω = 0) = 2

∑

(αi)∈τ

|〈α|L1
τ |i〉|2

ωαi

= Iτ . (V.6)

To evaluate the second term in (V.5) in the limit ω →
0, we use the relation (III.27), which shows that only
the first (singular) term in the reduced T-matrix of
Eq.(III.24) contributes. Using the form of the normal-
ization factors given in (III.19), we obtain

lim
ω→0

πLQ
τ (ω)tτλ(ω)π

QL
λ (ω) =

Iτ Iλ
I

. (V.7)

The LL-correlator (V.5) for ω → 0 is then obtained as

lim
ω→0

ΠLL
τλ (ω) = δτλIτ − Iτ Iλ

I
. (V.8)

This result shows that the sum rule vanishes for the case
where one of the external operators is the total angular
momentum L, i.e.,

lim
ω→0

∑

λ

ΠLL
τλ (ω) = 0. (V.9)

This is one of the many cases where the RPA-type corre-
lations completely cancel the non-interacting (mean field)
contribution, so as to satisfy the conservation laws (an-
gular momentum conservation in the present case).

9 The factor 2 in these expressions counts for the contribution from
the K = −1 component M−1. (Equivalently, one can express the
sum rules by Mx or My .) We also note that, at least in the RPA
(see Eq.(IV.7)), the Goldstone term does not contribute to the
spectral sum in (V.2) for finite ω, and therefore also not in the
ω → 0 limit of Eq.(V.3).

Using (V.8), we obtain for the IEW sum rule (V.3)

SIEW = lim
ω→0

∑

τλ

gℓτΠ
LL
τλ (ω)gℓλ =

4IpIn
I

(gℓ,IV )
2
,

(V.10)

where we define the isovector orbital g-factor by

gℓ,IV =
1

2
(gℓp − gℓn) . (V.11)

Before we continue to discuss the EW sum rule, we
note the following two points: First, one can separate
a term proportional to L1 = L1

p + L1
n in the magnetic

moment operator (V.1) according to

M1 = αL1 + (gℓ,p − α)L1
p + (gℓ,n − α)L1

n, (V.12)

where α is any number. (The choice α = 1
2 leads to

the conventional separation into isoscalar and isovector
parts.) From the result (V.9) it is clear that the first
term in (V.12) does not contribute to the sum rule, and
the contribution of the second term is independent of α
and given by (V.10). It is possible to choose α so that
the RPA-type contributions vanish and the total result
is given by the non-interacting correlator. This choice is

α =
Ip
I
gℓp +

In
I
gℓn ≡ gℓ,IS, (V.13)

which leads to the following separation of the magnetic
moment operator into “isoscalar” and “isovector” pieces:

M1 = gℓ,IS L
1 + gℓ,IV

(

2In
I
L1
p −

2Ip
I
L1
n

)

. (V.14)

Both the IEW and EW sum rules discussed in this Sec-
tion emerge exclusively from the second (isovector) part
of Eq.(V.14). We will see in Sect. 6 that this way to
split the M1 operator follows naturally if one performs a
minimal substitution in the effective Hamiltonians for the
isoscalar (Goldstone) and isovector (scissors) rotational
modes separately.
Second, the IEW sum rule for the operator (2In/I)L

1
p−

(2Ip/I)L
1
n is often interpreted as the collective mass pa-

rameter of the isovector rotation[12]. The result (V.10)
then confirms that this mass parameter is given by the
“isovector moment of inertia”, which is defined as

IIV =
4IpIn
I

. (V.15)

Turning now to the EW sum rule (V.4), we note that
for the first term in the correlator (V.5) we have

− lim
ω→∞

ω2πLL
τ (ω) = 2

∑

(αi)∈τ

ωαi|〈α|L1
τ |i〉|2,

= 3β2
τπτ (0) = 3βτ 〈Q0

τ 〉, (V.16)

where in the second equality we used the relation (III.3)
to express the result in terms of the bubble graph πτ (0),
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and in the last equality we used the low energy theorem
(III.11). To evaluate the second term in the RPA corre-
lator (V.5) in the limit ω → ∞, we note that in this limit
the t-matrix (II.13) becomes simply the 4-Fermi interac-
tion constant χ. Using also the form of the mixed bubble
graph πLQ

τ (ω) given in (A.5) and the identity (III.3), we
obtain

lim
ω→∞

ω2πLQ
τ (ω)tτλ(ω)π

QL
λ (ω)

= 3 (βτπτ (0))χτλ (βλπλ(0)) = 3〈Q0
τ 〉χτλ〈Q0

λ〉. (V.17)

Adding the pieces (V.16) and (V.17) we obtain

− lim
ω→∞

ω2ΠLL
τλ (ω)

= 3
(

〈Q0
τ 〉βτ δτλ + 〈Q0

τ 〉χτλ〈Q0
λ〉
)

. (V.18)

Because of the self consistency relation (II.6) for exact
rotational symmetry (ετ = 0), we confirm that the ex-
pression (V.18) vanishes if we sum over τ or λ, which is
again a consequence of angular momentum conservation.
In order to get the EW sum rule for the M1 operator, we
can therefore discard the first term in (V.14). By using
again the relations (II.6) we finally obtain the following
result:

SEW = − lim
ω→∞

ω2
∑

τ,λ

gℓ,τΠ
LL
τλ (ω)gℓ,λ,

= −12 (gℓ,IV )
2 〈Q0

p〉χpn〈Q0
n〉. (V.19)

This is essentially the result which has been obtained in
Ref.[14] by an explicit calculation of the corresponding
double commutator. We also wish to mention that the
EW sum rule for the operator (2In/I)L

1
p − (2Ip/I)L

1
n

is often interpreted physically in terms of the restoring
potential energy of the isovector rotation[12]. We will
see in Sect.6, however, that such an intuitive result for
the restoring potential energy does not seem to emerge
in our present BS (RPA) framework.
Before we discuss the connection of these sum rules

to observations, we make a comment on the orbital g-
factors: In a more general approach, for example the
Landau-Migdal theory [28], the correlator (V.2) is rep-
resented by the Feynman diagram in the first line of
Fig.8. The RPA-type correlations in the Landau-Migdal
approach are included via the integral equation for the to-
tal vertex, shown in the second line of Fig.8. The driving
term involves not the free but an effective magnetic mo-
ment operator, which includes all processes (tensor cor-
relations, meson exchange currents, etc) which are not
taken into account by the RPA-type correlations. To
a good approximation, this effective operator can again
be represented in the state-independent form (V.1), but
now with effective orbital g-factors, which are different
from the free ones. Therefore, in an RPA approach like
our present one, the isovector g-factor in the sum rules
(V.10) and (V.19) should be considered as an effective
quantity, which is determined by data for magnetic mo-
ments of neighboring odd-A nuclei. It is well known[29]

i

= +

FIG. 8: Upper diagram: General representation of the corre-
lator Eq.(V.2). The black circle represents the effective irre-
ducible particle-hole vertex, and the shaded square represents
the full particle-hole vertex including the RPA-type correla-
tions. Lower diagrams: Graphical representation of the BS
equation for the full particle-hole vertex. The open square
represents the irreducible particle-hole interaction.

that this effective isovector g-factor gℓ,IV is larger than
the free nucleon value (which is 0.5) by approximately
10%.
Let us now discuss the connection to observations:

First, the 2+ state of the ground state rotational band is
a classical example of an isoscalar type rotation. (Actu-
ally, in Sect.6 we will see how it emerges from the effec-
tive Hamiltonian for the isoscalar rotational mode.) Its
magnetic moment is determined only by the first term in
(V.14) [30], i.e., µ(2+) = gℓ,IS L with L = 2. Its g-factor
is therefore given by

g(2+) = gℓ,IS =
Ip
I
gp +

In
I
gn. (V.20)

As a first estimate one can assume that Ip/I ≃ Z/A and
In/I ≃ N/A, which gives

gℓ,IS ≃ Z

A
gℓ,p +

N

A
gℓ,n =

Z

A
, (V.21)

where the second equality has been derived rigorously
from gauge invariance in a nuclear matter picture in
Ref.[31]. We therefore obtain the familiar rotor value[2]

g(2+) =
Z

A
. For example, the nuclei considered in the

analysis of Ref.[15] have Z/A ≃ 0.4, and the measured
g-factors are g(2+) ≃ 0.3. To account for the difference,
one has to take into account the effects of pairing, which
enhance the neutron moment of inertia relative to the
proton one[32], but qualitatively the rotor value is cor-
rect.
Second, it has been shown in Ref.[15] that the IEW

sum rule value (V.10) with Ip/I ≃ Z/A and In/I ≃
N/A, agrees well with the experimentally determined ra-
tio B(M1)/ω(M1), where the transition matrix element
B(M1) and the excitation energy ω(M1) refer to the ob-
served low energy scissors mode. However, this agree-
ment is only obtained if the isovector orbital g-factor
gℓ,IV is assumed to have the same value as the isoscalar
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one (gℓ,IS). As we discussed above, however, the isovec-
tor orbital g-factor should be larger than the free nucleon
value, while the isoscalar one is smaller. This seems to
indicate an interesting problem which deserves further
study. In particular, the effects of pairing[19] should be
included in the present framework. Also, for a quanti-
tative analysis one should extend the present model to
include the effects of the nucleon spin, and investigate
its role for the IEW sum rule, following for example the
analysis of Ref.[14] for the EW sum rule. The effects
of pairing and spin should be closely investigated before
drawing conclusions on the problem of the IEW sum rule.

VI. ROTATIONAL BANDS AND SCISSORS
MODE

In this Section we wish to derive the effective Hamilto-
nians and the state vectors for the isoscalar and isovector
rotational modes. Concerning the isoscalar mode, we can
apply the formalism of Sects. 2 and 3 without further ap-
proximations. For the isovector mode, however, it seems
necessary to refer to the harmonic oscillator model in
order to obtain analytic results.
Let us first establish the connection between our for-

malism, which is based on the BS equation, to the usual
RPA formulation in terms of “forward” and “backward”
amplitudes. This connection can easily be established if
we return to Eq.(IV.1) for the transition matrix element,
and insert the spectral form of the non-interacting bub-
ble graph πQA

τ , which is given by Eq. (A.1) for B = Q.
In this way we obtain10

〈ωn,K = 1|A1
τ |0〉

=
∑

(αi)∈τ

[

(Y ∗
τ )αi (ωn)

(

A1
τ

)

αi
+ (Z∗

τ )αi (ωn)
(

A1
τ

)

iα

]

.

(VI.1)

Here we use the notation (O)αi = 〈α|O|i〉 for the particle-
hole matrix elements of an operator O, and the K = 1
components of the RPA amplitudes are defined by

(Yτ )αi (ωn) =
−1√
2ωn

Nτ (ωn)
(

Q1
τ

)

αi

ωn − ωαi + iδ
, (VI.2)

(Zτ )αi (ωn) =
1√
2ωn

Nτ (ωn)
(

Q1
τ

)

iα

ωn + ωαi − iδ
. (VI.3)

We recall two results of the RPA: First, the states
|ωn,K = 1〉 can be expressed by

|ωn,K = 1〉 = O†(ωn,K = 1)|0〉, (VI.4)

10 We follow the notations of Ref.[1], see in particular Eqs. (14.17),
(14.26) and (14.32) of Ref.[1].

where O =
∑

τ O†
τ with

O†
τ (ωn,K = 1)

=
∑

(αi)∈τ

[

(Yτ )αi (ωn) a
†
α ai − (Zτ )αi (ωn) a

†
i aα

]

.

(VI.5)

Here a† and a are the single particle creation and anni-
hilation operators. Second, one can derive an effective
Hamiltonian for the RPA operators O† and O by follow-
ing bonsonization methods based on the path integral [4]
11, i.e., introduce O†, O as auxiliary quantities into the
Hamiltonian and integrate over the Fermion Grassmann
variables. The resulting Fermionic determinant can then
be expanded in powers ofO† and O. Since here we are in-
terested only in the kinetic part of the effective rotational
Hamiltonian (K = ±1 modes), we simply quote the re-
sult, which is well known [2]12 and can be motivated also
by more intuitive arguments:

Heff = E0 +
∑

n

Heff(ωn) , (VI.6)

where

Heff(ωn) =
ωn

2

∑

K=±1

×
[

O†(ωn,K)O(ωn,K) +O(ωn,K)O†(ωn,K)
]

.

(VI.7)

A. Isoscalar rotational state

Here we derive the form of the RPA amplitudes for the
Goldstone modes (ω0 = 0 and K = ±1), and determine
their contribution to the effective Hamiltonian (VI.7). By
using the form of Nτ (0) from (III.19) and the relation
(III.3), we find for the amplitudes Y and Z of (VI.2) and
(VI.3):

(Yτ )αi (ω0) =
〈α|L1

τ |i〉√
2ω0I

, (VI.8)

(Zτ )αi (ω0) = −〈i|L1
τ |α〉√

2ω0I
. (VI.9)

11 Bosonization methods in the path integral formalism have been
used in relativistic field theories to show the equivalence of 4-
Fermi type interactions to Yukawa type interactions [34], and also
in nuclear structure physics to motivate the Interacting Boson
Model[35].

12 See Eq.(8.92) or (8.97) of Ref.[2]. The constant E0 in (VI.6)
corresponds to EHF − 1

2
TrA in the notation of Ref.[2].
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Inserting these forms into (VI.5), we obtain the represen-
tation of the Goldstone state vector as follows:

|ω0,K = 1〉 = O+(ω0,K = 1)|0〉, where

O†(ω0,K = 1) =
L1

√
2ω0I

. (VI.10)

The creation operator for the second Goldstone mode
(K = −1) is obtained by the replacement L1 → L−1.
We see that the creation operator for the Goldstone

mode diverges as 1/
√
ω0 in the limit ω0 → 0. The nor-

malization of the Goldstone state vectors, however, is
finite, and obtained from (IV.8) and (VI.10) as

∑

K=±1

〈ω0,K|ω0,K〉 = 1. (VI.11)

Inserting (VI.10) into the effective Hamiltonian (VI.7),
we obtain for the contribution of the Goldstone modes to
the effective Hamiltonian:

Heff(ω0) ≡ Hrot(ω0) =
(Lx)

2
+ (Ly)

2

2I
=
~L2 −

(

L3
)2

2I
.

(VI.12)

Because this result was derived from the intrinsic Gold-
stone modes, which are degenerate with the ground state
of the spontaneously broken rotational symmetry, it cor-
responds to the ground state rotational band. The point
to note is that, while the Goldstone modes have zero in-
trinsic excitation energy and correspond to the solution
ω0 = 0 of the BS equation, the operators O†(ω0) and
O(ω0) diverge as 1/

√
ω0, and as a result the contribu-

tion of the Goldstone modes to the effective Hamiltonian
(VI.7) is finite and given by the collective rotational en-
ergy (VI.12). In a microscopic quantum theory of finite
systems, the Goldstone modes are therefore by no means
“spurious”, but describe the rotation of the whole sys-
tem around an axis perpendicular to the symmetry axis,
with finite rotational energy. Only if one assumes the
rotational part (VI.12) from the outset, the Goldstone
modes should be considered as “spurious”.

B. Isovector rotational state (Scissors mode)

Contrary to the isoscalar rotational modes discussed in
the previous Subsection, it seems necessary to make more
specific model assumptions in order to derive the corre-
sponding expressions for the isovector rotational modes.
Here we will assume the harmonic oscillator (h.o.) form
U0(x) =

(

Mω̃2/2
)

r2 in the mean field Hamiltonian

(II.4). The sum U0(x) − βτQ
0(x) is then equivalent to

a deformed harmonic oscillator potential. Although this
model has already been used in similar contexts by many
authors [6, 14, 36, 37], we discuss it in this Subsection and
in Appendix C in some detail, because to our opinion it
is highly interesting to see the isovector counterparts of

the relations given in the previous Sections, even if those
are more model dependent.
In the h.o. model, the bubble graph of Eq.(II.15) as-

sumes a 2-pole form (see Eq.(C.5)), which makes ana-
lytic calculations possible. Here, in order to keep the
equations as schematic as possible, we restrict ourselves
to one h.o. shell (∆N = 0 space), which corresponds
to the first term in Eq.(C.5). (The case of the full h.o.
space can be found in Appendix C, and the main points
will be summarized in the next Subsection.) In this ap-
proximation, where all particle-hole states have the same
excitation energy (e0τ ), the bubble graph is given by the
following one-pole form:

πτ (ω) = −2
e0τ

ω2 − e20τ + iδ
S0τ , (VI.13)

where e0τ and S0τ are given by

e0τ = Kβτ ,

(

K =

√

45

16π

1

Mω̃

)

, (VI.14)

S0τ =
∑

0

|〈α|Q1
τ |i〉|2 =

e30τ
6β2

τ

Iτ =
K3

6
βτIτ . (VI.15)

The symbol 0 in the sum (VI.15) indicates that only
the ∆N = 0 particle-hole states are included, and we
used the identity (III.3) and the Inglis formula (III.18)
to derive the second equality in (VI.15). The low energy
theorem (III.11) relates S0τ to the quadrupole moment
according to13

S0τ =
K

2
〈Q0

τ 〉c. (VI.16)

Using (VI.14) and (VI.16), the self consistency relations
(II.6) for the case of exact symmetry (ετ = 0) can be
expressed as follows:

e0p = −2χppS0p − 2χpnS0n,

e0n = −2χnnS0n − 2χnpS0p. (VI.17)

Inserting the pole form (VI.13) into the eigenvalue equa-
tion (II.16), we get two solutions: The first one is the
Goldstone solution (ω2

0 = 0), and the second one is given
by

ω2
1 = e0p (e0p + 2χppS0p) + e0n (e0n + 2χnnS0n) ,

= −2χpn (e0nS0p + e0pS0n)

= −χpn

3
K4 βp βn I . (VI.18)

13 As is clear from Eq.(C.5), the ∆N = 0 sum S0τ is actually
only half of the sum in the full h.o. space. This artifact of the
restriction to one h.o. shell is formally remedied by replacing the
quadrupole moment 〈Q0

τ 〉 by the core contribution 〈Q0
τ 〉c, which

is half of the total quadrupole moment, in all preceding relations
of this paper. See Refs.([6, 30, 33]) for discussions on this point.
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Using this solution, it is easy to calculate the proton and
neutron normalization factors from Eqs.(II.21), (II.22).
The result for the ratio, which corresponds to Eq. (III.14)
for the isoscalar Goldstone mode, is

Nn(ω1)

Np(ω1)
=
ω2
1 − e20n
ω2
1 − e20p

(

−S0p

S0n

)

= −e0nχnn − e0pχpn

e0pχpp − e0nχnp

.

(VI.19)

The important point to note is that, whereas for the
Goldstone mode the ratio Nn/Np is positive and close
to +1, which corresponds to an isoscalar motion, the ra-
tio (VI.19) is negative and close to -1, which corresponds
to an isovector motion. For the individual normaliza-
tion factors we obtain (cf. Eq.(III.19) for the Goldstone
mode)

Np(ω1) = −
√

3

I
βp

√

In
Ip

ω2
1 − e20p
e20p

, (VI.20)

Nn(ω1) =

√

3

I
βn

√

Ip
In

ω2
1 − e20n
e20n

. (VI.21)

Using these normalization factors and the expression
(VI.18) for the excitation energy, it is easy to calculate
the RPA amplitudes from (VI.2) and (VI.3). To illustrate
the method, which is extended to the full h.o. space in
Appendix C, we note that the operator O†

τ of (VI.5) can
be expressed as follows:

O†
τ (ωn,K = 1) = −Nτ (ωn)√

2ωn
[

e20τ
ω2
n − e20τ + iδ

1√
3βτ

L1
τ (0) +

ωn

ω2
n − e20τ + iδ

Q1
τ (0)

]

,

(VI.22)

where n = 0, 1. Here we used the identity (III.3), and
defined the “low energy part” of an operatorA as follows:

A(0) ≡
∑

0

[

(A)αi a
†
αai + (A)iα a

†
iaα

]

. (VI.23)

In the ∆N = 0 space, which is considered in this
Subsection, we can identify these low energy operators
with the full operators (A(0) ≡ A). For the Goldstone
mode (ω0 = 0), Eq.(VI.22) reproduces the general result
(VI.10), and for the ω1 mode we obtain

|ω1,K = 1〉 = O†(ω1,K = 1)|0〉

=
(

O†
L(ω1,K = 1) +O†

Q(ω1,K = 1)
)

|0〉,
(VI.24)

where the creation operator O† has been split into an
angular momentum part (“L-part”) and a quadrupole
part (“Q-part”) defined by

O†
L(ω1,K = 1) =

1√
2ω1IIV

(

2In
I
L1
p −

2Ip
I
L1
n

)

,

(VI.25)

O†
Q(ω1,K = 1)

=
1√

2ω1IIV

(

2In
I

√
3βpω1

e20p
Q1

p −
2Ip
I

√
3βnω1

e20n
Q1

n

)

=
1√

2ω1IIV

√

−χpnI

βpβn

(

2In
I
βnQ

1
p −

2Ip
I
βpQ

1
n

)

.

(VI.26)

The isovector moment of inertia was defined in (V.15).
The L-part (VI.25) has the simple interpretation as the
generator of an out of phase rotation of protons against
neutrons, where the quantities 2In/I and −2Ip/I play
the role of “effective charges” for protons and neutrons,
which effectively remove the contribution of the overall
in-phase rotation. The mode which is generated by this
operator is therefore called properly the “scissors mode”.
The Q-part (VI.26), on the other hand, generates the
quadrupole vibrations, and we will see below that it gives
rise to the restoring force. (More general forms of those
generators are given in Appendix C.)

Including also the annihilation operators and the K =
−1 mode, we can summarize as follows:

O†(ω1,K = 1) = O†
L(ω1,K = 1) +O†

Q(ω1,K = 1),

O(ω1,K = 1) = OL(ω1,K = 1) +OQ(ω1,K = 1),

O†(ω1,K = −1) = OL(ω1,K = 1)−OQ(ω1,K = 1),

O(ω1,K = −1) = O†
L(ω1,K = 1)−O†

Q(ω1,K = 1),

(VI.27)

where O†
L(ω1,K = 1) and O†

Q(ω1,K = 1) are given in

(VI.25) and (VI.26), and

OL(ω1,K = 1) =
1√

2ω1IIV

(

2In
I
L−1
p − 2Ip

I
L−1
n

)

,

(VI.28)

OQ(ω1,K = 1) =

− 1√
2ω1IIV

√

−χpnI

βpβn

(

2In
I
βnQ

−1
p − 2Ip

I
βpQ

−1
n

)

.

(VI.29)

By adding the K = 1 and K = −1 contributions to-
gether, it is then easy to calculate the contribution of the
ω1 mode to the effective Hamiltonian (VI.7). We obtain
the following result:

Heff(ω1) = Hrot(ω1) +HQ(ω1), (VI.30)

where the rotational and quadrupole vibrational parts
are given by
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Hrot(ω1) = ω1

[

O†
L(ω1,K = 1)OL(ω1,K = 1) +OL(ω1,K = 1)O†

L(ω1,K = 1)
]

,

=
1

2I

[

In
Ip

(

(Lx
p)

2 + (Ly
p)

2
)

+
Ip
In

(

(Lx
n)

2 + (Ly
n)

2
)

− 2
(

Lx
pL

x
n + Ly

pL
y
n

)

]

, (VI.31)

HQ(ω1) = ω1

[

O†
Q(ω1,K = 1)OQ(ω1,K = 1) +OQ(ω1,K = 1)O†

Q(ω1,K = 1)
]

,

= − χpnI
2

4βpβnIpIn

(

2In
I
βnQ

1
p −

2Ip
I
βpQ

1
n

)†(
2In
I
βnQ

1
p −

2Ip
I
βpQ

1
n

)

. (VI.32)

By adding (VI.12) and (VI.30), we obtain the total con-
tribution of the isoscalar and isovector rotational states
to the effective Hamiltonian:

Heff(ω0) +Heff(ω1) = Hrot +HQ, (VI.33)

where HQ = HQ(ω1) is given by (VI.32), and Hrot by the
sum of (VI.12) and (VI.31):

Hrot = Hrot(ω0) +Hrot(ω1)

=
(Lx

p)
2 + (Ly

p)
2

2Ip
+

(Lx
n)

2 + (Ly
n)

2

2In
. (VI.34)

This is the kinetic part of the 2-rotor model Hamilto-
nian [11]. We therefore obtain the important result that
the 2-rotor model is obtained from the RPA in a natural
way by adding the effective Hamiltonians for the Gold-
stone modes (isoscalar rotation) and the scissors modes
(isovector rotation).

We note that the two parts of the effective rota-
tional Hamiltonian, given by the isoscalar Goldstone part
(VI.12) and the isovector scissors part (VI.31), corre-
spond exactly to the isoscalar and isovector parts of the
M1 operator (V.14). In the notation of first quanti-
zation, this is seen most easily by making a minimal

substitution, namely ~pi → ~pi − gℓp ~A(~ri) for protons

(i = 1, . . . Z) and ~pj → ~pj − gℓn ~A(~rj) for neutrons
(j = 1, . . .N), in (VI.12) and (VI.31) separately. Us-

ing the form ~A(~rk) = 1
2

(

~B × ~rk

)

, which corresponds

to a constant external magnetic field, and expressing

the magnetic interaction Hamiltonian in the form − ~B ·
~M/(2M) ≡ − (BxMx +ByMy) /(2M), gives the two
terms in (V.14). Viewed in this way, the presence of
the scissors part (VI.31) is necessary to give the correct
coupling to an external magnetic field.

The quadrupole vibrational part (VI.32) of the effec-
tive Hamiltonian is positive definite (note that χpn < 0),
and represents the restoring force which acts against the
proton-neutron oscillations in the present model. We
note, however, that it cannot be reduced to a simple ge-
ometric form, which is usually assumed in the 2-rotor
model.

C. Discussions

In the previous Subsection, we have seen how the low-
energy isovector scissors modes emerge in the simple ap-
proximation of one major h.o. shell (∆N = 0). The case
of the full h.o. space is discussed in detail in Appendix C,
and we can summarize the results as follows: There are
four solutions of the RPA equation, two at low energy cor-
responding to the ∆N = 0 case discussed above, and two
at high energy (∆N = 2). Each of these four modes can
be represented similar to Eq.(VI.24) by an L-part and a
Q-part, as shown in Eq.(C.19). However, the L-part now
includes also the generator of quadrupole deformations,
describing irrotational flow, in addition to the generator
of rotations, as shown by Eqs.(C.23) and (C.24), and the
vibrational Q-part includes also the quadrupole operator
in p-space in addition to the ordinary one in r-space, as
shown by Eqs.(C.25) and (C.26). Concerning the L-part,
for not too large deformations, the ordinary rotational
term is dominant for the low-energy solutions, while the
irrotational term is dominant for the high-energy solu-
tions, as we explain in the last paragraph of Appendix
C.

Further information on the nature of these four collec-
tive states can be obtained by considering their vertex
functions and M1 and E2 transition matrix elements[14],
and one arrives at the following picture: One of the
high-energy solutions (ω2 in Appendix C) carries zero
M1 strength, and is mainly of irrotational character.
It can be identified as the K = 1 component of the
isoscalar giant quadrupole resonance. The other high-
energy solution (ω3) carries both M1 and E2 strength,
and is also mainly of irrotational character. It is usually
called the the high-energy scissors mode, or equivalently
the K = 1 component of the isovector giant quadrupole
resonance[19]. The nature of the low-energy solutions
is essentially the same as we discussed in the previous
Subsections, namely one is the isoscalar rotational mode
(ω0), and the other is the low-energy scissors mode (ω1),
which is mainly of rotational character.

It is very interesting to note that this picture of ro-
tational flow at low energy and irrotational flow at high
energy is valid also for other many-body systems, like
deformed metallic clusters [38], deformed quantum dots
[39], crystals [40], and trapped Bose-Einstein condensates
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[41]. (The recent developments are reviewed in Ref.[19].)
For example, in the case of deformed metallic clusters,
the rotational flow corresponds to a rotation of electrons
with respect to the jellium background, and the irrota-
tional flow to a rotation of electrons within a rigid sur-
face. In the case of trapped Bose-Einstein condensates,
the collective modes are induced by an abrupt rotation of
the deformed trap by a small angle, causing oscillations
of the condensed atoms. This case is particularly in-
teresting, because for normal (non-superfluid) gases one
expects both the low-energy rotational and high-energy
irrotational modes, while for the superfluid case one ex-
pects only the high-energy irrotational mode because of
the small moment of inertia. Experimental evidence that
the low-energy rotational mode of trapped condensed
gases indeed exists only above a critical temperature has
been reported in Ref.[42].

VII. SUMMARY AND OUTLOOK

In this paper we used a simple field theory model based
on a separable QQ interaction to gain analytic insights
into the physics of rotational modes in deformed nuclei.
Our essential tools were the Ward-Takahashi identities
for angular momentum conservation, which we used to
discuss the Goldstone modes associated with the spon-
taneous breaking of rotational symmetry, in particular
their vertex functions and decompositions into particle-
hole components. In this simple model it was possible
to derive analytically the ground state rotational band
from the effective Hamiltonian for the isoscalar rotational
modes. The isovector rotational (scissors) modes, on the
other hand, correspond to a finite intrinsic excitation
energy, and their properties depend on the mean field
and the residual proton-neutron interaction. In order to
obtain analytic results also for the isovector modes, we
made use of the harmonic oscillator model for the spher-
ical part of the mean field. It was then possible to derive
the vertex functions, the decompositions into particle-
hole components, and the effective Hamiltonian also for
the scissors modes. By adding the effective Hamiltonians
for the Goldstone and the scissors modes, we obtained the
kinetic part of the 2-rotor model Hamiltonian, and also
the potential energy (restoring force).
An other important part of our analysis was the

derivation of the inverse energy weighted and the en-
ergy weighted M1 sum rules in the RPA, where we ob-
tained analytic results without resorting to the harmonic
oscillator approximation. We discussed those results in
connection to recent experimental analysis on the scis-
sors modes. We pointed out that other types of correla-
tions, which are not included in the RPA (for example
tensor correlations and meson exchange currents) should
enhance the M1 sum rules, because those processes are
known to enhance the isovector orbital g-factor. We
pointed out an interesting problem in this connection:
The experimental data for the inverse energy weighted

π   (ω) =  i  
ω ω

k
0

k
0

ω+

τ
BA

A
1
τ Bτ

1

FIG. 9: Graphical representation of the bubble graph πBA
τ (ω).

sum rule seem to require that the isovector and isoscalar
orbital g-factors are the same, while observations and
theoretical calculations of magnetic moments clearly in-
dicate that the isovector orbital g-factor should be larger
than the isoscalar one. It is, however, necessary first to
take into account the effects of pairing, and extend the
model to include the spin of the nucleons, before one can
arrive at firm conclusions.
We finally mention that some parts of our analytic

derivations should be possible for more general interac-
tions, including spin-dependent and non-separable ones.
The Ward-Takahashi identities should give an important
guide for this purpose.
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Appendix A: Form of bubble graphs

In this Appendix we give the forms of various bubble
graphs which appear in the main text.
We represent a bubble graph πBA

τ (ω) with external op-
eratorsB1† and A1 by Fig.9. (We consider the case where
these operators are the spherical K = 1 components of
some tensor operators, since this is actually used in the
main text.)
Using the form (II.11) of the propagators and per-

forming the integration over k0 by residues, we get (see
Eq.(II.15) for the special case A = B = Q)

πBA
τ (ω)

= −
∑

(αi)∈τ

[ 〈α|A1|i〉〈α|B1|i〉∗
ω − ωαi + iδ

− 〈i|A1|α〉〈i|B1|α〉∗
ω + ωαi − iδ

]

.

(A.1)

In order to combine these two terms, one changes the
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sum over the single particle states (αi) in the second term
to the time reversed states (αi), which have the opposite
values of ℓz but the same energies for the axial symmetric
case. Then one uses the property (see Eq.(A.22) of [1])

〈i|O|α〉 = tO〈α|O|i〉, (A.2)

where tO = +1 for a T-even operator (like the quadrupole
operator in our case), and tO = −1 for a T-odd operator
(like the angular momentum operator in our case). As
a result, the relative sign of the forward and backward
terms is different for the cases where both operators have
the same or the opposite T-symmetry, and one obtains

πBA
τ (ω) = −2

∑

(αi)∈τ

〈α|A1|i〉〈α|B1|i〉∗ Ω

ω2 − ω2
αi + iδ

,

(A.3)

where Ω = ωαi if tA = tB, and Ω = ω if tA = −tB.
For the cases needed in the main text, the bubble

graphs are then obtained as follows:

πQQ
τ (ω) ≡ πτ (ω) = −2

∑

(αi)∈τ

|〈α|Q1|i〉|2 ωαi

ω2 − ω2
αi + iδ

,

(A.4)

πQL
τ (ω) = −2ω

∑

(αi)∈τ

〈α|L1|i〉〈α|Q1|i〉∗ 1

ω2 − ω2
αi + iδ

,

= −2ω
∑

(αi)∈τ

〈α|L−1|i〉∗〈α|Q−1|i〉 1

ω2 − ω2
αi + iδ

,

(A.5)

πLL
τ (ω) = −2

∑

(αi)∈τ

|〈α|L1|i〉|2 ωαi

ω2 − ω2
αi + iδ

. (A.6)

The two identical forms of the mixed bubble graph in
(A.5) are obtained by expressing either the first or the
second term in (A.1) by the time reversed states (αi).
We also note that all bubble graphs which appear in this
paper correspond toK = 1, although this is not indicated
explicitly in our notations.

Appendix B: Identities for bubble graphs

In this Appendix we use the forms of the bubble graphs
given in Appendix A to confirm various identities which
are derived more generally in the main text.

1. Eq.(III.11)

We use Eq.(A.4) and the identity (III.3) to write

πτ (0) = 2
∑

(PH)∈τ

|〈PH |Q1|0〉|2
ωPH

=
2

3β2
τ

∑

(PH)∈τ

ωPH |〈PH |L1|0〉|2, (B.1)

where only in this and the following equation we denote
the non-interacting (mean field) ground state simply by
|0〉, the non-interacting particle-hole states by |PH〉, and
their energies by ωPH . Since (B.1) has the form of an
energy weighted sum rule, it can be expressed as a double
commutator in the standard way, and we obtain

βτπτ (0) = − 1

3βτ
〈0|
[[

H0, L
1
τ

]

, L−1
τ

]

|0〉,

= − 1√
3
〈0|
[

Q1
τ , L

1

τ

]

|0〉 = 〈0|Q0
τ |0〉, (B.2)

where in the last two steps we used the commutation
relations (III.1) and (III.2).

2. Eq.(III.23)

If we insert the identity (III.3) into the first form (A.5)
of πQL

τ and compare the result to the form (A.4) of πQQ
τ

we obtain the following identity:

ωπQL
τ (ω) =

√
3βτ (πτ (ω)− πτ (0)) . (B.3)

Then, in order to show Eq.(III.23), we have to show that
the following relation holds if ω = ωn is a solution of the
eigenvalue equation (II.16):

(πp(ω)− πp(0)) +
Nn(ω)

Np(ω)

βn
βp

(πn(ω)− πn(0)) = 0.

(B.4)

Here the ratio of the normalization factors is given by
(II.22), and the ratio of deformation parameters by
(III.14). Using these relations, we can express (B.4)
solely by bubble graphs as follows:

(πp(ω)− πp(0))

+
(1 + χppπp(ω)) πp(0)

(1 + χnnπn(0))πn(ω)
(πn(ω)− πn(0)) = 0. (B.5)

More explicitly, the relation (B.5) can be written as

πp(ω)πn(ω)− πp(0)πn(0)

+ χpp

[

πp(ω)πn(ω)πp(0) + πp(ω)πn(ω)πn(0)

− πp(ω)πp(0)πn(0)− πn(ω)πp(0)πn(0)
]

= 0.

(B.6)

In order to verify this relation, we use the eigenvalue
equation (II.16) for ω = ωn as well as for ω = 0. (Note
that for ω = 0 the RPA equation is equivalent to the self
consistency relation, as we have shown in the main text.)
This gives the following identity:

(1 + χppπp(ω)) (1 + χnnπn(ω))

(1 + χppπp(0)) (1 + χnnπn(0))
=
πp(ω)πn(ω)

πp(0)πn(0)
. (B.7)

It is readily seen that this relation is the same as (B.6).
This concludes the explicit verification of Eq.(III.23).
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3. Eqs.(III.26) and (III.27)

Using Eq.(A.5) for the bubble graph πQL
τ and the iden-

tity (III.3) we obtain

lim
ω→0

(

πQL
τ (ω)

ω

)

=
2√
3βτ

∑

(αi)∈τ

|〈α|L1|i〉|2
ωαi

.

Using then the Inglis formula (III.18) we obtain (III.27).

Appendix C: Deformed harmonic oscillator

In this Appendix we review some formulas [6, 10, 14,
36, 37] for the RPA calculation with deformed h.o. mean
fields.
Using U0(x) =Mω̃2r2/2 in the mean field Hamiltonian

(II.4), the sum U0(x)−βτQ0(x) becomes a deformed h.o.
potential with frequencies

ω̃x,τ = ω̃y,τ = ω̃

√

1 +
2

3
δτ ,

ω̃z,τ = ω̃

√

1− 4

3
δτ , (C.1)

where the dimensionless deformation parameters δτ are
related to the βτ of the main text by

δτ =
K

ω̃
βτ , (C.2)

andK is defined in Eq.(VI.14). In this simple model, two
types of particle-hole excitations contribute to the bubble
graph of Eq.(II.15), corresponding to excitations within
one h.o. shell (∆N = 0) and across two shells (∆N = 2).
The corresponding excitation energies are given by

e0τ = ω̃x,τ − ω̃z,τ ≃ δτ ω̃ , (C.3)

e2τ = ω̃x,τ + ω̃z,τ ≃ 2ω̃

(

1− 1

6
δτ

)

. (C.4)

The bubble graph (II.15) then takes the form

πτ (ω) = −2

(

e0τ
ω2 − e20τ

S0τ +
e2τ

ω2 − e22τ
S2τ

)

,

= −2

(

e20τ
ω2 − e20τ

+
e22τ

ω2 − e22τ

)

S0τ

e0τ
. (C.5)

Here the quantities

S0τ =
∑

0

|〈α|Q1
τ |i〉|2, S2τ =

∑

2

|〈α|Q1
τ |i〉|2, (C.6)

denote the sums over the ∆N = 0 and ∆N = 2 particle-
hole states, and in the second equality of (C.5) we used
the relation[6]

S0τ

e0τ
=
S2τ

e2τ
. (C.7)

This relation, which follows from the analytic forms of
S0τ and S2τ given by Eq.(27) of Ref.[36], shows that the
∆N = 0 and ∆N = 2 excitations give the same contri-
butions to πτ (0). The low energy theorem (III.11) then
can be written in the form

S0τ =
K

4
〈Q0

τ 〉. (C.8)

Using (C.3) and (C.8), the self consistency relations (II.6)
take the form

e0p = −4χpp S0p − 4χpn S0n, (C.9)

e0n = −4χnn S0n − 4χnp S0p. (C.10)

Inserting the form (C.5) of the bubble graph into the
eigenvalue equation (II.16), we can calculate the col-
lective excitation energies in this model. Besides the
Goldstone solution (ω0 = 0), there are three solutions
(ω1, ω2, ω3) with positive energy, which are determined
by the following cubic equation[6] in x ≡ ω2:

x3 − ax2 + bx− c = 0, (C.11)

with the coefficients

a =
(

e20p + e22p
)

Wp(2) + (p→ n), (C.12)

b = e20pe
2
2pWp(4) + (p→ n)

+
1

4

(

e20p + e22p
) (

e20n + e22n
)

(1 +Wp(4) +Wn(4)) ,

(C.13)

c =
1

2
e20pe

2
2p

(

e20n + e22n
)

Wp(4) + (p→ n). (C.14)

Here we defined (for k = 2, 4)

Wτ (k) = 1 + k
χpp

e0τ
S0τ .

For the case where the proton and neutron deformations
can be assumed to be equal (δp = δn, which implies e0p =
e0n ≡ e0 and e2p = e2n ≡ e2), simple analytic solutions
of (C.11) exist: One can be obtained by noting that for

ω2 =

√

e20 + e22
2

=
√

ω̃2
x + ω̃2

z (C.15)

the bubble graph (C.5) has the same value as for ω0 = 0.
Since ω0 = 0 is a solution of the eigenvalue equation
because of the self consistence relations, (C.15) is also
a solution. To further understand the physical nature
of this solution, we note that because of π(ω2) = π(0),
the identity (B.3) shows that πQL(ω2) = 0, i.e., the M1
transition matrix element (B(M1) of (IV.1)) vanishes for
this mode. On the other hand, B(E2) is non-zero[14],
and this mode can therefore be identified as the K = 1
component of the isoscalar giant quadrupole resonance
[14]. The remaining two solutions can then be found
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by solving simple quadratic equations. One obtains to
lowest order in δ:

ω1 = e0

√

1 +
b

2 + b
, (C.16)

ω3 = e2

√

1 +
b

2
, (C.17)

where

b = −χpp − χpn

χpp + χpn

= −χ(T = 1)

χ(T = 0)
(C.18)

is the ratio of the isovector to the isoscalar interaction
strength (b > 0). Analytic solutions can be worked out
also for the case of different proton and neutron deforma-
tion parameters, although the expressions become quite
long. To summarize, there are four solutions of the RPA
equation, where ω0, ω1 are the “low-energy” solutions,
and ω2, ω3 the “high-energy” solutions. For each solu-
tion, one can determine the normalization factorsNp(ωn)
and Nn(ωn) from (II.21) and (II.22).
Let us outline here the calculation of the creation oper-

ator (VI.5) for any of these modes, following the method
explained in Refs.[10, 36] 14: If we add the contribution
of the ∆N = 2 excitations to Eq.(VI.22) of the main text,
we obtain

O†(ωn,K = 1) = −N(ωn)√
2ωn

∑

m=0,2

[

e2m
ω2
n − e2m

1√
3β

L1(m) +
ωn

ω2
n − e2m

Q1(m)

]

,

≡ O†
L(ωn,K = 1) +O†

Q(ωn,K = 1).

(C.19)

Here ω0, . . . ω3 denote the RPA eigenvalues, and in ad-
dition to the “low energy part” of an operator A, which
was defined in (VI.23) of the main text, we also define
the “high energy part” as

A(2) =
∑

2

[

(A)αi a
†
αai + (A)iα a

†
iaα

]

. (C.20)

In the harmonic oscillator model, explicit forms of the
operators L1(m) and Q1(m), where m = 0, 2, can be
derived as follows: We have

L1 = −i
∑

j

[

(x+ iy)j pzj − (px + ipy)j zj

]

, (C.21)

Q1 = −
√

15

8π

∑

j

zj (x+ iy)j , (C.22)

where j labels the nucleons. If we express (C.21) and
(C.22) in terms of the standard creation and annihila-

tion operators a†k and ak (k = x, y, z) for each parti-
cle, we obtain two kinds of terms: The first kind in-

volves products a†zai and a†iaz with i = x, y, and the

second kind involved products a†za
†
i and azai. It is clear

that the first kind of operators contributes exclusively
to ∆N = 0 excitations (operators A(0)), and the sec-
ond one exclusively to ∆N = 2 excitations (operators
A(2)). Then, for each part A(m) separately, one can re-
expresses the creation and annihilation operators by the
original position and momentum operators. In this way
one obtains the decompositions L1 = L1(0) + L1(2) and
Q1 = Q1(0) +Q1(2), where

14 For simplicity, we write the following expressions in first quanti-
zation and omit the distinction between protons and neutrons.

L1(0) =
(ω̃x + ω̃z)

2

4ω̃xω̃z







L1 − i
ω̃x − ω̃z

ω̃x + ω̃z

∑

j

[

(x+ iy)j pzj + (px + ipy)j zj

]







,

=
(ω̃x + ω̃z)

2

4ω̃xω̃z

2i
∑

j

{

[

r
(1)
j × p

(1)
j

]1

(1)
+
ω̃x − ω̃z

ω̃x + ω̃z

[

r
(1)
j × p

(1)
j

]1

(2)

}

, (C.23)

L1(2) = − (ω̃x − ω̃z)
2

4ω̃xω̃z







L1 − i
ω̃x + ω̃z

ω̃x − ω̃z

∑

j

[

(x+ iy)j pzj + (px + ipy)j zj

]







,

= − (ω̃x − ω̃z)
2

4ω̃xω̃z

2i
∑

j

{

[

r
(1)
j × p

(1)
j

]1

(1)
+
ω̃x + ω̃z

ω̃x − ω̃z

[

r
(1)
j × p

(1)
j

]1

(2)

}

, (C.24)
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and

Q1(0) =
1

2
Q1 −

√

15

8π

1

2M2ω̃xω̃z

∑

j

pzj (px + ipy)j =

√

15

8π

1

2

∑

j

{

[

r
(1)
j × r

(1)
j

]1

(2)
+

1

M2ω̃xω̃z

[

p
(1)
j × p

(1)
j

]1

(2)

}

,

(C.25)

Q1(2) =
1

2
Q1 +

√

15

8π

1

2M2ω̃xω̃z

∑

j

pzj (px + ipy)j =

√

15

8π

1

2

∑

j

{

[

r
(1)
j × r

(1)
j

]1

(2)
− 1

M2ω̃xω̃z

[

p
(1)
j × p

(1)
j

]1

(2)

}

.

(C.26)

Here
[

a(1) × b(1)
]q

(k)
denotes the tensor product, with

rank k and spherical component q, of two vectors ~a and~b,
according to the definitions of Ref.[26]. The forms given
above exhaust all possible one-particle tensor operators
which can be formed from the position and momentum
operators.
Inserting these forms into (C.19), we arrive at the fi-

nal expression for the creation operator of each mode.
We also note that the relations (VI.27) of the main text
are still valid with the above extended operators, and
therefore also the expressions given in the first lines of
Eq.(VI.31) and (VI.32) remain valid.
We see that, in addition to the two opera-

tors L1 and Q1, the presence of the high energy
modes leads to two more types of operators, namely
[

r(1) × p(1)
]1

(2)
and

[

p(1) × p(1)
]1

(2)
. In particular, the

operator
[

r(1) × p(1)
]1

(2)
is the generator of quadrupole

deformations[10], and describes irrotational flow. This
is easily seen by noting that, for example, the part
in {. . . } in the first line of Eq.(C.23), which corre-
sponds to the motion around the x axis, is given by
∑

j

[

(ypz − zpy)j +
δ

2
(ypz + zpy)j

]

. It generates the

displacement ∝
(

~ex × ~r +
δ

2
~∇yz

)

of the volume element

of the liquid, which consists of a rotational and irrota-
tional part. We also note that, in contrast to the angular
momentum, the generator of quadrupole deformations is
not a symmetry transformation of the Hamiltonian.

For not too large deformation, we see from (C.23) and
(C.24) that the rotational term is dominant in the low-
energy part L1(0), and the irrotational term is dom-
inant in the high-energy part L1(2). Going back to
Eq.(C.19), this implies that the low enery solutions cor-
respond mainly to rotational flow, and the high energy
solutions mainly to irrotational flow. Further informa-
tion on the character of these modes is obtained by con-
sidering their vertex functions and M1 and E2 transition
matrix elements[14], which leads to the following picture:
The ω0 mode is the isoscalar rotational (intrinsic Gold-
stone) mode, and the ω2 mode is the K = 1 component
of the isoscalar giant quadrupole resonance, as noted al-
ready above. The remaining modes ω1 and ω3 are of
isovector type, and carry both M1 and E2 strength. The
ω1 mode is mainly of rotational nature and is called the
low-energy scissors mode, while the ω3 mode is mainly
of irrotational nature and is called the high-energy scis-
sors mode or, equivalently, the K = 1 component of the
isovector giant quadrupole resonance[19].
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[42] O.M. Maragò, S.A. Hopkins, J. Arlt, E. Hodby, G.
Hechenblaikner, and C.J. Foot, Phys. Rev. Lett. 84
(2000) 2056.


