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Abstract—An interpretation of the Moore-Penrose general- conditiong. If the parameter to be estimated is locally non-
ized inverse of a singular Fisher information matrix (FIM) identifiable, or all of the unbiased estimators will haveriiié

is presented in this paper, from the perspective of Crarar- ; oo ; ;
Rao bound (CRB). CRB is a lower bound on the variance of variances, |t_|s meaningless to discuss the performance of
unbiased estimators.

unbiased estimators, and can be calculated as the Moore-P&ise : ’
generalized inverse of the FIM [1]. There are some existing AS mentioned in [2], one may change the nature of an
facts, however, that render the application of CRB questioable estimation problem to allow the existence of reasonable est
when the FIM is singular. For example, Soicaet al. shown that mators. The first approach is to introdueriori information
unbiased estimators with finite variances do not exist if the=IM a5t the probability distribution of the parameter to b-es
is singular [2]. The application of CRB with singular FIMs, . . - . .
therefore, seems meaningless. Noting that unbiased estitoes mated; in this way the estlmat.lon problem becom?s a Bayesian
with finite variances may exist if some deterministic constints ON€. There are abundant literature on Bayesian approach
are put on the unknown parameter, we solve this confusing [4], but we should keep in mind tha priori information
situation by showing that the Moore-Penrose generalized irerse  js not always already known. The second approach is to
of a singular FIM is the CRB corresponding to the minimum  considemiasedestimators instead anbiasedestimators. This
variance among all choices of minimum constraint functions. Our . . .
result not only provides a way to interpret the CRB obtained approach_ IS d'SCU_SSEd in [2], where thg necessary condition
as the Moore-Penrose generalized inverse of a singular FiMput ~ for the bias function to ensure the existence of reasonable
also enables future research on the joint design of constmai estimators is derived. There are a number of situations; how
functions and unbiased estimators. ever, where biased estimators are not allowed. For example,
Index Terms—Cramér-Rao bound (CRB), constrained param- almost all estimation problems encountered in the design of
eters, singular Fisher information matrix (FIM). a communication system, including the estimation of carrie
phase and symbol timing for synchronization, the estinmatio
|. INTRODUCTION of channel response for equalization, etc., require uedias
estimators. The third approach is to put some deterministic
An interpretation of the Moore-Penrose generalized ireversonstraints on the parameter to be estimated. The detestinini
of a singular information matrix is presented in this papeconstraints result in a parametric estimation problem with
from the perspective of Cramér-Rao bound (CRB). CRB reduced dimension, where reasonable unbiased estimaégrs m
a lower bound on the covariance matrices of estimators ineaist. This paper focuses on the third approach.
parametric estimation problem. The most general form of CRB We believe that the third approach has practical signifieanc
says that the covariance matrix of any unbiased estimatorTeke blind channel estimation problems for example. The goa
larger than the generalized inverse of the Fisher infownatiof blind channel estimation is to estimate the channel nespo
matrix (FIM) under Lowner partial order [1]. This generah from y = sxh+mn, the convolution of the channel response
form of CRB holds for parametric estimation problems witth and the input data sequensecorrupted by the additive
both singular and non-singular FIMs. noisen. The unknown parameté £ (s, h) is not identifiable
There are, however, facts in literature which renders tis#nce (as, ~h) and (s, h) are observationally equivalent for
application of CRB questionable when the FIM is singula@ny constantu # 0, so unbiased estimators do not exist.
Rothenberg proves in [3] that under some regularity condfractically this so-called scalar ambiguity problem isohesd
tions, the non-singularity of the FIM is equivalent to thedb by assigning a pre-determined value to one of the element of
identifiability of the parameter to be estimate@toicaet al. s [5]. That is, a constraint functiorf(8) £ s, —c = 0 is
prove in [2] that unbiased estimators with finite variances put on the paramete#, wheres,, denotes thesxth element of
not exist when the FIM is singular, except for some “unusua¥ andc is some pre-determined constant. This is exactly the
2More accurately, the “unusual” conditions suggest thahé EIM is sin-

1A parameteid is locally identifiable if there exists an open neighbouihoo gular, only unbiased estimators for some functions of tHenawn parameter,
© of 6 such that no othe®’ € © is observationally equivalent t. instead of the unknown parameter itself, may exist with dimviariances.
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third approach mentioned above. trix whose diagonal elements are elements of the vettdhe
CRB with a parameter constraint, or constrained CRB, ictorE [v] denotes the expectationof The matrixcov(u, v)

already derived in [6], [7], [8]. The value of the constraineis defined agov(u,v) £ E [(u — E(u))(v — E(v))”], which

CRB depends on the choice of the constraint function; diffeis the cross-covariance matrix of random vecterandv. We

ent constraint functions lead to different values of the CRBIse the notatiotd > B to mean thatd — B is a nonnegative-

This bound is useful when the constraint function is exogedefinite matrix.

nously given, but there are situations where we are able to

modify the constraint function. Take blind channel estiorat Il. PRELIMINARIES

problems for example again. Suppose an engineer chooses thg this section, some background knowledge required to
constraint function asf() = s; — ¢ = 0 and designs an pegin the discussions in the following sections are present
unbiased estimator corresponding to this constraint fanct we restrict our attention to the case wibiased estimators
and finds the resulted mean squared error (MSE), although the unknown parameteso the theorems presented in this
almost aChieVing the constrained CRB, is still Unsatiwt section may be a S|mp||f|ed version of the 0rigina| one.

compared with the target value. How can the engineer tell thewhen we refer to thecRB for unconstrained parameters
unsatisfactory result is caused by the inappropriate €hofc \ve mean the following theorem.

the constraint function, or simply because the target vadue ) .
not attainable forany choice of the constraint function? WeTheorem IL.1 (CRB for unconstrained parametertet 6 be

need a bound for the joint design of the unbiased estimafJt Unbiased estimator of an unknown paraméter R" based
and the constraint function. on observationy, which is characterized by its probability

The main contribution of this paper is the following theodensity function (pdfp(y; 8). Then for any sucld, we have
rem: The Moore-Penrose generalized inverse of a singublr Fl Ao i
is the CRB corresponding to the minimum variance among cov (0’0) 2 J, @
all choices of min?mum f:onstraint functiorﬁccording to .the where J is the FIM defined as
theorem, a meaningful interpretation of the CRB obtained as
the Moore-Penrose generalized inverse of a singular FIM is JLE @ dp @)
presented, and a CRB for the joint design of the unbiased 80 06T |-
estimator and the constraint function is obtained. In aolak .

Proof: See [1]. ]

to a performance bound, we also derive the sufficient canditi . . .
. . . The above theorem is always correct given that unbiased
for a constraint function to achieve the bound, and show that . : : )
. : . e%tlmators exist. Stoicat al., however, proved the following
this bound can always be achieved by a linear constraH‘.1 .
) . - . . L eorem in [2].
function, which facilitates the optimal design of minimum
constraint functions. Theorem 11.2. If the information matrix.J is singular, then
A mathematical definition of minimum constraint functionshere does not exist an unbiased estimator with finite vagan

will be given in Section IV-A, but the meaning is conceptyall Proof: See [2} -
easy to understand. In blind channel estimation problenlg, o o ' . Lo
y P ¥ That is, there does not exist any reasonable estintobr

a one-dimensional constraint dhis needed to resolve theth FIM is si | the CRB fails t id ful
scalar ambiguity, such ag(@) = s, — 1, any constraint | € IS singular, so the alls to provide any usetu

function f that is essentially a one-dimensional constraint is|gformat|on.

minimum constraint function as long as the constrained CRBWhen we refe_r to the€RB for constrained parameteree
exists. mean the following theorem.

The rest of the paper is organized as follows. The necessakeorem 1.3 (CRB for constrained parametersk)eté be an
background knowledge is given in Il. Then we show thainbiased estimator of an unknown paramefiee R” based
the Moore-Penrose generalized inverse [9] of the FIM ca observationy, which is characterized by its pdf(y; 6).
be viewed as a CRB for constrained parameters with somgrthermore, we require the parameté@rto satisfy a possibly
constraint function in Section Ill. Finally we prove the mai nonlinear constraint functiorf : R® — R™, m < n,
result of this paper, that the Moore-Penrose generalizaedse
of the FIM is the CRB corresponding to the minimum variance f(0)=o0. 3)

among _aII choices of con_stramt _functlons in Section IVAssume thab£/067 is full rank. Choose a matrbU with
Conclusions are presented in Section V.

(n —m) orthonormal columns such that

Notation of

Bold-faced lower case letters represent column vectors, an o607 U=o. )

bold-faced upper case letters are matrices. Superscripts s

asv*, vT, M1, andM" denote the conjugate, transpose, in- SWhen we restrict our'f_:lttention to u_nbiased estimators fe_)ruhknovs_/n
d the M P lized i f the- Farameter only, the condition for the existence of an umdiasstimator with

Verse, an € Moore-Fenrose generalized inverse o COfinite variance  in [2] becomeg JT = I, which is impossible for singular

sponding vector or matrix. The matritag(6) means the ma- FiMms.



If UTJU is nonsingular, then

cov (é,é) > U (UTJu) uT, (5)
whereJ is the FIM defined as in (2).
Proof: See [6], [7], [8]. ]

IV. INTERPRETATION OFJT AS A CRB FOR CONSTRAINED
PARAMETERS

In this section we prove thaf' is not only a CRB for
constrained parameters, btite CRB corresponding to the
minimum variance among all choices of minimum constraint
functions We first give a definition minimum constraint func-

The following theorem gives a necessary sufficient conditidions, and then prove the claim.

to check the existence of a finite constrained CRB.

A. Definition of Minimum Constraint Functions

Theorem 11.4. A necessary and sufficient condition for the Minimum constraint functions are defined as follows.

existence of a finite constrained CRB is an invertblé JU.

Proof: See [8]. [ ]

Definition IV.1. A differentiable constraint functiofi : R™ —
R™, m < n for an estimation problem with singular FIM

Now we are able to discuss the relationship between tifed minimum constraint if
Moore-Penrose generalized inverse of an FIM and consttaine 1) 9f/007 is full rank,

CRB.

[ll. J' As A CRBFOR CONSTRAINED PARAMETERS
The main result of this section is the following theorem.

Theorem llI.1. If the FIM J is singular, and let the singular
value decomposition (SVD) df be

the diagonal elements & being nonzero, thed’ is a CRB
for constrained parameters with constraint function

¥ 0
0 0

UT

J=[U, Un]{ Ur (6)

f(8) =U!diag(6)+C =0 7)

for some constant matrig.

2) UTJU is nonsingular, and
3) rank 0f/00T 4 rank J = n,
whereU is chosen as in Theorem I1.3.

The first requirement is to ensure thAtdoes not contain
any redundant constraints [6], [7]. The second requirerigent
to ensure the existence of CRB according to Theorem I1.4. The
third requirement means thgtcontains the minimum number
of independent constraints. Take blind channel estimation
problems as example. From discussions in Section | we know
that once we choose one symbol as a pilot symbol with some
predefined value, we eliminate the scalar ambiguity and thus
an unbiased estimator exists. Note that the nullity of thd FI
is also one by [10], [11]. We can see the third requirement
holds.

Now we give a formal proof that if the first two requirements
are satisfied, then the third requirement ensuresflwntains

To prove the theorem, we first prove the following lemmahe minimum number of independent constraints.

Lemma Ill.1. Let the SVD of a hermitian matri¥ be the
same as in (6). Then

J=u, (UfJu,) " Ur. (8)

Proof: SubstituteJ asJ = U,XU! into (8). [ ]

Now we are able to prove Theorem Ill.1.

Proof for Theorem Ill.1: By examining the lemma and
Theorem I1.3, we can think of f as a constrained CRB with

some constraint functioif () such that

of

WUS =0.

)

SinceUI'U, = 0 by the definition of SVD, a constraint

function f that satisfies (9) can be chosen such that

Theorem IV.1. For any constraint functionf in Definition
IV.1 that satisfies the first and the second requirements,
(12)

min rank —f =n —rank J.

f 00T

Proof: First we show that in order to satisfy the first and
the second requirements,

f
Y > n—
rank 50T =" rank J, (13)
and then we show that the equality is achievable.
If
rank % <mn —rank J, (14)

by the definition ofU (see Theorem II.3)U is a n-by-
(rank U) matrix with

n > rank U > rank J.
By the fact that

(15)

The above equation can be satisfied by a linear constraiahk UTJU < min{rank U, rank J} < rank J < rank U,

~J T
507 U, (10)
function,
F£(0) =Urdiag(8) + C =0, (11)
and the theorem is proved. [ ]

(16)
where the last inequality follows by (15), and noting that
UTJU is a (rank U)-by-(rank U) square matrixU” JU
cannot be full-rank. Thus (13) is proved.



The achievability of equality in (13) is easy to prove. Chmosf should have the same size & in Theorem 1V.4, so the
the constraint functionf as in (7), and we can see suctabove theorem applies. Noting tIﬁ(UTJU)_lUT =Jt
a constraint function satisfies all of the requirements of acording to Lemma Ill.1, the corollary follows becauseéra
minimum constraint function. B equals to the sum of eigenvalues. ]

By the above theorem we can see the third requirement issee Appendix for the proof of Theorem 1V.4.
in fact requiringdf/067 to have the minimum rank. The
reason why such a constraint functigncan be considered as
the constraint function witlminimum constraintsan be found
by the following theorem.

V. CONCLUSIONS

We have proved the main theorem of this paper: The Moore-
Theorem IV.2. Let A C R™ be open and letf : A —+ R™ Penrose generalized inverse of a singular FIM is the CRB
be a differentiable function such thatf/96” has rankm corresponding to the minimum variance among all choices of

whenever f(xz) = 0. Then f~'(0) defines an(n — m)- minimum constraint functions. According to the theorem, a
dimensional manifold iR™. meaningful interpretation of the Moore-Penrose genezdliz
Proof: See [12] - inverse of a singular FIM is presented, and a CRB for the joint

Constraint functionsf with the minimumrank df /067 design of the unbiased estimator and the constraint fuméio

ensures that the resulting manifolds have the maximal éegpeptamed. In additional to a performance bound, we alsosderi

of freedom. so we call them as constraint functions with t Qe sufficient condition for a constraint function to aclsiekie
minimum cé)nstraints ound, and show that this bound can always be achieved by a

linear constraint function, which facilitates the optinagsign
B. J' is the CRB corresponding to the minimum variancef minimum constraint functions.
among all choices of minimum constraint functions

This subsection is to prove the claim th#t is the CRB
corresponding to the minimum variance among all choices

of minimum constraint functions. For convenience, #l  The proof is mainly based on Poincaré separation theorem

largest eigenvalue of a matri#f is denoted by;(M) in  and a lemma. We first show Poicaré seperation theorem below.
the following discussions. . .
The main result of this subsection is the following theorenTheorem A.1 (Poincaré separation theorentet A € R"*"

h 3 h 3 iF | - . be a Hermitian matrix, and lel/ € R"*" satisfyUTU = I.
Theorem IV.3. In Theorem II.3, iff is a minimum constraint Define B, 2 UT AU. Then

function, then

APPENDIX

tr (cov {OA, é}) > tr (JT) . a7) Ai(Br) < Ai(A) (20)

Furthermore, equality can be achieved by choosing the comy all k € {1,...,r}.
straint functionf as in Theorem Ill.1.
Proof: See [9]. ]

Note that the trace of a covariance matrix is the sum of the.l.hen we prove the following lemma.

variances of the elements 6f In this way, we have proved that
the Moore-Penrose generalized inverse of the FIM is the CRBmma A.1. For any nonnegative definite matrid € R™"*",
corresponding to the minimum variance among all choices ahd any matrixVV € R™*", m > n, with VIV =1,
minimum constraint functions.

Theorem IV.3 is in fact a corollary of the following theorem. N(VMVTY = )\, (M) (21)

Theorem IV.4. Let the SVD of an-by-m nonnegative definite

matrix J with rank n be forall i € {1,...,n}, and

» o][U”
J=[U, U,] [ o o ] [ Ut ] (18) N(VMVT) =0 (22)
whereX is a n-by-n diagonal matrix. Then foralli e {n+1,...,m}.
—1 —1 J—
NV (VIIv) vh > U (UlJU,) Ul Proof: DefineV' £ V for notational convenience. By the
= \(J) Vi (19) definition of V, there exist a matri¥/ such thatl V.. V]

is a unitary matrix.

Let the SVD of M beUST . We can construct a-by-m
If the above theorem holds, then Theorem IV.3 can hgitary matrix as
proved as follows.
Proof for Theorem IV.3:Note thatJ is a nonnegative def- A [ U 0 ]
inite matrix, and the resultiny/ for every minimum constraint o 1|

for any matrix V' with the same size &, and VIV = I.

(23)



and we have

(v [T ][]
vl all s
vy e

Noting that\; (UXJU,) = A; (J) because they have the
same firstn eigenvalues, and by the fact that a nonnegative
definite matrix is always Hermitian, we can see (29) is just
a result of Poicaré separation theorem. Therefore thed¢heo
follows. [ |
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