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Abstract

We divide the cross section for a meson-meson reaction into three parts. The

first part is for the quark-interchange process, the second for quark-antiquark anni-

hilation processes and the third for resonant processes. Master rate equations are

established to yield time dependence of fugacities of pions, rhos, kaons and vetor

kaons. The equations include cross sections for inelastic scattering of pions, rhos,

kaons and vector kaons. Cross sections for quark-interchange-induced reactions,

that were obtained in a potential model, are parametrized for convenient use. The

number densities of π and ρ (K and K∗) are altered by quark-interchange processes

in equal magnitudes but opposite signs. The master rate equations combined with

the hydrodynamic equations for longitudinal and transverse expansion are solved

with many sets of initial meson fugacities. Quark-interchange processes are shown

to be important in the contribution of the inelastic meson-meson scattering to evo-

lution of mesonic matter.
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1 Introduction

Deconfined matter with high temperature and high density is the focus of studies in

ultrarelativistic heavy-ion collisions and its confirmation is well known to be related to

final-state observables. But hadronic observables are affected by hadronic matter that

succeeds deconfined matter and measurements on dileptons and photons suffer from a

background that comes from hadronic matter. In order to clearly identify deconfined

matter from hadronic observables and electromagnetic probes, one has to subtract any

influence of hadronic matter. This forces us to pursue a precise description of hadronic

matter. In addition, a complete knowledge of ultrarelativistic heavy-ion collisions also

requires understanding of the evolution of hadronic matter.

Transport models [1–14] can provide with vivid and valid descriptions for the evo-

lution of hadronic matter. The models deal with known and unknown cross sections

for hadron-hadron reactions in the following ways. If experimental data are available,

parametrizations fitted to the data are first used. If no measured data exist, cross sec-

tions can stem from theoretical calculations, are simply assumed to be constants, are

adapted to the Breit-Wigner formula with hypothetical widths, or are obtained from the

parametrizations via the detailed balance or via approximate isospin relations. Features of

a sort of reactions can be definitely shown by the parametrizations that depend on thresh-

old energies and the center-of-mass energy of the two colliding hadrons. The assumptions

of constant cross sections and the approximate isospin relations bring uncertainties to

study of the evolution of hadronic matter and predictions on final-state observables.

Time evolution of meson density, for example, φ meson density [15], can be studied

with a rate equation that includes cross sections for scattering of the meson by other

hadrons. The number of necessary cross sections is huge if rate equations for many

hadrons are established. To avoid complexity caused by a great number of mesonic degrees

of freedom in hadronic matter, effective numbers of pions and kaons were introduced to

approximately get evolution of pionic matter and kaonic matter [16–18]. The effective

number of pions (kaons) is defined as the number of pions (kaons) plus the sum of other

hadrons weighted by their effective pionic (kaonic) content. For instance, a ρ meson

counts as two pions and an Ω baryon counts as three kaons. With this consideration rate

equations for the effective numbers of pions and kaons were established [16–18].

At mid-rapidity the PHENIX Collaboration [19] obtained ratios of pT -integrated me-

son yields in central Au+Au collisions at
√
sNN=200 GeV as follows: π−/π+ = 0.984,

K−/K+ = 0.933, K+/π+ = 0.171 and K−/π− = 0.162, which agree with the results

of the other collaborations [20–22]. The STAR Collaboration found ρ0/π− = 0.169 in
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peripheral Au+Au collisions at
√
sNN = 200 GeV [23]. Obviously, pions, rhos and kaons

are dominant meson species in hadronic matter. In the present work we consider only

pions, rhos, kaons and vector kaons that constitute mesonic matter. Inelastic meson-

meson scattering originates from resonances, quark-antiquark annihilation processes and

quark-interchange processes. At the lowest order a resonance is made up of the remain-

ing quark and antiquark of which one absorbs a gluon from the annihilation of a quark

in an initial meson and an antiquark in another initial meson. Of course resonances

may be glueballs, multiquark states or hybrid states [24, 25]. At the lowest order the

quark-antiquark annihilation means that a quark and an antiquark each in a final meson

come from the annihilation of a quark and an antiquark each in an initial meson. A

quark-interchange process allows such a type of meson-meson scattering where one gluon

exchange and the interchange of two quarks each from an initial meson happen. One

is acquainted with the inelastic meson-meson scattering due to the resonance and the

quark-antiquark annihilation, but not the scattering induced by the quark interchange.

One also doesn’t know how important the scattering induced by the quark interchange is

in the evolution of mesonic matter. Indeed, nobody had calculated cross sections for the

seven quark-interchange-induced reactions ππ ↔ ρρ for I = 2, KK ↔ K∗K∗ for I = 1,

KK∗ ↔ K∗K∗ for I = 1, πK ↔ ρK∗ for I = 3
2
, πK∗ ↔ ρK∗ for I = 3

2
, ρK ↔ ρK∗

for I = 3
2
and πK∗ ↔ ρK for I = 3

2
, until we obtained cross sections for these reactions

in Ref. [26] in the quark-interchange mechanism [27, 28]. Therefore, we curiously study

the role of quark-interchange processes that lead to the seven reactions and other isospin

channels in the evolution of mesonic matter in the present work. The study resorts to

master rate equations for mesons where reactions of pions, rhos, kaons and vector kaons

are taken into account. It will be shown that quark-interchange processes are important

in the contribution of the inelastic meson-meson scattering to the evolution of mesonic

matter. Therefore, if we include the resonances and the quark-antiquark annihilation

processes, the quark-interchange processes should be included on an equal footing.

In the next section the master rate equations for pions, rhos, kaons and vector kaons are

established while the inelastic meson-meson scattering due to the resonance, the quark-

antiquark annihilation and the quark interchange is considered. In Section 3 parametriza-

tions of cross sections for the quark-interchange-induced reactions are presented. Cross

sections for the quark-antiquark annihilation processes and the resonant processes are

individually introduced. Numerical results of the master rate equations associated with

longitudinal expansion and discussions are given in Section 4. The master rate equations

are extended to include 2 ↔ 1 mesonic processes in Section 5 and in the case of both the
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longitudinal and transverse expansion the importance of the quark-interchange processes

is examined in Section 6. Summary is in the last section.

2 Master rate equations

We establish the notation K =

(

K+

K0

)

and K̄ =

(

K̄0

K−

)

for the pseudoscalar

isospin doublets as well as K∗ =

(

K∗+

K∗0

)

and K̄∗ =

(

K̄∗0

K∗−

)

for the vector isospin

doublets. We only consider π, ρ, K, K̄, K∗ and K̄∗ of mesonic matter. In order to

clearly exhibit the role of the quark-interchange processes, we neglect both 2 → 1 mesonic

reactions and decays of ρ, K∗ and K̄∗ in this section and the next two sections. The

negligence does not affect us to draw correct conclusions. The inclusion of the 2 ↔ 1

mesonic processes is deferred to Section 5. The reactions that can change the numbers of

π, ρ, K, K̄, K∗ and K̄∗ in a lifetime of mesonic matter are the following inelastic 2-to-2

scattering:

1. ππ ↔ ρρ,

2. KK ↔ K∗K∗ and K̄K̄ ↔ K̄∗K̄∗,

3. KK∗ ↔ K∗K∗ and K̄K̄∗ ↔ K̄∗K̄∗,

4. KK̄ ↔ K∗K̄∗,

5. KK̄∗ ↔ K∗K̄∗ and K∗K̄ ↔ K∗K̄∗,

6. πK∗ ↔ ρK and πK̄∗ ↔ ρK̄,

7. πK ↔ ρK∗ and πK̄ ↔ ρK̄∗,

8. πK∗ ↔ ρK∗ and πK̄∗ ↔ ρK̄∗,

9. ρK ↔ ρK∗ and ρK̄ ↔ ρK̄∗,

10. ππ ↔ KK̄,

11. πρ ↔ KK̄∗ and πρ ↔ K∗K̄,

12. KK̄ ↔ ρρ.
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The cross sections for these reactions are not independent of each other, e.g., σK̄K̄→K̄∗K̄∗ =

σKK→K∗K∗, σK̄K̄∗→K̄∗K̄∗ = σKK∗→K∗K∗ , σK∗K̄→K∗K̄∗ = σKK̄∗→K∗K̄∗, σπK̄∗→ρK̄ = σπK∗→ρK ,

σπK̄→ρK̄∗ = σπK→ρK∗, σπK̄∗→ρK̄∗ = σπK∗→ρK∗, σρK̄→ρK̄∗ = σρK→ρK∗, and σπρ→K∗K̄ =

σπρ→KK̄∗.

Meson number densities change with time according to the following rate equations,

∂µ(niu
µ) = Ψi, (1)

where uµ = (u0, ~u) = γ(1,~v) is the four-velocity of the local reference frame comoving at

velocity ~v and with the Lorentz factor γ. nπ, nρ, nK , nK̄ , nK∗ and nK̄∗ are the number

densities of π, ρ, K, K̄, K∗ and K̄∗ if i denotes π, ρ, K, K̄, K∗ and K̄∗, respectively.

Zero values of the source terms Ψi mean that the total number of each particle species is

conserved. The source terms are given by

Ψπ =2× 1

2
〈σρρ→ππvρρ〉n2

ρ − 2× 1

2
〈σππ→ρρvππ〉n2

π

+ 〈σρK→πK∗vρK〉nρnK − 〈σπK∗→ρKvπK∗〉nπnK∗

+ 〈σρK̄→πK̄∗vρK̄〉nρnK̄ − 〈σπK̄∗→ρK̄vπK̄∗〉nπnK̄∗

+ 〈σρK∗→πKvρK∗〉nρnK∗ − 〈σπK→ρK∗vπK〉nπnK

+ 〈σρK̄∗→πK̄vρK̄∗〉nρnK̄∗ − 〈σπK̄→ρK̄∗vπK̄〉nπnK̄

+ 〈σρK∗→πK∗vρK∗〉nρnK∗ − 〈σπK∗→ρK∗vπK∗〉nπnK∗

+ 〈σρK̄∗→πK̄∗vρK̄∗〉nρnK̄∗ − 〈σπK̄∗→ρK̄∗vπK̄∗〉nπnK̄∗

+ 2〈σKK̄→ππvKK̄〉nKnK̄ − 2× 1

2
〈σππ→KK̄vππ〉n2

π

+ 〈σKK̄∗→πρvKK̄∗〉nKnK̄∗ − 〈σπρ→KK̄∗vπρ〉nπnρ

+ 〈σK∗K̄→πρvK∗K̄〉nK∗nK̄ − 〈σπρ→K∗K̄vπρ〉nπnρ, (2)
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Ψρ =2× 1

2
〈σππ→ρρvππ〉n2

π − 2× 1

2
〈σρρ→ππvρρ〉n2

ρ

+ 〈σπK∗→ρKvπK∗〉nπnK∗ − 〈σρK→πK∗vρK〉nρnK

+ 〈σπK̄∗→ρK̄vπK̄∗〉nπnK̄∗ − 〈σρK̄→πK̄∗vρK̄〉nρnK̄

+ 〈σπK→ρK∗vπK〉nπnK − 〈σρK∗→πKvρK∗〉nρnK∗

+ 〈σπK̄→ρK̄∗vπK̄〉nπnK̄ − 〈σρK̄∗→πK̄vρK̄∗〉nρnK̄∗

+ 〈σπK∗→ρK∗vπK∗〉nπnK∗ − 〈σρK∗→πK∗vρK∗〉nρnK∗

+ 〈σπK̄∗→ρK̄∗vπK̄∗〉nπnK̄∗ − 〈σρK̄∗→πK̄∗vρK̄∗〉nρnK̄∗

+ 〈σKK̄∗→πρvKK̄∗〉nKnK̄∗ − 〈σπρ→KK̄∗vπρ〉nπnρ

+ 〈σK∗K̄→πρvK∗K̄〉nK∗nK̄ − 〈σπρ→K∗K̄vπρ〉nπnρ

+ 2〈σKK̄→ρρvKK̄〉nKnK̄ − 2× 1

2
〈σρρ→KK̄vρρ〉n2

ρ, (3)

ΨK =2× 1

2
〈σK∗K∗→KKvK∗K∗〉n2

K∗ − 2× 1

2
〈σKK→K∗K∗vKK〉n2

K

+
1

2
〈σK∗K∗→KK∗vK∗K∗〉n2

K∗ − 〈σKK∗→K∗K∗vKK∗〉nKnK∗

+ 〈σK∗K̄∗→KK̄vK∗K̄∗〉nK∗nK̄∗ − 〈σKK̄→K∗K̄∗vKK̄〉nKnK̄

+ 〈σK∗K̄∗→KK̄∗vK∗K̄∗〉nK∗nK̄∗ − 〈σKK̄∗→K∗K̄∗vKK̄∗〉nKnK̄∗

+ 〈σπK∗→ρKvπK∗〉nπnK∗ − 〈σρK→πK∗vρK〉nρnK

+ 〈σρK∗→πKvρK∗〉nρnK∗ − 〈σπK→ρK∗vπK〉nπnK

+ 〈σρK∗→ρKvρK∗〉nρnK∗ − 〈σρK→ρK∗vρK〉nρnK

+
1

2
〈σππ→KK̄vππ〉n2

π − 〈σKK̄→ππvKK̄〉nKnK̄

+ 〈σπρ→KK̄∗vπρ〉nπnρ − 〈σKK̄∗→πρvKK̄∗〉nKnK̄∗

+
1

2
〈σρρ→KK̄vρρ〉n2

ρ − 〈σKK̄→ρρvKK̄〉nKnK̄ , (4)
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ΨK∗ =2× 1

2
〈σKK→K∗K∗vKK〉n2

K − 2× 1

2
〈σK∗K∗→KKvK∗K∗〉n2

K∗

+ 〈σKK∗→K∗K∗vKK∗〉nKnK∗ − 1

2
〈σK∗K∗→KK∗vK∗K∗〉n2

K∗

+ 〈σKK̄→K∗K̄∗vKK̄〉nKnK̄ − 〈σK∗K̄∗→KK̄vK∗K̄∗〉nK∗nK̄∗

+ 〈σKK̄∗→K∗K̄∗vKK̄∗〉nKnK̄∗ − 〈σK∗K̄∗→KK̄∗vK∗K̄∗〉nK∗nK̄∗

+ 〈σρK→πK∗vρK〉nρnK − 〈σπK∗→ρKvπK∗〉nπnK∗

+ 〈σπK→ρK∗vπK〉nπnK − 〈σρK∗→πKvρK∗〉nρnK∗

+ 〈σρK→ρK∗vρK〉nρnK − 〈σρK∗→ρKvρK∗〉nρnK∗

+ 〈σπρ→K∗K̄vπρ〉nπnρ − 〈σK∗K̄→πρvK∗K̄〉nK∗nK̄ . (5)

The source term of K̄ (K̄∗) is not shown since ΨK̄ (ΨK̄∗) is obtained from ΨK (ΨK∗) by

the replacements of the subscripts, K ↔ K̄ and K∗ ↔ K̄∗. Those terms what contain

the factor 2 relate to the reactions that have two indistinguishable initial or final mesons.

This factor means that the two initial mesons of a species vanish to attain no final mesons

of the species or the two final mesons of a species appear from no initial mesons of the

species. The first fourteen terms of Ψπ equal the negative of the first fourteen terms

of Ψρ. The first fourteen terms of ΨK equal the negative of the first fourteen terms of

ΨK∗. The quark-interchange processes are only contained in these terms. Therefore, the

quark-interchange processes contribute to the variations of the number densities of π and

ρ, or K and K∗, in equal magnitudes but opposite signs.

The thermal averaged cross section with the relative velocity of two initial mesons vrel

is defined as

〈σij→i′j′vrel〉 =
∫

d3k1
(2π)3

fi(k1)
d3k2
(2π)3

fj(k2)σij→i′j′(
√
s)vrel

∫

d3k1
(2π)3

fi(k1)
∫

d3k2
(2π)3

fj(k2)
, (6)

where fi(k1) and fj(k2) are the momentum distributions of the two initial mesons with

the four-momenta k1 and k2, respectively; σij→i′j′(
√
s) is a cross section that depends

on the center-of-mass energy
√
s of the two initial mesons. We take the approximate

factorization form of the Jüttner distribution with nonequilibrium fugacity λi of particle

species i,

fi(k) =
λi

eu·k/T − 1
, (7)

where T is temperature. If two initial mesons are indistinguishable, fi and fj possess the

same fugacity and as seen in Eqs. (2)-(5) a factor of 1
2
is in some terms to remove the

double counting of initial mesons in the thermal average.

The number density of particle species i is given by

ni = gi

∫

d3k

(2π)3
λi

eu·k/T − 1
= u0λin̄i, (8)
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with

n̄i =
gi
2π2

∫

∞

0

d|~k′|
~k

′2

e
√

~k′2+m2
i
/T − 1

, (9)

where mi is the mass of particle species i; the spin-isospin degeneracy factor gi = 3 for π,

9 for ρ, 2 for K or K̄, 6 for K∗ or K̄∗; ~k′ is the particle momentum in the local comoving

reference frame. The derivative of n̄i with respect to T is

dn̄i

dT
=

1

T
(3n̄i + n̄i−) , (10)

with

n̄i− =
gi
2π2

∫

∞

0

d|~k′| m2
i

e
√

~k′2+m2
i
/T − 1

. (11)

For symmetric matter λK̄ = λK , λK̄∗ = λK∗, n̄K̄ = n̄K , n̄K̄∗ = n̄K∗ , n̄K̄−
= n̄K− and

n̄K̄∗−
= n̄K∗−.

Inserting Eqs. (8) and (10) into Eqs. (2)-(5), we obtain rate equations for fugacities

of π, ρ, K and K∗ of symmetric matter in the longitudinal expansion

λ̇π

λπ

+

(

3 +
n̄π−

n̄π

)

Ṫ

T
+

1

τ

= 2× 1

2
〈σρρ→ππvρρ〉u0

λ2
ρn̄

2
ρ

λπn̄π

− 2× 1

2
〈σππ→ρρvππ〉u0λπn̄π

+ 2〈σρK→πK∗vρK〉u0λρn̄ρλK n̄K

λπn̄π
− 2〈σπK∗→ρKvπK∗〉u0λK∗n̄K∗

+ 2〈σρK∗→πKvρK∗〉u0λρn̄ρλK∗n̄K∗

λπn̄π
− 2〈σπK→ρK∗vπK〉u0λKn̄K

+ 2〈σρK∗→πK∗vρK∗〉u0λρn̄ρλK∗n̄K∗

λπn̄π
− 2〈σπK∗→ρK∗vπK∗〉u0λK∗n̄K∗

+ 2〈σKK̄→ππvKK̄〉u0λ
2
Kn̄

2
K

λπn̄π

− 2× 1

2
〈σππ→KK̄vππ〉u0λπn̄π

+ 2〈σKK̄∗→πρvKK̄∗〉u0λKn̄KλK∗n̄K∗

λπn̄π
− 2〈σπρ→KK̄∗vπρ〉u0λρn̄ρ, (12)
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λ̇ρ

λρ
+

(

3 +
n̄ρ−

n̄ρ

)

Ṫ

T
+

1

τ

= 2× 1

2
〈σππ→ρρvππ〉u0λ

2
πn̄

2
π

λρn̄ρ
− 2× 1

2
〈σρρ→ππvρρ〉u0λρn̄ρ

+ 2〈σπK∗→ρKvπK∗〉u0λπn̄πλK∗n̄K∗

λρn̄ρ
− 2〈σρK→πK∗vρK〉u0λKn̄K

+ 2〈σπK→ρK∗vπK〉u0λπn̄πλKn̄K

λρn̄ρ
− 2〈σρK∗→πKvρK∗〉u0λK∗n̄K∗

+ 2〈σπK∗→ρK∗vπK∗〉u0λπn̄πλK∗n̄K∗

λρn̄ρ
− 2〈σρK∗→πK∗vρK∗〉u0λK∗n̄K∗

+ 2〈σKK̄∗→πρvKK̄∗〉u0λKn̄KλK∗n̄K∗

λρn̄ρ
− 2〈σπρ→KK̄∗vπρ〉u0λπn̄π

+ 2〈σKK̄→ρρvKK̄〉u0λ
2
K n̄

2
K

λρn̄ρ

− 2× 1

2
〈σρρ→KK̄vρρ〉u0λρn̄ρ, (13)

λ̇K

λK
+

(

3 +
n̄K−

n̄K

)

Ṫ

T
+

1

τ

= 2× 1

2
〈σK∗K∗→KKvK∗K∗〉u0λ

2
K∗n̄2

K∗

λKn̄K
− 2× 1

2
〈σKK→K∗K∗vKK〉u0λKn̄K

+
1

2
〈σK∗K∗→KK∗vK∗K∗〉u0λ

2
K∗n̄2

K∗

λKn̄K
− 〈σKK∗→K∗K∗vKK∗〉u0λK∗n̄K∗

+ 〈σK∗K̄∗→KK̄vK∗K̄∗〉u0λ
2
K∗n̄2

K∗

λKn̄K
− 〈σKK̄→K∗K̄∗vKK̄〉u0λKn̄K

+ 〈σK∗K̄∗→KK̄∗vK∗K̄∗〉u0λ
2
K∗n̄2

K∗

λKn̄K
− 〈σKK̄∗→K∗K̄∗vKK̄∗〉u0λK∗n̄K∗

+ 〈σπK∗→ρKvπK∗〉u0λπn̄πλK∗n̄K∗

λKn̄K
− 〈σρK→πK∗vρK〉u0λρn̄ρ

+ 〈σρK∗→πKvρK∗〉u0λρn̄ρλK∗n̄K∗

λK n̄K
− 〈σπK→ρK∗vπK〉u0λπn̄π

+ 〈σρK∗→ρKvρK∗〉u0λρn̄ρλK∗n̄K∗

λKn̄K
− 〈σρK→ρK∗vρK〉u0λρn̄ρ

+
1

2
〈σππ→KK̄vππ〉u0 λ

2
πn̄

2
π

λK n̄K
− 〈σKK̄→ππvKK̄〉u0λKn̄K

+ 〈σπρ→KK̄∗vπρ〉u0λπn̄πλρn̄ρ

λKn̄K
− 〈σKK̄∗→πρvKK̄∗〉u0λK∗n̄K∗

+
1

2
〈σρρ→KK̄vρρ〉u0

λ2
ρn̄

2
ρ

λK n̄K
− 〈σKK̄→ρρvKK̄〉u0λKn̄K , (14)
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λ̇K∗

λK∗

+

(

3 +
n̄K∗−

n̄K∗

)

Ṫ

T
+

1

τ

= 2× 1

2
〈σKK→K∗K∗vKK〉u0 λ2

Kn̄
2
K

λK∗n̄K∗

− 2× 1

2
〈σK∗K∗→KKvK∗K∗〉u0λK∗n̄K∗

+ 〈σKK∗→K∗K∗vKK∗〉u0λKn̄K − 1

2
〈σK∗K∗→KK∗vK∗K∗〉u0λK∗n̄K∗

+ 〈σKK̄→K∗K̄∗vKK̄〉u0 λ2
Kn̄

2
K

λK∗n̄K∗

− 〈σK∗K̄∗→KK̄vK∗K̄∗〉u0λK∗n̄K∗

+ 〈σKK̄∗→K∗K̄∗vKK̄∗〉u0λKn̄K − 〈σK∗K̄∗→KK̄∗vK∗K̄∗〉u0λK∗n̄K∗

+ 〈σρK→πK∗vρK〉u0λρn̄ρλK n̄K

λK∗n̄K∗

− 〈σπK∗→ρKvπK∗〉u0λπn̄π

+ 〈σπK→ρK∗vπK〉u0λπn̄πλKn̄K

λK∗n̄K∗

− 〈σρK∗→πKvρK∗〉u0λρn̄ρ

+ 〈σρK→ρK∗vρK〉u0λρn̄ρλK n̄K

λK∗n̄K∗

− 〈σρK∗→ρKvρK∗〉u0λρn̄ρ

+ 〈σπρ→K∗K̄vπρ〉u0λπn̄πλρn̄ρ

λK∗n̄K∗

− 〈σK∗K̄→πρvK∗K̄〉u0λKn̄K , (15)

where the overdots denote the derivative with respect to the proper time τ .

For the purpose of studying the role of quark-interchange processes, it is enough to only

consider the longitudinal expansion of hadronic matter. The relativistic hydrodynamic

equation is

∂µT
µν = 0, (16)

where T µν is the energy-momentum tensor given by

T µν = (ǫ+ P )uµuν − Pgµν, (17)

where ǫ is energy density and P is pressure. The simple form of T µν above holds for an

ideal fluid where viscosity effects have been neglected. The Bjorken’s scaling solution of

the hydrodynamic equation is [29]

dǫ

dτ
+

ǫ+ P

τ
= 0. (18)

The energy density is

ǫ = ǫπ + ǫρ + ǫK + ǫK̄ + ǫK∗ + ǫK̄∗ (19)

where ǫπ, ǫρ, ǫK , ǫK̄ , ǫK∗ and ǫK̄∗ are the energy densities of π, ρ, K, K̄, K∗ and K̄∗,

respectively. In order to solve Eq. (18), relation of pressure and energy density is needed.

Detailed studies [30–33] have shown that the relation can be P = 0.15ǫ. Once cross

sections for the reactions concerned are known, Eqs. (12)–(15) and (18) determine time

dependence of T (τ), λπ(τ), λρ(τ), λK(τ) and λK∗(τ).
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3 Cross sections for meson-meson reactions

The meson-meson cross sections entailed in the master rate equations in Section 2

are the isospin-averaged cross sections that are obtained by taking the average over the

isospin states of the two initial mesons and the sum over the isospin states of the two final

mesons

σij→i′j′(
√
s) =

1

(2I1 + 1)(2I2 + 1)

∑

I

(2I + 1)σ(I,
√
s), (20)

where I1 and I2 are the isospins of the two initial mesons, respectively, and σ(I,
√
s) is

the spin-averaged cross section for the reaction with the total isospin I.

We explicitly decompose the cross section σ(I,
√
s) into three parts: the first is σqi

from the quark-interchange process, the second σanni from the annihilation processes and

the third σres from the resonant processes. Since the momenta and the coordinates of

the quark and antiquark constituents of the final mesons in the quark-interchange process

A(q1q̄1)+B(q2q̄2) → C(q1q̄2)+D(q2q̄1) are different from those in the annihilation processes

or the resonant processes A(q1q̄1) +B(q2q̄2) → C(q1q̄1) +D(q2q̄2), there is no interference

between the quark-interchange process and the annihilation processes and between the

quark-interchange process and the resonant processes. No interference of the annihilation

processes and the resonant processes is usually assumed. Then the cross section for a

reaction is written as

σ(I,
√
s) = cqiσqi(I,

√
s) + canniσanni(I,

√
s) + cresσres(I,

√
s). (21)

The coefficients cqi, canni and cres that take values of 0 or 1 are listed in Table 1. In the

following three subsections σqi, σanni and σres are presented. For two isospin channels

all the three processes contribute. For most isospin channels only the quark-interchange

processes or the annihilation processes contribute. Quark-interchange-induced reactions

refer to the channels where only the quark interchange works. The quark-interchange

processes include the quark-interchange-induced reactions.

3.1 Cross sections for quark-interchange processes

In Ref. [26] we have obtained unpolarized cross sections for some meson-meson nonreso-

nant reactions governed only by the quark-interchange mechanism. The cross sections rely

on mesonic quark-antiquark wave functions and constituent-constituent interaction. The

quark-antiquark relative-motion wave functions are determined by the Buchmüller-Tye

potential [34] that arises from color confinement and one-gluon exchange plus one- and

11



two-loop corrections. The constituent-constituent interaction includes the Buchmüller-

Tye potential what is nonrelativistic, central and spin-independent, and spin-spin terms

that are obtained by performing Foldy-Wouthuysen canonical transformations to a rela-

tivistic two-constituent Hamiltonian that includes the linear confinement and a relativistic

one-gluon-exchange potential plus perturbative one- and two-loop corrections [35]. The

wave functions and the interaction can reproduce the experimental mass splittings be-

tween the ground-state pseudoscalar octet mesons and the ground-state vector nonet

mesons [35]. The wave functions and the interaction were employed [26] to calculate cross

sections for nonresonant reactions A(q1q̄1) + B(q2q̄2) → C(q1q̄2) +D(q2q̄1) which are en-

dothermic or exothermic. The
√
s-dependence of numerical cross sections exhibited in

Ref. [26] show a peak for each of endothermic reactions and large magnitudes very near

the threshold energies of exothermic reactions. For convenient use of the numerical cross

sections in solving the master rate equations, parametrizations similar to Ref. [36] read

σqi(I,
√
s) = σmax

(

ǫ

ǫendo

)a

exp

[

a

(

1− ǫ

ǫendo

)]

, (22)

where ǫ =
√
s − √

s0 shows difference from the threshold energy
√
s0. Values for the

parameters σmax, ǫendo and a for the quark-interchange-induced endothermic reactions

given in the introduction are shown in Table 2.

The right-hand side of Eq. (22) indicates the zero value of cross section at the threshold

energy and a fall of cross section at
√
s → ∞. ǫendo is close to the center-of-mass energy at

which an endothermic reaction reaches maximum cross section σmax. The power function

and the exponential function do leave a curve that is not symmetric with respect to the

peak. The peak is in the energy region that is accessible to meson-meson reactions in

mesonic matter.

Table 2 shows the channels with the highest isospins. Since quark-interchange pro-

cesses can also take place in low isospin channels as seen in Table 1, flavor matrix elements

fflavor(I) of the quark-interchange processes are listed in Table 3 for different isospins. The

entry fflavor(1) = 0 for ππ → ρρ for I = 1 means that the reaction in I = 1 is forbidden.

This is consistent with the fact that the antisymmetric state of ππ is not allowed. The

discrepancy of the cross sections for different isospin channels of a reaction results from

the different flavor matrix elements while matrix elements involving spin and spatial wave

functions are equal. Then, for instance, we have σqi(I = 0,
√
s) = 1

4
σqi(I = 2,

√
s) and

σqi(I = 1,
√
s) = 0 for ππ → ρρ. Let Imax denote the highest isospin of a reaction. The

cross section for a channel listed in Table 3 is

σqi(I,
√
s) =

f 2
flavor(I)

f 2
flavor(Imax)

σqi(Imax,
√
s). (23)
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The cross section for an exothermic reaction i′(S3I3) + j′(S4I4) → i(S1I1) + j(S2I2) is

obtained from the endothermic reaction ij → i′j′ by the detailed balance

σi′j′→ij =
~P 2

~P ′2

gi
gf
σij→i′j′, (24)

where gi = (2S1+1)(2I1+1)(2S2+1)(2I2+1) and gf = (2S3+1)(2I3+1)(2S4+1)(2I4+1)

denote the spin-isospin degeneracy factors of initial particles with the spins S1 and S2 as

well as the isospins I1 and I2, and of final particles with the spins S3 and S4 as well as

the isospins I3 and I4, respectively; ~P and ~P ′ denote momenta of an initial meson and a

final meson in the center-of-momentum frame of the reaction ij → i′j′, respectively.

3.2 Cross sections for annihilation processes

The isospin-averaged cross section for an annihilation reaction can be parametrized

by [37, 38]

σanni(
√
s) = b

(

1− s0
s

)c

. (25)

Values of the parameter b and the dimensionless parameter c for the reactions ππ → KK̄,

πρ → KK̄∗(K∗K̄) and KK̄ → ρρ are given in Table 4. Since no experimental data are

available, we assume that cross sections for other annihilation processes listed in Table

1 possess Eq. (25) with the same parameters b and c as the reaction ππ → KK̄. The

treatment of the annihilation processes is simple.

3.3 Cross sections for resonant processes

Cross sections for resonant processes are generally described by the Breit-Wigner for-

mula [1, 2, 5–7]

σres(
√
s) =

2J + 1

(2S1 + 1)(2S2 + 1)

π

~P 2

Γ2BinBout

(
√
s−mR)2 + Γ2/4

, (26)

where a resonance has its spin J , its energy mR and its full width Γ, and Bin and Bout are

the branching fractions of the resonance decays into the initial state and the final state,

respectively. We take account of the resonances f0(1370), ρ(1450), f0(1500) and ρ3(1690)

for ππ ↔ ρρ, K1(1270), K1(1400), K∗(1410), K∗

2 (1430), K∗(1680) and K∗

3 (1780) for

πK∗ ↔ ρK, f0(980), φ(1020), f2(1270), f0(1370), ρ(1450), f0(1500), f
′

2(1525), ρ3(1690),

ρ(1700), f0(1710), f2(1810) and f4(2050) for ππ ↔ KK̄. Since the full widths and the

branching fractions for some resonances have not been fixed by measurements [39], their

values we select for the reactions ππ ↔ ρρ, πK∗ ↔ ρK and ππ ↔ KK̄ are listed in Table

5.
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4 Results and discussions

In this section we represent and discuss results that are from solving the master rate

equations in combination with the hydrodynamic equation (18) simultaneously by numer-

ical integration using a fourth order Runge-Kutta method. The inelastic 2-to-2 scattering

in the master rate equations includes the three types of processes: the quark-interchange

processes, the annihilation processes and the resonant processes. As a good approxi-

mation, we assume that hadronization of quark-gluon plasma at the critical temperature

Tc = 175 MeV [40] only produces π, ρ, K, K̄, K∗ and K̄∗. We assume that the hadroniza-

tion is finished at τh = 5.6 fm/c and at the moment mesonic matter has λπ = 0.7, λρ = 0.7,

λK = 0.5 and λK∗ = 0.2 for the fugacities of π, ρ, K and K∗, respectively. We consider

mesonic matter at or near mid-rapidity, i.e., uµ ≈ (1, 0, 0, 0), solve Eqs. (12)-(15) and (18),

and terminate numerical calculations when mesonic matter reaches the kinetic freeze-out

temperature Tfz = 105 MeV, which corresponds to a freeze-out time of the order of 30

fm/c.

If the inelastic 2-to-2 scattering is switched off, ie., the source terms are zero, the

master rate equations become

∂µ(niu
µ) = 0, (27)

which have the solutions

ni ∼
1

τ
. (28)

Together with Eq. (8) we have

λi ∼
1

u0n̄iτ
. (29)

For massive bosons, n̄i given by Eq. (9) and energy densities do not simply rely on a power

of T , and the hydrodynamic equation cannot guarantee n̄iτ as constants. Therefore, λi

depend on the proper time τ unlike the case of massless bosons which fugacities are

constants. Fugacities for π, ρ, K and K∗ are denoted by λπno, λρno, λKno and λK∗no,

respectively, and are plotted as solid curves in Fig. 1. The solid curves for ρ, K and K∗

rise with the increase of time. The fugacity of the lightest meson first decreases slightly

and then increases. Compared to the results in the absence of the source terms, we

show meson fugacities by the dashed curves and indicate the meson fugacities by λiqar

(i = π, ρ,K,K∗) while the quark-interchange processes, the annihilation processes and

the resonant processes are all included. The differences between λiqar and λino due to

the inelastic 2-to-2 scattering are obvious. To show how the quark-interchange processes

modify fugacities, we show the fugacities by dotted curves and denote the fugacities by

λiqi (i = π, ρ,K,K∗) while only the quark-interchange processes govern time dependence

14



of the fugacities. In most of the range 5.6 fm/c < τ < 30 fm/c the absolute values of the

fugacity differences, | λiqi − λino |, caused by the quark-interchange processes are smaller

than | λiqar − λino | caused by the three types of processes.

To show a role of the quark-interchange processes, we define

Ri =
λiqi − λino

λiqar − λino

. (30)

The larger the absolute values of Ri, the more important the quark-interchange processes.

If Ri > 0, either of the quark-interchange processes and the combination of the three types

of processes increases (reduces) fugacities relative to λino. If Ri < 0, the quark-interchange

processes increase (reduce) fugacities relative to λino while the annihilation and resonant

processes reduce (increase) fugacities. Values of Ri change with the increase of time. At

τ = 20 fm/c, Rπ = 0.37, Rρ = 0.30, RK = 0.21 and RK∗ = 0.27.

To quantitatively determine the importance of the quark-interchange processes, we

define the average of the absolute value of Ri by

R̄i =

∫ τfz
τh

dτ | Ri |
τfz − τh

. (31)

where τfz is the freeze-out time of mesonic matter. Then, R̄π = 0.53, R̄ρ = 0.30, R̄K = 0.21

and R̄K∗ = 0.27. Hence, with the set of initial fugacities, λπ = 0.7, λρ = 0.7, λK = 0.5

and λK∗ = 0.2, for the master rate equations and the hydrodynamic equation, the quark-

interchange processes are important in the contribution of the inelastic 2-to-2 scattering

to the evolution of mesonic matter. But the conclusion is only limited to this set. We

need to examine R̄i versus other initial fugacities. Initial fugacities of mesonic matter

depend on incident energies in nucleus-nucleus collisions. The Au-Au collisions have been

carried out at various energies of per pair of colliding nucleons allowed by the Relativistic

Heavy Ion Collider (RHIC) and Pb-Pb collisions at the Large Hadron Collider (LHC)

have been performed at higher energies. Different nucleus-nucleus collisions at different

energies produce mesonic matter with different magnitudes of initial fugacities. Therefore,

we use a wide range of initial fugacities to check the importance of the quark-interchange

processes. It is impossible to plot graphs for R̄i (i = π, ρ, K, K∗) versus the four variables

λπ, λρ, λK and λK∗ , but we can tabulate R̄i (i = π, ρ, K, K∗) versus a finite sets of initial

fugacities in the range between 0 and 1. We take 81 sets in which λπ = 0.35, 0.65, 0.95,

λρ = 0.15, 0.45, 0.75, λK = 0.25, 0.55, 0.85 and λK∗ = 0.15, 0.55, 0.95. Statistically, the 81

sets can tell us how important the quark-interchange processes are. The freeze-out time

τfz depends on initial fugacities. Averages R̄i (i = π, ρ, K, K∗) for the 81 sets of initial

fugacities are listed in the middle four columns in Tables 6-8.
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The average may be as large as 33.07 and this occurs when the contributions of the

quark-interchange, annihilation and resonant processes can cancel each other. The average

may be as small as 0.01. Most of the entries in the middle four columns are above

0.2. Therefore, the quark-interchange processes are important in the contribution of the

inelastic 2-to-2 scattering to the evolution of mesonic matter.

Via HIJING Monte Carlo simulations [41–43], initial fugacities of deconfined gluons

and quarks produced in central Au-Au collisions at
√
sNN = 200 GeV are about 0.2 and

0.032, respectively, as seen in the second set of initial conditions of quark-gluon plasma in

Table I of Ref. [44]. Using the ratio 0.2 of strange-quark number to up-quark number [45],

that may reproduce the measured ratiosK−/π− = 0.15±0.02 andK∗0/K− = 0.205±0.033

at midrapidity [46], we solve master rate equations of quark-gluon plasma given in Ref. [47]

to obtain time dependence of fugacities of gluons and quarks. We obtain the time τh ≈ 5.6

fm/c, the fugacities λg ≈ 0.75 and λq ≈ 0.52 at Tc. Coalescence of quarks and antiquarks

forms mesons at Tc. Assume that the formed mesons are only π, ρ, K, K̄, K∗ and K̄∗ and

that λπ = λρ and λK = λK∗ at Tc. Then we obtain λπ = λρ ≈ 1.31 and λK = λK∗ ≈ 0.56

that are the initial fugacities of mesonic matter produced in central Au-Au collisions at
√
sNN = 200 GeV. For other nucleus-nucleus collisions meson fugacities are different from

these values. The pion fugacity may not equal the rho fugacity at Tc and the kaon fugacity

may not equal the vector kaon fugacity. If
√
sNN decreases continuously, meson fugacities

decrease continuously. Therefore, λπ = λρ = 0.7, λK = 0.5 and λK∗ = 0.2 used in this

section and some sets of initial fugacities listed in Tables 6-8 can be covered in some

nucleus-nucleus collisions at some values of
√
sNN . Since the strange-quark number is less

than half the up-quark number, those sets of initial fugacities in which both λK and λK∗

are larger than λπ and λρ are not possible. But such sets of initial fugacities yield R̄i > 0.2

(i = π, ρ,K,K∗) in more than half the entries of R̄i. Therefore, the impossible sets of

initial fugacities help us more firmly establish that the quark-interchange processes are

important in the contribution of the inelastic 2-to-2 scattering to the evolution of mesonic

matter.

It is shown in Table 1 that fourteen reaction channels involve the quark-interchange

processes, sixteen channels the annihilation processes and three channels the resonant

processes. In a reaction where a quark-interchange process occurs, the channel with the

highest isospin is only induced by the quark-interchange process and the number 2I + 1

of isospin component in Eq. (20) can enhance the capability of the process in influencing

the evolution of mesonic matter.
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5 Results pertinent to 2 ↔ 1 processes

Since we only consider π, ρ, K, K̄, K∗ and K̄∗, resonances involved are ρ, K∗ and K̄∗.

Then we include ππ ↔ ρ, πK ↔ K∗ and πK̄ ↔ K̄∗. Let Γρ→ππ, ΓK∗→πK and ΓK̄∗→πK̄

be the decay widths of ρ → ππ, K∗ → πK and K̄∗ → πK̄, respectively. We add the

following four expressions

2Γρ→ππnρ − 2× 1

2
〈σππ→ρvππ〉nπnπ + ΓK∗→πKnK∗ + ΓK̄∗→πK̄nK̄∗

−〈σπK→K∗vπK〉nπnK − 〈σπK̄→K̄∗vπK̄〉nπnK̄ ,

−Γρ→ππnρ +
1

2
〈σππ→ρvππ〉nπnπ,

ΓK∗→πKnK∗ − 〈σπK→K∗vπK〉nπnK ,

and

−ΓK∗→πKnK∗ + 〈σπK→K∗vπK〉nπnK ,

to the source terms Ψπ, Ψρ, ΨK and ΨK∗ in Eqs. (2)-(5), respectively, to establish

master rate equations with the 2 ↔ 1 mesonic processes. Obtained from the experimental

data [48], the cross section for ππ → ρ is

σππ→ρ =
80 mb

1 + 4(
√
s−mρ)2/Γ2

ρ→ππ

. (32)

The cross section for πK → K∗ or πK̄ → K̄∗ can be found in Refs. [3,4]. From solutions

of the master rate equations with the 2 ↔ 1 processes and the hydrodynamic equation

(18), we get the average values R̄i at various initial fugacities and list them in the right

four columns in Tables 6-8.

In the tables about 96% of the entries in the right four columns have values larger than

0.5 and 53% larger than 1. Moreover, most of R̄i (i = π, ρ,K,K∗) are larger than the

corresponding ones derived from the master rate equations without the 2 ↔ 1 processes.

Therefore, while the quark-antiquark annihilation processes and the resonant processes

are taken into account, the quark-interchange processes must be included on an equal

footing.

6 Results pertinent to transverse expansion

In the preceding sections we have considered only the longitudinal expansion for

mesonic matter. In this section we rely on both longitudinal and transverse expansion

to deal with mesonic matter produced in central collisions. The four-velocity of the local
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reference frame is uµ = γ( t
τ
, vr, 0,

z
τ
) with γ = 1/

√

1− v2r , where vr is the transverse

velocity. The left-hand side in Eq. (1) becomes

∂µ(niu
µ) = γ

∂ni

∂τ
+ ni(

∂γ

∂τ
+

γ

τ
) +

1

r

∂

∂r
(rniγvr). (33)

For matter uniformly distributed,

∂µ(niu
µ) = γ

∂ni

∂τ
+ niγ

3vr
∂vr
∂τ

+ niγ(2γ
2v2r + 1)

∂vr
∂r

+
niγ

τ
+

niγvr
r

. (34)

In terms of fugacities,

∂µ(niu
µ) = u0n̄iγ

∂λi

∂τ
+u0λiγ

∂n̄i

∂T

∂T

∂τ
+2niγ

3vr
∂vr
∂τ

+niγ(2γ
2v2r+1)

∂vr
∂r

+
niγ

τ
+
niγvr
r

. (35)

Solving the master rate equations with Eq. (35) and the 2 ↔ 1 mesonic processes and the

hydrodynamic equations describing the longitudinal and transverse expansion in Ref. [49],

we obtain, for example, at λπ = 0.7, λρ = 0.7, λK = 0.5 and λK∗ = 0.2, the average values

R̄i (i = π, ρ,K,K∗) are 1.11, 0.78, 1.21 and 0.85, respectively. Corresponding to most

sets of the initial fugacities listed in Tables 6-8, R̄π, R̄ρ, R̄K and R̄K∗ are larger than

1. Therefore, we must use the quark-interchange processes on an equal footing while the

annihilation processes and the resonant processes are considered.

7 Summary

We have established a set of master rate equations that describe time dependence

of fugacities of pions, rhos, kaons and vector kaons in mesonic matter. A meson-meson

reaction is comprised of the quark-interchange process, the annihilation processes and

the resonant processes. The cross sections for the quark-interchange-induced reactions,

that were obtained from the Buchmüller-Tye potential plus the spin-spin interaction, are

parametrized for convenient use in studying the evolution of mesonic matter.

The variations of fugacities of pions, rhos, kaons and vector kaons are governed by

the inelastic meson-meson scattering, the 2 ↔ 1 mesonic processes and the expansion

of mesonic matter. In most reactions the quark-interchange processes take place. If

the number density of π is increased (reduced) by the quark-interchange processes, the

number density of ρ is reduced (increased) in the same amount. This relation also holds

true for K and K∗. Numerical results of the master rate equations show that the quark-

interchange processes are important in the contribution of the inelastic 2-to-2 scattering

to the evolution of mesonic matter.
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Table 1: Values of cqi, canni and cres.

Channel cqi canni cres

I = 2 ππ ↔ ρρ 1 0 0

I = 1 ππ ↔ ρρ 0 1 0

I = 0 ππ ↔ ρρ 1 1 1

I = 1 KK ↔ K∗K∗ 1 0 0

I = 0 KK ↔ K∗K∗ 1 0 0

I = 1 KK∗ ↔ K∗K∗ 1 0 0

I = 0 KK∗ ↔ K∗K∗ 1 0 0

I = 1 KK̄ ↔ K∗K̄∗ 0 1 0

I = 0 KK̄ ↔ K∗K̄∗ 0 1 0

I = 1 KK̄∗ ↔ K∗K̄∗ 0 1 0

I = 0 KK̄∗ ↔ K∗K̄∗ 0 1 0

I = 3/2 πK∗ ↔ ρK 1 0 0

I = 1/2 πK∗ ↔ ρK 1 1 1

I = 3/2 πK ↔ ρK∗ 1 0 0

I = 1/2 πK ↔ ρK∗ 1 1 0

I = 3/2 πK∗ ↔ ρK∗ 1 0 0

I = 1/2 πK∗ ↔ ρK∗ 1 1 0

I = 3/2 ρK ↔ ρK∗ 1 0 0

I = 1/2 ρK ↔ ρK∗ 1 1 0

I = 1 ππ ↔ KK̄ 0 1 0

I = 0 ππ ↔ KK̄ 0 1 1

I = 1 πρ ↔ KK̄∗ 0 1 0

I = 0 πρ ↔ KK̄∗ 0 1 0

I = 1 KK̄ ↔ ρρ 0 1 0

I = 0 KK̄ ↔ ρρ 0 1 0
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Table 2: Parameters in Eq. (22).

Channel σmax (mb) ǫendo (GeV) a

I = 2 ππ → ρρ 0.49991 0.20909 0.87446

I = 1 KK → K∗K∗ 0.61622 0.16539 0.4883

I = 1 KK∗ → K∗K∗ 0.85168 0.26399 1.05175

I = 3/2 πK∗ → ρK 1.40233 0.15023 1.07478

I = 3/2 πK → ρK∗ 0.49839 0.12056 0.40939

I = 3/2 πK∗ → ρK∗ 0.49 0.21 0.88

I = 3/2 ρK → ρK∗ 0.5081 0.3166 1.89693

Table 3: Flavor matrix elements fflavor(I).

I = 0 I = 1 I = 2 I = 1/2 I = 3/2

ππ → ρρ −1/2 0 1

KK → K∗K∗ 1 1

KK∗ → K∗K∗ 1 1

πK∗ → ρK −1/2 1

πK → ρK∗ −1/2 1

πK∗ → ρK∗ −1/2 1

ρK → ρK∗ −1/2 1

Table 4: Values of b and c.

Reaction b (mb) c

ππ → KK̄ 2.7 0.76

πρ → KK̄∗(K∗K̄) 0.4 0.5

KK̄ → ρρ 3.5 0.38
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Table 5: Some resonances formed in ππ ↔ ρρ, πK∗ ↔ ρK and ππ ↔ KK̄.

Name Γ (MeV) Bππ Bρρ

f0(1370) 370 0.26 0.208

ρ(1450) 147 0.0672 0.02

Name Γ (MeV) BπK∗ BρK

K1(1400) 174 0.94 0.3

K∗(1410) 232 0.4 0.07

K∗(1680) 322 0.299 0.314

Name Γ (MeV) Bππ BKK̄

f0(980) 70 0.755 0.245

f0(1370) 370 0.203 0.35

ρ(1450) 147 0.0672 0.0016

ρ(1700) 250 0.2345 0.0412

f2(1810) 197 0.0048 0.003
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Table 6: R̄π, R̄ρ, R̄K and R̄K∗ irrelevant and relevant to the 2 ↔ 1 processes are listed

in the middle and right four columns, respectively. Initial fugacities are in the left four

columns.
λπ λρ λK λK∗ R̄π R̄ρ R̄K R̄K∗ R̄π R̄ρ R̄K R̄K∗

0.35 0.15 0.25 0.15 0.43 0.18 1.14 1.80 1.34 1.54 0.95 1.02

0.35 0.15 0.25 0.55 1.63 0.19 0.30 0.20 0.99 2.03 4.79 0.93

0.35 0.15 0.25 0.95 0.36 0.19 0.27 0.34 0.87 2.81 1.17 0.90

0.35 0.15 0.55 0.15 1.19 0.22 0.01 2.52 1.75 6.89 0.53 1.06

0.35 0.15 0.55 0.55 0.45 0.23 0.17 0.03 1.34 2.68 0.36 0.85

0.35 0.15 0.55 0.95 0.27 0.21 2.86 0.04 0.93 2.04 6.22 0.83

0.35 0.15 0.85 0.15 5.28 0.50 0.01 2.56 4.49 2.42 0.50 1.72

0.35 0.15 0.85 0.55 0.54 0.74 0.04 0.08 2.23 2.71 0.35 0.77

0.35 0.15 0.85 0.95 0.29 0.22 0.09 0.03 2.34 4.07 0.27 0.77

0.35 0.45 0.25 0.15 0.61 0.28 0.22 0.18 1.07 1.00 0.98 1.16

0.35 0.45 0.25 0.55 0.44 2.76 0.27 0.39 1.00 5.32 1.66 0.96

0.35 0.45 0.25 0.95 0.40 2.16 0.22 0.42 0.93 1.41 1.52 0.94

0.35 0.45 0.55 0.15 0.28 0.21 0.13 2.07 1.27 0.97 0.77 1.77

0.35 0.45 0.55 0.55 0.74 0.26 0.10 0.13 1.48 1.04 0.67 0.93

0.35 0.45 0.55 0.95 0.50 0.66 0.08 0.22 0.99 1.29 0.45 0.90

0.35 0.45 0.85 0.15 0.45 0.20 0.10 5.44 1.98 0.97 0.68 0.80

0.35 0.45 0.85 0.55 0.26 0.21 0.08 0.10 1.98 1.01 0.60 0.87

0.35 0.45 0.85 0.95 0.99 0.29 0.07 0.11 1.75 1.13 0.50 0.85

0.35 0.75 0.25 0.15 7.50 0.28 0.25 0.40 1.04 0.99 1.00 1.25

0.35 0.75 0.25 0.55 0.42 0.41 0.34 0.42 1.00 1.02 1.38 0.97

0.35 0.75 0.25 0.95 0.42 0.57 0.58 0.43 0.95 1.07 1.31 0.95

0.35 0.75 0.55 0.15 0.20 0.24 0.18 0.47 1.16 0.96 0.83 1.72

0.35 0.75 0.55 0.55 0.92 0.28 0.19 0.22 1.12 0.98 0.78 0.96

0.35 0.75 0.55 0.95 1.32 0.34 0.19 0.30 1.03 1.01 0.70 0.93

0.35 0.75 0.85 0.15 0.32 0.22 0.15 0.69 1.45 0.94 0.74 1.11

0.35 0.75 0.85 0.55 0.39 0.25 0.15 0.56 1.42 0.96 0.70 1.11

0.35 0.75 0.85 0.95 4.53 0.28 0.16 0.19 1.72 0.98 0.64 0.89
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Table 7: The same as Table 6.
λπ λρ λK λK∗ R̄π R̄ρ R̄K R̄K∗ R̄π R̄ρ R̄K R̄K∗

0.65 0.15 0.25 0.15 0.15 0.17 0.14 1.74 0.68 1.44 0.70 1.08

0.65 0.15 0.25 0.55 0.17 0.20 0.20 1.61 1.25 0.73 0.89 0.87

0.65 0.15 0.25 0.95 0.11 0.20 0.22 1.36 0.98 0.74 0.94 0.83

0.65 0.15 0.55 0.15 10.48 0.16 0.14 5.73 0.92 2.30 7.31 1.11

0.65 0.15 0.55 0.55 0.51 0.21 6.34 0.07 0.86 0.68 5.43 1.00

0.65 0.15 0.55 0.95 2.90 0.21 0.51 0.08 0.87 0.72 5.80 0.76

0.65 0.15 0.85 0.15 1.50 0.18 0.03 4.62 1.34 1.42 0.34 1.74

0.65 0.15 0.85 0.55 2.15 0.21 0.24 0.11 0.78 1.09 0.41 1.35

0.65 0.15 0.85 0.95 1.71 0.22 3.52 0.09 0.83 0.69 12.40 0.69

0.65 0.45 0.25 0.15 0.14 2.44 2.00 0.09 1.73 1.67 3.07 1.43

0.65 0.45 0.25 0.55 0.59 0.13 0.18 0.69 1.37 1.64 0.74 0.96

0.65 0.45 0.25 0.95 1.03 0.15 0.21 0.62 0.98 1.99 0.86 0.93

0.65 0.45 0.55 0.15 0.36 0.28 0.13 0.33 1.62 1.04 0.72 0.92

0.65 0.45 0.55 0.55 2.09 1.14 0.80 0.13 1.52 1.60 1.08 0.90

0.65 0.45 0.55 0.95 0.44 0.17 3.52 0.22 0.97 2.56 2.85 0.87

0.65 0.45 0.85 0.15 7.58 0.23 0.09 0.51 1.62 0.97 0.60 1.19

0.65 0.45 0.85 0.55 0.37 4.12 0.03 0.47 4.25 1.53 0.48 1.10

0.65 0.45 0.85 0.95 0.29 0.30 0.08 0.07 1.68 1.91 0.35 0.80

0.65 0.75 0.25 0.15 1.85 0.52 2.24 0.12 1.18 1.05 3.80 42.57

0.65 0.75 0.25 0.55 0.76 3.09 0.10 0.60 1.06 1.46 1.99 0.98

0.65 0.75 0.25 0.95 0.54 4.69 0.19 0.53 0.98 1.85 0.89 0.95

0.65 0.75 0.55 0.15 0.27 0.27 0.20 0.30 1.27 0.97 0.84 1.13

0.65 0.75 0.55 0.55 0.93 0.57 0.16 0.46 1.15 1.09 0.78 1.01

0.65 0.75 0.55 0.95 0.44 1.58 0.51 0.33 0.98 1.90 0.60 0.92

0.65 0.75 0.85 0.15 0.37 0.24 0.15 0.42 1.65 0.94 0.71 0.85

0.65 0.75 0.85 0.55 0.26 0.26 0.13 0.82 1.51 0.99 0.65 1.71

0.65 0.75 0.85 0.95 0.88 0.45 0.10 0.17 1.19 1.16 0.54 0.87
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Table 8: The same as Table 6.
λπ λρ λK λK∗ R̄π R̄ρ R̄K R̄K∗ R̄π R̄ρ R̄K R̄K∗

0.95 0.15 0.25 0.15 0.12 0.17 0.09 3.27 0.86 0.88 0.65 1.15

0.95 0.15 0.25 0.55 0.16 0.20 0.17 2.74 0.85 0.84 0.78 1.44

0.95 0.15 0.25 0.95 0.17 0.20 0.20 1.32 1.26 0.83 0.85 1.30

0.95 0.15 0.55 0.15 0.23 0.16 3.95 0.34 0.92 0.90 4.40 0.96

0.95 0.15 0.55 0.55 0.26 0.21 0.34 0.08 0.95 0.86 1.38 1.64

0.95 0.15 0.55 0.95 0.28 0.21 0.31 0.21 1.75 0.84 1.29 1.88

0.95 0.15 0.85 0.15 4.44 0.14 0.11 0.95 0.95 0.90 1.54 1.03

0.95 0.15 0.85 0.55 0.67 0.21 3.62 0.10 1.02 0.86 8.08 1.67

0.95 0.15 0.85 0.95 0.73 0.22 8.17 0.11 1.98 0.84 8.36 2.43

0.95 0.45 0.25 0.15 0.06 0.08 0.03 0.03 2.55 1.32 0.30 1.26

0.95 0.45 0.25 0.55 0.06 0.17 0.16 33.07 1.73 1.41 0.65 0.94

0.95 0.45 0.25 0.95 0.04 0.18 0.19 1.84 1.31 2.17 0.77 0.86

0.95 0.45 0.55 0.15 0.14 1.42 0.45 0.24 1.74 1.25 1.15 0.89

0.95 0.45 0.55 0.55 0.15 0.19 0.54 0.34 1.13 1.21 2.25 1.03

0.95 0.45 0.55 0.95 0.10 0.21 0.33 0.28 1.05 1.13 3.67 0.81

0.95 0.45 0.85 0.15 0.97 0.75 0.08 0.37 1.15 1.23 0.47 0.96

0.95 0.45 0.85 0.55 0.99 0.31 0.19 1.44 1.02 1.47 0.57 1.22

0.95 0.45 0.85 0.95 2.48 0.24 2.60 0.05 0.82 1.21 15.76 1.01

0.95 0.75 0.25 0.15 0.17 5.86 0.20 0.08 2.13 2.59 4.36 1.46

0.95 0.75 0.25 0.55 0.46 0.08 0.14 1.11 1.76 2.07 0.41 0.99

0.95 0.75 0.25 0.95 15.83 0.12 0.19 0.72 1.49 2.32 0.68 0.93

0.95 0.75 0.55 0.15 0.96 0.41 0.29 0.25 1.90 1.09 0.93 1.12

0.95 0.75 0.55 0.55 4.09 4.11 0.28 1.85 1.51 1.40 0.85 1.16

0.95 0.75 0.55 0.95 8.19 0.14 1.61 0.41 1.13 1.58 1.39 0.88

0.95 0.75 0.85 0.15 0.32 0.28 0.16 0.34 1.57 0.88 0.66 0.88

0.95 0.75 0.85 0.55 0.25 0.78 0.09 1.51 1.31 1.16 0.54 0.92

0.95 0.75 0.85 0.95 0.70 0.47 0.84 0.18 1.14 2.50 1.15 0.78
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Figure 1: Time dependence of λπ, λρ, λK and λK∗ without the source terms (solid curves),

with the quark-interchange, annihilation and resonant processes (dashed curves) and with

only the quark-interchange processes (dotted curves).
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