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Abstract

We consider the problem of training probabilistic conditional random fields (CRFs) in the context of a task where
performance is measured using a specific loss function. While maximum likelihood is the most common approach to
training CRFs, it ignores the inherent structure of the task’s loss function. We describe alternatives to maximum likelihood
which take that loss into account. These include a novel adaptation of a loss upper bound from the structured SVMs
literature to the CRF context, as well as a new loss-inspired KL divergence objective which relies on the probabilistic
nature of CRFs. These loss-sensitive objectives are compared to maximum likelihood using ranking as a benchmark task.
This comparison confirms the importance of incorporating loss information in the probabilistic training of CRFs, with the
loss-inspired KL outperforming all other objectives.

1 Introduction
Conditional random fields (CRFs) [1] form a flexible family of models for capturing the interaction between an input x and
a target y. CRFs have been designed for a vast variety of problems, including natural language processing [2, 3, 4], speech
processing [5], computer vision [6, 7, 8] and bioinformatics [9, 10] tasks. One reason for their popularity is that they
provide a flexible framework for modeling the conditional distributions of targets constrained by some specific structure,
such as chains [1], trees [11], 2D grids [7, 12], permutations [13] and many more.

While there has been a lot of work on developing appropriate CRF potentials and energy functions, as well as on
deriving efficient (approximate) inference procedures for some given target structure, much less attention has been paid
to the loss function under which the CRF’s performance is ultimately evaluated. Indeed, CRFs are usually trained by
maximum likelihood (ML) or the maximum a posteriori criterion (MAP or regularized ML), which ignores the task’s loss
function. Yet, several tasks are associated with loss functions1 that are also structured and do not correspond to a simple
0/1 loss: labelwise error (Hamming loss) for item labeling, BLEU score for machine translation, normalized discounted
cumulative gain (NDCG) for ranking, etc. Ignoring this structure can prove as detrimental to performance as ignoring the
target’s structure.

The inclusion of loss information into learning is an idea that has been more widely explored in the context of struc-
tured support vector machines (SSVMs) [14, 15]. SSVMs and CRFs are closely related models, both trying to shape an
energy or score function over the joint input and target space to fit the available training data. However, while an SSVM
attempts to satisfy margin constraints without invoking a probabilistic interpretation of the model, a CRF follows a prob-
abilistic approach and instead aims at calibrating its probability estimates to the data. Similarly, while an SSVMs relies

1Without loss of generality, for tasks where a performance measure is instead provided (i.e. where higher values is better), we assume it can be
converted into a loss, e.g. by setting the loss to the negative of the performance measure.
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on maximization procedures to identify the most violated margin constraints, a CRF relies on (approximate) inference or
sampling procedures to estimate probabilities under its distribution and compare it to the empirical distribution.

While there are no obvious reasons to prefer one approach to the other, a currently unanswered question is whether the
known methods that adapt SSVM training to some given loss (i.e., upper bounds based on margin and slack scaling [15])
can also be applied to the probabilistic training of CRFs. Another question is how such methods would compare to other
loss-sensitive training objectives which rely on the probabilistic nature of CRFs and which may have no analog in the
SSVM framework.

We investigate these questions in this paper. First, we describe upper bounds similar to the margin and slack scaling
upper bounds of SSVMs, but that correspond to maximum likelihood training of CRFs with loss-augmented and loss-scaled
energy functions. Second, we describe two other loss-inspired training objectives for CRFs which rely on the probabilistic
nature of CRFs: the standard average expected loss objective and a novel loss-inspired KL-divergence objective. Finally,
we compare these loss-sensitive objectives on ranking benchmarks based on the NDCG performance measure. To our
knowledge, this is the first systematic evaluation of loss-sensitive training objectives for probabilistic CRFs.

2 Conditional Random Fields
This work is concerned with the general problem of supervised learning, where the relationship between an input x and
a target y must be learned from a training set of instantiated pairs D = {xt,yt}. More specifically, we are interested in
learning a predictive mapping from x to y.

Conditional random fields (CRFs) tackle this problem by defining directly the conditional distribution p(y|x) through
some energy function E(y,x; θ) as follows:

p(y|x) = exp(−E(y,x; θ))/Z(x), Z(x) =
∑

y∈Y(x)

exp(−E(y,x; θ)) (1)

where Y(x) is the set of all possible configurations for y given the input x and θ is the model’s parameter vector. The
parametric form of the energy function E(y,x; θ) will depend on the nature of x and y. A popular choice is that of a linear
function of a set of features on x and y, i.e., E(y,x; θ) = −

∑
i θifi(x,y).

2.1 Maximum Likelihood Objective
The most popular approach to training CRFs is conditional maximum likelihood. It corresponds to the minimization with
respect to θ of the objective LML(D; θ):

− 1

|D|
∑

(xt,yt)∈D

log p(yt|xt) =
1

|D|
∑

(xt,yt)∈D

E(yt,xt; θ) + log

 ∑
y∈Y(x)

exp(−E(y,xt; θ))

 . (2)

To this end, one can use any gradient-based optimization procedure, which can convergence to a local optimum, or even a
global optimum if the problem is convex (e.g., by choosing an energy function E(y,x; θ) linear in θ). The gradients have
an elegant form:

∂LML(D; θ)
∂θ

=
1

|D|
∑

(xt,yt)∈D

∂E(yt,xt; θ)

∂θ
− EEy|xt

[
∂E(y,xt; θ)

∂θ

]
. (3)

Hence exact gradient evaluations are possible when the conditional expectation in the second term is tractable. This is the
case for CRFs with a chain or tree structure, for which belief propagation can be used. When gradients are intractable, two
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approximate alternatives can be considered. The first is to approximate the intractable expectation using either Markov
chain Monte Carlo sampling or variational inference algorithms such as mean-field or loopy belief propagation, the latter
being the most popular. The second approach is to use alternative objectives such as pseudolikelihood [16] or piece-wise
training [17]2.

3 Loss-sensitive Training Objectives
Unfortunately, maximum likelihood and its associated approximations all suffer from the problem that the loss function
under which the performance of the CRF is evaluated is ignored. In the well-specified case and for large datasets, this
would probably not be a problem because of the asymptotic consistency and efficiency properties of maximum likelihood.
However, almost all practical problems do not fall in the well-specified setting, which justifies the exploration of alternative
training objectives.

Let ŷ(xt) denote the prediction made by a CRF for some given input xt. Most commonly3, this prediction will be
ŷ(xt) = argmaxy∈Y(xt) p(y|xt) = argminy∈Y(xt)E(y,xt). We assume that we are given some loss lt(ŷ(xt)) under
which the performance of the CRF on some dataset D will be measured. We will also assume that lt(yt) = 0. The goal is
then to achieve a low average 1

|D|
∑

(xt,yt)∈D lt(ŷ(xt)) under that loss.
Directly minimizing this average loss is hard, because lt(ŷ(xt)) is not a smooth function of the CRF parameters θ.

In fact, the loss itself lt(ŷ(xt)) is normally not a smooth function of the prediction ŷ(xt), and ŷ(x) is also not a smooth
function of the model parameters θ. This non-smoothness makes it impossible to apply gradient-based optimization.

However, one could attempt to indirectly optimize the average loss by deriving smooth objectives that also depend on
the loss. In the next sections, we describe three separate formulations of this approach.

3.1 Loss Upper Bounds
The loss function provides important information as to how good a potential prediction y is with respect to the ground truth
yt. In particular, it specifies an ordering from the best prediction (y = yt) to increasingly bad predictions with increasing
value of their associated loss lt(y). It might then be desirable to ensure that the CRF assigns particularly low probability
(i.e., high energy) to the worst possible predictions, as measured by the loss.

A first way of achieving this is to augment the energy function at a given training example (xt,yt) by including the
loss function for that example, producing a Loss-Augmented energy:

ELA
t (y,xt; θ) = E(y,xt; θ)− lt(y) . (4)

By artificially reducing the energy of bad values of y as a function of their loss, this will force the CRF to increase
even more the value of E(y,x; θ) for those values of y with high loss. This idea is similar to the concept of margin
re-scaling in structured support vector machines (SSVMs) [14, 15], a similarity that has been highlighted previously by
Hazan and Urtasun [18]. Moreover, as in SSVMs, it can be shown that by replacing the regular energy function with this
loss-augmented energy function in the maximum likelihood objective of Equation 2, we obtain a new Loss-Augmented

2Variational inference-based training can also be interpreted as training based on a different objective.
3For loss functions that decompose into loss terms over subsets of target variables, it may be more appropriate to use the mode of the marginals over

each subset as the prediction.
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objective that upper bounds the average loss:

LLA(D; θ) =
1

|D|
∑

(xt,yt)∈D

ELA
t (yt,xt) + log

 ∑
y∈Y(x)

exp(−ELA
t (y,xt))


≥ 1

|D|
∑

(xt,yt)∈D

ELA
t (yt,xt) + log

(
exp(−ELA

t (ŷ(xt),xt))
)

=
1

|D|
∑

(xt,yt)∈D

E(yt,xt)− E(ŷ(xt),xt) + lt(ŷ(xt))− lt(yt)

≥ 1

|D|
∑

(xt,yt)∈D

lt(ŷ(xt)) .

We see that the higher lt(y) is for some given y, the more important the energy term associated with it will be in the global
objective. Hence, introducing the loss this way will indeed force the optimization to focus more on increasing the energy
for configurations of y associated with high loss.

As an alternative to subtracting the loss, we could further increase the weight of terms associated with high loss by also
multiplying the original energy function, as follows:

ELS
t (y,xt; θ) = lt(y)(E(y,xt; θ)− E(yt,xt; θ))− lt(y) . (5)

The advantage of this Loss-Scaled energy is that when a configuration of y with high loss already has higher energy than
the target (i.e., E(y,xt; θ)−E(yt,xt; θ) > 0), then the energy is going to be further increased, reducing its weight in the
optimization. In other words, focus in the optimization is put on bad configurations of y only when they have lower energy
than the target. Finally, we can also show that the Loss-Scaled objective obtained from this loss-scaled energy leads to an
upper bound on the average loss:

LLS(D; θ) =
1

|D|
∑

(xt,yt)∈D

ELS
t (yt,xt) + log

 ∑
y∈Y(x)

exp(−ELS
t (y,xt))


=

1

|D|
∑

(xt,yt)∈D

log

 ∑
y∈Y(x)

exp(−lt(y)(E(y,xt; θ)− E(yt,xt; θ)) + lt(y))


≥ 1

|D|
∑

(xt,yt)∈D

lt(ŷ(xt))(1 + E(yt,xt; θ)− E(ŷ(xt),xt; θ))

≥ 1

|D|
∑

(xt,yt)∈D

lt(ŷ(xt)) .

There is a connection with SSVM training objectives here as well. This loss-scaled CRF is the probabilistic equivalent of
SSVM training with slack re-scaling [15].

Since both the loss-augmented and loss-scaled CRF objectives follow the general form of the maximum likelihood
objective but with different energy functions, the form of the gradient is also that of Equation 3. The two key differences
are that the energy function is now different, and the conditional expectation on y given xt is according to the CRF
distribution with the associated loss-sensitive energy. In general (particularly for the loss-scaled CRF), it will not be
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possible to run belief propagation to compute the expectation4, but adapted forms of loopy belief propagation or MCMC
(e.g., Gibbs sampling) could be used.

3.2 Expected Loss
A second approach to deriving a smooth version of the average loss is to optimize the average Expected Loss, where the
expectation is based on the CRF’s distribution:

LEL(D; θ) =
1

|D|
∑

(xt,yt)∈D

EEy|xt
[lt(y)] =

1

|D|
∑

(xt,yt)∈D

∑
y∈Y(xt)

lt(y)p(y|xt) . (6)

While this objective is not an upper bound, it becomes increasingly closer to the average loss as the entropy of p(y|xt)
becomes smaller and puts all its mass on ŷ(xt).

The parameter gradient has the following form:

∂LEL(D; θ)
∂θ

=
1

|D|
∑

(xt,yt)∈D

EEy|xt
[lt(y)]EEy|xt

[
∂E(y,xt; θ)

∂θ

]
− EEy|xt

[
lt(y)

∂E(yt,xt; θ)

∂θ

]
. (7)

If the required expectations cannot be computed tractably, MCMC sampling can be used to approximate them. Another
alternative is to use a fixed set of representative samples [13].

3.3 Loss-inspired Kullback-Leibler
Both the average expected loss and the loss upper bound objectives have in common that their objectives are perfectly
minimized when the posteriors p(y|xt) put all their mass on the targets yt. In practice, this is bound not to happen, since
this is likely to correspond to an overfitted solution which will be avoided using additional regularization.

Instead of relying on a generic regularizer such as the `2-norm of the parameter vector, perhaps the loss function itself
might provide cues as to how best to regularize the CRF. Indeed, we can think of the loss as a ranking of all potential
predictions, from perfect to adequate to worse. Hence, if we are not to put all probability mass on p(yt|xt), we could make
use of the information provided by the loss in order to determine how to distribute the excess mass 1 − p(yt|xt) on other
configurations of y. In particular, it would be sensible to distribute it on other values of y in proportion to the loss lt(y).

To achieve this, we propose to first convert the loss into a distribution over the target q(y|t) and then minimize the
Kullback-Leibler (KL) divergence between this target distribution and the CRF posterior:

LKL(D; θ) =
1

|D|
∑

(xt,yt)∈D

DKL(q(·|t)||p(·|xt)) = −
1

|D|
∑

(xt,yt)∈D

∑
y∈Y(xt)

q(y|t) log p(y|xt)− C (8)

where constant C = H(q(·|t)) is the entropy of the target distribution, which does not depend on parameter vector θ.
There are several ways of defining the target distribution q(y|t). In this work, we define it as follows:

q(y|t) = exp(−lt(y)/T )/Zt, Zt =
∑

y∈Y(xt)

exp(−lt(y)/T ) (9)

where the temperature parameter T controls how peaked this distribution is around yt. The maximum likelihood objective
is recovered as T approaches 0.

4In the loss-augmented case, one exception is if the loss decomposes into individual losses over each target variable yi and the CRF follows a tree
structure in its output. In this case, the loss terms can be integrated into the CRF unary features and belief propagation will perform exact inference.
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Figure 1: Negative derivatives of the objective with respect to energy for each of the five training objectives presented. The
five training objectives ar: maximum likelihood (ML), loss-augmented ML (LA), loss-scaled ML (LS), expected loss (EL)
and loss-inspired Kullback-Leibler divergence (KL). For each objective we consider five different configurations: from left
to right, their energies are [−1,−0.5, 0, 0.5, 1] and the losses are [5, 1, 0, 1, 5]. The middle one therefore corresponds to
a ground-truth configuration; those to its left are currently more likely under the model, and loss increases with distance
from this middle one. The derivatives for each objective are normalized by the `2 norm.

The gradient with respect to θ is simply the expectation of the gradient for maximum likelihood LML according to
the target distribution q(y|t). Here too, if the expectation is not tractable, one can using sampling to approximate it. In
particular, since we have total control over the form of q(y|t), it is easy to define it such that it can be sampled from exactly.

3.4 Analyzing the Behavior of the Training Objectives
Figure 1 shows how the gradient with respect to the energy changes for each objective as we consider configurations y with
varying energy and loss values. From this figure we see significant differences in the behaviors of the introduced objective
functions. Only the expected-loss and loss-inspired Kullback-Leibler objectives will attempt to lower the energies of
configurations that have non-zero loss. The maximum likelihood objective aims to raise the energies of the non-zero loss
configurations, in proportion to how probable they are. On the other hand the loss-augmented and loss-scaled objectives
concentrate on the most probable configurations that have the highest loss (worst violators), with the loss-scaled objective
having the most extreme behavior and putting all the gradient on the worst violator. This behavior is expected as the
energies get amplified by the addition (multiplication) of the loss which artificially raises the probability of the already
probable violators.

The behavior of the expected-loss objective is counter-intuitive as it tries to lower the energy of all configurations that
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have low loss, including those that are already more probable than the zero-loss one. In this example, it even pushes down
more the energy of a non-zero loss configuration more than that of the zero-loss (target) configuration. The loss-inspired
KL objective adjusts this and only lowers the energy of the zero-loss (ground-truth) and the low-loss configuration that has
low probability.

4 Learning with Multiple Ground Truths
In certain applications, for some given input xt, there is not only a single target yt that is correct (see Section 6 for the
case of ranking). This information can easily be encoded within the loss function, by setting lt(y) = 0 for all such valid
predictions.

In this context, maximum likelihood training corresponds to the objective:

LML(D; θ) = −
1

|D|
∑

(xt,rt)∈D

∑
yt∈Y0(xt)

log p(yt|xt) (10)

where Y0(xt) = {y|y ∈ Y(xt), lt(y) = 0}. This is equivalent to maximizing the likelihood of all predictions y that are
consistent with the loss, i.e. that have zero loss. The loss-augmented variant is similarly adjusted. As for loss-scaling, we
replace the energy at the ground truth with the average energy of all valid ground truths in the loss-scaled energy:

ELS
t (y,xt; θ) = lt(y)

E(y,xt; θ)−
1

|Yt(xt)|
∑

yt∈Y0(xt)

E(yt,xt; θ)

− lt(y) . (11)

No changes to the average expected loss and loss-inspired KL objectives are necessary as they consider all valid y.
In the setting of multiple ground truths, a clear distinction can be made between the average expected loss and the

other objectives, in terms of the solutions they encourage. Indeed, the expected loss will be minimized as long as∑
yt∈Yt(xt)

p(yt|xt) = 1, i.e. probability mass is only put on configurations of y that have zero loss. On the other
hand, the maximum likelihood and loss upper bound objectives add the requirement that the mass be equally distributed
amongst those configurations. As for the loss-inspired KL, it requires that the sum of the probability mass sum to a constant
smaller than 1, specifically 1−

∑
yt∈Yt(xt)

q(yt|t).

5 Related Work
While maximum likelihood is the dominant approach to training CRFs in the literature, others have proposed ways of
adapting the CRF training objective for specific tasks. For sequence labeling problems, Kakade et al. [19] proposed to
maximize the label-wise marginal likelihood instead of the joint label sequence likelihood, to reflect the fact that the task’s
loss function is the sum of label-wise classification errors. Suzuki et al. [20], Gross et al. [21] went a step further by
proposing to directly optimize a smoothed version of the label-wise classification error (Suzuki et al. [20] also described
how to apply it to optimize an F-score). Their approach is similar to the average expected loss described in Section 3.2,
however they do not discuss how to generalize it to arbitrary loss functions. The average expected loss objective for CRFs
was formulated by Taylor et al. [22] and Volkovs and Zemel [13], in the context of ranking.

Work in other frameworks than CRFs for structured output prediction have looked at how to incorporate loss informa-
tion into learning. Tsochantaridis et al. [15] describe how to upper bound the average loss with margin and slack scaling.
McAllester et al. [23] propose a perceptron-like algorithm based on an update which in expectation is close to the gradient
on the true expected loss (i.e., the expectation is with respect to the true generative process). Both SSVMs and perceptron
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algorithms require procedures for computing the so-called loss-adjusted MAP assignment of the output y which, for richly
structured losses, can be intractable. One advantage of CRFs is that they can instead leverage the vast MCMC litera-
ture to sample from CRFs with loss-adjusted energies. Moreover, they open the door to alternative (i.e. not necessarily
upper-bounding) objectives.

Finally, while Hazan and Urtasun [18] described how margin scaling can be applied to CRFs, we give for the first time
the equivalent of slack scaling for CRFs in Section 3.1.

6 Experiments
We evaluate the usefulness of the different loss-sensitive training objectives on ranking tasks. In this setting, the input
x = (q,D) corresponds to a pair made of a query vector q and a set of documents D = {d(i)}, and y is a vector
corresponding to a ranking5 of each document d(i) among the whole set of documents D.

Ranking is particularly interesting as a benchmark task for loss-sensitive training of CRFs for two reasons. The first is
the complexity of the output space Y(q,D), which corresponds to all possible permutations of documents D, making the
application of CRFs to this setting more challenging than sequential labeling problems with chain structure.

The second is that learning to rank is an example of a task with multiple ground truths (see Section 4), which is a more
challenging setting than the single ground truth case. Indeed, for each training input xt = (qt,Dt), we are not given a
single target rank yt, but a vector rt of relevance level values for each document. The higher the level, the more relevant
the document is and the better its rank should be. Moreover, two documents d(i)

t and d
(j)
t with the same relevance level

(i.e., rti = rtj) are indistinguishable in their ranking, meaning that they can be swapped within some ranking without
affecting the quality of that ranking.

The quality of a ranking is measured by the Normalized Discounted Cumulative Gain:

NDCG(y, rt) = Nt

mt∑
i=1

rti log(2)

log(1 + yi)
(12)

where Nt = 1/NDCG(arg sort(−rt), rt) is a normalization constant that insures the maximum value of NDCG is 1,
which is achieved when documents are ordered in decreasing order of their relevance levels. Note that this is not a standard
definition of NDCG, we use it here because this form was adopted for evaluation of the baselines on the Microsoft’s
LETOR4.0 datset collection [24]. To convert NDCG into a loss, we simply define lt(y) = 1−NDCG(y, rt).

A common approach to ranking is to learn a scoring function f(q,d(i)) which outputs for all documents d(i) ∈ D a
score corresponding to how relevant document d(i) is for query q. Here, we follow the same approach by incorporating
this scoring function into the energy function of the CRF. We use an energy function linear in the scores:

E(y,q,D) =

|D|∑
i=1

αyi
f(q,d(i)) (13)

where α is a weight vector of decreasing values (i.e., αi > αj for i < j). In our experiments, we use a weighting inspired
by the NDCG measure: αi = log(2)/ log(i + 1). Using this energy function, we can show that the prediction ŷ(q,D) is
obtained by sorting the documents in decreasing order of their scores:

ŷ(q,D) = argmin
y∈Y(q,D)

E(y,q,D) = arg sort([−f(q,d(1)), . . . ,−f(q,d(|D|))]) . (14)

5For example, if yi = 3, then document d(i) is ranked third amongst all documents D for the query q.
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Figure 2: NDCG@1-5 results on MQ2008 and MQ2007 datasets for different learning objectives.

As for the scoring function, we use a simple linear function f(q,d(i)) = θTφ(q,d(i)) on a joint query-document feature
representation φ(q,d(i)). A standard feature representation is provided in each ranking datasets we considered.

We trained CRFs according to maximum likelihood as well as the different loss-sensitive objectives described in Sec-
tion 3. In all cases, stochastic gradient descent was used by iterating over queries and performing a gradient step update
for each query. Moreover, because the size of Y(q,D) is factorial in the number of documents, explicit summation over
that set is only tractable for a small number of documents. To avoid this problem we use an approach similar to the one
suggested by Petterson et al. [25]. Every time a query qt is visited and its associated set of documents Dt is greater than
6, we randomly select a subset of 6 documents D̃ ⊂ Dt, ensuring that it contains at least one document of every relevance
level found for that query. The exact parameter gradients can then be computed for this reduced set by enumerating all
possible permutations, and the CRF can be updated.

6.1 Datasets
In our experiments we use the LETOR [24] benchmark datasets. These data sets were chosen because they are publicly
available, include several baseline results, and provide evaluation tools to ensure accurate comparison between methods.
In LETOR4.0 there are two learning to rank data sets MQ2007 and MQ2008. MQ2007 contains 1692 queries with 69623
documents and MQ2008 contains 784 queries and a total of 15211 documents. Each query document pair is assigned
one of three relevance judgments: 2 = highly relevant, 1 = relevant and 0 = irrelevant. Both datasets come with five
precomputed folds with 60/20/20 slits for training validation and testing. The results show for each model the averages of
the test set results for the five folds.

6.2 Results
We experimented with five objective functions, namely: maximum likelihood (ML), loss-augmented ML (LA), loss-scaled
ML (LS), expected loss (EL) and loss-inspired Kullback-Leibler divergence (KL). For the loss-augmented objective we
introduced an additional weight α > 0 modifying the energy to: Et(y,xt; θ) = E(y,xt; θ) − αlt(y). In this form
α controls the contribution of the loss to the overall energy. For all objectives we did a sweep over learning rates in
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Table 1: NDCG@1-5 results on MQ2008 and MQ2007 datasets.
MQ2007: NDCG MQ2008: NDCG

@1 @2 @3 @4 @5 @1 @2 @3 @4 @5

Regression 38.94 39.60 39.86 40.53 41.11 36.67 40.62 42.89 45.60 47.73
SVM-Struct 40.96 40.73 40.62 40.84 41.42 36.26 39.84 42.85 45.08 46.95

ListNet 40.02 40.63 40.91 41.44 41.70 37.54 41.12 43.24 45.68 47.47
AdaRank 38.76 39.67 40.44 40.67 41.02 38.26 42.11 44.20 46.53 48.21

KL 41.06 40.90 40.93 41.33 41.75 39.47 41.80 43.74 46.18 47.84

[0.5, 0.01, 0.01, 0.001]. Moreover we experimented with α in [1, 10, 20, 50] for the loss-augmented objective and T in
[1, 10, 20, 50] for the KL objective. For each fold the setting that gave the best validation NDCG was chosen and the
corresponding model was then tested on the test set.

The results for the five objective functions are shown in Figures 2(a) and 2(b). First, we see that in almost all cases loss-
augmentation produces better results than the base maximum likelihood approach. Second, loss-scaling further improves
on the loss-augmentation results and has similar performance to the expected objective. Finally, among all objectives,
KL consistently produces the best results on both datasets. Taken together, these results strongly support our claim that
incorporating the loss into the learning procedure of CRFs is important.

Comparisons of the CRFs trained on the KL objective with other models is also shown in Table 1, where the perfor-
mance of linear regression and other linear baselines listed on LETOR’s website is provided. We see that KL outperforms
the baselines on the MQ2007 dataset on all truncations except 4. Moreover, on MQ2008 the performance KL is compara-
ble to the best baseline AdaRank, with KL beating AdaRank on NDCG@1. We note also that KL consistently outperforms
LETOR’s SVM-Struct baseline.

7 Conclusion
In this work, we explored different approaches to incorporating loss function information into the training objective of a
probabilistic CRF. We discussed how to adapt ideas from the SSVM literature to the probabilistic context of CRFs, intro-
ducing for the first time the equivalent of slack scaling to CRFs. We also described objectives that rely on the probabilistic
nature of CRFs, including a novel loss-inspired KL objective. In an empirical comparison on ranking benchmarks, this
new KL objective was shown to consistently outperform all other loss-sensitive objectives.

To our knowledge, this is the broadest comparison of loss-sensitive training objectives for probabilistic CRFs yet to be
made. It strongly suggests that the most popular approach to CRF training, maximum likelihood, is likely to be suboptimal.
While ranking was considered as the benchmark task here, in future work, we would like to extend our empirical analysis
to other tasks such as labeling tasks.

References
[1] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for seg-

menting and labeling sequence data. In ICML, pages 282–289. Morgan Kaufmann, San Francisco, CA, 2001.

[2] Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In HLT/NAACL, 2003.

10



[3] Sunita Sarawagi and William W. Cohen. Semi-markov conditional random fields for information extraction. In
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