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Abstract: Hoeffding has shown that tail bounds on the distribution for sampling from a finite population

with replacement also apply to the corresponding cases of sampling without replacement. (A special case

of this result is that binomial tail bounds apply to the corresponding hypergeometric tails.) We give a

new proof of Hoeffding’s result by constructing a martingale coupling between the sampling distributions.

This construction is given by an explicit combinatorial procedure involving balls and urns. We then apply

this construction to create martingale couplings between other pairs of sampling distributions, both without

replacement and with “surreplacement” (that is, sampling in which not only is the sampled individual

replaced, but some number of “copies” of that individual are added to the population).
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1. Introduction

In 1963, Hoeffding [H, Section 6, Theorem 4] proved the following theorem.

Theorem 1.1: (W. Hoeffding) Let the population C consist of N values c1, c2, . . . , cN . Let X1, X2, . . . , Xn

denote a random sample without replacement from C and let Y1, Y2, . . . , Yn denote a random sample with

replacement from C. Let Sn = X1 + X2 + · · · + Xn and Tn = Y1 + Y2 + · · · + Yn. Then if the function

f : R → R is convex,

Ex
[

f (Sn)
]

≤ Ex
[

f (Tn)
]

.

Our first goal in this paper is to give a new proof of Theorem 1.1. Our proof is based on a stochastic

order relation. The most familiar stochastic order relation is that of stochastic domination, which we shall

denote ≤I. Stochastic domination can be defined in several equivalent ways. Let S and T be real-valued

random variables with finite expectations. Then S ≤I T if S and T satisfy either of the following two

equivalent conditions.

(I-1) There exists an increasing coupling between S and T (that is, there is a random variable (Ŝ, T̂ ) such

that Ŝ has the same distribution as S, T̂ has the same distribution as T , and Ŝ ≤ T̂ with probability

one).

(I-2) For any function f : R → R, if f is increasing (that is, if x ≤ y implies f(x) ≤ f(y)), then Ex
[

f(S)
]

≤

Ex
[

f(T )
]

.

(See for example Müller and Stoyan [M, Chapter 1] or Shaked and Shathikumar [S2, Chapter 1].)

The stochastic order relation that is of importance in our proof is that of convex domination, which we

shall denote ≤C. Convex domination can also be define in several equivalent ways. Specifically, S ≤C T if S

and T satisfy either of the following two equivalent conditions.

(C-1) There exists a martingale coupling between S and T (that is, there is a random variable (Ŝ, T̂ ) such

that Ŝ has the same distribution as S, T̂ has the same distribution as T , and (Ŝ, T̂ ) is a martingale;

that is Ex[T̂ | Ŝ] = Ŝ).

(C-2) For any function f : R → R, if f is convex, Ex
[

f(S)
]

≤ Ex
[

f(T )
]

.

(See for example Müller and Stoyan [M, Chapter 1] or Shaked and Shathikumar [S2, Chapter 3].)

For our proof, we shall only need the implication (C-1)⇒(C-2), which is easily proved as follows. If

R is a random variable, we shall write FR(r) = Pr[R ≤ r] for the distribution function of R, so that

Ex[R] =
∫

r dFR(r). We use the tower formula Ex[R] = Ex
[

Ex[R | S]
]

for conditional expectations, Jensen’s
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inequality f
(

Ex[R]
)

≤ Ex
[

f(R)
]

for convex f , and the fact that (Ŝ, T̂ ) is a martingale:

Ex
[

f(T )
]

= Ex
[

f(T̂ )
]

= Ex
[

Ex
[

f(T̂ ) | Ŝ
]]

=

∫ ∫

f(t) dF
T̂ |Ŝ=s

(t) dF
Ŝ
(s)

≥

∫

f

(
∫

t dF
T̂ |Ŝ=s

(t)

)

dF
Ŝ
(s)

=

∫

f
(

Ex[T̂ | Ŝ = s]
)

dF
Ŝ
(s)

=

∫

f (s) dF
Ŝ
(s)

= Ex
[

f(Ŝ)
]

= Ex
[

f(S)
]

.

The implication (C-1)⇒(C-2) shows that Theorem 1.1 is a consequence of the following proposition,

which will be proved in Section 2.

Proposition 1.1: Let the population C consist of N values c1, c2, . . . , cN . Let X1, X2, . . . , Xn denote a random

sample without replacement from C and let Y1, Y2, . . . , Yn denote a random sample with replacement from

C. Let Sn = X1 +X2 + · · ·+Xn and Tn = Y1 + Y2 + · · ·+ Yn. Then there is a martingale coupling between

Sn and Tn.

Hoeffding used Theorem 1.1 to transfer bounds he had obtained for the tails of the distributions of

sums of the independent random variables Yi to the corresponding tails for the dependent random variables

Xi. This transfer is possible because tail bounds typically employ a convex function, such as a quadratic or

exponential, to weight large deviations from the mean more heavily than small ones.

We shall illustrate this transfer of bounds by showing how a bound on the tail of a binomially distributed

random variable transfers to that of a hypergeometrically distributed random variable. In this case, we take

N = a + b, c1 = c2 = · · · = ca = 1 and ca+1 = ca+2 = · · · = ca+b = 0 (modeling an urn containing a red

balls and b blue balls). Then Sn is hypergeometrically distributed (the number of red balls drawn in n draws

without replacement), while Tn is binomially distributed (the number of red balls drawn in n draws with

replacement, or the number of successes in n independent trials, each of which succeeds with probability

p = a/(a+ b)).

For the bound on the tail of the distribution of Tn we shall use the well known method due to Chernoff

[C1]. If R is a random variable, we shall denote by MR(u) = Ex[euR] =
∫

eur dFR(r) the moment generating

function of R. Chernoff’s bound on the upper tail of R is

Pr[R ≥ w] =

∫

r≥w

dFR(r)

≤ e−uw

∫

r≥w

eur dFR(r)

≤ e−uw

∫

eur dFR(r)

= e−uw MR(u).
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Let Tn be binomially distributed, as the number of red balls drawn in n draws with replacement from an

urn containing a red balls and b blue balls, or the number of successes in n independent trials, each of

which succeeds with probability p = a/(a + b). Since MTn
(u) = (peu + 1 − p)n, Chernoff’s bound yields

Pr[Tn ≥ (p+ q)n] ≤ e−u(p+q)n (peu + 1− p)n, and minimizing this bound over u yields

Pr[Tn ≥ (p+ q)n] ≤

(

(

p

p+ q

)p+q (
1− p

1− p− q

)1−p−q
)n

. (1.1)

We shall transfer the bound (1.1) to the corresponding tail of the corresponding hypergeometric dis-

tribution. Let Sn be hypergeometrically distributed, as the number of red balls drawn in n draws without

replacement from an urn containing a red balls and b blue balls. The Chernoff bound on the upper tail of

Sn is hard to evaluate exactly (because MSn
(u) is a hypergeometric function, from which the distribution

gets its name). But Theorem 1.1, with the convex function f(v) = euv, tells us that

MSn
(u) = Ex[euSn ] ≤ Ex[euTn ] = MTn

(u).

Thus the Chernoff bound for Tn applies to Sn as well, yielding

Pr[Sn ≥ (p+ q)n] ≤

(

(

p

p+ q

)p+q (
1− p

1− p− q

)1−p−q
)n

. (1.2)

(Chvátal [C2] has given a proof of the bound (1.2) by direct manipulation of sums of binomial coefficients.)

In Section 2, we shall give our construction of the martingale coupling for the proof of Proposition 1.1. In

Section 3, we shall apply our method to construct martingale couplings between other pairs of distributions

arising from various instances of sampling from finite populations, without replacement, with replacement,

and with “surreplacement” (that is, with the sampled value being replaced, together with one or more

additional copies of that value). The results of this paper first appeared in the first author’s bachelor’s thesis

[L].

2. Proof of Proposition 1.1

We begin with two urns. The first urn, X , contains N balls, x1, . . . , xN . Each of these balls is labeled

with its number; that is, ball xi is labelled i. Balls will be drawn from urn X without replacement. The

second urn, Y, contains N balls, y1, . . . , yN . Each of these balls is initially unlabeled but will eventually be

assigned a label. Balls will be drawn from urn Y with replacement.

We now perform an infinite sequence of steps as follows. In the course of these steps we shall define a

bijective map ξ : {1, . . . , N} → {1, . . . , N} and a surjective map η : {1, 2, . . .} → {1, . . . , N}. At each step,

we draw a ball from urn Y. If the ball drawn is still unlabeled, we draw a ball from urn X , we assign the

label of the ball drawn from urn X to the ball drawn from urn Y, then replace the ball drawn from urn Y

in urn Y. If the ball drawn from urn Y has already been assigned a label, we simply replace it in urn Y.

Since, with probability one, every ball in urn Y will eventually be drawn, every ball in urn Y will eventually

be assigned a label.

We define ξ(i) to be the label of the i-th ball drawn from urn X . Since every ball from X is eventually

drawn, and balls are drawn from X without replacement, ξ is a permutation of {1, . . . , N}. We define η(i)
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to be the label assigned to the ball drawn from urn Y at the i-th step (either during the i-th step or at some

previous step). Since each of the labels 1, . . . , N is eventually assigned to one of the balls in urn Y, η maps

{1, 2, . . .} onto {1, . . . , N}.

The process just described creates a coupling between ξ, which is uniformly distributed over all per-

mutations of {1, . . . , N}, and η, which is a sequence η(1), η(2), . . . of independent random variables, each

uniformly distributed over {1, . . . , N}.

Let c1, . . . , cn be real numbers. We shall define the random variables X1, . . . , XN by Xi = cξ(i) for

1 ≤ i ≤ N , and the random variables Y1, Y2, . . . by Yi = cη(i) for i ≥ 1. This definition creates a coupling

between the sequence X1, . . . , XN , which is distributed as a random sample without replacement from the

population c1, . . . , cn, and the sequence Y1, Y2, . . ., which is distributed as a sequence of independent random

samples with replacement from the same population.

Let n be an integer in the range 1 ≤ n ≤ N . We define Sn = X1 + · · · +Xn and Tn = Y1 + · · · + Yn.

This definition creates a coupling between Sn which is distributed as the sum of a random sample of size n

without replacement from the population c1, . . . , cn, and Tn, which is distributed as the sum of a random

sample of size n with replacement from the same population.

We shall now show that (Sn, Tn) is a martingale; that is, that

Ex[Tn | Sn] = Sn. (2.1)

If Sn = s, then cξ(1)+ · · ·+ cξ(n) = s, and ξ(1), . . . , ξ(n) is equally likely to be any of the sequences satisfying

this constraint. Since any permutation of such a sequence is again such a sequence, we have

Ex[cξ(i) | Sn = s] = s/n (2.2)

for 1 ≤ i ≤ n. Now

Ex[Tn | Sn = s] = Ex[Y1 | Sn = s] + · · ·+ Ex[Yn | Sn = s]

= Ex[cη(1) | Sn = s] + · · ·+ Ex[cη(n) | Sn = s]. (2.3)

Since each η(i) for 1 ≤ i ≤ n is equal to one of the ξ(1), . . . , ξ(n), each of the n terms in (2.3) is equal by

(2.2) to s/n, and thus Ex[Tn | Sn = s] = s. This completes the proof of (2.1), and shows that the coupling

(Sn, Tn) is a martingale.

3. Other Martingale Couplings

In this section we shall construct martingale couplings for other pairs of probability distributions. (For

these pairs, neither distribution has a simple moment generating function, so they do not facilitate the

transfer of tail bounds in the same way as Proposition 1.1.) The first of these pairs compares samples

without replacement from two populations, one of which is a “k-fold multiplication” of the other (that is,

contains k “copies” of each individual from the other population).

Proposition 3.1: Let the population C consist of N values c1, c2, . . . , cN . Let the population D = kC consist

of kN values d1,1 = · · · = d1,k = c1, . . . , dN,1 = · · · = dN,k = cN . Let X1, X2, . . . , Xn denote a random

sample without replacement from C and let Y1, Y2, . . . , Yn denote a random sample without replacement
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from D. Let Sn = X1 +X2 + · · · +Xn and Tn = Y1 + Y2 + · · · + Yn. Then there is a martingale coupling

between Sn and Tn.

Proof: We begin with two urns. The first urn, X , contains N balls, x1, . . . , xn. Each of these balls is labeled

with its number; that is, ball xi is labelled i. Balls will be drawn from urn X without replacement. The

second urn, Y, contains kN balls, y1,1, . . . , y1,k, . . . , yN,1, . . . , yN,k. Each of these balls is initially unlabeled

but will eventually be assigned a label. Balls will be drawn from urn Y without replacement. For 1 ≤ i ≤ N ,

the balls ym,1, . . . , ym,k will be said to comprise the m-th cohort.

We now perform a sequence of kN steps as follows. In the course of these steps we shall define a bijective

map ξ : {1, . . . , N} → {1, . . . , N} and a surjective map η : {1, . . . , kN} → {1, . . . , N}. At each step, we draw

a ball from urn Y. If the ball drawn is still unlabeled, we draw a ball from urn X , we assign the label of the

ball drawn from urn X to the ball drawn from urn Y and to the k − 1 other balls in its cohort. The ball

drawn from urn Y is not replaced, and the other balls in its cohort remain in the urn. If the ball drawn from

urn Y has already been assigned a label, we proceed to the next step.

We define ξ(i) to be the label of the i-th ball drawn from urn X . Since every ball from X is eventually

drawn, and balls are drawn from X without replacement, ξ is a permutation of {1, . . . , N}. We define η(i)

to be the label assigned to the ball drawn from urn Y at the i-th step (either during the i-th step or at some

previous step). Since each of the labels 1, . . . , N is eventually assigned to one of the balls in urn Y, η maps

{1, . . . , kN} onto {1, . . . , N}.

The process just described creates a coupling between ξ, which is uniformly distributed over all permu-

tations of {1, . . . , N}, and η, which is uniformly distributed over maps η : {1, . . . , kN} such that η(h) = j

for exactly k values of h, for all 1 ≤ j ≤ N .

We shall define the random variables X1, . . . , XN by Xi = cξ(i) for 1 ≤ i ≤ N , and the random

variables Y1, . . . , YkN by Yi = cη(i) for 1 ≤ i ≤ kN . This definition creates a coupling between the sequence

X1, . . . , XN , which is distributed as a random sample without replacement from the population c1, . . . , cN ,

and the sequence Y1, . . . , YkN , which is distributed as a sequence of independent random samples without

replacement from the population D. The proof this coupling is a martingale is exactly as in the proof of

Proposition 1.1. ⊓⊔

An obvious question left open by Proposition 3.1 is whether there is a martingale coupling between

sampling without replacement from population kC and sampling without replacement from population k′C

(where k′ > k > 1, with k not dividing k′).

Our final theorem concerns sampling with “surreplacement”, in which not only is each individual drawn

from a population replaced, but some number of “copies” of that individual are added to the population.

Proposition 3.2: Let the population C consist of N values c1, c2, . . . , cN . Let X1, X2, . . . , Xn denote a random

sample without replacement from C and let Y1, Y2, . . . , Yn denote a random sample with surreplacement

from C, whereby each individual drawn is replaced by a total of d ≥ 1 copies of that individual. Let

Sn = X1 +X2 + · · ·+Xn and Tn = Y1 + Y2 + · · ·+ Yn. Then there is a martingale coupling between Sn and

Tn. (The case d = 1 is simply the case of sampling with replacement, dealt with in Proposition 1.1.)

Proof: We begin with two urns. The first urn, X , contains N balls, x1, . . . , xN . Each of these balls is labeled

with its number; that is, ball xi is labelled i. Balls will be drawn from urn X without replacement. The

second urn, Y, contains N balls. Each of these balls is initially unlabeled but will eventually be assigned a

label. Balls will be drawn from urn Y with surreplacement.
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We now perform an infinite sequence of steps as follows. In the course of these steps we shall define a

bijective map ξ : {1, . . . , N} → {1, . . . , N} and a surjective map η : {1, 2, . . .} → {1, . . . , N}. At each step,

we draw a ball from urn Y. If the ball drawn is still unlabeled, we draw a ball from urn X , we assign the

label of the ball drawn from urn X to the ball drawn from urn Y, and to d − 1 new balls, then replace

these d balls in urn Y. If the ball drawn from urn Y has already been assigned a label, we assign that

label to d − 1 new balls, then replace these d balls in urn Y. Let us consider a ball initially in urn Y. The

probability that it is not drawn in the first step is 1 − 1/N , the probability that it is not drawn on the

second step is 1 − 1/(N + (d − 1)), and so forth, with the probability that it is not drawn on the i-th step

being 1− 1/(N + (i− 1)(d− 1). Since the sum
∑

i≥1 1/(N + (i− 1)(d− 1) diverges to infinity, the product
∏

i≥1

(

1 − 1/(N + (i − 1)(d − 1)
)

diverges to zero. Thus, with probability one, every ball initially in urn Y

will eventually be drawn, so every ball initially in urn Y will eventually be assigned a label. Of course, the

balls added to Y are assigned labels at the times they are added.

We define ξ(i) to be the label of the i-th ball drawn from urn X . Since every ball from X is eventually

drawn, and balls are drawn from X without replacement, ξ is a permutation of {1, . . . , N}. We define η(i)

to be the label assigned to the ball drawn from urn Y at the i-th step (either during the i-th step or at some

previous step). Since each of the labels 1, . . . , N is eventually assigned to one of the balls in urn Y, η maps

{1, 2, . . .} onto {1, . . . , N}.

The process just described creates a coupling between ξ, which is uniformly distributed over all permu-

tations of {1, . . . , N}, and η, which is an sequence η(1), η(2), . . . of random variables, each distributed over

{1, . . . , N} in the way appropriate to surreplacement. Specifically, for i ≥ 1, the conditional probability that

η(i) = j, given that η(h) = j for exactly k values of h < i is
(

1 + k(d− 1)
)/(

N + (i− 1)(d− 1)
)

.

Let c1, . . . , cn be real numbers. We shall define the random variables X1, . . . , XN by Xi = cξ(i) for

1 ≤ i ≤ N , and the random variables Y1, Y2, . . . by Yi = cη(i) for i ≥ 1. This definition creates a coupling

between the sequence X1, . . . , XN , which is distributed as a random sample without replacement from the

population c1, . . . , cN , and the sequence Y1, Y2, . . ., which is distributed as a sequence of independent random

samples with surreplacement from the same population.

Let n be an integer in the range 1 ≤ n ≤ N . We define Sn = X1 + · · · +Xn and Tn = Y1 + · · · + Yn.

This definition creates a coupling between Sn which is distributed as the sum of a random sample of size n

without replacement from the population c1, . . . , cn, and Tn, which is distributed as the sum of a random

sample of size n with surreplacement from the same population. The proof this coupling is a martingale is

exactly as in the proof of Proposition 1.1. ⊓⊔

An obvious question left open by Proposition 3.2 is whether there is a martingale coupling between

sampling with surreplacement of d copies and sampling with surreplacement of d′ copies from the same

population, where d′ > d > 1.
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