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Abstract

This paper studies the change point problem for a general parametric, univariate or multivariate
family of distributions. An information theoretic procedure is developed which is based on general
divergence measures for testing the hypothesis of the existence of a change. For comparing the
accuracy of the new test-statistic a simulation study is performed for the special case of a univariate
discrete model. Finally, the procedure proposed in this paper is illustrated through a classical
change-point example.
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1 Introduction

The change point problem has been considered and studied by several authors the last five decades.
Change point analysis is a statistical tool for determining whether a change has taken place at a
point of a sequence of observations, such that the observations are described by one distribution up
to that point and by another distribution after that point. Change-point analysis concerns with the
detection and estimation of the point at which the distribution changes. One change point problem
or multiple change points problem have been studied in the literature, depending on whether one or
more change points are observed in a sequence of random variables. Several methods, parametric
or non-parametric, have been developed to approach the solution of this problem while the range of
applications of change point analysis is broad. Applications can be encountered in many areas such as
statistical quality control, public health, medicine, finance, biomedical signal processing, meteorology,
seismology, etc. The monograph by Chen and Gupta (2000) summarizes recent developments in
parametric change-point analysis.

Typical situations encountered in the literature of parametric multiple change points analysis are as
follows: LetX1,X2, ...,XK beK independent d-variate observations (d ∈ N) and let (X (d), βX , Pθ)θ∈Θ
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the statistical space associated with the random variable (r.v.) Xi, i = 1, ...,K. The probability den-

sity function with respect to a σ-finite measure µ given by fθi
(x) = f(x,θi) =

dPθi

dµ , θi ∈ Rm,

i = 1, ...,K, x ∈ Rd. For simplicity, µ is either the Lebesgue measure or a counting measure.
We adopt in the sequel the formulation of the multiple change point problem as it appeared in
Srivastava and Worsley (1986) and Chen and Gupta (2000, 2004). Based on these authors, sup-
pose that adjacent observations are grouped in q groups, so that X1,X2, ...,Xk1 , are in the first
group, Xk1+1,Xk1+2, ...,Xk2 , are in the second group and we continue in a similar manner until
Xkq−1+1,Xkq−1+2, ...,Xkq = XK are in the q-th group.

Consider the model for changes in the parameters. This is formulated as a problem of testing the
following hypotheses,

H0 : θ1 = θ2 = ... = θK ( = θ0, θ0 unknown), (1)

versus the alternative

H1 : θ1 = ... = θk1 6= θk1+1 = ... = θk2 6= ... 6= θkq−1+1 = ... = θkq = θK ,

where q, 1 ≤ q ≤ K, is the unknown number of changes and k1, k2, ..., kq are the unknown positions
of the change points. The above hypotheses can be equivalently stated in the form

H0 : X i are described by fθ0 , i = 1, ...,K and θ0 unknown, (2)

versus the alternative

H1 : Xkj+1,Xkj+2, ...,Xkj+1
, j = 0, ..., q − 1 are described by fθj+1

,

with Xkq = XK .
There is an extensive bibliography on the subject and several methods to search for the change point

problem have appeared in the literature. Among them, the generalized likelihood ratio test, Bayesian
solution of the problem, information criterion approaches, cumulative sum method, etc. Based on
these methods, several papers discuss the change-point problems in specific probabilistic models, like
the univariate and multivariate normal distribution, the gamma model and the exponential model.
For instance, Sen and Srivastava (1980) focused on the single change-point problem. Moreover, they
consider that within each section, the distributions are the same, while the distribution in a section
is different from that in the preceding and the following section in mean vector or covariance matrix.
For an exposition of these methods and their application to specific distributions we refer to the
monograph or the survey paper by Chen and Gupta (2000, 2001) and the references appeared therein.

It has been proposed in these and other treatments (cf., for instance, Vostrikova (1981)), that in
order to study the multiple change point problem, which is formulated by (1) or (2), we just need to
test the single change point hypothesis and then to repeat the procedure for each subsequence. Hence,
we turn to the testing of (2) against the alternative,

H1 : Xi ≡ fθ0 , i = 1, ..., κ and X i ≡ fθ1 , i = κ+ 1, ...,K, (3)

where the symbol ≡ is used to denote that the observations on the left follow the parametric density
on the right. In (3), κ represents the position a single change point, which is supposed to be unknown.
A general description of this technique in the detection of the changes is summarized in the following
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steps by Chen and Gupta (2001). First we test for no change point versus one change point, that is,
we test the null hypothesis given by (2) versus the alternative given by (3) and equivalently stated by
H1: θ1 = ... = θκ 6= θκ+1 = ... = θK . Here, κ is the unknown location of the single change point. If
H0 is not rejected, then the procedure is finished and there is no change point. If H0 is rejected, then
there is a change point and we continue with the step 2. In the second step we test separately the two
subsequences before and after the change point found in the first step for a change. In the sequel, we
repeat these two steps until no further subsequences have change points. At the end of the procedure,
the collection of change point locations found by the previous steps constitute the set of the change
points.

The subject of change point analysis is twofold. On the one hand to detect if there is one or more
changes in a sequence of observation. The second aspect of change point analysis is the estimation of
the number of changes and their corresponding locations. In this paper we will develop an information
theoretic procedure which is based on divergence, in order to study the change point problem. The
measures background is a general parametric, univariate or multivariate family of distributions. We
describe formally the framework and the problem in Section 2, and the main results are presented in
Section 3. In Section 4 we focus our interest on a specific distribution, the binomial distribution and
a simulation study is performed in order to compare the accuracy the new test-statistic with some
pre-existing test-statistics. In the final Section 5, the general results of this paper are illustrated by
means of the well-known Lisdisfarne scribes data set.

2 Information theoretic procedure

Consider now the single change point problem, that is the problem of testing the pair of hypotheses

H0 : Xi ≡ fθ0 , i = 1, ...,K (4a)

H1 : Xi ≡ fθ0 , i = 1, ..., κ and Xi ≡ fθ1 , i = κ+ 1, ...,K, (4b)

which are presented by (2) and (3), respectively. In the above formulation, θ0 and θ1 are unknown.
Since κ is the unknown location of the single change point, we will consider all the candidate points

k ∈ {1, ...,K − 1}. Let θ̂
(K)

0,k denotes the maximum likelihood estimator (MLE) of θ0 which is based

on the random sample X1, ...,Xk from fθ0 and let θ̂
(K)

1,k denotes the m.l.e. of θ1 which is based on
the random sample Xk+1, ...,XK from fθ1 . If the hypothesis H1 is true, then there is a difference
between the probabilistic models f

θ̂
(K)
0,k

and f
θ̂
(K)
1,k

, which cause a large value for a measure of the

distance between f
θ̂
(K)
0,k

and f
θ̂
(K)
1,k

. Given that the φ-divergence is a broad family of distance measures

between probability distributions, the φ-divergence between f
θ̂
(K)
0,k

and f
θ̂
(K)
1,k

is large if H1 is true and

hence it can be used in order to decide if the candidate point k in (4b) is a change point (κ = k).

Taking into account that the m.l.e. θ̂
(K)

0,k and θ̂
(K)

1,k of θ0 and θ1, respectively, depend on the candidate
change point k, we will adopt the following notation for the φ-divergence between f

θ̂
(K)
0,k

and f
θ̂
(K)
1,k

,

D
(k)
φ = D

(k)
φ

(
f
θ̂
(K)
0,k

, f
θ̂
(K)
1,k

)
=

∫

X (d)

f
θ̂
(K)
1,k

(x)φ



f
θ̂
(K)
0,k

(x)

f
θ̂
(K)
1,k

(x)


 dµ(x), (5)
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provided that the convex function φ satisfies some additional conditions (see page 408 in Pardo (2006))
which ensure the existence of the above integral. Moreover, we consider convex functions φ which

satisfy φ(1) = 0 and φ′′(1) 6= 0. Large values of D
(k)
φ support the existence of a change point and

therefore large values of D
(k)
φ suggest rejection of the null hypothesis H0. Hence D

(k)
φ can be used as

a test statistic for testing the hypotheses (4a). Then, motivated by the fact that large values of D
(k)
φ

are in favor of H1, a test for testing the existence of a single change point, that is the hypotheses (4a),
should be based on the φ-divergence test statistic,

T
(K)
φ = max

k∈{1,...,K−1}
T
(K)
φ (k), (6)

where

T
(K)
φ (k) =

k(K − k)

K

2

φ′′(1)
D

(k)
φ

(
f
θ̂
(K)
0,k

, f
θ̂
(K)
1,k

)
. (7)

Moreover, the unknown position of the change point κ is estimated by κ̂φ such that

κ̂φ = argmax
k∈{1,...,K−1}

T
(K)
φ (k) = argmax

k∈{1,...,K−1}

k(K − k)

K
D

(k)
φ

(
f
θ̂
(K)
0,k

, f
θ̂
(K)
1,k

)
. (8)

Based on the above discussion, H0 in (4a) is rejected for T
(K)
φ > c, where c is a constant to be

determined by the null distribution of T
(K)
φ . Hence, in order to use T

(K)
φ of (6) for testing hypotheses

(4a), it is necessary the knowledge of the distribution of T
(K)
φ , under H0.

There are two important reasons why working directly with test-statistics T
(K)
φ , defined in (6), is

avoided, on one hand, its asymptotic distribution supt∈(0,1)
1

t(1−t)

∥∥∥W (m)
0 (t)

∥∥∥
2
, is not an easy to handle

random variable (see for instance Theorem 1.2 and 1.3 in Gombay and Horváth (1989)) and on the
other hand, in practice cases such that κ ∈ {1,K − 1} are very difficult to detect. Let N(ǫ) be the
set all possible integers k ∈ {1, ...,K − 1} such that k

K ∈ [ǫ, 1− ǫ], with ǫ > 0, small enough. We shall
modify (6) to be maximized in N(ǫ), i.e.

ǫT
(K)
φ = max

k∈N(ǫ)
T
(K)
φ (k), (9)

and in the same manner (8) becomes

ǫκ̂φ = argmax
k∈N(ǫ)

T
(K)
φ (k) = argmax

k∈N(ǫ)

k(K − k)

K
D

(k)
φ

(
f
θ̂
(K)
0,k

, f
θ̂
(K)
1,k

)
. (10)

3 Main result

In order to get the asymptotic distribution of the family of tests statistics T
(K)
φ , given in (6), we

shall assume the usual regularity assumptions for the multiparameter Central Limit Theorem (see for
instance Theorem 5.2.2. in Sen and Singer (1993)):

(i) The parameter space, Θ, is either Rm or a rectangle in Rm.
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(ii) For all θ 6= θ
′ ∈ Θ ⊂ Rm,

µ
(
{x ∈ X (d) : fθ(x) 6= fθ′(x)}

)
> 0.

(iii) For θ = (θ1, ..., θm)T ,

∂

∂θi
fθ(x) and

∂2

∂θi∂θj
fθ(x), i, j ∈ {1, ...,m},

exist almost everywhere and are such that
∣∣∣∣
∂

∂θi
fθ(x)

∣∣∣∣ ≤ Hi(x) and

∣∣∣∣
∂2

∂θi∂θj
fθ(x)

∣∣∣∣ ≤ Gij(x), i, j ∈ {1, ...,m},

where ∫

X (d)
Hi(x)dµ(x) <∞ and

∫

X (d)
Gij(x)dµ(x) <∞, i, j ∈ {1, ...,m}.

(iv) Denoting ℓ(x;θ) = log fθ(x),

∂

∂θi
ℓ(x;θ) and

∂2

∂θi∂θj
ℓ(x;θ), i, j ∈ {1, ...,m},

exist almost everywhere and are such that the Fisher information matrix is finite and positive
definite. In addition, limδ→0 ψ(δ) = 0 where

ψ(δ) = Eθ

[
sup

{h:‖h‖≤δ}

∥∥∥∥
∂2

∂θ∂θT
ℓ(x;θ + h)− ∂2

∂θ∂θT
ℓ(x;θ)

∥∥∥∥

]
,

with ∂2

∂θ∂θT ℓ(x;θ) =
(

∂2

∂θi∂θj
ℓ(x;θ)

)
i,j∈{1,...,m}

and ‖•‖ is the Euclidean norm.

Theorem 1 Under H0 in (4a) and the previous regularity assumptions, (i)-(iv), the asymptotic dis-
tribution of (9) is given by

ǫT
(K)
φ

L−→
K→∞

Tm,ǫ (11)

where m = dim(Θ),

Tm,ǫ = sup
t∈[ǫ,1−ǫ]

1

t(1− t)

∥∥∥W (m)
0 (t)

∥∥∥
2
, (12)

with W
(m)
0 (t) = {(W0,1(t), ...,W0,m(t))T }t∈[0,1], being an m-dimensional vector of independent Brow-

nian bridges and
∥∥∥W (m)

0 (t)
∥∥∥
2
=
∑m

i=1W
2
0,i(t).

Proof. According to the properties of the MLEs we know that

√
k
(
θ̂
(K)

0,k − θ0

)
L−→

k→∞
N
(
0, IF (θ0)

−1
)
,

√
K − k

(
θ̂
(K)

1,k − θ1

)
L−→

(K−k)→∞
N
(
0, IF (θ1)

−1
)
,
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where for θ ∈ Θ, such that m = dimΘ, IF (θ) =
(
−E

[
∂2

∂θi∂θi
log fθ(X1)

])
i,j∈{1,...,m}

, is the informa-

tion matrix. If we consider that λ
(K)
k = limK→∞

k
K , then

√
k(K − k)

K

(
θ̂
(K)

0,k − θ0

)
L−→

K→∞
N
(
0, (1 − λ

(K)
k )IF (θ0)

−1
)
,

√
k(K − k)

K

(
θ̂
(K)

1,k − θ1

)
L−→

K→∞
N
(
0, λ

(K)
k IF (θ1)

−1
)
.

This means that under H0, i.e. θ0 = θ1,

√
k(K − k)

K

(
θ̂
(K)

0,k − θ̂
(K)

1,k

)
L−→

K→∞
N
(
0, IF (θ0)

−1
)
,

and hence we can construct a Wald-type test-statistic as follows

Q
(K)
k =

k(K − k)

K

(
θ̂
(K)

0,k − θ̂
(K)

1,k

)T
ÎF (θ0)

(
θ̂
(K)

0,k − θ̂
(K)

1,k

)
, (13)

where ÎF (θ0) is any consistent estimator of IF (θ0). From Theorem 1 in Hawkins (1987) we know
that

max
k∈N(ǫ)

Q
(K)
k

L−→
K→∞

Tm,ǫ

In addition from Pardo (2006), page 443, we have

T
(K)
φ (k) =

k(K − k)

K

2

φ′′(1)
Dφ(f

θ̂
(K)
0,k

, f
θ̂
(K)
1,k

) = Q
(K)
k + oP (1)

where

Dφ(f
θ̂
(K)
0,k

, f
θ̂
(K)
1,k

) =

∫
f
θ̂
(K)
1,k

(x)φ



f
θ̂
(K)
0,k

(x)

f
θ̂
(K)
1,k

(x)


 dx.

With both results we conclude (11).

Remark 2 If we compare (13) with formula (2.3) in Hawkins (1987), both apparently are not equiv-

alent because in our case k(K−k)
K appears rather than k(K − k) of formula (2.3). This difference is

associated with the way of understanding Fisher Information matrix, in fact our Wald test-statistic co-
incide with the empirical stochastic process denoted by Q̃K(t) at the beginning of Section 3 in Hawkins
(1987).

Remark 3 The probability distribution function of random variable Tm,ǫ, for ǫ > 0, given in (12),
can be found in Sen (1981, page 397) and De Long (1981). The computation of the probability distri-
bution function is complex, however it is possible to approximate the p-value of the test in which the
distribution of Tm,ǫ is considered under the null hypothesis. In Estrella (2003), for instance,

˜p−value(x, ǫ) =
1

Γ
(
m
2

)
(x
2

)m
2
exp

{
−x
2

}(
log

(
(1− ǫ)2

ǫ2

)(
1− m

x

)
+

2

x

)
, (14)
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with Γ (t) being the Gamma function, is proposed as an approximation of

p−value(x, ǫ) = Pr (Tm,ǫ > x) = Pr

(
sup

s∈(1,(1−ǫ)2/ǫ2)

1√
s

∥∥∥W (m)
0 (s)

∥∥∥ >
√
x

)

=
1

Γ
(
m
2

)
(x
2

)m
2
exp

{
−x
2

}(
log

(
(1− ǫ)2

ǫ2

)(
1− m

x

)
+

2

x
+O

(
1

x2

))
.

When calibrating the approximation for the univariate parameter (m = 1), we can take into account
that the exact quantiles of order (1 − α) ∈ {0.90, 0.95, 0.99} for ǫ = 0.05, are 8.31, 9.90 and 13.45
respectively, i.e. p−value(8.31, 0.05) = 0.1, p−value(9.90, 0.05) = 0.05, p−value(13.45, 0.05) = 0.01.

If we use (14) with ǫ = 0.05 and the aforementioned quantiles, we obtain ˜p−value(8.31, 0.05) = 9.

778 9 × 10−2, ˜p−value(9.90, 0.05) = 4. 886 8 × 10−2, ˜p−value(13.45, 0.05) = 9. 835 8 × 10−3. We can

see that in particular, ˜p−value(x, 0.05) approximates very well p−value(x, 0.05) when x is the quantile
of order 1− α = 0.99, which is in practice of major interest.

4 Simulation Study

In this section we are going to focus on the change point analysis for a particular discrete probability
model, the binomial model. For this special case we will give an explicit expression for divergence based
test-statistics. The accuracy will be compared by simulation with respect to pre-existing test-statistics.
In this context, suppose we are dealing with a sequence of independent r.v.’s X̃i ∼ Bin(ni, θi), i =
1, ...,K, for which we are interested in testing (1). In order to do that we are going to consider a
sequence of independent Bernoulli r.v.’s Xih ∼ Ber(θi), i = 1, ...,K, h = 1, ..., ni, whose probability
mass function (p.m.f.) is given by pθi(x) = θxi (1− θi)

1−x, x ∈ {0, 1}, and pθi(x) = 0, x /∈ {0, 1}. If we
denote the cumulative steps between consecutive Binomial r.v.’s by

Nk =

k∑

i=1

ni.

the change points are located at {1, 2, ..., NK − 1, NK} for Xih and at {Nk}Kk=1 for X̃i. Hence, Xih is
the only sequence of r.v.’s which are strictly identically distributed, but the change points of interest
are located in {Nk}Kk=1 ⊂ {1, 2, ..., NK − 1, NK}. This means that we can construct the test-statistic
by considering a sequence of i.i.d. r.v.’s but in addition we restrict the set of possible change points
to {Nk}Kk=1, rather than one step change points. When the change point is located at Nk, the MLEs
of θ0 and θ1 are given by

θ̂
(K)
0,k =

Yk
Nk

, θ̂
(K)
1,k =

YK − Yk
NK −Nk

,

Yk =
k∑

i=1

X̃i =
k∑

i=1

ni∑

h=1

Xih.

7



The likelihood ratio test-statistic is given by S(K) = maxk∈{1,...,K} S
(K)
k , where

S
(K)
k = 2


Nk


θ̂(K)

0,k log


 θ̂

(K)
0,k

θ̂
(K)
0,K


+ (1− θ̂

(K)
0,k ) log


1− θ̂

(K)
0,k

θ̂
(K)
0,K






+(NK −Nk)


θ̂(K)

1,k log


 θ̂

(K)
1,k

θ̂
(K)
0,K


+ (1− θ̂

(K)
1,k ) log


1− θ̂

(K)
1,k

θ̂
(K)
0,K






 (15)

Two important papers which cover S(K) are Worsley (1983), and Horváth (1989). The expression

they gave for S
(K)
k is not exactly the same, but it is equivalent to (15) (see formula (3.22) in Horváth

and Serbinowska (1995)). Horváth (1989) found that the asymptotic distribution for a kind of nor-
malization of S(K) based on the Darling-Erdös formula

G(K) =

√
2 logNKS(K) − 2 logNK − 1

2
log logNK +

1

2
log π,

is asymptotically equal to a Extreme Value random variable with parameters µ = log 2 and β = 1.
In addition, in Theorem 1.2 of Horváth and Serbinowska (1995), a modified version of the likelihood

ratio test-statistic was given, S̃(K) = max
(K)
k∈{1,...,K} S̃

(K)
k , where

S̃
(K)
k =

Nk(NK −Nk)

N2
K

S
(K)
k .

The asymptotic distribution of S̃(K) is the supremum in (0, 1) of a standard univariate Brownian
bridge (its probability distribution function is tabulated in Kiefer (1959)). We consider the version of

the Wald test-statistic ǫQ(K) = maxk∈N(ǫ)Q
(K)
k , with

Q
(K)
k =

Nk(NK −Nk)

NK
(θ̂

(K)
0,k − θ̂

(K)
1,k )2ÎF (θ0),

where the consistent estimator of IF (θ0) is given by

ÎF (θ0) =
Nk

NK
IF (θ̂

(K)
0,k ) +

NK −Nk

NK
IF (θ̂

(K)
1,k ) =

Nk

NK

1

θ̂
(K)
0,k

(
1− θ̂

(K)
0,k

) +
NK −Nk

NK

1

θ̂
(K)
1,k

(
1− θ̂

(K)
1,k

) .

Finally, in order to give an explicit expression for divergence based test-statistics we are going to
focus on a family of divergences, power divergences (see Read and Cressie (1988)), for which φλ (x) =

1
λ(1+λ)

(
xλ+1 − x− λ(x− 1)

)
, if λ(1 + λ) 6= 0 and φλ (x) = limℓ→λ φℓ (x), if λ(1 + λ) = 0, that is for

each λ ∈ R we obtain a different divergence measure between the p.m.f.s pθ0 and pθ1 ,

Dλ(pθ0 , pθ1) =
1

λ(1 + λ)

(
θλ+1
0

θλ1
+

(1− θ0)
λ+1

(1− θ1)λ
− 1

)
, if λ(1 + λ) 6= 0.

When λ = 0 the power divergence coincides with the so called Kullback divergence

D0(pθ0 , pθ1) = DKull(pθ0 , pθ1) =

(
θ0 log

(
θ0
θ1

)
+ (1− θ0) log

(
1− θ0
1− θ1

))
,
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and when λ = −1 the power divergence coincides with the modified Kullback divergenceD−1(pθ0 , pθ1) =

DKull(pθ1 , pθ0). Hence, the shape of the power-divergence based test-statistics is ǫT
(K)
λ =

maxk∈N(ǫ) Tλ(θ̂
(K)
0,k , θ̂

(K)
1,k ), where

Tλ(θ̂
(K)
0,k , θ̂

(K)
1,k ) = 2

Nk(NK −Nk)

NK
Dλ

(
p
θ̂
(K)
0,k

, p
θ̂
(K)
1,k

)
,

that is

Tλ(θ̂
(K)
0,k , θ̂

(K)
1,k ) =

Nk(NK −Nk)

NK

2

λ(1 + λ)




(
θ̂
(K)
0,k

)λ+1

(
θ̂
(K)
1,k

)λ +

(
1− θ̂

(K)
0,k

)λ+1

(
1− θ̂

(K)
1,k

)λ − 1


 , for λ(1+λ) 6= 0, (16)

and

T0(θ̂
(K)
0,k , θ̂

(K)
1,k ) = 2

Nk(NK −Nk)

NK


θ̂(K)

0,k log


 θ̂

(K)
0,k

θ̂
(K)
1,k


+ (1− θ̂

(K)
0,k ) log


1− θ̂

(K)
0,k

1− θ̂
(K)
1,k




 . (17)

Assuming that there is a monotone, continuous function g such that g(0) = 0 and

lim
K→∞

max
k∈N(ǫ)

∣∣∣∣
Nk(NK −Nk)

NK
− g

(
k(K − k)

K

)∣∣∣∣ = 0,

the asymptotic distribution of ǫQ(K) and ǫT
(K)
λ , for all λ ∈ R, is the supremum in [ǫ, 1 − ǫ] of the

univariate tied-down Bessel process, i.e. (12) with m = 1. This assumption is very similar to the
assumption given in Horváth and Serbinowska (1995) for the asymptotic distribution of S̃(K).

A simulation study is performed in order to compare the accuracy of the proposed power divergence
type test with respect to pre-existing test-statistics. In this context we apply test-statistics S̃(K), G(K),
0.05T

(K)
0 , 0.05T

(K)
1 , 0.05T

(K)
2 , 0.05Q(K) with 5000 replication. The design is essentially the same as the

study performed in Horváth and Serbinowska (1995): θ0 = 0.5; three possible values of K and nominal
sizes α are considered; apart from the quantiles of order 1−α, x1−α, the exact sizes α̂ are calculated.
With K = ∞, it is understood that x1−α is the asymptotic quantile associated to the corresponding

test-statistic. Taking into account that the maximization for obtaining ǫT
(K)
1 , ǫT

(K)
2 , ǫQ(K), with

ǫ = 0.05 is over all possible integers k ∈ N(ǫ), we removed k ∈ {1, ...,K − 1} when k < ǫK or
k > (1− ǫ)K.

Looking at the results given in Table 1, the worst approximation of α is obtained with G(K).
The Wald test-statistic 0.05Q(K) is a good competitor for the test-statistic introduced in Horváth and
Serbinowska (1995), S̃(K). All the exact sizes underestimate the nominal size, which means that the
best approximation is obtained with the greatest value of α̂, hardly ever obtained with the power-

divergence based test-statistic with λ = 2, 0.05T
(K)
2 .
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Table 1: Exact simulated sizes.

K = 64 K = 300 K = 500 K = ∞
1− α x1−α α̂ x1−α α̂ x1−α α̂ x1−α

0.90 1.302 0.0664 1.386 0.0786 1.420 0.0860 1.498

S̃(K) 0.95 1.619 0.0318 1.710 0.0372 1.740 0.0400 1.844
0.99 2.595 0.0094 2.484 0.0072 2.531 0.0074 2.649

0.90 1.707 0.0208 1.939 0.0260 2.011 0.0288 2.943

G(K) 0.95 2.277 0.0076 2.431 0.0094 2.555 0.0118 3.663
0.99 3.394 0.0002 3.653 0.0002 3.796 0.0000 5.293

0.90 7.351 0.0654 7.881 0.0834 7.801 0.0824 8.31
0.05T

(K)
0 0.95 8.968 0.0340 9.458 0.0412 9.514 0.0430 9.90

0.99 12.730 0.0086 13.143 0.0094 12.981 0.0078 13.45

0.90 7.374 0.0664 7.884 0.0832 7.809 0.0828 8.31
0.05T

(K)
1 0.95 9.007 0.0352 9.464 0.0412 9.509 0.0432 9.90

0.99 12.851 0.0088 13.128 0.0094 12.981 0.0078 13.45

0.90 7.432 0.0688 7.911 0.0840 7.818 0.0834 8.31
0.05T

(K)
2 0.95 9.141 0.0370 9.495 0.0416 9.519 0.0434 9.90

0.99 13.061 0.0094 13.129 0.0094 13.015 0.0084 13.45

0.90 7.311 0.0642 7.871 0.0822 7.800 0.0824 8.31
0.05Q(K) 0.95 8.934 0.0334 9.441 0.0408 9.508 0.0430 9.90

0.99 12.742 0.0084 13.135 0.0094 12.973 0.0078 13.45
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5 Numerical Example: Lindisfarne Scribes problem

The Lindisfarne Gospels are presumed to be the work of a monk named Eadfrith, who became Bishop
of Lindisfarne in year 698. In the 10th century an Old English translation of the Gospels was made for
one or more scribes. Several statisticians have been devoted to studying the problem of the number of
scribes who participated in the translation of the Gospels. Such a problem is known as the “Lindisfarne
Scribes problem”.

In the framework of the model that is followed in the simulation study, the Lindisfarne Gospels
are considered to be divided into K = 64 consecutive sections (see Ross (1950) for more details).
It is supposed that each section could have been translated by one scribe and the same scribe is
associated only with consecutive sections. Since the present indicative in Old English verbs admitted
several variants in its spelling, the custom of using these variants can be used as a key factor useful
to identifying different translators. Based on the data given in Table 2, it is counted ni as the total
of observed frequencies that the third singular or second plural appears in each section i = 1, ..., 64,
and the observation xi (coming from r.v. Xi) represents how many times ending −s appear in these
verbs. Note that either the third singular or second plural admit two endings, −s and −δ, and hence
if we want to know how many times ending −δ appear in these verbs, the observations are obtained
as ni−xi, i = 1, ...,K. It is assumed that the custom of using both endings for each scribe is different
and for this reason our interest is to find the consecutive changes in the probability structure of both
endings.

Table 2: Data of the Lindisfarne’s problem

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
xi 12 29 31 21 14 41 49 30 39 35 26 32 30 17 19 33
ni 21 39 44 25 19 66 62 34 47 47 29 33 38 21 21 36

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
xi 36 28 10 2 8 12 5 3 14 13 21 19 29 16 16 5
ni 40 33 25 5 23 28 20 28 20 23 41 32 39 28 21 24

i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
xi 3 1 6 1 10 5 2 10 5 14 8 10 9 13 6 8
ni 30 15 23 5 35 30 14 56 51 62 45 55 42 27 36 31

i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
xi 2 11 8 3 19 17 12 15 15 12 21 40 30 4 3 6
ni 9 26 38 29 55 37 45 47 44 45 33 65 85 13 9 16

Since the proposed test-statistics are valid for single change-point detection, now we are going to
describe the algorithm based on the binary segmentation procedure. In order to make a sequence of
hypothesis testing, it is convenient to use α = 0.01 if we want to get a not very large upper bound for the
global significance level according to the Bonferroni’s inequality. Suppose that the power-divergence

based test-statistics with λ = 2, ǫ = 0.05, 0.05T
(K)
2 , is our focus of interest. The algorithm based

on the binary segmentation procedure (Vostrikova (1981)) is described in Figures 1-2. We consider
N(ǫ) = {3, ..., 61} as change point candidates in Step 1, i.e. we have initially taken {1, ...,K − 1} but

we have removed all candidates k such that k < Kǫ or k > Kǫ. Once the values of T2(θ̂
(K)
0,k , θ̂

(K)
1,k ) are

11



obtained for each candidate belonging to k ∈ N(ǫ), we select its maximum argument, k = 31, which is
accepted as change-point because the p-value is less than 0.1. The p-values are calculated by following
(14). From now we have to investigate how to divide [1, 31] into segments (Step 2) and [32, 64]. We
will continue until all candidates have p-values greater than 0.1. After 12 steps it is concluded that
the Lindisfarne Gospels could have been written by seven scribes because the obtained segments are
[1, 10], [11, 18], [19, 23], {24}, [25, 31], [32, 52], [53, 64]. This conclusion differs a little bit from the
conclusion obtained in Horváth and Serbinowska (1995), because the number of scribes they proposed
was one less and the locations of the change points are not exactly the same.
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Figure 1: Binary segmentation procedure for the Lindisfarne’s problem (part I)
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Figure 2: Binary segmentation procedure for the Lindisfarne’s problem (part II)
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