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Abstract—An interpretation of the Moore-Penrose general-
ized inverse of a singular Fisher information matrix (FIM)
is presented in this paper, from the perspective of Craḿer-
Rao bound (CRB). CRB is a lower bound on the variance of
unbiased estimators, and can be calculated as the Moore-Penrose
generalized inverse of the FIM [1]. There are some existing
facts, however, that render the application of CRB questionable
when the FIM is singular. For example, Soicaet al. shown that
unbiased estimators with finite variances do not exist if theFIM
is singular [2]. The application of CRB with singular FIMs,
therefore, seems meaningless. Noting that unbiased estimators
with finite variances may exist if some deterministic constraints
are put on the unknown parameter, we solve this confusing
situation by showing that the Moore-Penrose generalized inverse
of a singular FIM is the CRB corresponding to the minimum
variance among all choices of minimum constraint functions. Our
result not only provides a way to interpret the CRB obtained
as the Moore-Penrose generalized inverse of a singular FIM,but
also enables future research on the joint design of constraint
functions and unbiased estimators.

Index Terms—Cramér-Rao bound (CRB), constrained param-
eters, singular Fisher information matrix (FIM).

I. I NTRODUCTION

An interpretation of the Moore-Penrose generalized inverse
of a singular information matrix is presented in this paper,
from the perspective of Cramér-Rao bound (CRB). CRB is
a lower bound on the covariance matrices of estimators in a
parametric estimation problem. The most general form of CRB
says that the covariance matrix of any unbiased estimator is
larger than the generalized inverse of the Fisher information
matrix (FIM) under Löwner partial order [1]. This general
form of CRB holds for parametric estimation problems with
both singular and non-singular FIMs.

There are, however, facts in literature which renders the
application of CRB questionable when the FIM is singular.
Rothenberg proves in [3] that under some regularity condi-
tions, the non-singularity of the FIM is equivalent to the local
identifiability of the parameter to be estimated1; Stoicaet al.
prove in [2] that unbiased estimators with finite variances do
not exist when the FIM is singular, except for some “unusual”

1A parameterθ is locally identifiable if there exists an open neighbourhood
Θ of θ such that no otherθ′

∈ Θ is observationally equivalent toθ.

conditions2. If the parameter to be estimated is locally non-
identifiable, or all of the unbiased estimators will have infinite
variances, it is meaningless to discuss the performance of
unbiased estimators.

As mentioned in [2], one may change the nature of an
estimation problem to allow the existence of reasonable esti-
mators. The first approach is to introducea priori information
about the probability distribution of the parameter to be esti-
mated; in this way the estimation problem becomes a Bayesian
one. There are abundant literature on Bayesian approach
[4], but we should keep in mind thata priori information
is not always already known. The second approach is to
considerbiasedestimators instead ofunbiasedestimators. This
approach is discussed in [2], where the necessary condition
for the bias function to ensure the existence of reasonable
estimators is derived. There are a number of situations, how-
ever, where biased estimators are not allowed. For example,
almost all estimation problems encountered in the design of
a communication system, including the estimation of carrier
phase and symbol timing for synchronization, the estimation
of channel response for equalization, etc., require unbiased
estimators. The third approach is to put some deterministic
constraints on the parameter to be estimated. The deterministic
constraints result in a parametric estimation problem with
reduced dimension, where reasonable unbiased estimators may
exist. This paper focuses on the third approach.

We believe that the third approach has practical significance.
Take blind channel estimation problems for example. The goal
of blind channel estimation is to estimate the channel response
h from y = s∗h+n, the convolution of the channel response
h and the input data sequences corrupted by the additive
noisen. The unknown parameterθ , (s,h) is not identifiable
since (αs, 1

α
h) and (s,h) are observationally equivalent for

any constantα 6= 0, so unbiased estimators do not exist.
Practically this so-called scalar ambiguity problem is resolved
by assigning a pre-determined value to one of the element of
s [5]. That is, a constraint functionf(θ) , sn − c = 0 is
put on the parameterθ, wheresn denotes thenth element of
s and c is some pre-determined constant. This is exactly the

2More accurately, the “unusual” conditions suggest that if the FIM is sin-
gular, only unbiased estimators for some functions of the unknown parameter,
instead of the unknown parameter itself, may exist with finite variances.
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third approach mentioned above.
CRB with a parameter constraint, or constrained CRB, is

already derived in [6], [7], [8]. The value of the constrained
CRB depends on the choice of the constraint function; differ-
ent constraint functions lead to different values of the CRB.
This bound is useful when the constraint function is exoge-
nously given, but there are situations where we are able to
modify the constraint function. Take blind channel estimation
problems for example again. Suppose an engineer chooses the
constraint function asf(θ) , s1 − c = 0 and designs an
unbiased estimator corresponding to this constraint function,
and finds the resulted mean squared error (MSE), although
almost achieving the constrained CRB, is still unsatisfactory
compared with the target value. How can the engineer tell the
unsatisfactory result is caused by the inappropriate choice of
the constraint function, or simply because the target valueis
not attainable forany choice of the constraint function? We
need a bound for the joint design of the unbiased estimator
and the constraint function.

The main contribution of this paper is the following theo-
rem: The Moore-Penrose generalized inverse of a singular FIM
is the CRB corresponding to the minimum variance among
all choices of minimum constraint functions. According to the
theorem, a meaningful interpretation of the CRB obtained as
the Moore-Penrose generalized inverse of a singular FIM is
presented, and a CRB for the joint design of the unbiased
estimator and the constraint function is obtained. In additional
to a performance bound, we also derive the sufficient condition
for a constraint function to achieve the bound, and show that
this bound can always be achieved by a linear constraint
function, which facilitates the optimal design of minimum
constraint functions.

A mathematical definition of minimum constraint functions
will be given in Section IV-A, but the meaning is conceptually
easy to understand. In blind channel estimation problems, only
a one-dimensional constraint onθ is needed to resolve the
scalar ambiguity, such asf(θ) = sn − 1, any constraint
functionf that is essentially a one-dimensional constraint is a
minimum constraint function as long as the constrained CRB
exists.

The rest of the paper is organized as follows. The necessary
background knowledge is given in II. Then we show that
the Moore-Penrose generalized inverse [9] of the FIM can
be viewed as a CRB for constrained parameters with some
constraint function in Section III. Finally we prove the main
result of this paper, that the Moore-Penrose generalized inverse
of the FIM is the CRB corresponding to the minimum variance
among all choices of constraint functions in Section IV.
Conclusions are presented in Section V.

Notation

Bold-faced lower case letters represent column vectors, and
bold-faced upper case letters are matrices. Superscripts such
asv∗, vT , M−1, andM † denote the conjugate, transpose, in-
verse, and the Moore-Penrose generalized inverse of the corre-
sponding vector or matrix. The matrixdiag(θ) means the ma-

trix whose diagonal elements are elements of the vectorθ. The
vectorE [v] denotes the expectation ofv. The matrixcov(u,v)
is defined ascov(u,v) , E

[
(u− E(u))(v − E(v))T

]
, which

is the cross-covariance matrix of random vectorsu andv. We
use the notationA ≥ B to mean thatA−B is a nonnegative-
definite matrix.

II. PRELIMINARIES

In this section, some background knowledge required to
begin the discussions in the following sections are presented.
We restrict our attention to the case ofunbiased estimators
for the unknown parameter, so the theorems presented in this
section may be a simplified version of the original one.

When we refer to theCRB for unconstrained parameters,
we mean the following theorem.

Theorem II.1 (CRB for unconstrained parameters). Let θ̂ be
an unbiased estimator of an unknown parameterθ ∈ R

n based
on observationy, which is characterized by its probability
density function (pdf)p(y; θ). Then for any sucĥθ, we have

cov
(
θ̂, θ̂

)
≥ J†, (1)

whereJ is the FIM defined as

J , E

[
∂p

∂θ

∂p

∂θT

]
. (2)

Proof: See [1].
The above theorem is always correct given that unbiased

estimators exist. Stoicaet al., however, proved the following
theorem in [2].

Theorem II.2. If the information matrixJ is singular, then
there does not exist an unbiased estimator with finite variance.

Proof: See [2]3.
That is, there does not exist any reasonable estimatorθ̂ if

the FIM is singular, so the CRB fails to provide any useful
information.

When we refer to theCRB for constrained parameters, we
mean the following theorem.

Theorem II.3 (CRB for constrained parameters). Let θ̂ be an
unbiased estimator of an unknown parameterθ ∈ R

n based
on observationy, which is characterized by its pdfp(y; θ).
Furthermore, we require the parameterθ to satisfy a possibly
nonlinear constraint functionf : Rn → R

m, m ≤ n,

f(θ) = 0. (3)

Assume that∂f/∂θT is full rank. Choose a matrixU with
(n−m) orthonormal columns such that

∂f

∂θT
U = 0. (4)

3When we restrict our attention to unbiased estimators for the unknown
parameter only, the condition for the existence of an unbiased estimator with
finite variance in [2] becomesJJ†

= I, which is impossible for singular
FIMs.



If UTJU is nonsingular, then

cov
(
θ̂, θ̂

)
≥ U

(
UTJU

)−1

UT , (5)

whereJ is the FIM defined as in (2).

Proof: See [6], [7], [8].
The following theorem gives a necessary sufficient condition

to check the existence of a finite constrained CRB.

Theorem II.4. A necessary and sufficient condition for the
existence of a finite constrained CRB is an invertibleUTJU .

Proof: See [8].
Now we are able to discuss the relationship between the

Moore-Penrose generalized inverse of an FIM and constrained
CRB.

III. J† AS A CRB FOR CONSTRAINED PARAMETERS

The main result of this section is the following theorem.

Theorem III.1. If the FIM J is singular, and let the singular
value decomposition (SVD) ofJ be

J =
[
Us Un

] [ Σ 0

0 0

] [
UT

s

UT

n

]
, (6)

the diagonal elements ofΣ being nonzero, thenJ† is a CRB
for constrained parameters with constraint function

f(θ) = UT

n
diag(θ) +C = 0 (7)

for some constant matrixC.

To prove the theorem, we first prove the following lemma.

Lemma III.1. Let the SVD of a hermitian matrixJ be the
same as in (6). Then

J† = Us

(
UH

s JUs

)−1

UT

s . (8)

Proof: SubstituteJ asJ = UsΣUT

s into (8).
Now we are able to prove Theorem III.1.

Proof for Theorem III.1: By examining the lemma and
Theorem II.3, we can think ofJ† as a constrained CRB with
some constraint functionf(θ) such that

∂f

∂θT
Us = 0. (9)

SinceUT

n
Us = 0 by the definition of SVD, a constraint

functionf that satisfies (9) can be chosen such that

∂f

∂θT
= UT

n . (10)

The above equation can be satisfied by a linear constraint
function,

f(θ) = UT

n
diag(θ) +C = 0, (11)

and the theorem is proved.

IV. I NTERPRETATION OFJ† AS A CRB FOR CONSTRAINED

PARAMETERS

In this section we prove thatJ† is not only a CRB for
constrained parameters, butthe CRB corresponding to the
minimum variance among all choices of minimum constraint
functions. We first give a definition minimum constraint func-
tions, and then prove the claim.

A. Definition of Minimum Constraint Functions

Minimum constraint functions are defined as follows.

Definition IV.1. A differentiable constraint functionf : Rn →
R

m, m ≤ n for an estimation problem with singular FIMJ
is a minimum constraint if

1) ∂f/∂θT is full rank,
2) UTJU is nonsingular, and
3) rank ∂f/∂θT + rank J = n,

whereU is chosen as in Theorem II.3.

The first requirement is to ensure thatf does not contain
any redundant constraints [6], [7]. The second requirementis
to ensure the existence of CRB according to Theorem II.4. The
third requirement means thatf contains the minimum number
of independent constraints. Take blind channel estimation
problems as example. From discussions in Section I we know
that once we choose one symbol as a pilot symbol with some
predefined value, we eliminate the scalar ambiguity and thus
an unbiased estimator exists. Note that the nullity of the FIM
is also one by [10], [11]. We can see the third requirement
holds.

Now we give a formal proof that if the first two requirements
are satisfied, then the third requirement ensures thatf contains
the minimum number of independent constraints.

Theorem IV.1. For any constraint functionf in Definition
IV.1 that satisfies the first and the second requirements,

min
f

rank
∂f

∂θT
= n− rank J . (12)

Proof: First we show that in order to satisfy the first and
the second requirements,

rank
∂f

∂θT
≥ n− rank J , (13)

and then we show that the equality is achievable.
If

rank
∂f

∂θT
< n− rank J , (14)

by the definition ofU (see Theorem II.3),U is a n-by-
(rank U) matrix with

n ≥ rank U > rank J . (15)

By the fact that

rank UTJU ≤ min{rank U , rank J} ≤ rank J < rank U ,
(16)

where the last inequality follows by (15), and noting that
UTJU is a (rank U)-by-(rank U) square matrix,UTJU

cannot be full-rank. Thus (13) is proved.



The achievability of equality in (13) is easy to prove. Choose
the constraint functionf as in (7), and we can see such
a constraint function satisfies all of the requirements of a
minimum constraint function.

By the above theorem we can see the third requirement is
in fact requiring∂f/∂θT to have the minimum rank. The
reason why such a constraint functionf can be considered as
the constraint function withminimum constraintscan be found
by the following theorem.

Theorem IV.2. Let A ⊂ R
n be open and letf : A → R

m

be a differentiable function such that∂f/∂θT has rankm
wheneverf(x) = 0. Then f−1(0) defines an(n − m)-
dimensional manifold inRn.

Proof: See [12].
Constraint functionsf with the minimum rank ∂f/∂θT

ensures that the resulting manifolds have the maximal degree
of freedom, so we call them as constraint functions with the
minimum constraints.

B. J† is the CRB corresponding to the minimum variance
among all choices of minimum constraint functions

This subsection is to prove the claim thatJ† is the CRB
corresponding to the minimum variance among all choices
of minimum constraint functions. For convenience, theith
largest eigenvalue of a matrixM is denoted byλi(M) in
the following discussions.

The main result of this subsection is the following theorem.

Theorem IV.3. In Theorem II.3, iff is a minimum constraint
function, then

tr
(
cov

[
θ̂, θ̂

])
≥ tr

(
J†

)
. (17)

Furthermore, equality can be achieved by choosing the con-
straint functionf as in Theorem III.1.

Note that the trace of a covariance matrix is the sum of the
variances of the elements ofθ̂. In this way, we have proved that
the Moore-Penrose generalized inverse of the FIM is the CRB
corresponding to the minimum variance among all choices of
minimum constraint functions.

Theorem IV.3 is in fact a corollary of the following theorem.

Theorem IV.4. Let the SVD of am-by-m nonnegative definite
matrix J with rankn be

J =
[
Us Un

] [ Σ 0

0 0

] [
UT

s

UT
n

]
, (18)

whereΣ is a n-by-n diagonal matrix. Then

λi(V
(
V TJV

)−1

V T ) ≥ λi(Us

(
UT

s JUs

)−1

UT

s )

= λi(J
†) ∀i (19)

for any matrixV with the same size asUs andV TV = I.

If the above theorem holds, then Theorem IV.3 can be
proved as follows.

Proof for Theorem IV.3:Note thatJ is a nonnegative def-
inite matrix, and the resultingU for every minimum constraint

f should have the same size asUs in Theorem IV.4, so the
above theorem applies. Noting thatU

(
UTJU

)−1

UT = J†

according to Lemma III.1, the corollary follows because trace
equals to the sum of eigenvalues.

See Appendix for the proof of Theorem IV.4.

V. CONCLUSIONS

We have proved the main theorem of this paper: The Moore-
Penrose generalized inverse of a singular FIM is the CRB
corresponding to the minimum variance among all choices of
minimum constraint functions. According to the theorem, a
meaningful interpretation of the Moore-Penrose generalized
inverse of a singular FIM is presented, and a CRB for the joint
design of the unbiased estimator and the constraint function is
obtained. In additional to a performance bound, we also derive
the sufficient condition for a constraint function to achieve the
bound, and show that this bound can always be achieved by a
linear constraint function, which facilitates the optimaldesign
of minimum constraint functions.

APPENDIX

The proof is mainly based on Poincaré separation theorem
and a lemma. We first show Poicaré seperation theorem below.

Theorem A.1 (Poincaré separation theorem). Let A ∈ R
n×n

be a Hermitian matrix, and letU ∈ R
n×r satisfyUTU = I.

DefineBr , UTAU . Then

λi(Br) ≤ λi(A) (20)

for all k ∈ {1, . . . , r}.

Proof: See [9].
Then we prove the following lemma.

Lemma A.1. For any nonnegative definite matrixM ∈ R
n×n,

and any matrixV ∈ R
m×n, m ≥ n, with V TV = I,

λi(V MV T ) = λi(M) (21)

for all i ∈ {1, . . . , n}, and

λi(V MV T ) = 0 (22)

for all i ∈ {n+ 1, . . . ,m}.

Proof: DefineV , V for notational convenience. By the
definition of V , there exist a matrix̃V such that[ V Ṽ ]
is a unitary matrix.

Let the SVD ofM beUΣU
T

. We can construct am-by-m
unitary matrix as

U ,

[
U 0

0 I

]
, (23)



and we have

V MV
T

=
[
V Ṽ

] [
UΣU

T

0

0 0

][
V

T

Ṽ T

]

=
[
V Ṽ

] [
U 0

0 I

] [
Σ 0

0 0

]

[
U

T

0

0 IT

][
V

T

Ṽ T

]
. (24)

Note that the product of two unitary matrices are also a uni-
tary matrix. Therefore (24) is the SVD of the matrixV MV

T

.
SinceV MV

T

is a nonnegative definite matrix, we can infer
from its SVD that its eigenvalues areλ1(M), . . . , λn(M) and
(m− n) zeroes, and the theorem follows.

Now we are able to prove Theorem IV.4.
Proof for Theorem IV.4:By Lemma A.1, we know that

λi

(
V

(
V TJV

)−1

V T

)
= λi

(
Us

(
UT

s
JUs

)−1

UT

s

)
= 0

(25)
for i ∈ {n+ 1, n+ 2, . . . ,m}, and

λi

(
V

(
V TJV

)−1

V T

)
= λi

((
V TJV

)−1
)
, (26)

λi

(
Us

(
UT

s
JUs

)−1

UT

s

)
= λi

((
UT

s
JUs

)−1
)
, (27)

for i ∈ {1, 2, . . . , n}, so it suffices to prove

λi

((
V TJV

)−1
)
≥ λi

((
UT

s JUs

)−1
)
, (28)

for i ∈ {n+ 1, n+ 2, . . . ,m}, or equivalently,

λi

(
V TJV

)
≤ λi

(
UT

s JUs

)
. (29)

Noting thatλi

(
UT

s JUs

)
= λi (J) because they have the

same firstn eigenvalues, and by the fact that a nonnegative
definite matrix is always Hermitian, we can see (29) is just
a result of Poicaré separation theorem. Therefore the theorem
follows.
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