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Abstract

We derive multiscale statistics for deconvolution in order to detect qualitative fea-

tures of the unknown density. An important example covered within this framework

is to test for local monotonicity on all scales simultaneously. The errors in the decon-

volution model are restricted to a certain class of distributions that include Laplace,

Gamma and Exponential random variables. Our approach relies on inversion formulas

for deconvolution operators. For multiscale testing, we consider a calibration, motivated

by the modulus of continuity of Brownian motion. We investigate the performance of

our results from both the theoretical and simulation based point of view. A major

consequence of our work is that the detection of qualitative features of a density in

a deconvolution problem is a doable task although the minimax rates for pointwise

estimation are very slow.
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1 Introduction and Notation

Assume that we observe Y = (Y1, . . . , Yn) according to the deconvolution model

Yi = Xi + εi, i = 1, . . . , n, (1.1)

where Xi, εi, i = 1, . . . , n are assumed to be real valued and independent, Xi
i.i.d.∼ X, εi

i.i.d.∼ ε

and Y1, X, ε have densities g, f and fε, respectively. Our goal is to develop multiscale test

statistics for certain structural assumptions on f , where the density fε of the blurring

distribution is assumed to be known.

Structural assumptions or shape constraints are conveniently expressed in this paper as

linear differential inequalities of the density f in the time domain, assuming for the moment

that f is sufficiently smooth. Important examples are f ′ ≷ 0 to check local monotonicity

properties as well as f ′′ ≷ 0 for local convexity or concavity. To give another example,

suppose that we are interested in local monotonicity properties of the density f̃ of exp(aX)

for a given a > 0. Since f̃(s) = (as)−1f(a−1 log(s)), one can easily verify that local

monotonicity properties of f̃ may be expressed in terms of the inequalities f ′ − af ≶ 0.

In general, we consider a differential operator A and want to identify intervals on which

Af 6≤ 0 or Af 6≥ 0. If applied to A = D or D2 with the derivative operator Df := f ′,

our method yields bounds for the number and confidence regions for the location of modes

and inflection points of f . Indeed, our work is an extension of Dümbgen and Walther [11]

who treated the case A = D in the direct case, i.e. when εi = 0. It is not easy, however, to

transfer the methods of [11] to the deconvolution setting. To this end it would much more

convenient to express hypotheses on the local shape in the frequency domain.

Hypothesis testing for deconvolution and related inverse problems is a relatively new area.

Current methods cover testing of parametric assumptions (cf. [3, 26, 5]) and, more recently,

testing adaptively certain smoothness classes such as Sobolev balls in a Gaussian sequence

model (Laurent et al. [25, 26] and Ingster et al. [20]). All these papers focused on regres-

sion deconvolution models. Exceptions for density deconvolution are Holzmann et al. [19]

and Meister [27] who developed a test of (global) monotonicity based on classical Fourier

inversion (see e.g. Carroll and Hall [6]). This test has been derived for one fixed interval,

which allows to check whether a density is monotone on that interval at a preassigned level

of significance.

In this paper we introduce a statistic for investigating shape constraints of the unknown

density f on all scales simultaneously. As mentioned above, at a first glance, this appears to

be a quite difficult task because qualitative hypotheses such as local monotonicity cannot be

immediately expressed in terms of the Fourier coefficients. Let us illustrate the basic idea
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for the case f ′, i.e. A = D and D is the differentiation operator. Define φt,h(·) = φ((·−t)/h)

with a sufficiently smooth and positive kernel φ supported on [0, 1]. The functions φt,h serve

as local test functions for local monotonicity in the following sense: Whenever we know

that 〈φt,h, f ′〉 > 0, we may conclude that f(s1) < f(s2) for some points s1 < s2 in [t, t+h].

Here and throughout the sequel we write 〈h1, h2〉 :=
∫
R h1(x)h2(x) dx.

For simplicity we only consider the case where the so called inversion operators, i.e. the

multiplicative inverse of the Laplace transform are polynomials, which leads us to the

following assumption on the noise that also appears in [4]. Throughout this work let

F(f) =
∫
R exp (−ix·) f(x)dx denote the Fourier transform of f ∈ L1 (R) ∩ L2 (R).

Assumption 1. We assume that the characteristic function of ε has the representation

ψε(t) :=
(
E eitε

)−1
=
(
F(fε)(−t)

)−1
=

r∑
j=0

qj (it)j

for some non-negative integer r and real coefficients q0 = 1, q1, . . . , qr.

Then, we obtain by partial integration and Plancherel’s identity

−〈φt,h, f ′〉 = 〈Dφt,h, f〉 =
1

2π

〈
F(Dφt,h),F(f)

〉
=

1

2π

〈
F(Dφt,h), ψε F(g)

〉
=

1

2π

〈
F(ψε(D)Dφt,h),F(g)

〉
=
〈
ψε(D)Dφt,h, g

〉
. (1.2)

Thus, the l.h.s. can be estimated directly via Y1, . . . , Yn and we find that it is possible to

infer local properties of f ′ similar as in the case without convolution by

Tt,h = − 1√
n

n∑
k=1

ψε(D)Dφt,h(Yk).

Since ETt,h =
√
n〈φt,h, f ′〉, this gives rise to a multiscale statistic

Tn = sup
(t,h)

wh

(
hr+1/2

∣∣Tt,h − ETt,h
∣∣√

ĝn(t)
− w̃h

)
,

where wh and w̃h are chosen in order to calibrate the different scales with equal weight, while

ĝn is an estimator of g. Note that the additional factor hr+1/2 is due to the ill-posedness

of the problem (cf. Assumption 1) as well as to differentiation of f.

In this paper we will derive the limit distribution of Tn in order to determine the critical

values, which turns out to be distribution free. Our multiscale calibration requires new

techniques for proving convergence to a limit distribution. Furthermore, we will show how

to extend methods introduced by Giné et al. [15, 16] for construction of confidence bands
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in order to prove multiscale results. This allows us on the one hand to extend the approach

of [11], resulting for example in simultaneous confidence statements for the existence and

location of regions of increase and decrease. On the other hand, our approach is statistically

more informative than pure testing. In fact, for given shape constraint, we construct objects,

which appear to be similar to confidence bands. For a more precise statement see Section

3.

Is is a well-known fact (cf. Delaigle and Gijbels [9]) that selection of an appropriate band-

width is a delicate issue in deconvolution models. One of the main advantages of multiscale

methods is that essentially no smoothing parameter is required. The main choice will be

the quantile of the multiscale statistic, which has a clear probabilistic interpretation.

As illustrated above, our approach is based on inversion of differential operators to resolve

the discrepancy between hypotheses, formulated in the time domain, and testing methods in

the spectral domain, i.e. it nicely combines shape constraints given by differential inequal-

ities and deconvolution. To give another example, consider the case where ε is exponential

with density e−x for x ≥ 0. In this case we may recover f by f = g + g′ (cf. Jongbloed

[21], and for more examples van Es and Kok [29]). The key advantages of this inversion

method is the following locality property: f(x) can be expressed as a linear combination

of derivatives of g at x. Therefore, testing for a shape constraint on the interval I only

requires observations falling into I.

Let us finally address Assumption 1. If X is gamma distributed, let us call −X negative

gamma distributed. The class of distributions satisfying Assumption 1 can be shown to be

the class of finite mixtures of gamma and negative gamma distributed random variables

with shape parameters ≥ 1. In particular, exponential, Laplace and gamma distributed

r.v.s belong to this class. Moreover, the density fε is necessarily bounded if r ≥ 1. The

special case ε = 0 (i.e. no deconvolution or direct problem) can be treated as well, of course.

For practical applications, we may use these models whenever the error variable ε is an

independent waiting time. For example let Xi be the (unknown) time of infection of the

i-th patient, εi the corresponding incubation time, and Yi is the time when diagnosis is

made. Then, it is convenient to assume ε ∼ Γ (r, θ) (see for instance [8], Section 3.5). By

the techniques developed in this paper one will be able to identify for example time intervals

where the number of infections increased and decreased for a specified confidence level.

Another application is single photon emission computed tomography (SPECT), where the

detected scattered photons are blurred by Laplace distributed random variables (cf. Floyd

et al. [14], Kacperski et al. [22]).

The paper is organized as follows. The general multiscale statistic and the main theorem
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are established in Section 2. This part applies to density estimation in general. Section 3 is

devoted to examples as well as the construction and discussion of the multiscale method for

shape constraints, using the theoretical results obtained in Section 2. Theoretical questions

related to the performance of the multiscale method and numerical aspects are discussed

in Sections 4 and 5. In particular, we are able to identify the asymptotically optimal kernel

function as a Legendre polynomial. Proofs and further technicalities are shifted to the

appendix.

2 A general multiscale test statistic

In this section, we shall give a fairly general convergence result. The presented result

does not use the deconvolution structure of model (1.1). It only requires that we have

observations Yi = G−1(Ui), i = 1, . . . , n with Ui i.i.d. uniform on [0, 1] and G an unknown

distribution function with Lebesgue density g.

Let us summarize some notation, used throughout this work. 〈·, ·〉 denotes the L2-inner

product. By slight abuse of notation, we write ‖ · ‖2, ‖ · ‖∞, for the norms on L2([0, 1]) and

L∞([0, 1]), respectively. Suppose that TV(·) denotes the total variation of functions on R.

Let us introduce the function classes

T V(m) :=
{
φ
∣∣ suppφ ⊂ [0, 1], φ(l) is continuous for 0 ≤ l < m,

φ(m) is càdlàg with TV(φ(m)) <∞
}
,

and for fixed c, C ≥ 0,

G := Gc,C :=
{
G
∣∣ G is a distribution function with density g,

g
∣∣
[0,1]
≥ c, and |g(x)− g(y)| ≤ C|x− y|, for all x, y ∈ [0, 1]

}
. (2.1)

Concerning the definition of T V(m), in case of m = 0, we simply assume that φ(0) := φ is

càdlàg with finite total variation. In case of m > 0, φ(l) with 1 ≤ l < m stands for the usual

derivative, while φ(m−1) is assumed to be absolutely continuous with L1-derivative φ(m).

Suppose that for m ≥ 0,

Lφ(x) = 〈φ, α−1〉+
m∑
l=0

αl(x)φ(l)(x) (2.2)

is a differential operator on T V(m). Throughout this section, let m denote the order of L.

We fix a function φ ∈ T V(m) and write

φt,h(·) = φ

(
· − t
h

)
.
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Now, consider the test statistic

Tt,h :=
1√
n

n∑
k=1

Lφt,h(Yk) =
1√
n

n∑
k=1

Lφt,h(G−1(Uk)) (2.3)

and note that

ETt,h =
√
n

∫ (
Lφt,h

)
(s)g(s)ds =

√
n

∫
φt,h(s)

(
L?g

)
(s)ds,

where L? denotes the adjoint operator. One may think of t 7→ Tt,h as a kernel estimator of

L?g with bandwidth h. We combine the single test statistics for an arbitrary subset

Bn ⊂
{

(t, h)
∣∣ t ∈ [0, 1], h ∈ [ln, un], t+ h ≤ 1

}
(2.4)

and consider for ν > e and

wh =

√
1
2 log ν

h

log log ν
h

, (2.5)

the multiscale statistic

Tn := sup
(t,h)∈Bn

wh

(
hm−1/2

∣∣Tt,h − E[Tt,h]
∣∣√

ĝn(t) αm(t)
−
√

2 log ν
h

)
, (2.6)

where ĝn is an estimator of g, satisfying

sup
G∈G
‖ĝn − g‖∞ = OP (1/ log n). (2.7)

Theorem 1. Given a differential operator L of the form (2.2). Work under Assumption 1,

where m is the order of L. Assume that φ ∈ T V(m) is normalized, such that ‖φ(m)‖L2 = 1.

Further suppose that TV(αq) + ‖αq‖∞ <∞ for q = 0, . . . ,m, αm is Lipschitz and bounded

away from zero, lnn log−3 n→∞ and un = o(1). Then, there exists a standard Brownian

motion W , such that for ν > e,

sup
G∈Gc,C

∣∣∣Tn − sup
(t,h)∈Bn

wh

(∣∣ ∫ φ(m)( s−th )dWs

∣∣
√
h

−
√

2 log ν
h

)∣∣∣ = OP (rn),

with

rn = sup
G∈G

∥∥ĝn − g∥∥∞ log n

log log n
+ l−1/2n n−1/2

log3/2 n

log logn
+

√
un log(1/un)

log log(1/un)
.

Moreover,

sup
t∈[0,1], h>0, t+h≤1

wh

(∣∣ ∫ φ(m)( s−th )dWs

∣∣
√
h

−
√

2 log ν
h

)
<∞, a.s. (2.8)

Hence, the limit statistic is almost surely bounded from above.
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The proof of the coupling in this theorem (cf. Appendix A) is based on generalizing tech-

niques developed by Giné et al. [15], while finiteness of the limiting test statistic utilizes

results of Dümbgen and Spokoiny [10]. Note that Theorem 1 can be understood as a

multiscale analog of the L∞-loss convergence for kernel estimators (cf. [16, 15, 4, 17]).

Let us give some interesting examples for the choice of Bn illuminating the wide range of

applications of Theorem 1.

Example 1 (Confidence bands for L?g with fixed bandwidth). Let h = hn be a sequence

converging to zero and assume for simplicity that hn . n−κ, κ > 0 and hnn log−3 n→∞.

Consider Bn := [0, 1− hn]× {hn}. Then, we obtain

sup
t∈[0,1−h]

hm−1/2
∣∣Tt,h − ETt,h

∣∣√
ĝn(t) αm(t)

= sup
t∈[0,1−h]

∣∣∣ ∫ φ(m)
(
s−t
h

)
dWs

∣∣∣
√
h

+Op
(
‖ĝn − g‖∞

√
log n+ (nh)−1/2 log n+ h1/2

)
.

Using Theorem A1 of [2], we recover essentially Corollary 2 in [4].

Example 2 (Wavelet thresholding). Suppose that φ is a wavelet with compact support on

[0, 1], for instance, the Haar wavelet, i.e. φ(·) = I[0,1/2)(·) − I[1/2,1)(·) ∈ T V(0). Then, the

wavelet coefficients are given by

dj,k :=

∫
φ
(
2js− k

)
(L?g)(s)ds =

∫
φ2−jk,2−j (s)(L

?g)(s)ds.

Suppose that j0n and j1n are integers satisfying 2−j1nn log−3 n→∞ and j0n →∞. Set

Bn =
{

(t, h) = (2−jk, 2−j)
∣∣ k = 0, 1, . . . , 2j − 1, j0n ≤ j ≤ j1n, j integer

}
.

Then for α ∈ (0, 1), Theorem 1 yields in a natural way level-dependent thresholds qj,k(α),

such that asymptotically

lim
n→∞

P
(∣∣d̂j,k − dj,k∣∣ ≤ qj,k(α), for all j, k, with (2−jk, 2−j) ∈ Bn

)
= 1− α.

Let us close this section with a number of remarks.

Theorem 1 shows that the limit statistic is almost surely bounded from above. Note that

we have the trivial lower bound

Tn ≥ −
log ν

h

log log ν
h

,

which describes the behavior of Tn, provided the cardinality of Bn is small (for instance

if Bn contains only one element). However, if Bn is sufficiently rich, the limit is also
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bounded from below. Let us make this more precise. Assume, that for every n there exists

a Kn, Kn →∞ such that

B◦Kn :=
{(

i
Kn
, 1
Kn

) ∣∣ i = 0, . . . ,Kn − 1
}
⊂ Bn.

Then, the limit statistic is asymptotically bounded from below by −1/4. This follows from

Lemma 1. Assume that Kn →∞ and ‖φ(m)‖L2 = 1. Then,

sup
(t,h)∈B◦Kn

wh

(∣∣ ∫ φ(m)( s−th )dWs

∣∣
√
h

−
√

2 log ν
h

)
→ −1

4
, in probability.

It is a challenging problem to calculate the distribution for general index set Bn explicitly.

Although the tail behavior has been studied for the one-scale case (cf. [15, 4]) this has not

been addressed so far for the limit statistic in Theorem 1. For implementation, later on,

our method relies therefore on Monte Carlo simulations.

3 Testing for shape constraints

We start by explaining the main idea of the test. Let D denote the differentiation operator.

Suppose that for m ≥ 0, we have a linear differential operator of the form

f 7→ Af(x) := α−1(x) +
m∑
l=0

αl(x)Dlf(x). (3.1)

Throughout the remaining part of the paper, we will always assume that Af is continuous.

A rectangle in R2 with vertices (a1, b1), (a1, b2), (a2, b1), (a2, b2), a1 < a2, b1 < b2 will be

denoted by Rect(a1, a2, b1, b2).

The main objective of this paper is to obtain uniform confidence statement of the following

kinds:

(i) The number and location of the roots and maxima of Af.

(ii) Simultaneous identification of intervals of the form [ti, ti + hi], ti ∈ [0, 1], hi > 0, i in

some index set I, with the following property: For a pre-specified confidence level we

can conclude that for all i ∈ I the functions (Af)|[ti,ti+hi] attain, at least on a subset

of [ti, ti + hi], positive values.

(ii′) Same as (ii), but we want to conclude that (Af)|[ti,ti+hi] has to attain negative values.
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(iii) For any pair (t, h) ∈ Bn with Bn as in (2.4), we want to find b−(t, h, α) and b+(t, h, α),

such that we can conclude that with overall confidence 1 − α, the graph of Af (de-

noted as graph(Af) in the sequel) has a non-empty intersection with every rectangle

Rect(t, t+ h, b−(t, h, α), b+(t, h, α)).

In the following we will refer to these goals as Problems (i), (ii), (ii′) and (iii), respectively.

Note that the answer to Problem (ii) follows from Problem (iii) by taking all intervals

[t, t+ h] with b−(t, h, α) > 0. Analogously, [t, t+ h] satisfies (ii′) whenever b+(t, h, α) < 0.

The geometrical ordering of the intervals obtained by (ii) and (ii′) yields in a straightforward

way a lower bound for the number of roots of Af , solving Problem (i) (cf. also Dümbgen

and Walther [11]). A confidence interval for the location of a root can be constructed as

follows: If there exists [t, t+ h] such that b−(t, h, α) > 0 and [t̃, t̃+ h̃] with b+(t̃, h̃, α) < 0,

then, with confidence 1− α, Af has a zero in the interval
[
min(t, t̃),max(t+ h, t̃+ h̃)

]
.

Example 3. Suppose A = D. In this case we want to find a collection of intervals [t, t+h]

such that with overall probability 1− α for each such interval there exists a nondegenerate

subinterval on which f is strictly monotonically increasing.

To state it differently, suppose that f ′ is continuous and φ ≥ 0 is a kernel with support on

[0, 1], i.e. φ ≥ 0 with
∫ 1
0 φ(x)dx = 1. If

∫
φt,h(x)f ′(x)dx > 0, then there is a nondegenerate

subinterval of [t, t + h] on which f ′ > 0. In particular, we can reject the null hypothesis

that f ′ ≤ 0 on [t, t + h] at level 1 − α. More generally,
∫
φt,h(x)f ′(x)dx ∈ [a, b] implies

by the intermediate value theorem that the graph of f ′ intersects the rectangle Rect(t, t +

h, ah−1, bh−1) in at least one point.

Example 4. Suppose that we want to analyze the convexity/concavity properties of U =

p(X) (for instance U = eX), where p is a function, which is strictly monotone increasing

on the support of the distribution of X. Let fU denote the density of U . Then, by change

of variables

fU (y) =
1

p′
(
p−1(y)

)f(p−1(y)
)
,

and there is an A of the form (3.1), such that f ′′U (y) = (Af)(p−1(y)). Therefore, graph(Af)∩
Rect(t, t+ h, b−(t, h, α), b+(t, h, α)) 6= ∅ implies

graph(f ′′U ) ∩ Rect(p(t), p(t+ h), b−(t, h, α), b+(t, h, α)) 6= ∅.

In particular, if b−(t, h, α) > 0 then, with confidence 1 − α, we may conclude that fU is

strictly convex on a nondegenerate subinterval of [p(t), p(t+ h)].

Since in our deconvolution setting f is not directly accessible, we show that we can write

(under the imposed boundary conditions)
∫
φt,h(x)Af(x)dx as a scalar product of some
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differential operator L and the density g (cf. Lemma 2). Then, we may apply the results

from Section 2.

This gives rise to the following definitions. The so called formal adjoint operator of A is

given by

φ 7→ A?φ(x) := 〈α−1, φ〉+

m∑
l=0

(−1)lDl(αlφ)(x).

If it exists, we denote by ψε the multiplicative inverse of the moment generating function

of ε. Note that under Assumption 1, ψε(t) =
∑r

j=0 qjt
j . For ε = 0, we set ψε(t) = 1.

The following Lemma is the key result for our test.

Lemma 2. Suppose that Assumption 1 holds and let φ ∈ T V(m+r). Then,

〈φt,h, Af〉 = 〈A?φt,h, f〉 = 〈ψε(D)A?φt,h, g〉.

Proof. Note that φ ∈ T V(m) implies that φ(l)(0) = φ(l)(1) = 0 for l < m. The first equality

follows by iterated partial integration and for the second see (1.2).

In analogy to (2.3) let us define

Tt,h =
1√
n

n∑
k=1

q−1r ψε(D)A?φt,h(Yk). (3.2)

By Lemma 2, ETt,h =
√
nq−1r 〈φt,h, Af〉. Recall that (−1)mq−1r ψε(D)A? is a linear differen-

tial operator of the form (2.2). Following (2.6), we define

Tn := sup
(t,h)∈Bn

wh

(
hm+r−1/2∣∣Tt,h −√nq−1r 〈φt,h, Af〉∣∣√

ĝn(t) αm(t) ‖φ(m+r)‖L2

−
√

2 log ν
h

)
, (3.3)

where Bn, wn and ĝn are as in (2.4), (2.5) and (2.7), respectively. Note that the order of

(−1)mq−1r ψε(D)A? is m+ r. We have convergence of Tn to

T̃n(W ) := sup
(t,h)∈Bn

wh

(∣∣ ∫ φ(m+r)( s−th )dWs

∣∣
√
h ‖φ(m+r)‖L2

−
√

2 log ν
h

)
, (3.4)

as a direct consequence of Theorem 1. Recall the definition of Gc,C in (2.1). In order to

formulate the next theorem, define F = Fε,c,C as the space of densities f such that the

corresponding distribution function of Y is in Gc,C .
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Theorem 2. Work under Assumptions 1. Assume further that φ ∈ T Vm+r, TV(α
(q+r)
q ) +

‖α(q+r)
q ‖∞ < ∞ for q = 0, . . . ,m, and that αm is Lipschitz and bounded away from zero.

Suppose that lnn log−3 n → ∞ and un = o(1). Then, there exists a standard Brownian

motion W , such that for ν > e,

sup
f∈F

∣∣Tn − T̃n(W )
∣∣ = oP (1). (3.5)

Moreover, uniformly over Bn, T̃n(W ) is almost surely bounded from above.

Proof. Apply Theorem 1 to φ/‖φ(m+r)‖L2 and L = q−1r ψε(D)A?.

Clearly, the distribution of T̃n(W ) depends only on known quantities. By ignoring the

oP (1) term on the right hand side of (3.5), we can therefore simulate the distribution of Tn.

To formulate it differently, the (1 − α)-quantile of the statistic Tn is asymptotically given

by the (1− α)-quantile of T̃n(W ) (denoted by qα(T̃n(W )) in the sequel).

In order to obtain a confidence band one has to control the bias which requires a Hölder

condition on Af. However, since we are more interested in a qualitative analysis, it suffices

to assume that Af is continuous. Moreover, instead of a moment condition on the kernel

φ, we require positivity, i.e. for the remaining part of this section, let us assume that φ ≥ 0

and
∫
φ(u)du = 1. Therefore, we can conclude that asymptotically with probability 1− α,

for all (t, h) ∈ Bn,

〈φt,h, Af〉 ∈
[
qr
Tt,h − at,h√

n
, qr

Tt,h + at,h√
n

]
, (3.6)

where

at,h := h1/2−m−r
√
ĝn(t)αm(t)

∥∥φ(m+r)
∥∥
L2

√
2 log ν

h

(
1 + qα(T̃n(W ))

log log ν
h

log ν
h

)
. (3.7)

Using the continuity of Af , it follows that asymptotically with confidence 1 − α, for all

(t, h) ∈ Bn, the graph of x 7→ Af(x) has a non-empty intersection with each of the rectangles

Rect
(
t, t+ h, qr

Tt,h − at,h
h
√
n

, qr
Tt,h + at,h
h
√
n

)
. (3.8)

This means we find a solution of (iii) by setting

b−(t, h, α) := qr
Tt,h − at,h
h
√
n

, b+(t, h, α) := qr
Tt,h + at,h
h
√
n

. (3.9)

11



4 Choice of kernel and performance of the multiscale statis-

tic

In this section, we investigate the size/area of the rectangles constructed in the previous

paragraphs. Recall that the expectation of the statistic Tt,h depends in general on all

derivatives up to φ(m+r) (cf. Lemma 2). In contrast, the variance of Tt,h depends asymptot-

ically only on the highest derivative φ(m+r). Therefore, φ(m+r) appears in the limit statistic

T̃ (W ), but no other derivative does. In fact, we shall see in this section that our result can

be compared to estimation of the (m+ r)-th derivative of a density.

Optimal choice of the kernel: In the following, we are going to study the problem of finding

the optimal function φ. It turns out that this can be done explicitly.

Note that for given (t, h) ∈ Bn, the width of the rectangle (3.8)) is given by 2qrat,h/(h
√
n).

Further, the choice of φ influences the value of at,h in two ways, namely by the factor

‖φ(m+r)‖L2 as well as the quantile qα(T̃n(W )) (cf. the definition of at,h given in (3.7)).

Since α is fixed, we have for n→∞,

qα(T̃n(W ))
log log ν

h

log ν
h

= o(1).

Therefore, at,h depends in first order on ‖φ(m+r)‖L2 and our optimization problem boils

down to

minimize ‖φ(m+r)‖L2 , subject to

∫
φ(u)du = 1, φ ∈ T V(m+r).

This is in fact easy to solve. By Lagrange calculus, we find that on (0, 1), φ has to be a

polynomial of order 2m + 2r. Under the boundary conditions, the solution φm+r has the

form

φm+r(x) = cm+rx
m+r(1− x)m+rI(0,1)(x). (4.1)

Due to the normalization constraint
∫
φm+r(u)du = 1, it follows that φm+r is the density

of a Beta distributed random variable with parameters α = m+ r + 1 and β = m+ r + 1,

implying, cm+r = (2m+ 2r+ 1)!/((m+ r)!)2. It is worth mentioning that φ
(m+r)
m+r , restricted

to the domain [−1, 1), is (up to translation/scaling) the (m + r)-th Legendre polynomial

Lm+r, i.e.

φ
(m+r)
m+r = (−1)m+r (2m+ 2r + 1)!

(m+ r)!
Lm+r(2 · −1)

12



(this is essentially Rodrigues’ representation, cf. Abramowitz and Stegun [1], p. 785). For

that reason, we even can compute∥∥φ(m+r)
m+r

∥∥
L2 =

(2m+ 2r)!

(m+ r)!

√
2m+ 2r + 1.

In the particular case r = 0, m = 1 this is known from the work of Dümbgen and Walther

[11], where the authors use locally most powerful tests to derive φ1.

4.1 Performance of the method

In this part, we give some theoretical insights. We start by investigating Problem (iii) (cf.

Section 3). After that, we will address issues related to (ii) and (i).

Problem (iii): Recall that with confidence 1− α, for all (t, h) ∈ Bn,

graph(Af) ∩ Rect
(
t, t+ h, qr

Tt,h − at,h
h
√
n

, qr
Tt,h + at,h
h
√
n

)
6= ∅.

The so constructed rectangles contain information on Af , where the amount of information

is directly linked to the size of the rectangle. Therefore, it is natural to think of the area

and the length of the diagonal as measures of localization quality. For the rectangle above,

the area is given by

area(t, h) := 2qrat,hn
−1/2 ∼ h1/2−m−rn−1/2

√
log

1

h
.

There is an interesting transition: Suppose that m = r = 0 (density estimation). Then,

area(t, h)→ 0 for every h and n→∞. In contrast, whenever m+ r > 0,

h� (log n/n)1/(2m+2r−1) ⇒ area(t, h)→ 0,

h ∼ (log n/n)1/(2m+2r−1) ⇒ area(t, h) = O(1),

h� (log n/n)1/(2m+2r−1) ⇒ area(t, h)→∞.

On the other hand, the length of the diagonal behaves like h ∨ h−m−r−1/2n−1/2
√

log 1/h.

If the rectangle is a square, then, h ∼ (log n/n)1/(3+2m+2r).

Problem (ii), (ii′): The following lemma gives a necessary condition in order to solve (ii).

Loosely speaking, it states that whenever

Af
∣∣
[t,t+h]

& n−1/2h−m−r−1/2
√

log 1/h,

the multiscale test returns a rectangle Rect(t, t + h, b−(t, h, α), b+(t, h, α)) which is in the

upper half-plane with high-probability. Or, to state it differently, we can reject that

Af
∣∣
[t,t+h]

< 0.

13



Theorem 3. Work under the assumptions of Theorem 2. Suppose that φ ≥ 0. Let M−n
denote the set of tupels (t, h) ∈ Bn for which

Af
∣∣
[t,t+h]

>
2qrat,h
h
√
n
.

Similar, define M+
n := {(t, h) ∈ Bn | Af |[t,t+h] < −(2qrat,h)/(h

√
n)}. Then, if b+(t, h, α)

and b−(t, h, α) are given by (3.9), we obtain

lim
n→∞

P
(

(−1)∓b±(t, h, α) > 0, for all (t, h) ∈M±n
)
≥ 1− α.

Proof. For all (t, h) ∈M−n , conditionally on the event given by (3.6),

Af
∣∣
[t,t+h]

>
2qrat,h
h
√
n
⇒ 〈φt,h, Af〉 >

2qrat,h√
n

⇒ Tt,h > at,h ⇒ b−(t, h, α) > 0.

Similar, one can argue for M+
n .

In order to formulate the next result, let us define

Cα := (8‖fε‖∞q2r‖αm‖2∞‖φ(m+r)‖2L2(1 + qα(T̃n(W )))2)1/(2m+2r+1). (4.2)

Corollary 1. Work under the assumptions of Theorem 2. Suppose that φ ≥ 0 and β ∈ R.

Let M−n denote the set of tupels (t, h) ∈ Bn satisfying

Af
∣∣
[t,t+h]

>

(
log n

n

)β/(2β+2m+2r+1)

(4.3)

and

h ≥ Cα
(

log n

n

)1/(2β+2m+2r+1)

.

Let M+
n be as M−n , with (4.3) replaced by Af |[t,t+h] < −(log n/n)β/(2β+2m+2r+1). Then, if

b−(t, h, α) and b+(t, h, α) are given by (3.9), we obtain

lim
n→∞

P
(

(−1)∓b±(t, h, α) > 0, for all (t, h) ∈M±n
)
≥ 1− α.

Proof. It holds that

at,h ≤ h1/2−m−r ‖fε‖1/2∞ ‖αm‖∞
∥∥φ(m+r)

∥∥
L2

√
2 log ν/h

(
1 + qα(T̃n(W ))

)
For sufficiently large n, h ≥ ln ≥ ν/n. Therefore, we have for every (t, h) ∈M−n ,

2qrat,h
h
√
n
≤
√

8 ‖fε‖∞qr‖αm‖∞
∥∥φ(m+r)

∥∥
L2

(
1 + qα(T̃n(W ))

)
h−m−r−1/2n−1/2

√
log n < Af

∣∣
[t,t+h]

.

Similar for M+
n . Now, the result follows by applying Theorem 3.
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The last result shows essentially that ifAf
∣∣
[t,t+h]

is positive andAf
∣∣
[t,t+h]

∼ (log n/n)β/(2β+2m+2r+1)

and h ∼ (log n/n)1/(2β+2m+2r+1) then with probability 1−α, our method returns a rectangle

in the upper half-plane. Another way to state this is by imposing the condition

Af
∣∣
[t,t+h]

& hβ. (4.4)

We have three distinct regimes

β > 0 : Af
∣∣
[t,t+h]

→ 0 h→ 0,

β = 0 : Af
∣∣
[t,t+h]

= O(1) h ∼ (log n/n)1/(2m+2r+1) → 0,

−m− r − 1/2 < β < 0 : Af
∣∣
[t,t+h]

→∞ h→ 0.

It is of importance to compare the previous result to derivative estimation of a density. As

it is well known, we could estimate Af with rate of convergence( log n

n

)β/(2β+2m+2r+1)

with respect to L∞-norm assuming that Af is Hölder continuous with index β > 0 and

that h ∼ (log n/n)1/(2β+2m+2r+1). This directly relates to the first case considered above.

Assuming that Af is smooth. If we want to use Theorem 2 for construction of confidence

bands, we have to restrict us to scales h ∼ (log n/n)1/(2β+2m+2r+1), β < β0, where β0

denotes the Hölder index of Af.

Problem (i): Recall the construction of confidence bands given in Section 3. We will give

a bound for the length of such a confidence interval, provided that Af has exactly one

root. For example, this can be an extreme/saddle point if A = D or a point of inflection if

A = D2.

In order to formulate the result, we need that Bn is sufficiently rich. Therefore, we assume

that for all n, there exists an Nn, Nn & n1/(2m+2r+1) log4 n, such that{( k

Nn
,
l

Nn

) ∣∣ k = 0, 1, . . . , l = 1, 2, . . . , k + l ≤ 1
}
⊂ Bn.

Assume further that in a local neighborhood of the root x0, Af behaves like

Af(x) = γ sign(x− x0)|x− x0|β + o(|x− x0|β),

for some positive β. Let ρn = (log n/n)1/(2β+2m+2r+1)2/γ1/β and Cα,M
± as defined in

Corollary 1. There exist integer sequences (k−n )n, (k+n )n, (ln)n such that for all sufficiently

large n,

ρn ≤
k−n
Nn
− x0 ≤ 2ρn, −2ρn ≤

k+n
Nn
− x0 ≤ −ρn, and Cαγ

1/βρn ≤
ln
Nn
≤ 2Cαγ

1/βρn.
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Some calculations show that (k−n /Nn, ln/Nn) ∈M−n and ((k+n − ln)/Nn, ln/Nn) ∈M+
n . We

can conclude from Corollary 1 and the construction, that the confidence interval has to be

a subinterval of [
k+n − ln
Nn

,
k−n + ln
Nn

]
.

Hence, the length of the confidence interval is bounded from above by

4(Cαγ
1/β + 1)ρn ∼

(
log n

n

)1/(2β+2m+2r+1)

.

Observe that for localization of modes in density estimation (m, r, β) = (1, 0, 1) the rate

(log n/n)1/5 is optimal up to the log-factor (cf. Hasminskii [18]). The rate (log n/n)1/7 for

localization of inflection points in density estimation (m, r, β) = (2, 0, 1) coincides with the

one found in Davis et al. [7].

4.2 On calibration of multiscale statistics

Let us shortly comment on the type of multiscale statistic, derived in Theorem 1. Following

[10], p.139, we can view the calibration of the multiscale statistics (2.6) and (3.3) as a

generalization of Lévy’s modulus of continuity. In fact, the supremum is attained uniformly

over different scales, making this calibration in particular attractive for construction of

adaptive methods.

One of the restrictions of our method, compared to other works on multiscale statistics,

is that we exclude the coarsest scales, i.e. h > un = o(1) (cf. Theorem 2). Otherwise the

limit statistic would not be distribution-free. However, excluding the coarsest scales is a

very weak restriction since the important features of Af can be already detected at scales

tending to zero with a certain rate. For instance in view of Corollary 1, the multiscale

method detects a deviation from zero, i.e. Af
∣∣
I
≥ C > 0, provided the length of the

interval I is larger than const.×(log n/n)1/(2m+2r+1). This can be also seen by numerical

simulations, as outlined in the next section.

5 Numerical simulations

For any (t, h) ∈ Bn the multiscale method returns a rectangle of the form (3.8). However,

most of the rectangles are redundant since the fact that graph(Af) intersects these rectan-

gles can be deduced already from the position of other rectangles (see for instance Figure

1) and the assumption that Af is continuous. Naturally, we are interested in the set of
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Figure 1: If the graph of Af intersects R1 and R2, then also R (left). If graph(Af) intersects

R and R1, then also R′ (right).

rectangles, which are informative in the sense that they contain information on the signal,

which cannot be deduced from other rectangles. Let us describe in three steps (A), (B),

(B’), how to discard redundant rectangles.

(A) Fix (t, h) ∈ Bn. Suppose there exists (t1, h1), (t2, h2) ∈ Bn ((t1, h1) and (t2, h2) not nec-

essarily different) such that [t1, t1+h1], [t2, t2+h2] ⊂ [t, t+h], b+(t1, h1, α) ≤ b+(t, h, α) and

b−(t2, h2, α) ≥ b−(t, h, α). Denote by R,R1, R2 the rectangle obtained from (t, h), (t1, h1)

and (t2, h2), respectively (for an illustration see Figure 1). Since Af is further assumed to be

continuous, then by intermediate value theorem, graph(Af)∩R1 6= ∅ and graph(Af)∩R2 6=
∅ imply that graph(Af) ∩ R 6= ∅. Hence, in this case, R is non-informative and will be

discarded.

(B) Fix (t, h) ∈ Bn and denote the induced rectangle by R. Suppose there exists (t1, h1) ∈
Bn, such that [t1, t1 + h1] ⊂ [t, t + h] and b−(t1, h1, α) ≤ b−(t, h, α) ≤ b+(t1, h1, α) <

b+(t, h, α) (see Figure 1). Define R′ := Rect(t, t + h, b−(t, h, α), b+(t1, h1, α)). Then, R′ is

contained in R and graph(Af) ∩R′ 6= ∅. Therefore, we replace R by R′.

(B′): Same as (B), but consider the case b−(t, h, α) < b−(t1, h1, α) ≤ b+(t, h, α) ≤ b+(t1, h1, α).

With R′ := Rect(t, t+h, b−(t1, h1, α), b+(t, h, α)) we obtain graph(Af)∩R′ 6= ∅. Therefore,

we replace R by R′.

Throughout the following, let us refer to the remaining rectangles after application of

(A), (B) and (B′) as (set of) minimal rectangles.

We will illustrate our method by investigating monotonicity of f (A = D, cf. Example 3)
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Figure 2: Boxplots for three different values (n = 200, n = 1000, n = 10.000) of the limit

statistic (3.4).

under Laplace-deconvolution, i.e. fε(x) = e−|x|/θ/θ with θ = 0.075. In this case, we find

ψε(t) = 1− θ2t2 and A?f = −f ′

and the statistic (3.2) takes the explicit form

Tt,h =
1

h
√
n θ2

n∑
k=1

(
θ2

h2
φ(3)

(
Yk − t
h

)
− φ′

(
Yk − t
h

))
.

As kernel φ, we select the density of a Beta(4, 4) random variable (cf. Section 4). Moreover,

we choose un = 1/ log log n for the multiscale statistic and define

Bn =
{( k

Nn
,
l

Nn

) ∣∣ k = 0, 1, . . . , l = 1, 2, . . . , [Nnun], k + l ≤ 1
}
, for Nn =

[
n0.6

]
.

Boxplots for the corresponding limit distribution are displayed in Figure 2 for different

values of n and 10.000 simulations each. These plots show that the distribution is well-

localized with only a few outliers. As proved, the limit statistic is almost surely bounded

for n → ∞. For finite but increasing sample size, however, Figure 2 indicates, that the

quantiles of the limit distribution grow slightly.

In Figures 3 and 4, we give an example of a reconstruction based on a sample size of

n = 1000 and confidence level equals 90%. Based on 10.000 repetitions, the estimated

quantile is q0.1(T̃1000(W )) = −0.41. For the simulation, we use ν = exp(e2). Then, h 7→√
log ν/h/(log log ν/h) is monotone as long as 0 < h ≤ 1 (cf. Lemma 4 (i)).

The upper display of Figure 3 shows the true density of f as well as the convoluted density

g. Note that g is very smooth and as the other densities non-observable (we only have

observations, which are distributed with density g). In fact, by visual inspection of g, we

are not able to find the intervals on which f is monotone increasing/decreasing.
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Figure 3: Simulation for sample size n = 1000 and 90%-quantile. Upper display: True

density f (dashed) and convoluted density g (solid). Lower display: Line plot of the

endpoints of intervals solving Problems (ii) and (ii′) as well as minimal solutions to (ii)

and (ii′) (horizontal lines above/below)

The lower plot of Figure 3, displays minimal intervals which are solutions to Problems

(ii) and (ii′) (horizontal lines above and below the line plot, respectively). Here, minimal

intervals for (ii) and (ii′) denote the intervals for which no proper subinterval exists with the

same property. The line plot itself depicts the endpoints of all intervals belonging to (ii) and

(ii′). Note that the possible values for the endpoints are given by k/Nn, k = 0, 1, . . . , Nn.

If for given k there is more than one interval solving (ii) or (ii′) with endpoint k/Nn the

line width is increased accordingly. For more on this type of plotting, see Dümbgen and

Walther [11].

The density f has been designed in order to investigate Corollary 1 numerically. Indeed,

on [0, 0.35], the signal (in this case |f ′|) is in average large but the intervals on which f

increases/decreases are comparably small. In contrast, on [0.35, 1], |f ′| is small and there

is only one increase/decrease.

The test is able to find two regions of increase and two regions, where the density decreases.

The increase and decrease on the leftmost position are not detected by our test. Repetition

of the simulation shows that the decrease on the intervals [0.25, 0.35] and [0.55, 1] is most of

the time found while the increases (on [0.17, 0.25] and [0.35, 0.55]) are less often detected.

Furthermore, compared to the true function f , it can be seen that the difficulty lies in
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Figure 4: True (unobserved) derivative f ′ and minimal rectangles (left) as well as sparse

minimal rectangles/ midpoints (right) for the same data set as in Figure 3.

precise localization of the regions of increase/decrease.

In Figure 4, the derivative of f as well as the minimal rectangles, additionally satisfying

either b−(t, h, α) > 0 or b+(t, h, α) < 0, are displayed. For better visualization, we have

depicted the midpoints of these rectangles and a sparse subset (right display in Figure 4)

using the following reduction step:

(C): Let R be the rectangle with the smallest area and denote by S the set of rectangles

having non-empty intersection with R. Find the rectangle in S minimizing the area of

intersection with R. Display R and R′ and discard R and all the rectangles in S. If there

are rectangles left, start from the beginning.

By construction, we find as before two regions of increase and decrease. Compared to the

multiscale solutions of Problems (ii) and (ii′) (cf. Figure 3), we also obtain surprisingly

precise information on the derivative of f . Observe that the graph of f ′ tends to cut the

rectangles through the middle. Therefore, the midpoints of the rectangles (depicted as

crosses in Figure 4) can be used for instance for estimation of maxima.
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6 Outlook

We have investigated multiscale methods in order to analyze differential operators in de-

convolution models. A more refined multiscale calibration has been considered using an

idea of proof originally developed for construction of confidence bands. We believe that the

same strategy can be applied to a variety of problems and more dimensional settings. In

particular, similar results will hold for regression and spectral density estimation.

Our multiscale approach allows us to identify intervals such that for given significance level

we know that Af > 0 at least on a subinterval. As outlined in Section 4, these results are

sufficient for qualitative inference as for example construction of confidence bands for the

roots of Af . Since we only required that Af is continuous, Af can be highly oscillating.

In this framework, it is therefore impossible to obtain strong confidence statements in the

sense that we find intervals on which Af is always positive. By adding bias controlling

smoothness assumptions such as for instance Hölder conditions stronger results can be

obtained resulting for instance in uniform confidence bands.

At the moment the proposed method is restricted to the class of blurring distributions

introduced in Assumption 1 and extension to r = ∞ is not straightforward. Of particular

interest is the case of Gaussian deconvolution. In this case the inversion formula is well

known. It is basically the inverse Weierstrass transform (cf. Eddington [12], Pollard, [28],

Widder [30]). Van Es and Kok [29] derive some heuristic arguments indicating that the

inversion formula of a Gaussian can be approximated by the inversion formula of scaled

sums of Laplacian distributed random variables satisfying Assumption 1.

Restricting to linear differential equations is a further drawback of our method, since very

important shape constraints as for instance curvature cannot be handled within this frame-

work and we may only work with linearizations (which is quite common in physics and

engineering). Allowing for non-linearity however seems to be almost intractable.

We are aware of the fact that many other important qualitative features are also related to

integral transforms (that are in general not of convolution type) and they even do not have

a representation as differential inequality. For instance complete monotonicity and positive

definiteness are by Bernstein’s and Bochner’s Theorem connected to the Laplace transform

and Fourier transform, respectively. They cannot be handled with the methods proposed

here and are subject to further investigations.
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Appendix A

Throughout the appendix, let

wh =

√
1
2 log ν

h

log log ν
h

, w̃h =
log ν

h

log log ν
h

.

Proof of Theorem 1. Since the statistic only depends on Tt,h − ETt,h, we may assume that

α−1 = 0. Let us study in a first step the statistic

T (1)
n = sup

(t,h)∈Bn
wh

hm−1/2
∣∣Tt,h − ETt,h

∣∣√
g(t)αm(t)

− w̃h.

Note that T
(1)
n is the same as Tn, but ĝn is replaced by g. We will show that there exists a

Brownian motion W , such that with

T (2)
n (W ) := sup

(t,h)∈Bn
wh

∣∣ ∫ (Lφt,h)(s)
√
g(s)dWs

∣∣√
g(t)αm(t)

− w̃h,

we have

sup
G∈Gc,C

∣∣T (1)
n − T (2)

n (W )
∣∣ = oP (rn). (A.1)

The main argument is based on the standard version of KMT (cf. [24]). In order to state

the result, let us define a Brownian bridge on the index set [0, 1] as a centered Gaussian

process (B(f)){f∈F}, F ⊂ L2([0, 1]) with covariance structure

Cov
(
B(f), B(g)

)
= 〈f, g〉 − 〈f, 1〉〈g, 1〉.

Let F0 := {x 7→ I[0,s](x) : s ∈ [0, 1]}. Note that (B(f)){f∈F0} coincides with the classical

definition of a Brownian bridge. For Ui ∼ U [0, 1], i.i.d., the uniform empirical process on

the function class F is defined as

Un(f) =
√
n
( 1

n

n∑
i=1

f(Ui)−
∫
f(x)dx

)
, f ∈ F .

In particular note that

Tt,h − ETt,h = Un
(
(Lφt,h)(G−1(.))

)
,

where G−1 denotes the quantile function of Y.

The key results is given by the following theorem.
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Theorem 4 (KMT on [0, 1], cf. [24]). There exist versions of Un and a Brownian bridge

B such that for all x

P
(

sup
f∈F0

∣∣Un(f)−B(f)
∣∣ > n−1/2(C log n+ x)

)
< Ke−λx,

where C,K, λ > 0 are universal constants.

However, we need a functional version of KMT. We shall prove this by using the theorem

above in combination with a result due to Koltchinskii [23], (Theorem 11.4, p. 112) stating

that the supremum over a function class F behaves as the supremum over the symmetric

convex hull sc(F), defined by

sc(F) :=
{ ∞∑
i=1

λifi : fi ∈ F , λi ∈ [−1, 1],

∞∑
i=1

|λi| ≤ 1
}
.

Theorem 5. Assume there exists a version B of a Brownian bridge, such that for a sequence

(δ̃n)n tending to 0,

P∗
(

sup
f∈F
|Un(f)−B(f)| ≥ δ̃n(x+ C log n)

)
≤ Ke−λx,

where C,K, λ > 0 are constants depending only on F . Then, there exists a version B̃ of a

Brownian bridge, such that

P∗
(

sup
f∈sc(F)

|Un(f)− B̃(f)| ≥ δ̃n(x+ C ′ log n)
)
≤ K ′e−λ′x

for constants C ′,K ′, λ′ > 0.

It is well-known (cf. Giné et al. [15], p. 172) that{
ρ
∣∣ ρ : [0, 1]→ R, ρ(1) = 0, TV(ρ) ≤ 1

}
⊂ sc(F0). (A.2)

This inclusion, will be the main ingredient in order to show

Lemma 3. Under the assumptions of Theorem 1, there exists a positive constant C?, such

that for every C ≥ 0 we have the inclusion of function classes{
C?h

m(Lφt,h)(G−1(.)) : t ∈ [0, 1], h ∈ (0, 1], G ∈ G0,C
}
⊂ sc(F0).

Let us denote

Fn :=
{
C?h

m(Lφt,h)(G−1(.)) : t ∈ [0, 1], h ∈ [ln, un], G ∈ Gc,C
}
.
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Combining Theorems 4 and 5 shows that there are constants C ′,K ′, λ′ and a Brownian

bridge (B(f))f∈sc(F0) such that for x > 0,

P
(

sup
t∈[0,1], h∈(0,1], G∈G

C?h
m
∣∣(Tt,h − ETt,h)−B

(
(Lφt,h)(G−1(.))

)∣∣ ≥ n−1/2(x+ C log n)
)

≤ K ′e−λ′x.

Due to Lemma 4 (i) and ln ≥ ν/n for sufficiently large n, we have that wln ≤ wν/n. This

readily implies

sup
G∈G

sup
(t,h)∈Bn

wh
hm−1/2

∣∣∣∣∣Tt,h − ETt,h
∣∣− ∣∣B((Lφt,h)(G−1(.))

)∣∣∣∣∣√
g(t) αm(t)

= OP

(
l−1/2n n−1/2wν/n log n

)
.

Now, let us introduce the (general) Brownian motion W (f) as a centered Gaussian process

with covariance E[W (f)W (g)] = 〈f, g〉. In particular, W (f) = B(f) + (
∫
f)ξ, ξ ∼ N (0, 1)

and independent of B, defines a Brownian motion and hence there exists a version of

(W (f))f∈sc(F0) such that B(f) = W (f)− (
∫
f)W (1). By some calculations,

sup
G∈G

sup
(t,h)∈Bn

wh
hm−1/2

∣∣∣ ∫ Lφt,h(u)dG(u)
∣∣∣√

g(t) αm(t)
. sup

h∈[ln,un]
whh

1/2 ≤ wunu1/2n ,

where the last inequality follows from Lemma 4 (ii). This implies further

E
[∥∥∥wh hm−1/2√

g(t) αm(t)

[∣∣B((Lφt,h)(G−1(.))
)∣∣− ∣∣W ((Lφt,h)(G−1(.))

)∣∣]∥∥∥
Fn

]
= O(wunu

1/2
n ),

therefore

sup
G∈G

∣∣∣T (1)
n − sup

(t,h)∈Bn

whh
m−1/2∣∣W ((Lφt,h)(G−1(.))

)∣∣√
g(t) αm(t)

− w̃h
∣∣∣

= OP (l−1/2n n−1/2w1/n log n+ wunu
1/2
n ),

and

sup
G∈G

∣∣∣T (1)
n − T (2)

n (W )
∣∣∣ = OP (l−1/2n n−1/2w1/n log n+ wunu

1/2
n ).

In the last equality we have used that (W
(1)
t )t∈[0,1] = (W (I[0,t](·)))t∈[0,1] and (Wt)t≥0 =

(
∫ t
0 1/

√
g(s)dW

(1)
G(s))t≥0 are standard Brownian motions, proving

W ((Lφt,h)(G−1(·))) =

∫
(Lφt,h)(s)

√
g(s)dWs

and hence (A.1).

24



In the next step, we shall prove that

sup
G∈G

∣∣∣T (2)
n (W )− sup

(t,h)∈Bn
wh

∣∣ ∫ φ(m)( s−th )dWs

∣∣
√
h

− w̃h
∣∣∣ = OP

(
wunu

1/2
n

)
. (A.3)

Suppose that for a family of functions {fi| i ∈ I} with support in [0, 1] we want to bound

supi |
∫
fi(s)dWs|. Assume further that the fi are of bounded variation. Then, for all i ∈ I,

there exists a function qi with ‖qi‖∞ ≤ TV(fi) and a probability measure Pi with Pi[0, 1[= 1

such that fi(u) =
∫
[0,u] qi(u)Pi(du) for all u ∈ R, provided fi is cadlag. With probability

one,

sup
i∈I

∣∣ ∫ fi(s)dWs

∣∣ = sup
i∈I

∣∣∣ ∫ Wsqi(s)Pi(ds)
∣∣∣ ≤ sup

s∈[0,1]
|Ws| sup

i∈I
TV(fi).

Let us define F (2)
n as the class of functions

whh
−1/2

[
hm
√
g(·)Lφt,h(·)−

√
g(t)αm(t)φ(m)

( ·−t
h

)]
with t ∈ [0, 1], h ∈ [ln, un], t + h ≤ 1, G ∈ G. By the remark above, (A.3) is proved once

we have established

sup
f∈F(2)

n

TV(f) = OP
(
wunu

1/2
n

)
.

In order to verify this, recall that TV(fg) ≤ ‖f‖∞TV(g) + ‖g‖∞TV(f) and therefore

sup
t∈[0,1], h∈[ln,un], G∈G

TV
(
hm−1

√
g(·)

m−1∑
l=0

αl(·)
1

hl
φ(l)
( ·−t
h

))
<∞.

Since by assumption g and αm are Lipschitz,

TV
(
h−1

[√
g(·)αm(·)−

√
g(t)αm(t)

]
φ(m)

( ·−t
h

))
≤ h−1

∥∥[√g(·)αm(·)−
√
g(t)αm(t)

]
I[t,t+h](·)

∥∥
∞TV

(
φ(m)

)
+ h−1

∥∥φ(m)
∥∥
∞TV

([√
g(·)αm(·)−

√
g(t)αm(t)

]
I[t,t+h](·)

)
is finite, uniformly in t ∈ [0, 1], h ∈ [ln, un]. Now, with Lemma 4 (ii), (A.3) follows.

In a final step let us show that (2.8) is almost surely bounded. In order to establish the

result, we use Theorem 6.1 and Remark 1 of Dümbgen and Spokoiny [10]. Moreover, the

proof is similar to the one for Theorem 2.1 in [10]. We set T = {(t, h) ∈ [0, 1]×(0, 1] | t+h ≤
1} and ρ((t, h), (t′, h′)) = (|t− t′|+ |h− h′|)1/2. Further, let X(t, h) =

∫
φ(m)

(
s−t
h

)
dWs and

σ(t, h) = h1/2.
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Since φ(m) is of bounded variation and càdlàg, there exist a function q with ‖q‖∞ ≤
TV(φ(m)) < ∞ and a probability measure P with P [0, 1] = 1 such that φ(m)(u) =∫
[0,u] q(x)P (dx) for all u ≥ 0. By partial integration and due to φ(m)(1) = 0, for all

(t, h) ∈ T ,

X(t, h) = −
∫
[0,1]

Wuh+tq(u)P (du).

Hence, by dominated convergence, X(t, h) has continuous sample paths. Obviously, for all

(t, h), (t′, h′) ∈ T ,

σ2(t, h) ≤ σ2(t′, h′) + ρ2((t, h), (t′, h′)).

Moreover, P(X(t, h) > hη) ≤ exp(−η2/2), for any η > 0. Using Lemma 6, we obtain for a

universal constant K > 0,

P
(∣∣X(t, h)−X(t′, h′)

∣∣ ≥ ρ((t, h), (t′, h′))η
)
≤ 2 exp

(
− η2/(2K2)

)
.

Finally, we can bound the entropy N ((δu)1/2, {(t, h) ∈ T : h ≤ δ}) similarly as in [10], p.

145. Therefore, application of Remark 1 in [10] shows that

S := sup
t∈[0,1], h>0, t+h≤1

√
1
2 log e

h

∣∣ ∫ φ(m)( s−th )dWs

∣∣
√
h log

(
e log e

h

) −

√
log( 1

h) log( eh)

log
(
e log e

h

) .

is almost surely bounded from above. Define

S′ := sup
t∈[0,1], h>0, t+h≤1

√
1
2 log ν

h

∣∣ ∫ φ(m)( s−th )dWs

∣∣
√
h log log ν

h

−

√
log( 1

h) log( νh)

log log ν
h

.

Note that log ν/h ≤ (log ν)(log e/h). Moreover, if e < ν ≤ ee,

log log ν
h = log

(
log ν
e log ee

he/ log ν

)
≥ log log ν − 1 + log

(
e log e

h

)
.

This implies

log
(
e log e

h

)
log log ν

h

≤ 2

log log ν
+ 2.

Suppose that S′ > 0 (otherwise S′ is bounded by 0). Then, S′ . S and hence S′ is almost

surely bounded. Finally, √
log ν

h

∣∣√log 1
h −

√
log ν

h

∣∣ ≤ log ν.

Therefore, (2.8) hold, i.e.

sup
t∈[0,1], h>0, t+h≤1

wh

∣∣ ∫ φ(m)( s−th )dWs

∣∣
√
h

− w̃h
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is almost surely bounded.

In the last step, let us prove that supG∈Gc,C |Tn−T
(1)
n | = OP (supG∈G ‖ĝn−g‖∞ log n/ log log n).

For sufficiently large n, we have by assumption supG∈Gc,C ĝn ≥ c/2. Therefore using Lemma

4 (i),

sup
G∈G

∣∣T ′n − Tn| ≤ sup
(t,h)∈Bn, G∈G

√
1
2 log ν

h h
m−1/2∣∣Tt,h − E[Tt,h]

∣∣
log log ν

h

√
g(t)

supG∈G
∥∥ĝn − g∥∥∞√
g(t)ĝ(t)

≤
√

2 supG∈G
∥∥ĝn − g∥∥∞
c

sup
(t,h)∈Bn, G∈G

√
1
2 log ν

h h
m−1/2∣∣Tt,h − E[Tt,h]

∣∣
log log ν

h

√
g(t)

≤
√

2 supG∈G
∥∥ĝn − g∥∥∞
c

(
Tn +

log ν
ln

log log ν
ln

)
≤
√

2 supG∈G
∥∥ĝn − g∥∥∞
c

(
Tn +

log n

log log n

)
.

Since Tn is a.s. bounded by Theorem 1, the result follows.

Appendix B Technical results

Proof of Lemma 3. Assume that ρ : [0, 1] → R, |ρ(1)| < 1 and define ρ̃ = (ρ − ρ(1))/(1 −
|ρ(1)|). If TV(ρ̃) ≤ 1, then there exists λ1, λ2, . . . ∈ R and t1, t2, . . . ∈ [0, 1] such that

ρ̃ =
∑
λiI[0,ti] and

∑
|λi| ≤ 1. Therefore, ρ = (1− |ρ(1)|)ρ̃+ ρ(1) can be written as linear

combination of indicator functions, such that the sum of the absolute values of weights is

bounded by 1. Since TV(ρ̃) ≤ 1⇔ TV(ρ) + |ρ(1)| ≤ 1, we obtain using (A.2),{
ρ
∣∣ ρ : [0, 1]→ R,TV(ρ) + |ρ(1)| ≤ 1

}
⊂ sc(F0).

Now, we interpret

(Lφt,h)
(
G−1(·)

)
= 〈φt,h, α−1〉+

m∑
l=0

αl(G
−1(·))h−lφ(l)

(G−1(·)−t
h

)
as a function on [0, 1]. For γ : [0, 1] → R define T̃V(γ) := TV(γ) + |γ(1)|. By assumption

and since G−1 is monotone increasing, T̃V(αl(G
−1(.))) ≤ TV(αl) + ‖αl‖∞. Moreover,

T̃V
(
φ(l)
(G−1(y)−t

h

))
≤ TV

(
φ(l)
(G−1(y)−t

h

))
+ ‖φ(l)‖∞ ≤ TV(φ(l)) + ‖φ(l)‖∞,

for all t ∈ [0, 1], h > 0. Note that T̃V(f+g) ≤ T̃V(f)+T̃V(g) and TV(fg) ≤ ‖f‖∞TV(g)+

‖g‖∞TV(f). Hence, by the estimates above and for 0 < h ≤ 1, T̃V(hm(Lφt,h)(G−1(.))) is

bounded by a constant C, which is independent of t, h and G.
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In the next lemma, we collect two facts about wh.

Lemma 4. For h ∈ (0, 1] and ν > e let wh :=
√

2−1 log(ν/h)/ log log(ν/h). Then

(i) h 7→ wh is strictly decreasing on
(
0, ν exp(e−2)

]
, and

(ii) h 7→ whh
1/2 is strictly increasing on (0, 1].

Proof. With x = x(h) := log log(ν/h) > 0, we have logwh = − log(2)/2 + x/2 − log x.

Since the derivative of this w.r.t. x equals 1/2 − 1/x and is strictly positive for x > 2, we

conclude that logwh is strictly increasing in x(h) ≥ 2, i.e. in h ≤ ν exp(e−2). Moreover,

log(whh
1/2) = log(ν/2)/2 +x/2− log x−ex/2, and the derivative of this w.r.t. x > 0 equals

1/2− 1/x− ex/2 < 0. Thus whh
1/2 is strictly increasing in h ∈ (0, 1].

Lemma 5. Suppose that supp f ⊂ [0,∞) and let 0 ≤ a ≤ 1. Then,∫ 1+a

0
|f(x)− f(x− a)|dx ≤ aTV(f)

and ∫ 1

0
|f(ax)− f(x)|dx ≤ (1− a) TV(f)

Proof. Without loss of generality, we can assume that f is of bounded variation, i.e.TV(f) <

∞. Hence, there exist two positive and monotone functions f1, f2, such that f = f1 −
f2, f1(u) = f2(u) = 0 for u < 0, and f1(∞) + f2(∞) = TV(f). Set g = f1 + f2. Then g is

positive and monotone as well, and∫ 1+a

0
|f(x)− f(x− a)|dx ≤

∫ 1+a

0

(
g(x+ a)− g(x)

)
dx ≤

∫ 1+a

1
g(x)dx ≤ aTV(f).

In order to derive the second inequality, note that∫ 1

0
|f(ax)− f(x)|dx ≤

∫ 1

0

(
g(x)− g(ax)

)
dx =

∫ 1

a
g(x)dx+ (1− 1/a)

∫ a

0
g(x)dx

≤
∫ 1

a
g(x)dx ≤ (1− a) TV(f).

Lemma 6. Suppose that suppψ ⊂ [0, 1] and TV(ψ) <∞. Let t ∈ [0, 1], h ∈ (0, 1], t+h ≤ 1.

Then, there exists a constant K only depending on ψ, such that∥∥∥ψ( ·−th )− ψ( ·−t′h′ )∥∥∥L2
≤ K

√
|h− h′|+ |t− t′|.
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Proof. Note that∥∥∥ψ( ·−th )− ψ( ·−t′h′ )∥∥∥2L2

≤ 2‖ψ‖∞
∫ 1

0

∣∣∣ψ( s−th )− ψ( s−t′h′

)∣∣∣ds
≤ 2‖ψ‖∞

∫ 1

0

∣∣∣ψ( s−th )− ψ( s−th′ )∣∣∣ds+ 2‖ψ‖∞
∫ 1

0

∣∣∣ψ( s−th′ )− ψ( s−t′h′

)∣∣∣ds.
Without loss of generality assume h′ ≤ h. Using Lemma 5 yields∫ t+h

t

∣∣∣ψ( s−th )− ψ( s−th′ )∣∣∣ds ≤ ∥∥ψ∥∥∞(h− h′) +

∫ t+h′

t

∣∣ψ( s−th )− ψ( s−th′ )∣∣∣ds
=
∥∥ψ∥∥∞(h− h′) + h′

∫ 1

0

∣∣ψ(h′h u)− ψ(u)
∣∣du

≤
∥∥ψ∥∥∞(h− h′) + h′

(
1− h′

h

)
TV

(
ψ
)
≤
[∥∥ψ∥∥∞ + TV

(
ψ
)]
|h− h′|.

Similarly, assuming t ≤ t′,∫ 1

0

∣∣∣ψ( s−th′ )− ψ( s−t′h′

)∣∣∣ds = h′
∫ (t′−t)/h′+1

0

∣∣ψ(u)− ψ
(
u− t′−t

h′

)∣∣du ≤ |t′ − t|TV
(
ψ
)
.

Proof of Lemma 1. The proof is based on the asymptotic behavior of the maximum max(ξ1, . . . , ξn)

of i.i.d. standard Gaussian random variables ξ1, ξ2, . . ., given by

P
(

max(ξ1, . . . , ξn) ≤ an + bnt
)
→ exp

(
− e−t

)
, for t ∈ R and n→∞,

where

bn :=
1√

2 log n
, and an =

√
2 log n− log logn+ log(4π)√

8 log n
.

Using the tail-equivalence criterion (cf. [13], Proposition 3.3.28), we obtain further

lim
n→∞

P
(

max(|ξ1|, . . . , |ξn|) ≤ an + bn(t+ log 2)
)

= exp
(
− e−t

)
, for t ∈ R.

Let

T ◦n := sup
(t,h)∈B◦n

wh

∣∣ ∫ φ(m)
(
s−t
h

)
dWs

∣∣
√
h

− w̃h.

Note that T ◦n has the same distribution as w1/Kn max(|ξ1|, . . . , |ξKn |)− w̃1/Kn . It is easy to

show that ∣∣∣ 1

w1/Kn

− log logKn√
1
2 logKn

∣∣∣ = O

(
log logKn

log3/2Kn

)
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and √
log νKn =

√
logKn +

log ν

2
√

logKn
+O

( 1

log3/2Kn

)
.

Assume that ηn → 0 and ηn log logKn →∞. For sufficiently large n,

P
(
T ◦n > −1

4 + ηn

)
= P

(
max(|ξ1|, . . . , |ξKn |) >

(
− 1

4 + ηn
)
/w1/Kn +

√
2 log νKn

)
= P

(
max(|ξ1|, . . . , |ξKn |) >

(
− 1 + 4ηn

) log logKn√
8 logKn

+
√

2 logKn +
log ν√

2 logKn
+O

( log logKn

log3/2Kn

))
≤ P

(
max(|ξ1|, . . . , |ξKn |) > an + bn2ηn log logKn

)
→ 0, n→∞.

Similarly, for n→∞,

P
(
T ◦n ≤ −1

4 − ηn
)
≤ P

(
max(|ξ1|, . . . , |ξKn |) ≤ an − bnηn log logKn

)
→ 0.
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[13] Embrechts, P., Klüppelberg, C., and Mikosch, T. Modelling Extremal Events.

Springer, Berlin, 1997.

[14] Floyd, C. E., Jaszczak, R. J., Greer, K. L., and E., C. R. Deconvolution of

compton scatter in SPECT. J. Nucl. Med. 26 (1985), 403–408.
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