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Abstract

In the present paper we consider Laplace deconvolution on the basis of discrete noisy data

observed on the interval which length may increase with a sample size. Although this problem

arises in a variety of applications, to the best of our knowledge, it has not been systematically

studied in statistical literature and the present paper contributes to fill this gap. We derive an

adaptive kernel estimator of the function of interest, and establish its asymptotic minimaxity

over a range of Sobolev classes. A limited simulation study shows that, in addition to providing

theoretical asymptotic results, the proposed Laplace deconvolution estimator demonstrates good

performance in finite sample examples.
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1 Introduction

Mathematical modeling of a variety of problems in population dynamics, mathematical physics,

theory of superfluidity and many others leads to the convolution type Volterra equation of the first

kind of the form

q(t) =

∫ t

0
g(t− τ)f(τ)dτ, t ≥ 0 (1.1)

where q(·) is the known (observed) function, g(·) is the (known) kernel and f(·) is the unknown

function to be solved for (see, e.g. Gripenberg, Londen & Steffans, 1990). Two motivating examples

from computed tomography and fluorescence spectroscopy are described below. This problem is

also known as Laplace deconvolution problem.
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In practice, however, one typically observes discrete data on a finite interval that, in addition,

is corrupted by noise which leads to the following discrete noisy version of equation (1.1):

y(ti) =

∫ ti

0
g(ti − τ)f(τ)dτ + σεi, i = 1, · · · , n, (1.2)

where 0 ≤ t1 ≤ ... ≤ tn ≤ Tn, εi are i.i.d. N(0, 1) and Tn may grow with n.

Example 1: Dynamic contrast enhanced computed tomography data. Dynamic Contrast

Enhanced Imaging (DCE-imaging) is widely used in medical imaging of brain structures or

cancerous tumors (see, e.g., Cao et al., 2010; Goh et al., 2005; Goh and Padhani, 2007; Cuenod et

al., 2006; Miles, 2003; Padhani and Harvey, 2005 and Bisdas et al., 2007). DCE-imaging has great

potential for cancer detection and characterization, as well as for monitoring in vivo the effects

of treatments. The experiment follows the evolution of a bolus of contrast agent injected during

sequential imaging acquisition.

The data is assumed to consist of observations of quantities (concentrations) of contrast agents

at voxels of unit volumes measured at different times:

Qx(tk) = Q0
x(tk) + σεx(k), 0 = t0 < t1 < · · · < tn = T, (1.3)

where Qx(tk) and Q0
x(t) are respectively the observed and the true (unknown) quantities of a

contrast agent at time tk in the voxel x and εx(k), k = 1, · · · , n, are i.i.d. standard normal variables.

The total amount of the contrast agent Ax(t) arrived into voxel x by the time t is the so called

arterial input function which is usually known. If Dx(t) is the amount of contrast agent which has

departed by time t from voxel x and Sx is the random lapse of time during which a molecule of

contrast agent stays in the voxel x, then Dx(t) can be presented as a Laplace convolution of the

density αx(s) of the rate of arrivals of the contrast agent into the voxel x and unknown function

fx(t) = P (Sx ≥ t):

Dx(t) =

∫ t

0
αx(s)P (Sx ≥ t− s)ds =

∫ t

0
αx(t− s)fx(s)ds. (1.4)

The function αx(t) depends on the voxel x only through the voxel dependent factor and, therefore,

it cannot be used to describe a particular tissue type. On the contrary, Sx and, hence, function fx(t)

depends on the properties of the tissue and, hence, can be used for its characterization. In order

to connect equation (1.4) with the observations Qx(tk) in (1.3), note that Dx(t) = Ax(t) − Q0
x(t)

where Ax(t) is known, so that, equation (1.4) can be viewed as a particular case of problem (1.2).

Example 2: Fluorescence spectroscopy data. Equation (1.2) has been extensively used for

modeling of time-resolved measurements in fluorescence spectroscopy, particularly, for studies

of biological macromolecules and for cellular imaging (see, e.g., Ameloot and Hendrickx, 1983;

Ameloot et al., 1984; Gafni, Modlin and Brand, 1975; McKinnon, Szabo and Miller, 1977;
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O’Connor, Ware and Andre, 1979, and also the monograph of Lakowicz, 2006 and references

therein).

At present, in fluorescence spectroscopy, most of the time-domain measurements are carried

out using time-correlated single-photon counting. The measured intensity decay is represented by

N(tk), the number of photons that were detected within the time interval (tk, tk + ∆t) and appears

as a convolution of the response function I(t) with the lamp function L(t). One can imagine the

excitation pulse to be a series of δ-functions with different amplitudes. Each δ-function excitation

is assumed to excite an impulse response L(tk)I(t − tk)∆t at time t > tk, with the amplitude at

time tk proportional to the excitation intensity L(tk). The measured decay N(t) is the sum of the

impulse responses created by all the individual δ-function excitation pulses occurring until time

t: N(t) =
∑tk=t

tk=0 L(tk)I(t − tk)∆t. As ∆t → ∞, the sum in the right hand side can be replaced

by the integral, and with a change of variables t − s = x, the last equation can be written as

N(t) =
∫ t

0 L(t− x)I(x)dx. The experimental data come in the form of measurements N̂(tk) which

are contaminated by random noise and, therefore, can be modeled by equation (1.2). The objective

is to determine the impulse response function I(x) that best matches the experimental data.

Formally, by setting g(t) = f(t) ≡ 0 for t < 0, equation (1.1) can be viewed as a particular case

of the Fredholm convolution equation

h(t) =

∫ ∞
−∞

g(t− τ)f(τ)dτ, (1.5)

whose discrete stochastic version

y(ti) =

∫ b

a
g(ti − τ)f(τ)dτ + σεi, i = 1, · · · , n, (1.6)

known also as Fourier deconvolution problem, has been extensively studied in the last thirty years

(see, for example, Carroll and Hall, 1988; Delaigle, Hall and Meister, 2008; Diggle and Hall, 1993;

Fan, 1991; Fan and Koo, 2002; Johnstone et al., 2004; Pensky and Vidakovic, 1999; Stefanski and

Carrol, 1990 among others)

However, such an approach to solving (1.1) and (1.2) is very misleading. In fact, Gripenberg,

Londen & Steffans (1990, p. 3) state that “much of the classical theory of Fredholm equations

reduces to mere trivialities when applied to Volterra equations. On the other hand, Volterra

equations exhibit a variety of phenomena unknown to Fredholm theory.” In particular, artificial

zero extension of g and f for negative values of the argument evidently affects their regularity at

zero. In addition, note that the measurements of the right-hand side of (1.1) are available only on

the interval [0, Tn] which makes application of usual discrete Fourier transform typically applied for

solving (1.5) impossible since the latter would assume periodicity of a function on [0, Tn]. Moreover,

for the noisy measurements in (1.5), the solution by Fourier transform may not vanish for t < 0

and, as a result, may be different from a true solution f of the equation.
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The mathematical theory of (noiseless) convolution type Volterra equations is well developed

(see, e.g., Gripenberg, Londen and Staffans, 1990) and the exact solution of (1.1) can be

obtained through Laplace transform. However, direct application of Laplace transform for discrete

measurements faces serious conceptual and numerical problems. The inverse Laplace transform is

usually found by application of tables of inverse Laplace transforms, partial fraction decomposition

or series expansion (see, e.g., Polyanin and Manzhirov, 1998), neither of which is applicable in

the case of the noisy version of Laplace deconvolution. Only few applied mathematicians took an

effort to solve the problem using discrete measurements in the LHS of (1.5) (see, e.g., Ameloot and

Hendrickx, 1983; Cinzori and Lamm, 2000; Lamm, 1996; Lien et al., 2008; Maleknejad et al., 2007;

Rashed, 2003; Weeks, 1966). Ameloot and Hendrickx (1983) applied Laplace deconvolution for the

analysis of fluorescence curves and used a parametric presentation of the solution f as a sum of

exponential functions with parameters evaluated by minimizing discrepancy with the right-hand

side. In a somewhat similar manner, Maleknejad et al. (2007) proposed to expand the unknown

solution over a wavelet basis and find the coefficients via the least squares algorithm. Lien et al.

(2008), following Weeks (1966), studied numerical inversion of the Laplace transform using Laguerre

functions. Finally, Cinzori and Lamm (2000) and Lamm (1996) used discretization of the equation

(1.1) and applied various versions of the Tikhonov regularization technique. However, in all of

the above papers, the noise in the measurements was either ignored or treated as deterministic.

The presence of random noise in (1.2) makes the problem even more challenging. To the best of

our knowledge, the only paper which considered inverse Laplace transform on the basis of random

noisy measurements is Chauveau, van Rooij and Ruymgaart (1994) who studied this problem in

the framework of mixture density estimation.

For all these reasons, estimation of function f from noisy observations y in (1.2) requires

development of a novel approach. Unlike Fourier deconvolution that has been intensively studied

in statistical literature (see references above), Laplace deconvolution received virtually no attention

within statistical framework. We can mention Dey, Martin & Ruymgaart (1998) that considered

the model essentially equivalent to (1.2) with the exponential kernel g(t) = be−at. They proposed

an estimator for this very specific type of kernel and derived the convergence rate for its quadratic

risk as n increases, where the r-th derivative of f is assumed to be continuous on (0,∞).

The goal of the present paper is to investigate a general Laplace deconvolution problem (1.2). In

Section 2, we re-formulate some known relevant mathematical results for Volterra equations to make

them suitable for developing the novel statistical approach for Laplace deconvolution with noisy

data measured on an interval. In Section 3, we construct an adaptive estimator of the unknown

function f in (1.2) and establish its asymptotic optimality in minimax sense over the entire class

of Sobolev balls. In Section 4, we present the results of a limited simulation study of the developed

estimator in the paper. Section 5 concludes the paper with discussion. All the proofs are given in

the Appendix.
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2 Convolution type Volterra equations

To construct an estimator f̂n for the unknown f in (1.2) we start from the noiseless Volterra

equation (1.1) and find its exact solution.

We first introduce several notations used throughout the paper. We denote the Laplace

transform of a function f(t) by F̃ (s), that is, F̃ (s) =
∫∞

0 e−stf(t)dt. The Lk(R+)-norm of the

function h is denoted by ‖h‖k and ‖h‖∞ is the supremum norm of h. If k = 2 and there is no

ambiguity, we shall omit the subscript in the notation of the norm, i.e. ‖h‖ = ‖h‖2. We use the

standard notation W s,p(R+) for a Sobolev space of functions on [0,∞) that have s derivatives with

finite Lp-norms and, in particular, for p = 2, Hs(R+) = W s,2(R+). In what follows, we shall omit

R+ in the notations of the norms and functional spaces and, unless the opposite is stated and

assume that all functions are defined on the nonnegative part of the real line.

Assume now the following conditions on the unknown f and the (known) kernel g in (1.1):

(A1) f ∈ Hm

(A2) There exists an integer 1 ≤ r < m such that

g(j)(0) =

{
0, if j = 0, · · · , r − 2

Br 6= 0, if j = r − 1
(2.1)

(A3) g ∈W r,1 ∩Hu for some u ≥ m+ r − 1 (hence, in particular, u > 2r − 1)

Taking derivatives of both sides of (1.1) under Assumption (A2), one obtains

q(j)(t) =

∫ t

0
g(j)(t− τ)f(τ)dτ, j = 1, · · · , r − 1;

· · ·

q(r)(t) = Brf(t) +

∫ t

0
g(r)(t− τ)f(τ)dτ, (2.2)

Keeping differentiating q, (2.2) yields

q(r+1)(t) = Brf
′(t) + g(r)(t)f(0) +

∫ t

0
g(r)(τ)f ′(t− τ)dτ

· · ·

q(r+m)(t) = Brf
(m)(t) +

m−1∑
j=0

g(r+j)(t)f (j)(0) +

∫ t

0
g(r)(τ)f (m)(t− τ)dτ

Then, under Assumptions (A1) and (A3), q(r+m) ∈ L2 and, hence, q ∈ H(r+m).

In addition, due to Assumptions (A1) and (A3), (2.2) implies that q(r), g(r) ∈ L1 and, therefore,

we can use the following known facts from the theory of Volterra equations:
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1. there exists a unique solution φ of the equation

g(r)(t) = Brφ(t) +

∫ t

0
g(r)(t− τ)φ(τ)dτ (2.3)

called a resolvent of g(r) (see Theorem 3.1 of Gripenberg, Londen & Staffans, 1990);

2. there exists a unique solution of (1.1) which can be written as

f(t) = B−1
r q(r)(t)−B−1

r

∫ t

0
q(r)(t− τ)φ(τ)dτ (2.4)

(see Theorem 3.5 of Gripenberg, Londen & Staffans, 1990).

Therefore, to solve (1.1) one only needs to determine a resolvent φ in (2.3) defined entirely by

g(r). We find φ using Laplace transform. Taking Laplace transform of both sides of (2.3) yields

G̃(r)(s) = BrΦ̃(s) + G̃(r)(s)Φ̃(s)

where, due to Assumption (A2), G̃(r)(s) = srG̃(s)−Br, and, therefore,

Φ̃(s) =
srG̃(s)−Br
srG̃(s)

(2.5)

Behavior of the resolvent function φ is thus determined by the properties of the Laplace

transform G̃ of the kernel g. Under Assumption (A2), G̃ is analytic, so all its zeros are well

separated. However, if G̃ has zeros with positive real parts, the resulting resolvent φ(t) becomes

unstable: it grows exponentially as t→∞. To avoid this potentially very treacherous situation, we

impose an additional condition on G̃:

(A4) Let Ω be a collection of distinct zeros sω of G̃. Then s∗ = maxω∈ΩRe(sω) < 0.

Under Assumption (A4), the theory developed in Gripenberg, Londen & Steffans (1990, Chapter

7) leads to the following result:

Theorem 1. Let Assumption (A4) hold. Then, the resolvent φ in (2.3) is of the form

φ(t) =

r−1∑
j=0

aj
j!
tj + φ1(t), (2.6)

where φ1 ∈ L1, and, hence, from (2.4), f can be recovered as

f(t) = B−1
r

q(r)(t)−
r−1∑
j=0

ar−1−jq
(j)(t)−

∫ t

0
q(r)(t− τ)φ1(τ)dτ

 . (2.7)

In majority of situations, the number of zeros of G̃ is finite and, since it is an analytic function,

these zeros are of finite orders. In this case, the solution f of (1.1) in (2.7) can be written explicitly:
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Theorem 2. Let f and g satisfy assumptions (A1)–(A4). Let G̃(s) have M distinct zeros sl < 0

of orders αl, respectively, l = 1, · · · ,M . Set s0 = 0 and α0 = r. Then, f is of the form

f(t) = B−1
r

(
q(r)(t)− f0(t)− f1(t)

)
, (2.8)

where f0(t) =
∑r−1

j=0 a0,r−1−jq
(j)(t), f1(t) =

∫ t
0 q

(r)(t− τ)φ1(τ)dτ and

φ1(t) =
M∑
l=1

αl−1∑
j=0

alj
j!
tjeslt, (2.9)

alj =
1

(αl − 1− j)!
dαl−j−1

dsαl−j−1

[
(s− sl)αlΦ̃(s)

] ∣∣∣∣∣
s=sl

. (2.10)

Note that Assumption (A4) implies sl < 0, l = 1, · · · ,M , so that the function φ1(x) is a sum

of products of polynomials and exponentials with negative powers and, hence, φ1 ∈ L1 ∩ L2.

3 Laplace deconvolution in the presence of noise

3.1 Preamble

We return now to the original problem of recovering an unknown function f from a noisy version

of Volterra equation (1.2). We assume that the convolution kernel g is known and satisfies

Assumptions (A2)–(A4) while f satisfies Assumption (A1). Our goal is to construct an estimator

f̂n of f from the noisy data y(ti), i = 1, ..., n.

The precision of estimating f by f̂n is measured by the L2 risk E‖f̂n − f‖2[0,Tn]. In particular,

we shall be interested in the rate of its convergence as n increases. Note that the proposed setup

assumes that both the length of the interval Tn, where the data is observed, and the data density

per unit interval may increase as the sample size tends to infinity.

As we have mentioned, the resolvent φ of g(r) in (2.3) is completely determined by the (known)

convolution kernel g, can be obtained by the methods presented in Section 2 and is not affected

by noise. In this sense we can consider it as known. The analysis of solution (2.7) of the noiseless

version (1.1) of (1.2) in Section 2 implies that estimation of f essentially reduces to estimating the

r-th derivative of q in (1.1) and its Laplace convolution q(r) ∗φ1 =
∫ t

0 q
(r)(t− τ)φ1(τ)dτ or, in view

of (2.6) and (2.7), to estimating all derivatives q(j), j = 0, ..., r up to order r and q(r) ∗ φ1, where

φ1 ∈ L1 ∩ L2 was defined in (2.9)-(2.10).

The errors of estimating derivatives q(j) are evidently dominated by the estimation error of the

highest order derivative q(r). We now show that the latter also dominates the error of estimating

Laplace convolution q(r) ∗ φ1. Indeed, let q̂
(r)
n be any estimator of q(r) and estimate q(r) ∗ φ1 by the

corresponding plug-in estimator q̂
(r)
n ∗ φ1. Then,

‖q̂(r)
n ∗ φ1 − q(r) ∗ φ1‖2 ≤ ‖φ1‖1 · ‖q̂(r)

n − q(r)‖2 = O

(
‖q̂(r)
n − q(r)‖2

)
(3.1)
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(see also Theorem 2.2 of Gripenberg, Londen & Staffans, 1990). Thus, if there is a “good” estimator

of q(r), one simply plugs it into (2.4) to estimate f .

In what follows, we shall present only the method for estimating the r-th derivative of q, since

derivatives of lower orders can be estimated in a similar manner and have smaller risks. There

exists a variety of methods to estimate derivatives of the unknown function and in the next section

we consider the kernel estimator.

3.2 Adaptive estimation of r-th derivative

Re-write the original model (1.2) as

yi = q(ti) + σεi, i = 1, ..., n,

where the unknown q = g ∗ f belongs to a Sobolev ball H(r+m)(A′) of radius A′, r < m and

m+ r − 1 ≤ u (see Section 2), and we need to estimate q(r).

Let K be a kernel function (not to be confused with the convolution kernel g) of order

(r +m− 1, r), that is,

(K1) supp(K) = [−1, 1], twice continuously differentiable and
∫
K2(t)dt <∞.

(K2)
∫
tjK(t)dt =

{
0, j = 0, ..., r − 1, r + 1, ...,m+ r − 1

(−1)rr!, j = r

The construction of such kernels is described in Appendix.

Define a well-known Priestley-Chao type kernel estimator of q(r) with a bandwidth λ:

q̂
(r)
λ (t) =

1

λr+1

n∑
i=1

K

(
t− ti
λ

)
(ti − ti−1)yi (3.2)

In order to construct a consistent estimator of q(r), we impose the following restriction on the

design:

(A5) Let Tn be such that n−1 T 2
n → 0 as n → ∞ and there exist 1 ≤ µ < ∞ such that

maxi |ti − ti−1| ≤ µTn/n.

By the standard asymptotic calculus for kernel estimation (see, e.g., Gasser & Müller, 1984) for

an interior point t one has

V ar

(
q̂

(r)
n,λ(t)

)
=

σ2

λ2(r+1)

n∑
i=1

(ti − ti−1)2K2

(
ti − t
λ

)
=

σ2

λ2r+1

Tn
n

∫
K2(u)du (1 + o(1))

Certain boundary corrections are required to get the same order of error for t close to the boundaries

(Gasser & Müller, 1984) and the integrated variance then is

V (λ) =

∫ Tn

0
V ar

(
q̂

(r)
n,λ(t)

)
dt = V0

T 2
n

λ2r+1n
(1 + o(1)) (3.3)
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where V0 = σ2‖K‖2. Similarly,

E

(
q̂

(r)
λ (t)

)
= λ−r

∫
K(u)f(t− uλ)du (1 + o(1)) (3.4)

Expanding (3.4) into Taylor series and exploiting the moment assumptions on the kernel, one has

E

(
q̂

(r)
λ (t)

)
=

1

λr

∫
K(u)

(
q(t) + ...+

(−1)rq(r)(t)

r!
(λu)r + ...

+

∫ λu

0

[(−1)(λu− τ)]r+m−1

(r +m− 1)!
q(r+m)(t+ τ)dτ

)
du(1 + o(1))

=

(
q(r)(t) +

1

λr(r + s− 1)!

∫
K(u)

∫ λu

0
(λu− τ)r+m−1q(r+m)(t+ τ)dτdu

)
(1 + o(1))

Changing the order of integration and applying Hölder’s inequality, by straightforward calculus,

the integrated squared bias can be written then as

B2(λ, q) =

∫ Tn

0

(
E

(
q̂

(r)
n,λ(t)

)
− q(r)(t)

)2

dt = B0λ
2m(1 + o(1)), (3.5)

where B0 = 2||q(m+r)||2||K‖2[(r +m)!]−2(r +m)−1. Hence,

sup
q∈Hm+r(A)

E||q̂(r)
λ − q

(r)||2[0,Tn] = sup
q∈Hm+r(A)

[V (λ) +B2(λ, q)] = O

(
T 2
n

λ2r+1n

)
+O(λ2m)

The asymptotically optimal bandwidth λ∗n that minimizes E||q̂(r)
n,λ − q

(r)||2[0,Tn] is then

λ∗n = O

((
T 2
n

n

) 1
2(m+r)+1

)
(3.6)

and the corresponding optimal risk

sup
q(r)∈Hm+r(A′)

E‖q̂(r)
λ∗n
− q(r)‖2[0,Tn] = O

((
T 2
n

n

) 2m
2(m+r)+1

)
. (3.7)

The optimal bandwidth λ∗n in (3.6) is evidently not so helpful in practice since it involves the

unknown q(m+r) but the corresponding ideal global risk (3.7) can be used as a benchmark for

assessment of estimation accuracy. In addition, λ∗n depends on the regularity m of the unknown f

in (1.2) which is rarely known precisely. We would like to construct a kernel estimator with a data-

driven bandwidth that would be also adaptive to m. For this goal we utilize a general methodology

developed by Lepski (e.g., Lepski, 1991) for data-based adaptive selection of the bandwidth λ̂ such

that the quadratic risk of the resulting kernel estimator q̂
(r)

n,λ̂
(t) achieves the optimal rates (3.7)

simultaneously over the entire range of m. In particular, we apply the global bandwidth version

of Lepski, Mammen & Spokoiny’s (1997) procedure and modify it also for estimating derivatives.

The resulting procedure for estimating q(r) in (3.2) can be described as follows.
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Consider a kernel K of order (r+m0 − 1, r), where r < m0 ≤ u− r+ 1 and the geometric grid

of bandwidths Λ, where

Λ = {λj ∈ [(n−1T 2
n)

1
2r+1 , Tn] : λj = Tna

−j , j = 0, 1, ..., Jn}, (3.8)

and a > 1 is an arbitrary constant. Note that cardinality of Λ is at most card (Λ) = 1 + (2r +

1)−1 loga(n/T
2
n) ≤ loga n. Define

λ̂n = max{λ ∈ Λ : ‖q̂(r)
λ − q̂

(r)
h ‖

2
[0,Tn] ≤ C

2
0n
−1σ2T 2

nh
−(2r+1) for all h ∈ Λ, (n−1T 2

n)
1

2r+1 ≤ h < λ},
(3.9)

where

C2
0 > µ2‖K‖2 (3.10)

and estimate q(r) by q̂
(r)

λ̂n
.

Proposition 1. Let assumptions (A1)-(A5) hold and K with supp(K) = [−1, 1] be a square

integrable, twice continuously differentiable inside (−1, 1) kernel of order (r + m0 − 1, r) where

r < m0 ≤ u− r + 1. Then,

sup
q∈Hm+r(A′)

E‖q̂(r)

λ̂n
− q(r)‖2 = O

((
T 2
n

n

) 2m
2m+2r+1

)
(3.11)

for all r < m ≤ m0 and A′ > 0.

Note that the original Lepski, Mammen & Spokoiny’s (1997) procedure is based on locally

adaptive kernel estimation with a locally chosen bandwidth that necessarily yields an extra

logarithmic factor in the rate of the global quadratic risk (3.7). The use of a (adaptive) global

bandwidth allows one to remove this logarithmic factor and to achieve the sharp optimal rate.

3.3 Adaptive estimation of Laplace deconvolution

As we have argued in Section 3.1, the resulting estimator f̂n for f in (1.2) is obtained by plugging

the estimates of derivatives of q into (2.7). Following the ideas of the previous section, we choose

twice continuously differentiable, square integrable kernels Kj , j = 0, ..., r of respective orders

(r +m0 − 1, j), where r < m0 ≤ u− r + 1. We estimate the corresponding derivatives by

q̂
(j)

λ̂j,n
(t) =

1

λ̂j+1
j,n

n∑
i=1

Kj

(
t− ti
λ̂j,n

)
(ti − ti−1)yi, j = 0, ..., r,

where, similarly to (3.9),

λ̂n,j = max{λ ∈ Λ : ‖q̂(j)
λ − q̂

(j)
h ‖

2
[0,Tn] ≤ C

2
0n
−1σ2T 2

nh
−(2j+1) for all h ∈ Λ, (n−1T 2

n)
1

2j+1 ≤ h < λ}

10



and C0 is given in (3.10). Construct an estimator f̂n of f as

f̂n(t) = B−1
r

q̂(r)

λ̂n,r
(t)−

r−1∑
j=0

a0,r−1−j q̂
(j)

λ̂n,j
(t)−

∫ x

0
q̂

(r)

λ̂n,r
(t− τ)φ1(τ)dτ

 , (3.12)

where the function φ1 and the coefficients alj were defined respectively in (2.9) and (2.10).

Application of (3.1) and Proposition 1 with r replaced by j, j = 0, · · · , r, yields the following

theorem:

Theorem 3. Let assumptions (A1)-(A5) hold and kernels Kj satisfy the above conditions. Then,

for all r < m ≤ m0 and A > 0,

sup
f∈Hm(A)

E‖f̂n − f‖2[0,Tn] = O

((
T 2
n

n

) 2m
2(m+r)+1

)
.

The proof is a direct consequence of Proposition 1 and the fact that that f ∈ Hm(A) implies

q ∈ Hm+r(A′) for a certain A′ (see Section 2).

Under the additional conditions on f and Tn, the results of Theorem 3 can be easily extended

to the entire positive half-line:

Corollary 1. Suppose that there exists ρ ≥ 1 such that
∫∞

0 t2ρf2(t)dt < ∞ and limn→∞ T
−2ρ
n n <

∞. Let f̂n be estimator (3.12) of f for t ≤ Tn and f̂n ≡ 0 for t > Tn. Then,

sup
f∈Hm(A)

E‖f̂n − f‖2[0,∞) = O

((
T 2
n

n

) 2m
2(m+r)+1

)

for all r < m ≤ m0 and A > 0.

3.4 Lower bounds for the minimax risk

To prove the optimality (in the minimax sense) of the rates established in Theorem 3, below we

derive the corresponding minimax lower bounds for the L2[0, Tn]-risk:

Theorem 4. Let assumptions (A1)–(A5) hold. Then, there exists a universal constant C > 0 such

that

inf
f̃n

sup
f∈Hm(A)

E||f̃n − f ||2[0,Tn] ≥ C
(
T 2
n

n

) 2m
2(m+r)+1

, (3.13)

where the infimum is taken over all possible estimators f̃n of f , and therefore

inf
f̃n

sup
f∈Hm(A)

E||f̃n − f ||2[0,∞) ≥ C
(
T 2
n

n

) 2m
2(m+r)+1

.

Theorem 4 implies that the proposed adaptive Laplace deconvolution estimator is

asymptotically minimax over the entire range of Sobolev classes.
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4 Simulation study

In this section we present results of a simulation study to illustrate finite sample performance of

the Laplace deconvolution procedure developed above. The data were simulated according to the

model (1.2) with the true function f(t) = e−t/3 and the convolution kernel g(t) = e−t (hence, r = 1

and B1 = 1 in (A2)). The resulting q = f ∗ g in (1.2) is then q(t) = 3(e−t/3− e−t)/2. We generated

N = 400 samples by adding independent Gaussian noise N (0, σ2) to q(t) at n = 200 equally spaced

points on [0, T ] with T = 5. Instead of considering various values of n and Tn, we fixed them and

used a series of different values of σ = 0.1, 0.05, 0.01, 0.005 and 0.001. The examples of the resulting

generated noisy data for various noise levels are presented in Figure 1.

The kernel K of order (3, 1) used for estimating q′ was constructed according to a general

scheme described in the Appendix with the boundary corrections which follow Gasser & Müller

(1984) procedure. In each simulation the bandwidth was adaptively selected by Lepski-type method

described in Section 3.2 with the tuning parameters a = 1.1 in (3.8) and C2
0 = 1.5||K||2 in (3.10)

(for equally spaced design µ = 1). We also used a slightly modified Gasser-Müller version of the

original Priestley-Chao kernel estimator (3.2) (see Gasser & Müller, 1984) which has the same

asymptotic rates of convergence as the Priestley-Chao estimator but usually performs somewhat

better in practice.

Figure 1 provides examples of deconvolution estimators based on single samples for four different

values of σ. It is easy to see that the estimation precision increases rapidly when σ decreases. The

estimator manages to capture basic features of the unknown f even for a high noise level (σ = 0.1).

It demonstrates good behavior for quite high noise (σ = 0.05) and excellent performance when

σ = 0.01. For σ ≤ 0.005, the estimator f̂ cannot essentially be distinguished from the true function

f on the plot. Note also that despite the boundary corrections, the boundary effects are still quite

significant especially for large noise.

The precision of the deconvolution estimator f̂ of f was measured by the integrated mean

squared error (IMSE). To reduce the impact of boundary effects on the overall IMSE (see comments

above), we focused on interior points and calculated IMSE on a slightly smaller interior subinterval

[0.25, 4.75] excluding 10% of points on the boundaries, that is, IMSE is the average value over

N = 400 runs of ||f̂ − f ||2[0.25,4.75].

The resulting IMSE and their standard errors for various values of σ are given in Table 1.

Figure 2 presents the corresponding boxplots of IMSE on the log-scale. One can see a clear linear

decreasing tendency of ln(IMSE).
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Figure 1: The noisy data, the true function f (dotted), q = f ∗ g (dot-dashed) and

estimates f̂ (solid) for σ = 0.1, 0.05, 0.01, 0.005. Vertical lines mark the subinterval of 90%

of interior points used in calculating the overall IMSE.

σ 0.1 0.05 0.01 0.005 0.001

IMSE 0.027 0.0070 5.80e-4 2.29e-4 2.37e-5

SE (0.0016) (0.00040) (2.46e-5) (9.26e-6) (7.34e-7)

Table 1: IMSE and their standard errors (in brackets) for various σ.

5 Discussion

In the present paper we consider Laplace deconvolution on the basis of discrete noisy data observed

on the interval which length may increase with a sample size. Although this problem arises in

a variety of applications, to the best of our knowledge, it has not been systematically studied in

statistical literature and the paper contributes to fill this gap. We show that the original Laplace
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Figure 2: Boxplots of IMSE on the log-scale for various σ.

deconvolution problem can be essentially reduced to estimating derivatives. We derive an adaptive

kernel estimator of the function of interest and established its asymptotic minimaxity over a range

of Sobolev classes. The choice of the bandwidth in estimating derivatives is carried out by a version

of the Lepski procedure (e.g., Lepski, 1991) applied globally which, as far as we know, has never

been done previously. In fact, one can apply any other type of estimators (e.g., local polynomial

regression, splines or wavelets) that allows an adaptive estimation of function derivatives. In

particular, we believe that the use of wavelet-based methods can extend the adaptive minimaxity

range from Sobolev to more general Besov classes.

A limited simulation study shows, that in addition to providing theoretical asymptotic results,

the proposed Laplace deconvolution estimator demonstrates good performance in finite sample

examples.

On the other hand, there is a number of open questions which remain unsolved. In particular,

an interesting challenge would be to study Laplace deconvolution with unstable resolvents, where

Assumption (A4) does not hold. Another important problem would be to study the equation (1.2)

when the kernel g is not completely known and is estimated from observations. It is easy to see that

methodology developed above relies heavily on the knowledge of the value of g and its derivatives

at zero and, thus, cannot be automatically extended to this case.
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6 Appendix

Throughout the proofs we use C to denote a generic positive constant, not necessarily the same

each time it is used, even within a single equation.

Proof of Theorem 1

To prove Theorem 1 we utilize the following Lemma 1 which is essentially Theorem 7.2.4 of

Gripenberg, Londen & Staffans (1990, Chapter 7) adapted to our notations.

Lemma 1. Let sg be such that

inf
Re(s)=sg

|G̃(s)| > 0 and lim
|s|→∞

Re(s)≥sg

|srG̃(s)| > 0. (6.1)

Then, solution φ(·) of equation (2.3) can be presented as

φ(t) =
L∑
l=0

αl−1∑
j=0

alj
j!
tjeslt + φ1(t) (6.2)

where L is the total number of distinct zeros sl of srG̃(s) such that Resl > Resg, αl is the order of

zero sl and φ1 ∈ L1.

Choose sg such that s∗ < sg < 0. Then, the first condition in (6.1) immediately follows from

Assumption (A4). To validate the second assumption in (6.1), note that for s = s1 + is2 conditions

Re(s) ≥ sg and |s| → ∞ imply that either s1 → ∞ or |s2| → ∞, or both. Recall that

srG̃(s) = Br + G̃(r)(s). If s1 →∞, no matter whether s2 is finite or s2 →∞, one has

lim
Re(s)→∞

|srG̃(s)| = lim
Re(s)→∞

|Br +

∫ ∞
0

g(r)(t)e−stdt| = |Br| > 0. (6.3)

If s1 is finite, s1 ≥ sg, and |s2| → ∞, then Laplace transform G̃(r)(s) =
∫∞

0 g(r)(t)e−stdt

is equal to Fourier transform F [g(r)(t)e−s1t](s2) of function g(r)(t)e−s1t at the point s2. Since

g(r)(t)e−s1t ∈ L1(R+), one obtains

lim
|s2|→∞

∫ ∞
0

g(r)(t)e−stdt = lim
|s2|→∞

F [g(r)(t)e−s1t](s2) = 0,

and (6.3) holds again. Hence, the second assumption in (6.1) is valid, and Lemma 1 can be applied.
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Note that, under Assumption (A4), G̃(s) has no zeros with Re(s) > sg and, therefore, has a

single zero of r-th order at s = 0. Lemma 1 yields then that φ(t) = φ0(t) + φ1(t), where

φ0(t) =
r−1∑
j=0

aj
j!
tj , aj = φ(j)(0), (6.4)

and integrating by parts, one has∫ t

0
q(r)(t− τ)φ0(τ)dτ =

r−1∑
j=0

φ
(r−j−1)
0 (0)q(j)(t), (6.5)

that completes the proof.

2

Proof of Theorem 2

From (2.5), Φ̃(s) has poles sl, l = 0, · · · ,M , of respective orders αl, where s0 = 0 and α0 = r.

Note that lim |s|→∞
Re(s)≥sg

|srG̃(s)| > 0 (see the proof of Theorem 1) and, therefore, Φ̃ does not have a

pole at infinity. Then, Φ̃ is a rational function and, consequently, can be represented using Cauchy

integral formula

Φ̃(s) = − 1

2πi

M∑
l=0

∫
Cl

Φ̃(s)

z − s
dz

where Cl, l = 0, · · · ,M , is a circle around the pole sl such that this circle does not enclose any

other pole of Φ̃ (see LePage, 1961, Section 5.14). Using Laurent expansion of Φ̃(z) around sl, we

have

Il(s) = − 1

2πi

Φ̃(s)

z − s
dz =

αl−1∑
j=0

1

(s− sl)j+1

1

(αl − 1− j)!
dαl−j−1

dsαl−j−1

[
(s− sl)αlΦ̃(s)

] ∣∣∣∣∣
s=sl

Combining the last two expressions and taking inverse Laplace transform of Φ̃(s) yields

φ(t) =

M∑
l=0

αl−1∑
j=0

alj
j!
tjeslt.

To validate the explicit expression (2.8) for f(t), recall that f(t) is of the form (2.4), i.e. (2.8)

holds with

fl(t) =

∫ t

0
q(r)(t− τ)φl(τ)dτ, l = 0, 1,

where φ0 is given by (6.4), same as before, and φ1 is defined in (2.9) and φ1 ∈ L1∩L2. To complete

the proof, we just need to repeat calculations in (6.5).

2
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Construction of a kernel of order (p, r)

To construct a kernel K of order (p, r) we use the orthonormal basis of Legendre polynomials

{ψl(·)}∞l=0 in L2([−1, 1]), where

ψ0(t) =
1√
2
, ψl(t) =

√
2l + 1

2

1

2ll!

dl

dtl

[
(t2 − 1)l)

]
, l = 1, 2, ...

that can be also obtained using the recursion formula

(l + 1)ψl+1(t) = (2l + 1)tψl(t)− lψl−1(t), l ≥ 1, ψ0(u) =
1√
2
, ψ1(t) =

√
3

2
t

Let K be the p-th degree polynomial of the form

K(t) =

p∑
l=0

κlψl(t), t ∈ [−1, 1]

For any j = 0, 1, ..., p, tj =
∑j

q=0 bjqψq(t), where bjq =
∫
tjψq(t)dt. To satisfy (K2) we then have

∫
tjK(t)dt =

p∑
l=0

j∑
q=0

κlbjq

∫
ψl(t)ψq(t)dt =

j∑
l=0

κlbjl =

{
(−1)rr! j = r

0 j ≤ p, j 6= r
(6.6)

that essentially defines a system of p+ 1 linear equations with a triangular matrix. However, since

ψl are symmetric functions for even l and antisymmetric otherwise, bjl = 0 for even j, odd l and

odd j, even l. Thus, (6.6) immediately yields κl = 0 for odd l (symmetric K) when r is even,

and for even l (antisymmetric K) when r is odd, where half of the equations in (6.6) are, in fact,

trivial. It can be also shown that the resulting kernel K of order (p, r) is the so-called minimal

variance kernel that minimizes V0 = σ2||K||2 (see (3.3)) subject to (K1)-(K2) (Gasser, Müller &

Mammitzsch, 1985).

Proof of Proposition 1

Denote d = (C0 − µ‖K‖)/(
√

2‖K‖) and set λ∗n in (3.6) to be

λ∗n =

(
d2 σ2[(r +m)!]2(r +m)

2(A′)2

T 2
n

n

) 1
2r+2m+1

.

Note that

E‖q̂(r)

λ̂n
− q(r)‖2 = E

{
‖q̂(r)

λ̂n
− q(r)‖2I(λ̂n ≥ λ∗n)

}
+ E

{
‖q̂(r)

λ̂n
− q(r)‖2I(λ̂n < λ∗n)

}
= ∆1 + ∆2.

For λ̂n ≥ λ∗n, (3.7) and (3.9) imply

∆1 ≤ 2E

{
‖q̂(r)

λ̂n
− q(r)

λ∗0
‖2I(λ̂n > λ∗n)

}
+ 2E

{
‖q̂(r)

λ̂∗n
− q(r)‖2I(λ̂n > λ∗n)

}
= O

(
n−1T 2

n(λ∗n)−1/(2r+1)
)

+O
(

(n−1T 2
n)−

2m
2m+2r+1

)
= O

(
(n−1T 2

n)−
2m

2m+2r+1

)
(6.7)
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uniformly over q ∈ Hm+r(A′).

For (n−1T 2
n)

1
2r+1 ≤ λ̂n < λ∗n, by direct calculus similar to that in Section 3.2, one can show that

sup
q∈Hm+r(A)

E‖q̂(r)

λ̂n
− q(r)‖4 = O((λ∗n)4m) +O

(
(λ∗n)−(4r+2)n−2T 4

n

)
= O(1).

Hence,

sup
q∈Hm+r(A)

∆2 ≤ sup
q∈Hm+r(A)

√
E‖q̂(r)

λ̂n
− q(r)‖4

√
P (λ̂n < λ∗n)

= sup
q∈Hm+r(A)

O

(√
P (λ̂n < λ∗n)

)
. (6.8)

From the definition (3.9) of λ̂n, for λ∗n > λ̂n there exists h̃ < λ∗n such that ‖q̂(r)

λ̂∗n
− q(r)

h̃
‖2 >

C2
0n
−1σ2T 2

n h̃
−(2r+1), where, by (3.10) and definition of d, we have C0 = ‖K‖(µ+

√
2d). It follows

from (3.3) and (3.5) that for all h < λ∗n, the variance term dominates over the squared bias, that

is,

sup
q∈Hm+r(A′)

‖Eq̂(r)
h − q

(r)‖2 ≤ d2σ2‖K‖2n−1T 2
nh
−(2r+1).

Hence, for all h̃ < λ∗n and q ∈ Hm+r(A′)

P

(
‖q̂(r)
λ∗n
− q(r)

h ‖
2 > σ2C2

0n
−1T 2

nh
−(2r+1)

)
< P

(
‖q̂(r)
λ∗n
− Eq(r)

h ‖
2 > σ2‖K‖2(µ+ d)2n−1T 2

nh
−(2r+1)

)
(6.9)

due to C2
0 − d2 > ‖K‖2(µ+ d)2. Thus, uniformly over q ∈ Hs+r(A′), one has

P (λ̂n < λ∗n) ≤
∑
h∈Λ
h≤λ∗n

P (h̃ = h) P

(
‖q̂(r)
λ∗n
− q(r)

h ‖
2 > σ2C2

0n
−1T 2

nh
−(2r+1)

)
(6.10)

≤
∑
h∈Λ
h≤λ∗n

P (h̃ = h) P

(
‖q̂(r)
h − Eq̂

(r)
h ‖

2 ≥ σ2‖K‖2(µ+ d)2n−1T 2
nh
−(2r+1)

)
.

Note that

‖q̂(r)
h − Eq̂

(r)
h ‖

2 =

∥∥∥∥∥
n∑
i=1

h−(r+1)K

(
t− ti
h

)
(ti − ti−1)εi

∥∥∥∥∥
2

= h−(2r+1)n−2T 2
n ε

TQε,

where Q is an n× n symmetric nonnegative-definite matrix with elements

Qij =
n2

T 2
n

(ti − ti−1)(tj − tj−1)

∫ 1

−1
K(z)K

(
z +

ti − tj
h

)
dz. (6.11)

Then,

P

(
‖q̂(r)
h − Eq̂

(r)
h ‖

2 ≥ σ2‖K‖2(µ+ d)2n−1T 2
nh
−(2r+1)

)
= P

(
εTQε ≥ n‖K‖2(µ+ d)2

)
. (6.12)
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Applying a χ2-type inequality which initially appeared in Laurent and Massart (1998), was

improved by Comte (2001) and furthermore by Gendre (2010) in his Ph.D. Thesis, we have for

any x > 0

P

(
σ−2εTQε ≥

[√
Tr(Q) +

√
xρ2

max(Q)
]2
)
≤ e−x, (6.13)

where Tr(Q) is the trace of Q and ρ2
max(Q) is the maximal eigenvalue of Q. Note that

Tr(Q) =
n2

T 2
n

n∑
i=1

(ti − ti−1)2‖K‖2 ≤ nµ2‖K‖2.

and ρ2
max(Q) is the spectral norm of matrixQ which is dominated by any other norm. In particular,

ρ2
max(Q) ≤ max

k

n∑
l=1

|Qkl| =
n2

T 2
n

max
k

(tk − tk−1)

∫ 1

−1
|K(z)|

[
n∑
l=1

∣∣∣∣K (z +
tk − tl
h

)∣∣∣∣ (tl − tl−1)

]
dz.

Since

n∑
l=1

∣∣∣∣K (z +
tk − tl
h

)∣∣∣∣ (tl−tl−1) =

∫ 1

−1

∣∣∣∣K (z +
tk − t
h

)∣∣∣∣ dt(1+o(1)) = h

∫ 1

−1

∣∣∣∣K (z +
tk
h
− y
)∣∣∣∣ dt(1+o(1)),

we have

ρ2
max(Q) ≤ n2

T 2
n

max
k

(tk − tk−1)h

∫ 1

−1

∫ 1

−1
|K(z)||K(z + tk/h− y)|dzdy

≤ µ
nh

Tn

[∫ 1

−1
|K(z)|dz

]2

≤ 2µ‖K‖2 nh
Tn
.

Using inequality (6.13) with x = d2Tn/(2µh) and h < λ∗n obtain

P

(
‖q̂(r)
h − Eq̂h

(r)‖2 ≥ σ2‖K‖2(µ+ d)2T 2
n

nh2r+1

)
≤ exp

(
−d

2Tn
2µh

)
≤ exp

(
−Cn

1
2r+2m+1T

2r+2m−1
2r+2m+1
n

)
(6.14)

where C depends on r,m, A′, µ and d. Combination of (6.7), (6.8), (6.10) and (6.14) complete the

proof.

2

Proof of Theorem 4

The main idea of the proof is to find a subset of functions F ⊂ Hm(A) such that for any pair

f1, f2 ∈ F ,

‖f1 − f2‖2[0,Tn] ≥ 4C(T 2
nn
−1)2m/(2(m+r)+1) (6.15)

and the Kullback-Leibler divergence

K(Pf1 ,Pf2) =
||q1 − q2||2Rn

2σ2
≤ log card(F)

16
, (6.16)
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where log stands for natural logarithm and qji = (g ∗ fj)(ti), i = 1, ..., n, j = 1, 2. The result will

then follow immediately from Lemma A.1 of Bunea, Tsybakov and Wegkamp (2007).

Without loss of generality, let us assume that the points are equally spaced, i.e. ti−ti−1 = Tn/n,

i = 1, · · · , n. To construct such a subset F , define integers Mn ≥ 8 and N =
[
n
Mn

]
, the largest

integer which does not exceed n/Mn. Let λn = NTn/n and define points zl = l λn, l = 0, 1, · · · ,Mn.

Note that the latter implies that points of observation tj = j Tn/n in equation (1.2) are related to

zl as zl = tj where j = Nl for l = 1, · · · ,Mn and j ≤ NMn. Note also that Tn
2Mn
≤ λn ≤ Tn

Mn
.

Let k(·) be an infinitely differentiable function with supp(k) = [0, 1] and such that∫ 1

0
xjk(x)dx = 0, j = 0, · · · , r − 1,

∫ 1

0
xrk(x)dx 6= 0. (6.17)

Introduce functions

ϕj(x) = L
λsn√
Tn

k

(
x− zj−1

λn

)
l = 1, · · · ,Mn,

where the constant L > 0 will be defined later. Note that ϕj have non-overlapping supports, where

supp(ϕj) = [zj−1, zj ].

Consider the set of all binary sequences of the length Mn:

Ω =
{
ω = (ω1, · · · , ωMn), ωj = {0, 1}

}
= {0, 1}Mn

For sufficiently large n, Mn ≥ 8 and Varshamov-Gilbert bound (see, e.g. Lemma 2.9 of Tsybakov

(2009)) ensures the existence of a subset Ω̃ ⊂ Ω such that log2 card(Ω̃) ≥Mn/8 and the Hamming

distance ρ(ω1,ω2) =
∑Mn

j=1 I{ω1j 6= ω2j} ≥ Mn/8 for any pair ω1,ω2 ∈ Ω̃. Consider then the

corresponding subset of functions

F = {fω : fω(t) =

Mn∑
j=1

wjϕj(t), ω ∈ Ω̃}. (6.18)

We now need to show that F in (6.18) is exactly the required set. Note first that since the

supports of ϕj are non-overlapping, for any fω ∈ F a straightforward calculus yields

||fω||2[0,Tn] ≤
Mn∑
j=1

||ϕj ||2 = L2λ
2s+1
n

Tn
Mn||k||2 = L2λ2m||k||2 ≤ L2||k||2

Similarly,

||f (m)
ω ||2[0,Tn] ≤

Mn∑
j=1

||ϕ(m)
j ||

2 =
L2

Tn
mλn||k(s)||2 = L2||k(m)||2 <∞

and therefore fω ∈ H(m)(A), where A = L||k||Hm . Furthermore,

||fω1 − fω2 ||2[0,Tn] = L2λ
2m+1
n

Tn
||k||2ρ(ω1,ω2) ≥ L2λ

2m+1
n

Tn

Mn

8
≥ 4Cλ2m

n

and (6.15) holds provided λn ≥ C(T 2
nn
−1)−1/(2(m+r)+1) for some positive constant C.
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To verify (6.16), note that

K(P1, P2) =
1

2σ2

n∑
i=1

[q1(ti)− q2(ti)]
2 ≤ 1

σ2

2∑
j=1

Q(fj) (6.19)

where, suppressing index j, we write

Q(f) =

n∑
i=1

[∫ ti

0
g(ti − x)f(x)dx

]2

=
L2λ2m

n

Tn

n∑
i=1

[
Mn∑
l=1

ω
(j)
l

∫ ti

0
g(ti − x)k

(
x− zl−1

λn

)
dx

]2

.

In order to obtain an upper bound for Q(f) we need the following supplementary lemma, the

proof of which is presented at the end of the section.

Lemma 2. Introduce functions Kj(x) using the following recursive relation

K1(x) =

∫ x

0
k(t)dt, Kj(x) =

∫ x

0
Kj−1(t)dt, j = 2, · · · , r. (6.20)

Then, under condition (6.17), functions Kj(x), j = 1, · · · , r, are uniformly bounded and Kj(1) = 0,

j = 1, · · · , r. Moreover,∫ ti

0
g(ti − x)k

(
x− zl−1

λn

)
dx = λrn

[
BrKr

(
ti − zl−1

λn

)
I(zl−1 ≤ yi ≤ zl)

+

∫ min(zl,ti)

min(zl−1,ti)
g(r)(ti − x)Kr

(
x− zl−1

λn

)
dx

]
. (6.21)

Applying equation (6.21) to the integral in Q(f), obtain

Q(f) ≤ 2L2λ2m+2r
n T−1

n (∆1 + ∆2) (6.22)

where

∆1 =
n∑
i=1

[
Mn∑
l=1

Br Kr

(
ti − zl−1

λn

)
I(zl−1 ≤ yi ≤ zl)

]2

,

∆2 =

n∑
i=1

[
Mn∑
l=1

∫ min(zl,ti)

min(zl−1,ti)
g(r)(ti − x)Kr

(
x− zl−1

λn

)
dx

]2

.

Observe that for any t and any l1 and l2 such that l1 6= l2, one has Kr(λ
−1
n (t− zl1))Kr(λ

−1
n (t−

zl2)) = 0. Also, for each i, Kr(λ
−1
n (ti − zl)) 6= 0 for only one value of l, namely, for l = [i/N ] + 1

where [x] is the largest integer which does not exceed x. Therefore,

∆1 ≤ B2
r

n∑
i=1

K2
r

(
ti − z[i/N ]

λn

)
≤ n B2

r‖Kr‖2∞, (6.23)

where ‖ · ‖∞ is the supremum norm. In order to obtain an upper bound for ∆2, observe that for

any nonnegative function F (x) one has∫ min(zl,ti)

min(zl−1,ti)
F (x)dx ≤

∫ zl

zl−1

F (x)dx.
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Hence, we derive

∆2 ≤
n∑
i=1

[
Mn∑
l=1

∫ zl

zl−1

∣∣∣∣g(r)(ti − x)Kr

(
x− zl−1

λn

)∣∣∣∣ dx
]2

≤
n∑
i=1

‖Kr‖2∞

[
Mn∑
l=1

∫ zl

zl−1

|g(r)(ti − x)|dx

]2

≤ n ‖g(r)‖2‖Kr‖2∞. (6.24)

Combining formulae (6.19)–(6.24), we obtain that, in order to satisfy condition (6.16), we need the

following inequality to hold

K(Pf1 ,Pf2) ≤ 2L2λ2m+2r
n n

σ2Tn
‖Kr‖2∞[B2

r + ‖g(r)‖22] ≤ 1

16

Mn log 2

8
. (6.25)

Since λn ≤ Tn/Mn, inequalities in (6.25) hold whenever

Mn ≥ Cn1/(2(m+r)+1)T
(2(m+r)−1)/(2(m+r)+1)
n . Taking Mn = Cn1/(2(m+r)+1)T

(2(m+r)−1)/(2(m+r)+1)
n

obtain λn ≥ Tn/(2Mn) ≥ C(T 2
nn
−1)1/(2(m+r)+1). Therefore, both conditions (6.15) and (6.16) hold

and theorem is proved.

2

Proof of Lemma 2. Definitions (6.20) imply that k(x) = K ′1(x), K ′j−1(x) = Kj(x) and

Kj(0) = 0, j = 1, · · · , r. Observe that condition Kj(1) = 0, j = 1, · · · , r, is equivalent to∫ 1

0
Kj(x)dx = 0, j = 0, · · · , r − 1, (6.26)

where K0(x) = k(x). It is easy to see that (6.26) is valid for j = 0. For j ≥ 1, note that, by formula

(4.631) of Gradshtein and Ryzhik (1980),

Kj(x) =

∫ x

0
dzj−1

∫ zj−1

0
dzj−2 · · ·

∫ z1

0
k(z)dz =

1

(j − 1)!

∫ x

0
(x− z)j−1k(z)dz. (6.27)

Then, for any x ∈ [0, 1], one has |Kj(x)| ≤ [(j − 1)!]−1 ‖k‖∞
∫ x

0 (x − z)j−1dz ≤ ‖k‖∞. Moreover,

by (6.27), for j = 1, · · · , r − 1, one has∫ 1

0
Kj(x)dx =

1

(j − 1)!

∫ 1

0
dx

∫ x

0
(x− z)j−1k(z)dz

=
1

(j − 1)!

∫ 1

0
k(z)dz

∫ 1

z
(x− z)j−1dx =

1

(j − 1)!j!

∫ 1

0
(1− z)j k(z)dz = 0.

Now, it remains to prove formula (6.21). Note that support of the function k(u/λn − (l − 1))

coincides with (zl−1, zl), so that

I(i, l) =

∫ ti

0
g(ti − x)k

(
x− zl−1

λn

)
dx =

∫ min(zl,ti)

min(zl−1,ti)
g(ti − x)k

(
x− zl−1

λn

)
dx. (6.28)
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Formula (6.28) implies that I(i, l) = 0 whenever zl−1 ≥ yi. If zl−1 < yi ≤ zl, it follows from (6.28)

that

I(i, l) =

∫ ti

zl−1

g(ti − x)k

(
x− zl−1

λn

)
dx.

Introduce new variable t = x− zl−1 and denote uil = ti − zl−1. Then, recalling condition (A2) and

using integration by parts, we derive

I(i, l) =

∫ uil

0
g(uil − t)k

(
t

λn

)
dt = λn

∫ uil

0
g(uil − t)dK1

(
t

λn

)
= λng(uil − t)K1

(
t

λn

) ∣∣∣∣∣
uil

0

+ λn

∫ uil

0
g′(uil − t)K1

(
t

λn

)
dt

= · · · = λrng
(r−1)(uil − t)Kr

(
t

λn

) ∣∣∣∣∣
uil

0

+ λrn

∫ uil

0
gr(uil − t)Kr

(
t

λn

)
dt.

Changing variables back to x, we arrive at

I(i, l) = λrn

[
BrKr

(
ti − zl−1

λn

)
+

∫ ti

zl−1

g(r)(ti − x)Kr

(
x− zl−1

λn

)
dx

]
. (6.29)

Finally, consider the case when zl ≤ yi. Then, using relation zl = zl−1 + λn, integration by

parts and the fact that Kj(0) = Kj(1) = 0 for j = 1, · · · , r, we obtain

I(i, l) =

∫ zl

zl−1

g(ti − x)k

(
x− zl−1

λn

)
dx = λn

∫ 1

0
g(ti − zl−1 − λnt)k(t)dt

= λn

∫ 1

0
g(ti − zl−1 − λnt)dK1(t) = λ2

n

∫ 1

0
g′(ti − zl−1 − λnt)K1(t)dt

= · · · = λr+1
n

∫ 1

0
gr(ti − zl−1 − λnt)Kr(t)dt = λrn

∫ zl

zl−1

g(r)(ti − x)Kr

(
x− zl−1

λn

)
dx

which, in combination with (6.29), completes the proof.
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