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This article provides a brief introduction to seven papers that are

included in this special section on Statistics in Neuroscience:

(1) Xiaoyan Shi, Joseph G. Ibrahim, Jeffrey Lieberman, Martin Styner,

Yimei Li and Hongtu Zhu: Two-state empirical likelihood for lon-

gitudinal neuroimaging data

(2) Vincent Q. Vu, Pradeep Ravikumar, Thomas Naselaris, Kendrick

N. Kay, Jack L. Gallant and Bin Yu: Encoding and decoding

V1 fMRI responses to natural images with sparse nonparametric

models

(3) Sourabh Bhattacharya and Ranjan Maitra: A nonstationary non-

parametric Bayesian approach to dynamically modeling effective

connectivity in functional magnetic resonance imaging experi-

ments

(4) Christopher J. Long, Patrick L. Purdon, Simona Temereanca,

Neil U. Desai, Matti S. Hämäläinen and Emery Neal Brown:

State-space solutions to the dynamic magnetoencephalography

inverse problem using high performance computing

(5) Yuriy Mishchencko, Joshua T. Vogelstein and Liam Paninski: A

Bayesian approach for inferring neuronal connectivity from cal-

cium fluorescent imaging data

(6) Robert E. Kass, Ryan C. Kelly and Wei-Liem Loh: Assessment

of synchrony in multiple neural spike trains using loglinear point

process models

(7) Sofia Olhede and Brandon Whitcher: Nonparametric tests of

structure for high angular resolution diffusion imaging in Q-space

1. Introduction. In a lecture at Indiana University in March 2008, Peter

Hall offered several valuable insights about the field of statistics, three of

which are noted below:
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1. Advances in statistics have come from the need to analyze different data
types (“Statistics is ‘reactive;’ it is very responsive to new problems that
arise in chemistry, biology, physics, . . . ”).

2. Data sets continue to increase in size.
3. Computational algorithms are essential components of the analysis: “Ad-

vances in powerful computing equipment has had a dramatic impact on
statistical methods and theory. It has changed forever the way data are
analyzed.”

The seven articles in this special section on Statistics and Neuroscience, to-
gether with two earlier AOAS articles, vividly illustrate all three principles.

Function of the human nervous system has fascinated researchers for
decades, due to its complex network of interactions among critical parts
of its components in the central nervous system (brain, spinal cord, retina)
and periphery (nerves). The amount of data that can be collected on these
individual components is truly massive, now that instruments for measuring
signals (responses to stimuli) have been developed with increasing resolution
(spatially and temporally) and sensitivity (weaker signals in the presence of
high noise levels). The range of statistical methods that are needed to un-
derstand neural and brain development, functionality, and interactions is
extremely broad. This special section includes seven articles that present
useful statistical methodology designed to address various aspects of data
that arise in neuroscience, specifically with brain imaging data collected via
functional magnetic resonance imaging (fMRI) or other imaging techniques,
and the analysis of neural spike train data. The articles demonstrate the wide
variety of statistical problems, the diversity of methods that can be applied,
and, most importantly, the valuable insights that are obtained through the
application of sound statistical methods.

Functional magnetic resonance imaging was developed in the early 1990s
for brain imaging [e.g., Ogawa et al. (1992)] and immediately presented
statisticians with a huge new area of problems to be considered: the anal-
ysis of massive data sets. The data, changes in blood flow in response to
neural activity [blood oxygen level dependent (BOLD) signals], can be mea-
sured and recorded with spatial resolution on the order of 2–4 millimeters,
taken every 2–4 seconds. Noise reduction, image registration, outliers, im-
age detection, spatial and time trends, and multiplicity are only some of the
problems that can arise with these data. Among the first statisticians to
attack these problems were Keith Worsley and Karl Friston [Worsley and
Friston (1995); Worsley et al. (1996); Friston et al. (1995)] and William
Eddy and his colleagues [Eddy et al. (1995); Eddy, Fitzgerald and Noll
(1996)], who had sufficient computational resources at the time to handle
the massive amounts of data. Since then, computational power has signifi-
cantly advanced, enabling statisticians to investigate other aspects of these
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types of data. In addition, other imaging methods have been developed with
increased sensitivity and resolution. The first three articles in this section
develop methods for analyzing fMRI data: Shi et al. (1), Vu et al. (2), and
Bhattacharya and Maitra (3). Three articles develop methods for analyzing
data using more sensitive imaging techniques: Long et al. (4) model electro-
magetic source imaging data (magnetoencepholography imaging, or MEG);
Mishchencko et al. (5) develop neural connectivity models from data using
calcium fluorescent imaging; and Olhede and Whitcher (7) analyze brain
images from measurements obtained via a type of magnetic resonance imag-
ing known as high angular resolution diffusion imaging (HARDI). Neural
spike trains collected from multielectrode recordings motivate the methods
in Kass et al. (6).

Shi et al. (1) develop an adjusted exponentially tilted empirical likelihood

method to detect differences in the morphological changes, measured via
fMRI, in specific regions of the brain between two groups of patients on
different treatment protocols. Beyond the development of an appropriate
model that accounts for longitudinal measurements with time-varying co-
variates is the challenge of developing a computational algorithm to handle
the data on 238 patients. The results indicate regions of important dif-
ferences which provide insights into the different mechanisms of the two
treatment protocols. Vu et al. (2) use exploratory data analysis and model
selection procedures to improve a previously proposed model for brain ac-
tivity in encoding and decoding sensory stimuli in the form of local constant
energy features. Their analysis reveals nonlinearities which, when incorpo-
rated into the model, yields a 25% improvement in encoding prediction and
hence greater accuracy in image identification. Bhattacharya and Maitra (3)
also analyze fMRI signals to model dynamic, nonstationary neural connec-
tivity via a first-order vector autoregressive model which, when applied to
fMRI data on patients performing specific tasks, provides insights into those
brain mechanisms involved in distinguishing shapes.

Data from more sensitive and higher resolution imaging techniques require
more computationally intensive approaches. Long et al. (4) develop high-
dimensional (in the number of parameters) state-space models to identifying
magnitudes and locations of neural sources that give rise to MEG signals
recorded on the surface of the head. Due to the greatly increased resolution
of the data and the number of parameters to be estimated, the Kalman filter
solution can be implemented only on high-performance supercomputers. The
authors’ Kalman filter approach can be viewed as a specific implementation
of a more general approach using random field theory proposed by Taylor
and Worsley (2007) and applied to MEG (and electroencepholography, or
EEG) data by Kilner and Friston (2010) that appeared in The Annals of

Applied Statistics last year.
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The next two articles in this special section use different sources of data
to model neuronal connectivity. One source of data is calcium-sensitive flu-
orescent imaging, which offers much finer spatial and temporal resolution
than is possible with fMRI. Mishchencko et al. (5) use such imaging data to
model neural circuitry with a collection of coupled Hidden Markov models
(HMMs), where each Markov chain represents the behavior of a single neu-
ron and the coupling between the HMMs reflects the network connectivity
matrix. As is the case with the other articles in this section, the vast amounts
of data and the complexity of the coupled models require clever computa-
tional approaches (in this case, a blockwise Gibbs algorithm) to estimate
model parameters with biologically meaningful relevance. Kass et al. (6)
consider models for data from external electrodes on the brain. In the past,
neural spike trains from external electrodes have been analyzed tradition-
ally as point processes [Brillinger (1988, 1992)]. Such models usually assume
stationarity and distinct events (no two events occur at the same time).
Here, Kass, Kelly, and Loh enhanced these models for neural spike trains
by introducing a class of continuous-time-varying loglinear models which in-
corporates time-varying intensities, autocovariation, and synchrony. For an
approach to estimating the number of neurons involved in a multi-neuronal
spike train, see Li and Loh (2011) that appeared in the most recent issue of
AOAS.

Olhede and Whitcher (7) approach the analysis of brain images through
the local estimation of the two-dimensional probability density function
(pdf) of HARDI measurements (i.e., measurements of the local molecular
diffusion of water molecules, obtained via high angular resolution diffusion
imaging). Rather than assuming a Gaussian pdf, Olhede and Whitcher use
the increased sampling rate of HARDI to estimate a nonparametric pdf using
local measurements of the covariance matrix, enabling greater accuracy (less
bias) at relatively little cost in terms of precision (increased variance). How-
ever, because the data come from a diffusion process, the measurements are
inherently spectral in nature. The authors provide the statistical framework
for estimating pdfs in the spectral domain, incorporating known properties
of the diffusion process, and then use properties of Fourier transforms to in-
vert the estimated pdf into the brain image domain. Nonparametric tests for
non-uniformity, asymmetry, and ellipsoidality in the pdf lead to increased
understanding of diffusion in the brain.

As Peter Hall indicated with respect to data in other fields, here the anal-
ysis of neuroscience data led to the development of new statistical method-
ology. Besides the common theme of neuroscience as the motivation for the
methodology, all nine articles (the present seven in this issue and the two
articles that appeared earlier) share two additional features: (1) the anal-
ysis of very large data sets, which thereby require (2) the development of
computational algorithms to facilitate estimation of complex models needed
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to incorporate the nonstandard features of the data (e.g., nonlinearity, non-
stationarity, etc.). Many more problems posed by these sorts of data are in
need of solutions, for example, relaxing assumptions on models, designing
experimental strategies to make best use of the data, developing methods
to reduce noise (increase signal-to-noise ratio), etc. Useful, practical solu-
tions can be obtained only through collaboration between scientists and
statisticians. We hope that these articles will stimulate statisticians and
neuroscientists to collaborate on these problems to further research in both
domains.
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