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Abstract

In this paper, we address the problem of fast point-to-pointchannel capacity estimation in the situation where

the receiver undergoes unknown colored interference from multiple sources, whereas the channel with the transmitter

is perfectly known. We consider the scenario where the number of observations is not sufficient to guarantee high

performance of traditional estimators. Using estimation techniques associated to large random matrix theory, we

derive an estimator referred to as the G-estimator and compare its performance against the conventional estimator.

In particular, we prove that, unlike the conventional estimator, the G-estimator is consistent in the large dimensional

setting, its variance going to zero as both space and time dimensions increase simultaneously. We finally complete

the analysis by describing its fluctuations: When properly centered and rescaled, the G-estimator satisfies a central

limit theorem, hence has Gaussian fluctuations. Simulations are provided which clearly show that the G-estimator

outperforms the conventional one; simulations also strongly support the theoretical results even for small system

dimensions.

I. I NTRODUCTION

The use of multiple-input-multiple-output (MIMO) technologies has the potential to achieve high data rates, since

several independent channels between the transmitter and the receiver can be exploited. However, the effectiveness

of this technology may depend on the conditions of the surrounding environment such as the availability of the

channel state information or the presence of colored interference. From a practical point of view, in a fast varying

fading channel, it is of fundamental importance for users torapidly estimate the maximum rate that can be achieved

in the communication to other users.

Conventional methods for channel capacity estimation relyon the use of classical estimation techniques which

assume a large number of observations. In general, considerθ the parameter we wish to estimate, andM the

number of independent and identically distributed observation vectorsy1, · · · ,yM ∈ CN . The parameterθ is often

a function of the covariance matrixΣ = E
[
y1y

H

1

]
of the received random process, i.eθ = f(Σ), for some function

f . Using the strong law of large numbers, a consistent estimate of the covariance of the random process is simply

given by the empirical covariance ofY = [y1, · · · ,yM ], i.e. Σ̂ , 1
MYYH = 1

M

∑M
i=1 yiy

H

i . Classical estimation

methods then consist in using the empirical covariance as a good approximation ofΣ, thus yielding the estimator

θ̂ of θ, where θ̂ = f(Σ̂). Such methods provide good performance as long as the numberof observationsM is
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very large compared to the vector sizeN , a situation rarely encountered in wireless communications, especially in

fast changing environments.

To address the scenario where the number of observationsM is of the same order as the dimensionN of each

observation, new consistent estimation methods based on large random matrix theory have been proposed in the

context of wireless communications. They were initially applied to eigenvector and eigenvalue estimation problems

[1], which has given rise to improved subspace estimation techniques [2], [3]. Recently, the use of these methods to

estimate performance indexes has spurred the interest of many researchers. In the field of wireless communications,

the capacity estimation of MIMO systems under imperfect channel knowledge has been addressed in [4] and [5],

where methods based respectively on free probability theory and large random matrix theory have been proposed.

In this paper, we consider a different situation where the receiver perfectly knows the channel with the transmitter

but does not a priori know the experienced interference. Such a situation can be encountered in multi-cell scenarios,

where interference stemming from neighboring cell users changes fast, which is a natural assumption in packet

switch transmissions. The estimated capacity can serve first as an upper-bound for the maximum rate that could

be achieved. Indeed, this rate cannot be achieved if the channel interference is not exactly estimated and therefore

the estimator may serve only as an approximate achievable performance. Another usage is found in the context of

cognitive radios where multiple frequency bands are sensedfor future transmissions. In this setting, the proposed

estimator provides the expected rate performance achievable in each frequency band. The transmitter-receiver pair

then elects the bands achieving the highest rates, for whichthe exact interference is then inferred for proper

transmission at the estimated rate. This approach is much more accurate than the approach consisting only in

evaluating the total noise variance in each band and much faster than the approach consisting in evaluating the

exact interference matrix for each band.

We specifically derive first a consistent estimator of the ergodic capacity in the case where the channel from

the transmitter to the receiver is assumed to be known. In a second step, we study the asymptotic performance of

the proposed estimator and compare it with that of the traditional one. In particular, we prove that both estimators

converge to Gaussian random variables and identify their theoretical variances.

Notations: In the following, boldface lower case symbols represent vectors, capital boldface characters denote

matrices (IN is the size-N identity matrix). IfA is a given matrix,AH stands for its transconjugate; ifA is square,

tr(A), det(A) and ‖A‖ respectively stand for the trace, the determinant and the spectral norm ofA. We say

that the variableX has a standard complex Gaussian distribution ifX = U + iV (i2 = −1) , whereU, V are

independent real random variables with Gaussian distribution N(0, 2−1). Almost sure convergence will be denoted

by
a.s.−−→, and convergence in distribution by

D−→. NotationO will refer to Landau’s notation:un = O(vn) if there

exists a bounded sequenceKn such thatun = Knvn.

Paper organization:In Section II, we present the system model and formalize mathematically the considered

problem. In Section III, we provide first order results for the conventional and the proposed estimator. We show

that while the proposed one is consistent with growingN,M , the traditional estimator is asymptotically biased.

In Section IV, we study the fluctuations of both estimators: we establish central limit theorems (CLT), hence we
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Fig. 1. System model.

prove the Gaussianity of the fluctuations, and we derive the asymptotic variances. Finally, we provide in Section

V numerical simulations that support the accuracy of the derived results. Mathematical details are provided in the

appendices.

II. SYSTEM MODEL AND PROBLEM SETTING

The system model

Consider a communication link between two users: a transmitter and a receiver equipped withn0 andN antennas,

respectively. Also assume that the communication link is affected by the presence ofK interferers withnk antennas

each,1 ≤ k ≤ K. Figure 1 describes this scenario, in the case of two interfering users. Similar to [5], we assume

that time is slotted. We denoteT the number of time slots and assume that the channel matricesare deterministic

and remain constant in every time slott ∈ {1, · · · , T }. In other words, we assume that within each slott, the

N × n0 channel matrixHt representing the channel between the transmitter and the receiver, and theN × nk

channel matrixGt,k standing for the channel between the transmitter and thek-th interferer are deterministic and

constant. Denote byM the data transmission periods in each slot. TheM concatenated signal vectors received in

slot t are gathered inYt ∈ CN×M given by:

Yt = HtXt,0 +

K∑

k=1

Gt,kXt,k + σWt,

whereXt,0 ∈ Cn×M is the concatenated matrix of the transmitted signals,Xt,k ∈ Cnk×M represents the interfering

signal andWt ∈ CN×M stands for the additive noise. Their formal statistical properties are given in the following

assumption:

Assumption A1: For given t and k where 1 ≤ t ≤ T and 1 ≤ k ≤ K, the entries of the matricesXt,0,

Xt,k andWt are random variables, independent and identically distributed (i.i.d.) with standard complex Gaussian

distribution and independent acrosst, k.
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Assuming a perfect decoding ofXt,0, initially transmitted at low rate, and a perfect knowledgeof the channel

matrix Ht, the residual interference to which the receiver has accessis given by:

Yt = Yt −HtXt,0 =

K∑

k=1

Gt,kXt,k + σWt.

This is also the received signal at slott if no transmissions occurred.

The receiver wants to evaluate the average rate that can be achieved during theT slots, or equivalently by

approximating the ergodic capacity (per transmit antenna). Under AssumptionA1, an approximate of the ergodic

capacity is given by:

Cerg =
1

NT

T∑

t=1

[
log det

(
σ2IN +

K∑

k=1

Gt,kG
H

t,k +HtH
H

t

)
− log det

(
σ2IN +

K∑

k=1

Gt,kG
H

t,k

)]

=
1

NT

T∑

t=1

[
log det

(
σ2IN +GtG

H

t +HtH
H

t

)
− log det

(
σ2IN +GtG

H

t

)]
(1)

where

Gt = [Gt,1, · · · ,Gt,K ] ∈ C
n×N (2)

with n =
∑K

k=1 nk.

In this paper, we address the problem of estimatingCerg based on theT successive observationsY1, . . . ,YT

assuming perfect knowledge ofH1, · · · ,HT .

The conventional large-M estimator̂Ctrad

If the numberM of available observations in each slot is very large compared to the channel vectorN , the

standard estimator̂Ctrad, hereafter referred to as the large-M estimator, reads:

Ĉtrad =
1

NT

T∑

t=1

log det

(
1

M
YtY

H

t +HtH
H

t

)
− 1

NT

T∑

t=1

log det

(
1

M
YtY

H

t

)
. (3)

However, in practice, the situationM ≫ N is rarely encountered, especially in systems embedded withmultiple

antennas and under fast fading channel conditions implyingthatM is of the same order of magnitude asN .

In this case, it can be proved that the large-M estimator is asymptotically biased, hencenot consistent. The

objective of this work is to propose a consistent estimator of Cerg when the number of available observations is of

the same order (although larger) thanN . We will refer to this estimator as the G-estimator in reference to Girko

who introduced many estimators [6], [7] in similar contextsand coined these techniques as G-estimation techniques

(standing forgeneralestimation techniques).

It will be convenient in the sequel to consider the followingnotation:

Ĉtrad(y) =
1

NT

T∑

t=1

log det

(
1

M
YtY

H

t + yHtH
H

t

)
− 1

NT

T∑

t=1

log det

(
1

M
YtY

H

t

)
. (4)

With this notation at hand,̂Ctrad = Ĉtrad(1).
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The asymptotic regime, remaining assumptions

Recall thatn =
∑K

k=1 nk. The derivation of the G-estimator will be carried out underthe following assumptions:

Assumption A2: M,N, n, n0 → +∞, and:

0 < lim inf
M,N→∞

N

n
≤ lim sup

M,N→∞

N

n
< +∞ ,

1 < lim inf
M,N→∞

M

N
≤ lim sup

M,N→∞

M

N
< +∞ ,

0 < lim inf
N,n0→∞

n0

N
≤ lim sup

N,n0→∞

n0

N
< +∞ .

Remark 1:The constraints overN andn simply state that these quantities remain of the same order.The lower

bound for the ratioM/N accounts for the fact that thatM is larger thanN , although of the same order.

In the rest of the paper, this regime will simply be referred to asM,N, n → ∞. We are now in position to formalize

the assumptions over the channel matrices:

Assumption A3: Let t ∈ {1, · · · , T } (T fixed). Consider the family(Gt) of N×n matrices and the family(Ht)

of N × n0 matrices whereN,n, n0 satisfy AssumptionA2. Then the spectral norms ofGt andHt are uniformly

bounded in the sense that:

sup
1≤t≤T

sup
N,n

‖Gt‖ < ∞ , sup
1≤t≤T

sup
N,n0

‖Ht‖ < ∞ .

Assumption A4: Denote byrt the rank ofHt. Then

0 < lim inf
N,n0→∞

rt
N

≤ lim sup
N,n0→∞

rt
N

< 1 .

III. C ONVERGENCE OF THE CAPACITY ESTIMATORS

In this section, we study the asymptotic behaviour of the large-M estimatorĈtrad and prove that under the

asymptotic regimeA2, this estimator is biased. We then build a consistent estimator based on G-estimation

techniques. Both results are essentially based on large random matrix theory. Let us first briefly introduce the

G-estimation techniques. G-estimation techniques can be roughly classified into two categories. The first one is

based on the Stieltjes transform (the definition of which is recalled below) and was taken up by Mestre who

developed a framework for eigenvalue and eigenvector estimation issues [1].

Let P be a probability distribution onR+, then the Stieltjes transformm(z) of P is defined as

m(z) =

∫

R

P(dλ)

λ− z
, z ∈ C \ R+ . (5)

For example, the Stieltjes transformm
YtY

H

t
associated to the empirical distribution of the eigenvalues of the

Hermitian matrixYtY
H
t is simply the normalized trace of the associated resolvent:

m
YtY

H
t
(z) =

1

N
tr
(
YtY

H

t − zIN
)−1

=
1

N

N∑

i=1

1

λi − z
,

whereλ1, · · · , λN denotes the eigenvalues ofYtY
H

t . Since their introduction by Marčenko and Pastur in their

seminal paper [8], Stieltjes transforms have proved to be a highly efficient tool to study the spectrum of large
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random matrices. From an estimation point of view, Stieltjes transform are, in the large dimension regime of interest,

consistent estimates of well-identified deterministic quantities. Therefore, the approach consists in expressing the

parameters of interest as functions of the Stieltjes transform of the eigenvalue distribution ofYtY
H

t . This approach

is appropriate as long as we consider estimation of parameters depending either on the eigenvalues or on the

eigenvectors ofYtY
H

t , but cannot be used when the dependence is on both of them; it will be illustrated in Lemma

2 below.

The second approach is based on other consistent estimatorsdifferent from the Stieltjes transformm
YtY

H

t
(z).

Details will be provided in Section III-B.

A. The large-M estimator is biased

Recall the definition of the large-M estimatorĈtrad given in (3). Before providing the expression of the asymptotic

bias for Ĉtrad, we shall define some deterministic quantities and also study their properties under the appropriate

asymptotic regimeM,N, n → ∞.

Lemma 1:Let AssumptionsA1-A4 hold true. DenoteΓt = GtG
H
t + σ2IN and lety > 0. Then:

1) The functional equation:

κt(y) =
1

M
tr

(
Γt

(
Γt

1 + κt(y)
+ yHtH

H

t

)−1
)

(6)

admits a unique positive solutionκt(y).

Denote byTt(y) andQt(y) the following quantities:

Tt(y) =

(
yHtH

H

t +
Γt

1 + κt(y)

)−1

, Qt(y) =

(
yHtH

H

t +
1

M
YtY

H

t

)−1

.

2) Then, for any deterministic family(SN ) of N ×N complex matrices with uniformly bounded spectral norm,

we have:
1

M
trSNQt(y)−

1

M
trSNTt(y)

a.s.−−−−−−−→
M,N,n→∞

0.

3) Let

Vt(y) = − log det(Tt(y)) +M log(1 + κt(y))−M
κt(y)

1 + κt(y)
,

then, the following convergence holds true:

− 1

N
log detQt(y)−

1

N
Vt(y)

a.s.−−−−−−−→
M,N,n→∞

0 .

Proof of Lemma 1 is postponed to Appendix A.

Remark 2:Note that items 2) and 3) provide deterministic equivalentsof various random quantities under the

asymptotic regime of interest.

In the next lemma, we show how the Stieltjes transform methodcan be used to compute a consistent estimate

of 1
N

∑T
t=1 log det(σ

2IN + GtG
H
t ). This term only depends on the eigenvalues ofGt which are not directly

observable. The idea underlying G-estimation is to use advanced random matrix theory tools to link the asymptotic

May 27, 2011 DRAFT



7

non-observable Stieltjes transform ofGt to that of the observable covariance matrix1MYtY
H

t . More precisely, we

prove the following:

Lemma 2:Let AssumptionsA1-A4 hold true. Then, the following convergence holds true:

1

N
log det(GtG

H

t + σ2IN )− 1

N
log det(YtY

H

t ) +
N −M

N
log

(
M −N

M

)
− 1

a.s.−−−−−−−→
M,N,n→∞

0 .

Proof of Lemma 2 is postponed to Appendix B.

Remark 3:As a consequence of this lemma, it turns out that a consistentestimate of1N log det(GtG
H

t +σ2IN ) is

simply the traditionnal large-M estimator (recall that1M EYtY
H

t = GtG
H

t +σ2IN ) up to a term of bias depending

on the time and space dimensions.

We now derive the bias of the estimatorĈtrad. Prior to that, define the deterministic quantityV(y) as :

V(y) = − 1

NT

T∑

t=1

(
log det(Tt(y)) +M log(1 + κt(y))−

Mκt(y)

1 + κt(y)
− log det(GtG

H

t + σ2IN )

)

+
M −N

N
log

(
M −N

M

)
+ 1. (7)

whereκt(y) is the unique solution of (6).

Theorem 1 (Bias of the large-M estimator):Let AssumptionsA1-A4 hold true. Then,

Ĉtrad − V(1)
a.s.−−−−−−−→

M,N,n→∞
0 .

Proof: Gathering items 3) and 4) in Lemma 1 yields the desired result.

B. A G-estimator for the capacity

The term 1
N log det(σ2IN + GtG

H
t + HtH

H
t ) in the definition of the capacity depends on the eigenvalues of

GtG
H

t +HtH
H

t . Since matrixHt is assumed to be known and to not necessarily share the same eigenvector space

as Gt, the capacity depends simultaneously on the eigenvalues and the eigenvectors of the unobservable matrix

Gt. Hence, the use of the Stieltjes transform cannot be applied. A similar situation was successfully addressed in

[5], by using a novel approach based on deterministic equivalents as developed in [9]. In the sequel, we follow the

same approach in [5].

Theorem 2 (a G-estimator for the capacity):Assume thatA1 andA3 hold true; consider the quantity:

ĈG =
1

NT

T∑

t=1

log det

(
IN + ŷN,tHtH

H

t

(
1

M
YtY

H

t

)−1
)

+
(M −N)

N

[
log

(
M

M −N
ŷN,t

)
+ 1

]
− M

N
ŷN,t ,

whereŷN,t is the unique real positive solution of the following equation:

ŷN,t =
ŷN,t

M
trHtH

H

t

(
ŷN,tHtH

H

t +
1

M
YtY

H

t

)−1

+
M −N

M
.
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Then,

ĈG − Cerg
a.s.−−−−−−−→

M,N,n→∞
0 .

In the sequel, we will refer tôCG as the G-estimator.

Remark 4:Note thatĈG writes:

ĈG = Ĉtrad(ŷN,t) +
(M −N)

N

[
log

(
M

M −N
ŷN,t

)
+ 1

]
− M

N
ŷN,t ,

a relation that sheds some light on the difference betweenĈG and Ĉtrad.

In order to prove Theorem 2, it is sufficient to provide a consistent estimate of each quantity in the sum of the

expression of the ergodic capacity. Denote byCt the capacity at timet given by:

Ct ,
1

N
log det(σ2IN +GtG

H

t +HtH
H

t )−
1

N
log det(σ2IN +GtG

H

t ) ,

, Ct,1 − Ct,2 .

As a consistent estimatêCt,2 of Ct,2 has already been provided by Lemma 2, it remains to build a consistent

estimate forCt,1.

The proof of Theorem 2 is postponed to Appendix C. Although technical, this proof is very illustrative on how to

build consistent estimators based on deterministic equivalents. We therefore provide below an outline of the proof.

Outline of the proof: The proof is divided into 4 steps:

1) In the first step, we exploit the convergence of parametrized quantities of interest. Denotef(y) = 1
N log det( 1

MYtY
H
t +

yHtH
H

t ) and recall the definition ofκt(y) as given in Lemma 1-1). By Lemma 1-3), we have:

−f(y) +
1

N
log det

(
GtG

H
t + σ2IN

1 + κt(y)
+ yHtH

H

t

)
+

M

N
log(1 + κt(y))−

M

N

κt(y)

1 + κt(y)

a.s−−−−−−−→
M,N,n→∞

0 .

Clearly, the deterministic quantity to whichf(y) converges differs fromCt,1.

2) In the second step, we find a specific value ofy to enforce the desired quantityCt,1 to appear: one can readily

check that ifyN,t is the solution of the following equation:

y =
1

1 + κt(y)
, (8)

then one would immediately obtain:

Ct,1 −
[
1

N
log det

(
1

M
YtY

H

t + yN,tHtH
H

t

)
+

M −N

N
log(yN,t) +

M

N
(1 − yN,t)

]
a.s.−−−−−−−→

M,N,n→∞
0 . (9)

Based on the definition ofκt(y), one can prove that there exists a unique positiveyN,t solution of (8), given

by the following closed-form expression:

yN,t = 1− 1

M
tr
[
(GtG

H

t + σ2IN )(HtH
H

t +GtG
H

t + σ2IN )−1
]
. (10)

Unfortunately, the value ofyN,t depends upon the unknown matrixGt.
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3) In the third step, we provide a consistent estimatorŷN,t of yN,t. Based on an analysis ofκt(y), and on finding

a consistent estimate for this quantity, one can prove that there exists a unique positive solution̂yN,t to the

following equation:

ŷN,t =
1

M
tr ŷN,tHtH

H

t

(
ŷN,tHtH

H

t +
1

M
YtY

H

t

)−1

+
M −N

M
. (11)

Moreover,ŷN,t satisfies:

ŷN,t − yN,t
a.s.−−−−−−−→

M,N,n→∞
0 .

4) Finally, it remains to check that one can replaceyN,t by ŷN,t in the convergence (9). This will immediately

yield a consistent estimatêCt,1 for Ct,1. For the proof of the theorem to be complete, it remains to gather

the estimates ofCt,1 andCt,2. This yields :

ĈG =
1

T

T∑

t=1

(
Ĉt,1 − Ĉt,2

)
,

which is the announced result.

IV. FLUCTUATIONS FOR THE CAPACITY ESTIMATORS

We develop in this section fluctuation results for the capacity estimatorsĈtrad andĈG already introduced. More

precisely, we establish CLTs, provide explicit expressions for the variance, and prove that these estimators when

correctly centered and rescaled converge in distribution toward a Gaussian random variable.

While the entries of the matricesXt andWt (cf. AssumptionA1) could have easily been taken non Gaussian to

establish first order results in Section III, the Gaussian property of the entries is a central assumption to establish

fluctuation results. This assumption is natural in the current wireless communications context.

The Gaussianity of the entries allows one to use the powerfulGaussian methods adapted along the years to the

study of large random matrices by Pastur and co-authors (seee.g. [10] - for application to wireless communication,

see [11], etc.). The Gaussian calculus heavily relies (but not exclusively) on the integration by parts formula and

the Poincaré-Nash inequality, recalled in Appendix D.

A. Fluctuations of the large-M estimator

In the previous section, we have shown that the large-M estimator is asymptotically biased, in the sense that it

converges to a deterministic equivalent which is differentfrom the theoretical ergodic capacity.

In the sequel, we shall study its fluctuations around this deterministic equivalent. We will prove that when properly

centered and rescaled, the large-M estimator converges to astandard Gaussian random variable.

This result is an important first step to the study of the fluctuations of the G-estimator.

Theorem 3:Let AssumptionsA1-A4 hold true and recall the definition (4) of̂Ctrad(y). Then,
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1) the sequence of real numbers(αN (y)):

αN (y) =
2 log(M)

T 2
− 1

T 2

T∑

t=1

log

(
(M −N) (M(κt(y) + 1)

2 − tr

(
IN

κt(y) + 1
+ yHtH

H

t (GtG
H

t + σ2IN )−1

)−2
)

is well-defined. Furthermore:

0 < lim inf
M,N,n→∞

αN (y) ≤ lim sup
M,N,n→∞

αN (y) < +∞ .

2) The following convergence holds true:

N

αN (y)

(
Ĉtrad(y)− V(y)

)
D−−−−−−−→

N,M,n→∞
N(0, 1) ,

whereV(y) is defined in (7).

Proof: See Appendix D.

B. Fluctuations of the G-estimator

As opposed to the large-M estimator, the G-estimator has no closed-form expression, as thêyN,t’s are solutions

of implicit equations (easily solved through numerical computations, though). Establishing the CLT might seem

more difficult since the randomness comes from both the received matrixYt and the quantitŷyN,t.

In the following lemma, we shall prove that the fluctuations of ŷN,t − yN,t are of orderO(M−2), a rate which

is sufficient, as we will see later, to discard the randomnessstemming fromŷN,t in the study of the fluctuations.

Lemma 3:For t ∈ {1, · · · , T }, the following estimates hold true, asM,N, n → ∞:

1) var(ŷN,t) = O(M−2) ,

2) E ŷN,t = yN,t + O(M−2) .

Proof: See Appendix E.

We are now in position to state the CLT for the G-estimator.

Theorem 4:Let AssumptionsA1-A3 hold true. Then,

N

θN
(ĈG − Cerg)

D−−−−→
N→∞

N(0, 1),

whereθN given by:

θN =
1

T 2

T∑

t=1

2 log(MyN,t)− log
(
(M −N)

(
M − tr

((
IN +HtH

H

t (GtG
H

t + σ2IN )−1
)−2
)))

(12)

is well-defined and satisfies

0 < lim inf
M,N,n→∞

θN ≤ lim sup
M,N,n→∞

θN < +∞ .

Proof: Consider the functionCt(y) defined fory > 0 as:

Ct(y) =
1

N
log det

(
yHtH

H

t +
YtY

H

t

M

)
+

M −N

N

[
log

(
M

M −N
y

)
+ 1

]
− M

N
y − log det

(
YtY

H

t

M

)
.
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ThenĈ = 1
T

∑T
t=1 Ct(ŷN,t). Since all the random variables(Ct(ŷN,t), 1 ≤ t ≤ T ) are independent, it is sufficient

to prove a CLT forCt(ŷN,t), for a givent ∈ {1, · · · , T }. In order to handle the randomness ofŷN,t, we shall

perform a Taylor expansion ofCt aroundŷN,t. Recall the following differentiation formula:

d

dx
log detA(x) = trA′(x)A−1(x)

(see for instance [12, Section 15]). A direct application ofthis formula, together with the mere definition ofŷN,t

yields:
dCt

d y
(ŷN,t) = 0 .

Hence, the Taylor expansion writes:

NCt(yN,t) = NCt(ŷN,t) +N
(yN,t − ŷN,t)

2

2
× d2Ct

dy2
(ŷN,t) +N

(yN,t − ŷN,t)
3

6
× d3Ct

dy3
(ξN,t) , (13)

whereξN,t lies betweenyN,t and ŷN,t. The mere definition (11) of̂yN,t yields:

M −N

M
≤ ŷN,t ≤ 1 +

M −N

M
.

In particular,ŷN,t uniformly belongs to a fixed compact interval, so doesyN,t for similar reasons. One can easily

prove that the second and third derivatives ofCt(y) are uniformly bounded on the union of these intervals. This

result combined with the fact thatNE(ŷN,t − yN,t)
2 = O(M−1) implies that the last two terms in the right hand

side (r.h.s.) of (13) converge to zero in probability. By Slutsky’s Theorem [13], it suffices to establish the CLT for

NC(yN,t) instead ofNC(ŷN,t) = NĈ(ŷN,t). This is extremely helpful since unlikêyN,t whih is random,yN,t is

deterministic. The result is thus obtained by applying Theorem 3 and noticing thatκ(yN,t) + 1 = 1
yN,t

.

V. SIMULATIONS

In the simulations, we consider the case where a mobile terminal with N = 4 antennas receives duringM = 15

slots, data stemming from ann0 = 4 antenna secondary transmitter. We assume that the communication link is

interfered byK = 8 mono-antenna users. For eacht ∈ {1, · · · , T }, matricesHt andGt are randomly chosen as

standard Gaussian matrices and remain constant during the Monte Carlo averaging. In a first experiment we setT

to 10 and represent in Fig. 2 the theoretical and empirical normalized variances for the G-estimator with respect

to SNR = 1
σ2 . We also display in the same graph the empirical variance of the large-M estimator. We note that

the G-estimator exhibits better performance for all SNR range. We study in a second experiment the effect ofT

when the SNR is set to10 dB. Fig. 3 represents the obtained results. We note that since the large-M estimator is

biased, its mean square error does not significantly decrease with T and remains almost unchanged, whereas the

G-estimator exhibits a low variance which drops linearly with T . Finally, to assess the Gaussian behaviour of both

estimators, we represent in Fig. 4 and Fig. 5 their corresponding histograms. We note a good fit between theoretical

and empirical results although the system dimensions are small.
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VI. CONCLUSION

In this paper, we have proposed a novel G-estimator for fast estimation of the ergodic capacity in presence of

unknown interference in the case where the number of available observations is of the same order as the dimension

of each observation. In particular, we have shown that the conventional estimator, based on the replacement of

the unknown covariance matrix of the observations by the empirical covariance matrix, is biased. Based on large

random matrix theory, we have introduced a novel G-estimator which is unbiased and consistent. We then have
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studied the fluctuations of the two estimators and established CLTs for both of them. Numerical simulations have

been provided and strongly support the accuracy of our derived results even for usual system dimensions.
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APPENDIX A

PROOF OF LEMMA 1

Define forρ ≥ 0:

Qt(ρ, y) =

(
ρIN + yHtH

H

t +
1

M
YtY

H

t

)−1

,

gt(ρ, y) =
1

N
log det

(
ρIN + yHtH

H

t +
1

M
YtY

H

t

)−1

.

Denote byXt =
[
XH

t,1, · · · ,XH

t,K

]H
, andZt =

[
WH

t XH

t

]H
thenYt = [σIN Gt]Zt. Denote by[σIN Gt] =

UtΣtV
H

t the singular value decomposition of[σIN Gt] whereΣt =
[
D

1
2
t 0N×n

]
, Dt being the diagonal matrix

of eigenvalues ofGtG
H
t + σ2IN ; in particular,Dt’s entries are nonnegative and bounded away from zero. Let

Z̃t = VH

t

[
WH

t XH

t

]H
. Since the entries ofZt are i.i.d. and Gaussian,̃Zt has the same entry distribution asZt.

Writing Z̃t =
[
W̃H

t X̃H
t

]H
, gt(ρ, y) becomes:

gt(ρ, y) =
1

N
log det

(
ρIN + yHtH

H

t +
1

M
UtD

1
2
t W̃tW̃

H

t D
1
2
t U

H

t

)
,

=
1

N
log det

(
ρIN + yUH

t HtH
H

t Ut +
1

M
D

1
2
t W̃tW̃

H

t D
1
2
t

)
.

Obviously, we have− 1
N log det(Qt(y)) = gt(0, y) and 1

M trQt(y) =
1
M trQt(0, y). Deterministic equivalents for

gt(ρ, y) andQt(ρ, y) have been derived in [9] and are recalled in the lemma below.

Lemma 4 (cf. [9]): Let ρ > 0.

1) Denote byΓt = GtG
H

t + σ2IN and lety > 0. The following functional equation:

κt(ρ, y) =
1

M
tr

(
Γt

(
ρIN + yHtH

H

t +
Γt

1 + κt(ρ, y)

)−1
)

admits a unique positive solutionκt(ρ, y).

2) Define

Tt(ρ, y) =

(
ρIN + yHtH

H

t +
Γt

1 + κt(ρ, y)

)−1

.

Then, for any sequence of deterministic matricesSN ∈ CN×N with uniformly bounded spectral norm:

1

M
trSNQt(ρ, y)−

1

M
trSNTt(ρ, y)

a.s.−−−−−−−→
M,N,n→∞

0 .

In particular, settingSN = Γt, we get:

1

M
trΓtQt(ρ, y)− κt(ρ, y)

a.s.−−−−−−−→
M,N,n→∞

0 .

3) Let

Vt(ρ, y) = − 1

N
log det(Tt(ρ, y)) +

M

N
log(1 + κt(ρ, y))−

M

N

κt(ρ, y)

1 + κt(ρ, y)
,

then

g(ρ, y)− Vt(ρ, y)
a.s.−−−−−−−→

M,N,n→∞
0 .
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The general idea of the proof of Lemma 1 is to transfer these determinitic equivalents to the caseρ ց 0; we will

proceed by taking advantage from from the fact that all the diagonal elements ofDt are positive and uniformly

bounded away from zero.

We first prove the existence and uniqueness ofκt(y). Consider the functionf defined on[0,∞[ by:

f : x 7→ x− 1

M
trDt

(
yUH

t HtH
H

t Ut +
Dt

1 + x

)−1

.

An easy computation yields the derivative off with respect tox:

f ′(x) = 1− 1

M
trDt

(
yUH

t HtH
H

t Ut +
Dt

1 + x

)−1
Dt

(1 + x)2

(
yUH

t HtH
H

t Ut +
Dt

1 + x

)−1

which is obviously always positive. Functionf is thus always increasing and thus establishes a bijection from

[0,∞[ to [f(0),+∞[. Sincef(0) is negative, we conclude thatf has a single zero. This proves the existence and

uniqueness ofκt(y). It remains to extend the asymptotic convergence results tothe caseρ = 0.

In the sequel, we only prove item 2) forSN = DN as it captures the key arguments of the proof; the extension

to general sequences(SN ) will then be straightforward. Write1M trΓtQt(y)− κt(y) as:

1

M
trΓtQt(y)− κt(y) =

1

M
trΓtQt(y)−

1

M
trΓtQt(ǫ, y)

+
1

M
trΓtQt(ǫ, y)− κt(ǫ, y)

+ κt(ǫ, y)− κt(y) ,

whereǫ > 0. We now handle sequentially each of the differences of the r.h.s. of the previous decomposition. We

first prove that there exists a fixed constantK > 0 (which only depends onlim supNM−1) such that for every

ǫ > 0, there existsN1 (which depends on the realization and hence is random) such that for everyN ≥ N1, we

have: ∣∣∣∣
1

M
trΓtQt(y)−

1

M
trΓtQt(ǫ, y)

∣∣∣∣ ≤
ǫ

K
. (14)

This can be proved by noting that from the resolvent identity, we have:

1

M
trΓtQt(y)−

1

M
trΓtQt(ǫ, y) =

ǫ

M
trΓtQt(0, y)Qt(ǫ, y) ,

≤ ǫ

M
trΓt

∥∥∥∥∥

(
1

M
D

1
2
t W̃W̃HD

1
2
t

)−1
∥∥∥∥∥

2

.

Recall thatW̃t is aN ×M matrix and that by AssumptionA2, lim supM,N NM−1 < 1. Therefore the spectrum

of W̃tW̃
H
t is almost surely eventually bounded away from zero1. In particular, there exists a constantK such that

eventually, we have

∥∥∥∥
(

1
MD

1
2
t W̃W̃HD

1
2
t

)−1
∥∥∥∥
2

≤ K−1, hence:

∃N1, ∀N ≥ N1,

∣∣∣∣
1

M
trΓtQt(y)−

1

M
trΓtQt(ǫ, y)

∣∣∣∣ ≤
ǫ

K
.

1Recall that if limNM−1 = c < 1, then the smallest eigenvalueλmin(W̃tW̃
H
t ) converges to(1 −

√

c)2 > 0; it remains to argue on

subsequences to conclude in the case wherelim supM,N NM−1 < 1 .
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The second step consists in proving that for some constantK̃ (depending onlim supNM−1) there existsN2

(depending on the realization) such that for allN ≥ N2:

|κt(ǫ, y)− κt(y)| ≤ K̃ǫ . (15)

The proof of (17) relies on the following identity:

κt(y)− κt(ǫ, y) = ǫαN + βN (κt(y)− κt(ǫ, y)) , (16)

where

αN =
1

M
trΓtTt(ǫ, y)ΓtTt(y) ,

βN =
1

M
tr

(
ΓtTt(ǫ, y)ΓtTt(y)

(1 + κt(y))(1 + κt(ǫ, y))

)
.

It is clear thatβN < 1 and one can prove that there existsK̃ > 0 such thatlim supαN < K̃. In fact,αN satisfies:

αN ≤ N

M
‖Γt‖2

∥∥Γ−1
t

∥∥2 (1 + κt(y))(1 + κt(ǫ, y)) . (17)

One can prove thatκt(y) andκt(ǫ, y) are lower than N
M(1−N/M) . In fact, κt(y) writes:

κt(y) =
N(1 + κt(y))

M
− (1 + κt(y))

M
tr

(
yHtH

H

t

(
yHtH

H

t +
Γt

1 + κt(y)

)−1
)

,

=
N

M(1− N
M )

− (1 + κt(y))

M(1− N
M )

tr

(
yHtH

H

t

(
yHtH

H

t +
Γt

1 + κt(y)

)−1
)

,

≤ N

M(1− N
M )

.

Similar arguments hold forκt(ǫ, y), thus proving thatlim supαN ≤ K̃. From (16), we conclude that there exists

N3 such that for allN ≥ N3,

|κt(ǫ, y)− κt(y)| ≤ K̃ǫ .

We are now in position to prove the almost sure convergence of1
M trΓtQt(y)− κt(y). Consider the constantsK

andK̃ as defined previously and letǫ > 0. According to (14), there existsN1 such that:

∀N ≥ N1 ,

∣∣∣∣
1

M
trΓtQt(y)−

1

M
trΓtQt(ǫ, y)

∣∣∣∣ ≤
ǫ

K
.

Using the almost sure convergence result of1
M trΓtQt(ǫ, y) stated in Lemma 4, there existsN2 such that:

∀N ≥ N2 ,

∣∣∣∣
1

M
trΓtQt(ǫ, y)− κt(ǫ, y)

∣∣∣∣ ≤ ǫ .

Finally from (15), there existsN3 such that for allN ≥ N3:

|κt(ǫ, y)− κt(y)| ≤ K̃ǫ .

Combining all these results, we have, forN ≥ max(N1, N2, N3):
∣∣∣∣
1

M
trΓtQ(y)− κt(y)

∣∣∣∣ ≤ ǫ

(
1

K
+ 1 + K̃

)
,
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hence proving that:
1

M
trΓtQt(y)− κt(y)

a.s.−−−−−−−→
M,N,n→∞

0 ,

which is the desired result.

APPENDIX B

PROOF OFLEMMA 2

Using the same eigenvalue decomposition as in Appendix A, wecan prove thatYt = UtD
1
2
t W̃t whereW̃t is a

N ×M standard Gaussian matrix, and whereDt is a diagonal matrix with the same eigenvalues asGtG
H

t +σ2IN .

In the sequel, ifA is a p × p hermitian matrix, denote byFA the empirical distribution of its eigenvalues, i.e.

FA = 1
p

∑p
i=1 δλi(A), and bymA the associated Stieltjes transform.

Denote bym
YH

t Yt
(z) the Stieltjes transform corresponding to the empirical eigenvalue distribution ofYH

t Yt,

i.e.,

mYH

t Yt
(z) =

1

M
tr
(
YH

t Yt − zIM
)−1

.

Notice thatmDt
(z) = mGtG

H

t
(z − σ2). Using this fact, and the result in [14], on can easily prove that mYH

t Yt

satisfies:

∀z ∈ C \ R+ , mYH

t Yt
(z)−m(z)

a.s.−−−−−−−→
M,N,n→∞

0 ,

wherem(z) is the unique Stieltjes transform of a probability distribution F , solution of the following functional

equation:

m(z) =

(
−z +

N

M

∫
λ+ σ2

1 + (λ+ σ2)m(z)
dFGtG

H

t (λ)

)−1

. (18)

Moreover,m(z) is analytical onC+ = {z ∈ C,ℑ(z) > 0} whereℑ(z) stands for the imaginary part ofz ∈ C.

Using (18), one can prove thatmGtG
H

t
(z) satisfies:

mGtG
H

t

(
− 1

m(z)
− σ2

)
= m(z)(1− M

N
)− M

N
zm2(z) . (19)

The link between the unobservable Stieltjes transformmGtG
H

t
and the deterministic equivalentm(z) being es-

tablished, it remains to expressN−1 log det(IN + σ−2GtG
H

t ) in terms of m
GtG

H
t
, which follows easily by

differentiation:
∂

∂σ2

1

N
log det

(
IN +

GtG
H

t

σ2

)
=

1

N
tr
(
GtG

H

t + σ2IN
)−1 − 1

σ2
.

Hence:

1

N
log det

(
IN +

GtG
H

t

σ2

)
=

∫ +∞

σ2

1

t
− 1

N
tr

(
GtG

H

t +
1

t
IN

)−1

dt ,

=

∫ 1
σ2

0

1

t
− 1

t2
m

GtG
H
t

(
−1

t

)
dt . (20)

We shall now perform a change of variables within the integral in order to substitutem for mGtG
H

t
with the help

of (19). It has been proved in [15] thatm(z) is continuous and increasing onR∗
−; in particular, the application

u 7→
(

1

m(u)
+ σ2

)−1
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establishes a bijection fromR∗
− to (0, 1/σ2). Considering the change of variable1t = 1

m(u) + σ2, (20) writes:

1

N
log det

(
IN +

GtG
H

t

σ2

)

=

∫ 0

−∞

[
1

m(u)
+ σ2 −

(
1

m(u)
+ σ2

)2

mGtG
H

t

(
− 1

m(u)
− σ2

)]
m′(u)

(1 + σ2m(u))2
du

=

∫ 0

−∞

[
m′(u)

m(u)(1 + σ2m(u))
−
(
1− M

N

)
m′(u)

m
+

M

N
um′(u)

]
du

=

∫ 0

−∞

[
M

N

m′(u)

m(u)
− σ2m′(u)

1 + σ2m(u)
+

M

N
um′(u)

]
du.

We shall now compute this integral, denoted byI in the sequel. WriteI = limx→−∞
y→0

Ix,y where

Ix,y =

∫ y

x

[
M

N

m′(u)

m(u)
− σ2m′(u)

1 + σ2m(u)
+

M

N
um′(u)

]
du .

Straightforward computations yield:

Ix,y = log

∣∣∣∣∣
(m(y))

M
N

1 + σ2m(y)

∣∣∣∣∣− log

∣∣∣∣∣
(m(x))

M
N

1 + σ2m(x)

∣∣∣∣∣+
M

N
ym(y)− M

N
xm(x)−

∫ y

x

M

N
m(u)du . (21)

As our objective is to compute the limit ofIx,y asx → −∞ andy → 0, we need to obtain equivalents form at 0

and−∞. A direct application of the dominated convergence theoremyields:

m(x) ∼
x→−∞

− 1

x
.

Recall thatF is the probability distribution associated tom. Then,F ({0}) = M−1(M−N). Although this property

is not easy to write down properly, it is quite intuitive if one seesF as close toFY
H

t Yt (the empirical distribution

of the eigenvalues ofYH

t Yt) which clearly satisfiesFY
H

t Yt({0}) = M−1(M − N) by AssumptionA2: This

assumption implies in fact that zero is an eigenvalue ofYH
t Yt of orderM −N . Hence,

m(y) ∼
y→0

−M −N

My
.

Using these relations, we can derive equivalents for the first four terms in the right-hand side of (21). In particular,

we obtain:

log

∣∣∣∣∣
(m(y))

M
N

1 + σ2m(y)

∣∣∣∣∣ ∼
y→0

(
M

N
− 1

)
log

(
M −N

M

)
− log(σ2) +

(
1− M

N

)
log |y| , (22)

− log

∣∣∣∣∣
(m(x))

M
N

1 + σ2m(x)

∣∣∣∣∣ ∼
x→−∞

M

N
log |x| , (23)

M

N
ym(y) ∼

y→0
−
(
M

N
− 1

)
, (24)

−M

N
xm(x) ∼

x→−∞

M

N
. (25)

Let us now handle the last term in the. of (21). Denote byF the probability distribution defined by

F (dx) =
(M −N)

M
δ0(dx) +

N

M
F (dx) .
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If m is the Stietjes transform associated toF , then:

m(z) =
M

N
m(z) +

(M −N)

N

1

z
.

Note in particular thatmYtY
H

t
−m → 0, hence thatF is a deterministic approximation ofFYtY

H

t , the empirical

distribution of the eigenvalues ofYtY
H

t . Now,
∫ y

x

M

N
m(u)du =

∫ y

x

∫
dF (t)

t− u
du− M −N

Nu
du ,

=

∫
(− log |t− y|+ log |t− x|)dF (t) +

M −N

N
(log |x| − log |y|) . (26)

Using the dominated convergence theorem, one can provethatthe r.h.s. of (26) is equivalent to:
∫ y

x

M

N
m(u)du ∼

x→−∞
y→0

−
∫

log(t)dF (t) +
M

N
log |x| − M −N

N
log |y| . (27)

Plugging (22), (23), (24), (25) and (27) into (21) yields:

lim
x→−∞
y→0

Ix,y =
M −N

N
log

(
M −N

M

)
− log σ2 +

∫
log(t)dF (t).

Since the spectrum of1MYtY
H
t is almost surely eventually bounded away from zero and upper-bounded, uniformly

alongN , we have:
1

N

N∑

i=1

log(λi)−
∫

log(t)dF (t)
a.s.−−−−−−−−→

M,N,n→+∞
0

where(λi, 1 ≤ i ≤ N) are the eigenvalues of1MYtY
H
t . A consistent estimator of1N log det(σ2IN + GtG

H
t ) is

thus given by:

C1 =
M −N

N
log

(
M −N

M

)
+ 1 +

1

N

N∑

i=1

log(λi)

=
M −N

N
log

(
M −N

M

)
+ 1 +

1

N
log det

(
1

M
YtY

H

t

)
,

which concludes the proof.

APPENDIX C

PROOF OFTHEOREM 2

As previously mentionned, the proof of Theorem 2 relies on the existence of a consistent estimate for

Ct,1 =
1

N
log det(σ2IN +GtG

H

t +HtH
H

t ) .

Denote byf(y) the parametrized quantity:

f(y) =
1

N
log det(YtY

H

t + yHtH
H

t ) .

Then by Lemma 1-3), we obtain:

−f(y) +
1

N
log det

(
GtG

H

t + σ2IN

1 + κt(y)
+ yHtH

H

t

)
+

M

N
log(1 + κt(y))−

M

N

κt(y)

1 + κt(y)

a.s.−−−−−−−→
M,N,n→∞

0 . (28)
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Obviously, if y is replaced byyN,t, solution of:

yN,t =
1

1 + κt(yN,t)
, (29)

then the termCt,1 appears in (28). The existence and uniqueness ofyN,t immediatly follows from the fact that the

function g defined as:

g : x 7→ (1 + x)
1

M
tr(GtG

H

t + σ2IN )(HtH
H

t +GtG
H

t + σ2IN )−1

is a contraction. Moreover, straightforward computationsyield:

yN,t = 1− 1

M
tr(GtG

H

t + σ2IN )(HtH
H

t +GtG
H

t + σ2IN )−1 . (30)

Unfortunately,yN,t depends on the unobservable matrixGt. One need therefore to provide a consistent estimate

ŷN,t of yN,t. In order to proceed, we shall study the asymptotics ofκt(y). By Lemma 1-2), we have:

y

M
trHtH

H

t Qt(y)−
y

M
trHtH

H

t Tt(y)
a.s.−−−−−−−→

M,N,n→∞
0 . (31)

On the other hand, we have:

y

M
trHtH

H

t Tt(y) =
1

M
tr yHtH

H

t

(
yHtH

H

t +
GtG

H

t + σ2IN

1 + κt(y)

)−1

,

=
N

M
− 1

M(κt(y) + 1)
tr

(
(GtG

H

t + σ2IN )

(
yHtH

H

t +
GtG

H
t + σ2IN

1 + κt(y)

)−1
)

,

=
N

M
− κt(y)

1 + κt(y)
,

=
N

M
− 1 +

1

1 + κt(y)
. (32)

Substituting (32) into (31), we obtain:

1

M
tr yHtH

H

t Qt(y)−
N

M
+ 1− 1

κt(y) + 1

a.s.−−−−−−−→
M,N,n→∞

0 . (33)

Intuitively, a consistent estimate of̂yN,t of yN,t should satisfŷyN,t = M−1ŷN,t trHtH
H

t Qt(ŷN,t). This intuition

is confirmed by the following lemma:

Lemma 5:There exists a unique positive solutionŷN,t to the equation:

ŷN,t

M
trQt(ŷN,t)−

N

M
+ 1− ŷN,t = 0 .

Moreover, the following convergence holds true:

ŷN,t − yN,t
a.s.−−−−−−−→

M,N,n→∞
0 ,

whereyN,t is defined by (29) (see also (30)).

Proof: The existence and uniqueness ofŷN,t follows from the fact thaty : 7→ 1
M trQt(y) − N

M + 1 is a

contraction. Moreover, using AssumptionA2, it is straightforward to check that̂yN,t is eventually lower than 1.

Using (33), we get that:
yN,t

M
trHtH

H

t Qt(yN,t)−
N

M
+ 1− yN,t

a.s.−−−−−−−→
M,N,n→∞

0 .
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Beware that in (33), the convergence holds true for a fixedy while yN,t depends uponN . A way to circumvent

this issue is to mergeyN,t into Ht and to consider the slightly different model based onH̃t =
√
yN,tHt.

Therefore, the mere definition of̂yN,t and the previous convergence yield:

ŷN,t

M
tr(HtH

H

t Qt(ŷN,t)) − ŷN,t + yN,t −
yN,t

M
tr(HtH

H

t Qt(yN,t))
a.s.−−−−−−−→

M,N,n→∞
0.

It can be easily proved thathN : y 7→ y
M trHtH

H

t Qt(y) is a contraction onR+, i.e. that there exists0 ≤ kN ≤ 1

such that:

|hN (x)− hN (y)| ≤ kN |x− y|,

wheneverx, y ≥ 0; moreover, due to AssumptionA2, lim sup kN < 1. On the other hand, we have:

|yN,t − ŷN,t| = |yN,t − ŷN,t − hN(yN,t) + hN (ŷN,t)− hN (ŷN,t) + hN (yN,t)| ,

≤ |yN,t − ŷN,t − hN(yN,t) + hN (ŷN,t)|+ |hN (ŷN,t)− hN (yN,t)| ,

≤ |yN,t − ŷN,t − hN(yN,t) + hN (ŷN,t)|+ kN |ŷN,t − yN,t| .

Hence, we get:

0 ≤ (1− kN )|ŷN,t − yN,t| ≤ |yN,t − ŷN,t − h(yN,t) + h(ŷN,t)| .

Since the r.h.s. converges to zero,yN,t − ŷN,t converges also to zero almost surely.

With the help of Lemma 5, the following convergences can be easily verified:

1

N
log det(Qt(yN,t))−

1

N
log det(Qt(ŷN,t))

a.s.−−−−−−−→
M,N,n→∞

0 ,

κ(ŷN,t)− κ(yN,t)
a.s.−−−−−−−→

M,N,n→∞
0 .

Therefore:

−f(ŷN,t) +
1

N
log det(GtG

H

t + σ2IN +HtH
H

t )−
M −N

N
log(ŷN,t)−

M

N
(1− ŷN,t)

a.s.−−−−−−−→
M,N,n→∞

0 ,

which in turn implies that:

Ct,1 − log det(ŷN,tHtH
H

t +YtY
H

t )−
M −N

N
log(ŷN,t)−

M

N
(1 − ŷN,t)

a.s.−−−−−−−→
M,N,n→∞

0 .

Using this estimate ofCt,1 together with the estimate ofCt,2 as provided in Lemma 2 immediatly yields a consistent

estimate forCt(σ
2) = Ct,1 − Ct,2, and the theorem is proved.

APPENDIX D

PROOF OF THEOREM3

The proof of theorem 3 relies on the tools used in [11] suitable for dealing with Gaussian random variables.

Recall thatĈtrad(y) is given by:

Ĉtrad(y) =
1

NT

T∑

t=1

log det

(
yHtH

H

t +
1

M
YtY

H

t

)
− log det

(
1

M
YtY

H

t

)
,
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whereYt = [σIN Gt]


Wt

Xt


 andXt =

[
XH

t,1, . . . ,X
H

t,K

]H
. Similarly, as in Appendix A and Appendix B, we

can prove thatYt = UtD
1
2
t W̃t whereW̃t is aN ×M standard Gaussian matrix, andDt is theN ×N diagonal

matrix containing the eigenvalues ofGtG
H

t + σ2IN . Then,Ĉtrad(y) becomes:

Ĉtrad(y) =
1

NT

T∑

t=1

log det(yHtH
H

t +
1

M
UtD

1
2
t W̃tW̃

H

t D
1
2
t U

H

t )− log det(
1

M
D

1
2
t W̃tW̃

H

t D
1
2
t ),

=
1

NT

T∑

t=1

log det(yD
− 1

2
t UH

t HtH
H

t UtD
− 1

2
t +

1

M
W̃tW̃

H

t )− log det(
1

M
W̃tW̃

H

t ),

=
1

NT

T∑

t=1

log det

(
yD

− 1
2

t UH

t HtH
H

t UtD
− 1

2
t

(
1

M
W̃tW̃

H

t

)−1

+ IN

)
.

Denote byD
− 1

2
t UH

t HtH
H

t UtD
− 1

2
t = ŨtΛtŨ

H

t be the eigenvalue decomposition ofD
− 1

2
t UH

t HtH
H

t UtD
− 1

2
t . Since

r is the rank ofHtH
H
t , matrix Λt has exactlyr non zero entries which we denote by(Λi,t, 1 ≤ i ≤ r). We get

then:

Ĉtrad(y) =
1

NT

T∑

t=1

log det

(
yΛt

(
1

M
W̃tW̃

H

t

)−1

+ IN

)
.

Let Λr,t = diag (λ1,t, . . . , λr,t). Then using theorem 3.2.11 in [16], we can prove thatĈtrad(y) can be written as:

Ĉtrad(y) =
1

NT

T∑

t=1

log det

(
yΛr,t

(
1

M
W̃r,tW̃

H

r,t

)−1

+ IN

)
,

whereW̃r,t is a r ×M −N + r standard Gaussian matrix. LetM = (M−N+r)
My Λ−1

r,t , we finally get:

Ĉtrad(y) =
1

NT

T∑

t=1

log det

(
1

M −N + r
M

1
2W̃r,tW̃

H

r,tM
1
2 + Ir

)
− log det (M)− log det

(
1

M −N + r
W̃r,tW̃

H

r,t

)

,

T∑

t=1

Ĉtrad,t(y).

Let s = M −N + r. By AssumptionA4, we have:

0 < lim inf
s

r
≤ lim sup

s

r
< +∞.

Moreover, matrixM satisfies:

sup ‖M‖ < ∞ and inf
1

s
trM > 0.

We retrieve then the same model as in [11], with the slight difference thatĈtrad,t(y) has an extra random term

log det
(

1
M W̃r,tW̃

H

r,t

)
. As we will see next, this has no impact on the applicability of the method and one can get

the desired result by following the same lines of [11]. In particular, we consider to prove a CLT for the functional

log det( zsM
1
2W̃W̃HM

1
2 + Ir)− log det(1sM

1
2W̃W̃HM

1
2 ) wherez > 0. The expression of the variance for this

CLT will depend on some deterministic quantities which we recall hereafter.
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A. Notations

Let Z = M
1
2W̃ and define the resolvent matrixS(z) by:

S(z) =
(z
s
M

1
2W̃W̃HM

1
2 + Ir

)−1

=
(z
s
ZZH + Ir

)−1

,

Let alsoIs(z) be given by:

Is(z) = log det
(z
s
M

1
2W̃W̃HM

1
2 + Ir

)
= − log detS(z).

We introduce the following intermediate quantities:

β(z) =
1

s
trMS, α(z) =

1

s
trMES, and

o

β= β − α.

Matrix R̃(z) is a s× s diagonal matrix defined by:

R̃(z) = r̃Is,

wherer̃ = 1
1+zα(z) . We also defineR(z) the r × r matrix given by:

R(z) = (Ir + zr̃(z)M)
−1

.

We also defineδ(z) as the unique positive solution of the following equation:

δ(z) =
1

s
trM

(
Ir +

z

1 + zδ(z)
M

)−1

,

where the existence and uniqueness ofδ(z) have already been proven in [11]. LetΞ and Ξ̃ the r × r and s × s

diagonal matrices defined by:

Ξ =

(
Ir +

z

1 + zδ(z)
M

)−1

and Ξ̃ =
1

1 + zδ(z)
Is

Define alsoγ, δ̃(z) and γ̃ asγ = 1
s trM

2Ξ2, δ̃(z) = 1
1+zδ(z) and γ̃ = 1

(1+zδ(z))2 .

B. Mathematical tools

We recall here the mathematical tools that will be used to establish theorem 3.

1) Differentiation formulas:

∂Sp,q

∂Zi,j
= −z

s

[
ZHS

]
j,q

Sp,i,

∂Sp,q

∂Z∗
i,j

= −z

s
[SZ]p,j Si,q,

∂Is(z)

∂Z∗
i,j

=
z

s
[SZ]i,j ,

∂log det(1sZZ
H)

∂Z∗
i,j

=
[(
ZZH

)−1
Z
]
i,j

.
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2) Integration by parts formula for Gaussian functionals: Denote byΦ be aC1 complex function polynomially

bounded with its derivatives, then

E [Zi,jΦ(Z)] = miE

[
∂Φ(Z)

∂Z∗
i,j

]
.

wheremi is the i-th diagonal element ofM.

3) Poincaré-Nash inequality: The variance ofΦ(Z) can be upper-bounded as:

var(Φ(Z)) ≤
r∑

i=1

s∑

j=1

miE



∣∣∣∣
∂Φ(Z)

∂Zi,j

∣∣∣∣
2

+

∣∣∣∣∣
∂Φ(Z)

∂Z∗
i,j

∣∣∣∣∣

2

 .

4) Deterministic approximations of some functionals:

Proposition 1: Let Ar andBr be two sequences of respectivelyr×r ands×s diagonal deterministic matrices

with uniformly bounded spectral norm. Assume that assumptionsA1-A4 hold true. Then, the following holds

true:

1

s
trArR =

1

s
trArΞ+ O

(
s−2
)
, r̃ = δ̃ + O

(
s−2
)

and E
1

s
trArH =

1

s
trArΞ+ O

(
s−2
)
.

Proposition 2: Let Ar, Br and Cr be three sequences ofr × r, s × s and r × r diagonal deterministic

matrices whose spectral norm are uniformly bounded inr. Consider the following:

Φ(Z) =
1

s
tr

(
ArS

ZBrZ
H

s

)
, Ψ(Z) =

1

s
tr

(
ArSMS

ZBrZ
H

s

)
,

and assume thatA1-A4 hold true. Then,

a) The following estimations hold true:var(Φ(Z)), var(Ψ(Z)), var(β) areO
(
s−2
)
.

b) The following approximations hold true:

E [Φ(Z)] = δ̃
1

s
trArMΞ+ O

(
s−2
)
, (34)

E [Ψ(Z)] =
1

1− z2γγ̃

(
δ̃
1

s
trBr

1

s
tr(ArM

2Ξ2)− zγγ̃
1

s
trBr

1

s
trArMΞ

)
+ O

(
s−2
)
,

(35)

E

[
1

s
trMSMS

]
=

γ

1− z2γγ̃
+ O

(
s−2
)
. (36)

C. Central limit theorem

All the notations being defined, we are now in position to showthe CLT. We recall that our objective is to study

the fluctuations ofĈtrad(y) =
∑T

t=1 Ĉtrad,t(y). Since
(
Ĉtrad,t(y), t = 1, · · · , T

)
are independent, it suffices to

consider the CLT for̂Ctrad,t(y), for t ∈ {1, · · · , T }. We consider thus the random quantityIs(z)− log det
(
1
sZZ

H
)
.

Before getting into the proof details, we shall first recall the CLT of g(Z) = − log det(1sZZ
H) whose proof can be

found in [17]. Indeed, it is shown that:

−1

log(1− r
s )

(
− log det(

1

s
ZZH)− bs

)
D−−−−−−−→

N,M,n→∞
N(0, 1).
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where bs = −r
[(
1− s

r

)
log
(
1− r

s

)
− 1
]
. Like in [11], defineΨs(u, z) = E

[
eu(Is(z)−Vs(z)+g(Z)−bs)

]
, where

Vs(z) is the deterministic equivalent defined by:

Vs(z) = s log (1 + zδ(z)) + log det

(
Ir +

z

1 + zδ(z)
M

)
− szδ(z)δ̃(z),

and verifying:
1

s
(Is(z)− Vs(z))

a.s−−−−→
r,s→∞

0.

The principle of the proof is to establish a differential equation verified byΨs(u, z). Writing the derivative of

Ψs(u, z) with respect toz, we get:

∂Ψs

∂z
= E

[
u

∂Is(z)

∂z
euIs(z)+ug(Z)

]
e−uVs(z)−ubs − u

∂Vs(z)

∂z
Ψs(u, z). (37)

On the other hand, we have:

E

[
∂Is(z)

∂z
euIs(z)+ug(Z)

]
= E

[
tr

(
SZZH

s

)
euIs(z)+ug(Z)

]

=
1

s

r∑

p,i=1

s∑

j=1

E

[
Zi,jSp,iZ

∗
p,je

uI(z)+ug(Z)
]
.

Applying the integration by part formula, we get:

E

[
Zi,jSp,iZ

∗
p,je

uIs(z)+ug(Z)
]
= E

[
mi

∂

∂Z∗
i,j

[
Sp,iZ

∗
p,je

uI(z)+ug(Z)
]]

= E

[
miSp,iδ(p− i)euI(z)+ug(Z)

]

− z

s
E

[
[SZ]p,j miSi,iZ

∗
p,je

uIs(z)+ug(Z)
]

+
uz

n
E

[
miSp,iZ

∗
p,j [SZ]i,j e

uIs(z)+ug(Z)
]

+ E

[
umiSp,iZ

∗
p,j

∂g(Z)

∂Z∗
i,j

euIs(z)+ug(Z)

]
.

After summing over indexi, we obtain:

E

[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]
= E

[
mpSp,pe

uIs(z)+ug(Z)
]

− z

s
E

[
tr(MS) [SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

+
zu

s
E

[
[SMSZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

− uE

[[
SM

(
ZZH

)−1
Z
]
p,j

Z∗
p,je

uIs(z)+ug(Z)

]
. (38)

Recall the relationβ = 1
s trMS and

o

β= β − α whereα = 1
s trMES. Plugging the relationβ = α+

o

β into (39),

we get:

E

[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]
= E

[
mpSp,pe

uIs(z)+ug(Z)
]
− zE

[
o

β [SZ]p,j Z
∗
p,je

uIs(z)+ug(Z)

]

− zαE
[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]
+

zu

s
E

[
[SMSZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

− uE

[[
SM

(
ZZH

)−1
Z
]
p,j

Z∗
p,je

uIs(z)+ug(Z)

]
. (39)
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Hence, solving this equation with respect toE
[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

and using the fact that̃r = 1
1+zα , we

get:

E

[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]
= E

[
mpr̃Sp,pe

uIs(z)+ug(Z)
]
− zE

[
o

β r̃ [SZ]p,j Z
∗
p,je

uIs(z)+ug(Z)

]

+
z

s
E

[
ur̃ [SMSZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

− uE

[
r̃
[
SM

(
ZZH

)−1
Z
]
p,j

Z∗
p,je

uIs(z)+ug(Z)

]
. (40)

Using the relationSp,p = 1− z
s

[
SZZH

]
p,p

, we get after summing with respect toj,

E

[[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]
= E

[
mpr̃e

uIs(z)+ug(Z)
]
− zmpr̃

[[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]

− zE

[
o

β r̃

[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]
+

uz

s
E

[
r̃

[
SMS

ZZH

s

]

p,p

euIs(z)+ug(Z)

]

− uE

[
r̃

[
SM

s

]

p,p

euIs(z)+ug(Z)

]
.

Using the relationrp = 1
1+zr̃mp

, we get:

E

[[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]
= E

[
mprpr̃e

uIs(z)+ug(Z)
]
− zE

[
o

β r̃rp

[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]

+
uz

s
E

[
r̃rp

[
SMS

ZZH

s

]

p,p

euIs(z)+ug(Z)

]
− uE

[
r̃rp

[
SM

s

]

p,p

euIs(z)+ug(Z)

]
.

Summing overp, we finally get:

E

[
tr

(
SZZH

s

)
euIs(z)+ug(Z)

]
= r̃ tr(MR)E

[
euIs(z)+ug(Z)

]
− zE

[
o

β r̃ tr

(
RS

ZZH

s

)
euIs(z)+ug(Z)

]

+
z

s
uE

[
r̃ tr

(
RSMS

ZZH

n

)
euIs(z)+ug(Z)

]

− ur̃E

[
tr

(
RSM

s

)
euIs(z)+ug(Z)

]

= χ1 + χ2 + χ3 + χ4.

It remains thus to deal with the terms(χi, 1 ≤ i ≤ 4). Using proposition 1, we have:

χ1 = r̃ trMRE

[
euIs(z)+ug(Z)

]
= sδδ̃E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (41)

To deal withχ3, we apply the results of proposition 2-b, withAr = R andBr = I. In this case,χ3 writes as :

χ3 = zur̃EΨ(Z)euIs(z)+ug(Z). Using Cauchy-Schwartz inequality, we get:

∣∣∣E
(
Ψ(Z)euIs(z)+ug(Z)

)
− EeuIs(z)+ug(Z)

E (Ψ(Z))
∣∣∣ ≤

√
E

[∣∣∣
o

Ψ (Z)
∣∣∣
2
]
,

where
o

Ψ (Z) = Ψ(Z)− E (Ψ(Z)). Therefore,

χ3 =
zuδ̃

1− z2γγ̃

[
δ̃
1

n
tr(M2Ξ3)− zγγ̃

s
trMΞ2

]
E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (42)
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The termχ2 can be dealt with in the same way, thus proving:

χ2 = −zE

[
o

β euIs(z)+ug(Z)

]
γ̃ tr(MΞ2) + O

(
s−1
)
. (43)

Since tr(MΞ2) is of orders, we shall expandE

[
o

β euIs(z)+ug(Z)

]
to at least the orders−1, and thus

o

β and

E
[
euIs(z)+ug(Z)

]
cannot be separated in the same way as above.

Indeed, we shall first take the sum overj in (40), thus yielding:

E

[[
SZZH

]
p,p

euIs(z)+ug(Z)
]
= E

[
smpr̃Sp,pe

uIs(z)+ug(Z)
]
− zE

[
o

β r̃
[
SZZH

]
p,p

euIs(z)+ug(Z)

]

+
z

s
E

[
ur̃

[
SMSZZH

]
p,p

euIs(z)+ug(Z)
]
− uE

[
r̃ [SM]p,p e

uIs(z)+ug(Z)
]
.

(44)

Using the fact that:

z

s

[[
SZZH

]
p,p

euIs(z)+ug(Z)
]
= E

[
euIs(z)+ug(Z)

]
− E

[
Sp,pe

uIs(z)+ug(Z)
]
,

(44) becomes:

E

[
euIs(z)+ug(Z)

]
− E

[
Sp,pe

uIs(z)+ug(Z)
]
= zE

[
mpr̃Sp,pe

uIs(z)+ug(Z)
]
− z2E

[
o

β r̃

[
SZZH

s

]
euIs(z)+ug(Z)

]

+
z2

s
E

[
ur̃

[
SMS

ZZH

s

]

p,p

euIs(z)+ug(Z)

]
− uz

s
E

[
r̃ [SM]p,p e

uIs(z)+ug(Z)
]
.

(45)

SolvingE
[
Sp,pe

uIs(z)+ug(Z)
]

in (45) and using the relationrp = 1
1+zmpr̃

, we obtain:

E

[
Sp,pe

uIs(z)+ug(Z)
]
= E

[
rpe

uIs(z)+ug(Z)
]
+

z2

s
E

[
o

β rpr̃
[
SZZH

]
p,p

euIs(z)+ug(Z)

]

− z2

s
E

[
ur̃rp

[
SMS

ZZH

s

]

p,p

euIs(z)+ug(Z)

]
+

uz

s
E

[
r̃rp [SM]p,p e

uIs(z)+ug(Z)
]
.

(46)

Multiplying both sides in (46) bymp and summing overp, we get:

E

[
o

β euIs(z)+ug(Z)

]
= E

[
1

s
tr(MR−MES)euIs(z)+ug(Z)

]
+

z2

s
E

[
o

β
r̃

s
tr(MRSZZH)euIs(z)+ug(Z)

]

− z2

s
E

[
ur̃

1

s
tr(MRSMS

ZZH

s
)euIs(z)+ug(Z)

]
+

uz

s2
r̃E
[
tr (RMS) euIs(z)+ug(Z)

]
.

Using the approximating expressions in proposition 2, we get:

E

[
o

β euIs(z)+ug(Z)

]
= z2γγ̃E

[
o

β euIs(z)+ug(Z)

]
− z2δ̃u

s(1− z2γγ̃)

(
δ̃
1

s
tr(M3Ξ3)− zγ2γ̃

)
E

[
euIs(z)+ug(Z)

]

+
uz

s2
r̃E
[
tr(MRSM)euIs(z)+ug(Z)

]
+ O

(
s−2
)
.

Hence,

E

[
o

β euIs(z)+ug(Z)

]
= − z2u

s(1− z2γγ̃)2

(
γ̃
1

s
tr(M3Ξ3)− zγ2δ̃3

)
E

[
euIs(z)+ug(Z)

]

+
uzδ̃γ

s(1− z2γγ̃)
E

[
euIs(z)+ug(Z)

]
+ O

(
s−2
)
. (47)
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Plugging (47) into (43), we get:

χ2 =
z3uγ̃

s(1 − z2γγ̃)2

(
γ̃
1

s
tr(M3Ξ3)− zγ2δ̃3

)
tr(MΞ2)E

[
euIs(z)+ug(Z)

]
(48)

− uz2γδ̃3

(1− z2γγ̃)

1

s
tr
(
MΞ2

)
E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (49)

Finally, it remains to deal withχ4. Using proposition 1, we get:

χ4 = − uδ̃

s
tr
(
MΞ2

)
E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (50)

From (41), (42), (49) and (50), we then have:

E

[
tr

(
SZZH

s

)
euIs(z)+ug(Z)

]
=

[
sδδ̃ +

z3uγ̃2

s(1− z2γγ̃)2
1

s
tr
(
M3Ξ3

)
tr
(
MΞ2

)
+

zuγ̃

1− z2γγ̃

1

s
tr(M2Ξ3)

− z2uγδ̃3

(1− z2γγ̃)2
1

s
tr(MΞ2)− uδ̃

1− z2γγ̃

1

s
trMΞ2

]
× E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
.

(51)

HenceΨs(u, z) satisfies:

∂Ψs

∂z
=

[ −u2z3γ̃2

(1 − z2γγ̃)2
1

s
tr
(
M3Ξ3

) 1
s
tr
(
MΞ2

)
− u2zγ̃

(1− z2γγ̃)

1

s
tr
(
M2Ξ3

)

+
u2z2γδ̃3

(1 − z2γγ̃)2
1

s
tr
(
MΞ2

)
+

u2δ̃

1− z2γγ̃

1

s
tr
(
MΞ2

)
]
Ψs(u, z) + O

(
s−1
)
.

Following the same lines as in [11], one can prove that:

−d log
(
1− z2γγ̃

)

dz
=

1

1− z2γγ̃

(
−z2γδ̃3 1

s tr
(
MΞ2

)

1− z2γγ̃
+ zγ̃

1

s
tr
(
M2Ξ3

)
+

z3γ̃2 1
s tr

(
M3Ξ3

)
1
s tr

(
MΞ2

)

1− z2γγ̃

)
.

(52)

Moreover, from the system of equations (54) in [11], one can find that:

1

2

d log γ̃

dz
= − δ̃ 1

s tr
(
MΞ2

)

1− z2γγ̃
. (53)

Using (52) and (53), we finally get:

∂Ψs

∂z
= −u2

2

[
− d

dz
log(1− z2γγ̃) +

d log γ̃

dz

]
Ψs(u, z) + O

(
s−1
)
.

Let σ2
T = − log

(
1− z2γγ̃

)
+ log γ̃ andKs(u, z) = Ψs(u, z) exp

(
u2σ2

T

2

)
. Therefore,Ks(u, z) satisfies:

∂Ks

∂z
= ǫ(s, z) exp

(
u2σ2

T

2

)
,

whereǫ(s, z) = O
(
s−1
)
. On the other hand, we have:

Ks(u, z) = E

[
eu(− log det( 1

s
ZZ

H−bs))
]
.

Hence,

Ks(u, z) = Ks(u, 0) +

∫ z

0

ǫs(u, x)dx

= e
u2 log(1− r

s
)

2 + O
(
s−1
)
.
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The characteristic functionΨs(u, z) can be thus approximated as:

Ψs(u, z) = exp

(
−u2σ2

T

2
+

u2 log(1− r
s )

2

)
+ O

(
s−1
)
. (54)

The characteristic function satisfies the same equation as in [11]. The single difference is that the varianceαN,t(y)

given by:

αN,t(y) = − log

(
1− γγ̃

γ̃

)
− log(1− r

s
) (55)

has two additive terms accounting for the variance ofg(Z) and the correlation betweeng(Z) andIs(z). The CLT

can be thus established by using the same arguments in [11], provided that we show thatlim inf αN,t(y) > 0. For

that, we need only to prove that:

lim inf
1− z2γγ̃

γ̃
> 0.

Deriving δ̃ with respect toz, one can easily see that:

1− z2γγ̃

γ̃
= − 1

dδ̃
dz

1

s
tr
(
MΞ2

)
.

It has been shown in [11, eq.(67)] that− dδ̃
dz satisfies:

0 < −dδ̃

dz
<

r

s
λmax,t,

whereλmax = max (λ1,t, · · · , λr,t). This fact combined withlim inf 1
s tr

(
MΞ2

)
implies thatlim inf αN,t(y) > 0.

It remains thus to express the varianceαN,t(y) using the original notations. One can easily show that:

δ =
1

M −N + r
tr

(
My

M −N + r
D

− 1
2

t UH

t HtH
H

t UtD
− 1

2
t +

IN

1 + δ

)−1

− (N − r)(1 + δ)

M −N + r

=
1

M −N + r
tr

(
(GtG

H

t + σ2IN )

(
My

M −N + r
HtH

H

t +
GtG

H

t + σ2IN

1 + δ

)−1
)

− (N − r)(1 + δ)

M −N + r

=
1

M
tr

(
(GtG

H

t + σ2IN )

(
yHtH

H

t +
(M −N + r)(GtG

H

t + σ2IN )

M(1 + δ)

)−1
)

− (N − r)(1 + δ)

M −N + r
. (56)

Then, from (56), we can prove thatM(δ+1)
M−N+r − 1 is solution inx of:

x =
1

M
tr

(
(GtG

H

t + σ2IN )

(
yHtH

H

t +
GtG

H

t

1 + x

)−1
)
. (57)

Sinceκt is the unique solution of (57), we have:

M(δ + 1)

M −N + r
− 1 = κt,

or equivalently:

δ̃ =
1

1 + δ
=

M

(M −N + r)(κt + 1)
.

Therefore:

γ̃ = δ̃2 =
M2

(M −N + r)2(κt + 1)2
. (58)
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In the same way, one can prove thatγ can be expressed in terms of the original notations as:

γ =
(M −N + r)

M2
tr

(
yHtH

H

t

(
GtG

H

t + σ2IN
)−1

+
IN

κt + 1

)−2

− (κt + 1)2(N − r)(M −N + r)

M2
. (59)

Substituting (59) and (58) into (55),αN,t(y) becomes

αN,t(y) = logM2 − log

(
(M −N)

(
M(κt + 1)2 − tr

(
yHtH

H

t

(
GtG

H

t + σ2IN
)−1

+
IN

κt + 1

)−2
))

.

APPENDIX E

PROOF OF THEOREM3

1) Denote byR(y) andf(y) the functionals given by:

f(y) =
1

M
tr(yHtH

H

t Qt(y)) +
M −N

M
− y

R(y) = − log det(Qt(y)) + (M −N) log(y)−My.

whereQt(y) =
(
yHtH

H
t + 1

MYtY
H
t

)−1
. According to Poincaré-Nash inequality, we have:

var(ŷN,t) ≤ K

N∑

i=1

M∑

j=1


E
∣∣∣∣∣
∂ŷN,t

∂Y ∗
i,j

∣∣∣∣∣

2

+ E

∣∣∣∣
∂ŷN,t

∂Yi,j

∣∣∣∣
2

 . (60)

We only deal with the first sum in the previous inequality; thesecond one can be handled similarly. By the implicit

function theorem, if∂f∂y 6= 0 then ∂ŷN,t

∂Y ∗

i,j

writes:

∂ŷN,t

∂Y ∗
i,j

=

∂f
∂Y ∗

i,j

(ŷN,t)

∂f
∂y (ŷN,t)

. (61)

As will be shown later, to conclude thatvar(ŷN,t) = O(M−2), we need to establish that
∣∣∣∂f∂y (ŷN,t)

∣∣∣ is lower

bounded away from zero, which is a much stronger requirementthan ∂f
∂y 6= 0. This can be proved by noticing that

∂R
∂y = Mf

y . Hence

∂2R

∂y2
(ŷN,t) =

M ∂f
∂y (ŷN,t)

ŷN,t
. (62)

On the other hand, one can prove by straightforward calculations that
∣∣∣∂2R
∂y2 (ŷN,t)

∣∣∣ ≥ M−N
ŷ2
N,t

which, plugged into

(62), yields: ∣∣∣∣
∂f

∂y

∣∣∣∣ ≥
M −N

MŷN,t
, (63)

which is eventually uniformily lower bounded away from 0 dueto AssumptionA2 and to the fact that̂yN,t ≤ 1

by mere definition. Therefore,

N∑

i=1

M∑

j=1

E

∣∣∣∣∣
∂ŷN,t

∂Y ∗
i,j

∣∣∣∣∣

2

≤ K

M4

N∑

i=1

M∑

j=1

|
[
ŷN,tQtHtH

H

t QtY
]
i,j

|2 ,

≤ K

M3
tr

(
QtHtH

H

t Qt
YY∗

M
QtHtH

H

t Qt

)
,

≤ K

M2
.
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To prove 2), we rely on the resolvent identity which states:

Qt(a)−Qt(b) = (b− a)Qt(a)HtH
H

t Qt(b) . (64)

Using (64), we obtain:

ŷN,t =
1

M
(ŷN,t − EŷN,t) trHtH

H

t Qt(ŷN,t) +
1

M
trE(ŷN,t)HtH

H

t Qt(ŷN,t) +
M −N

M
,

=
1

M
(ŷN,t − EŷN,t)HtH

H

t Qt(EŷN,t)−
1

M
tr(ŷN,t − EŷN,t)

2HtH
H

t Qt(ŷN,t)HtH
H

t Qt(EŷN,t)

+
1

M
trE(ŷN,t)HtH

H

t Qt(EŷN,t)−
1

M
trE(ŷN,t)(ŷN,t − E(ŷN,t))HtH

H

t Qt(ŷN,t)HtH
H

t Qt(E(ŷN,t)) +
M −N

M
,

(a)
=

1

M
(ŷN,t − EŷN,t) trHtH

H

t T(E(ŷN,t)) +
1

M
E(ŷN,t)HtH

H

t T(E(ŷN,t))

− E(ŷN,t)(ŷN,t − EŷN,t)E

[
1

M
trHtH

H

t Qt(ŷN,t)HtH
H

t Qt(E(ŷN,t))

]
+

M −N

M
+ ε ,

whereε satisfiesE(ε) = O(M−2). Note that equality(a) follows from the fact that

var(ŷN,t) = O

(
1

M2

)
and var

(
1

M
trHtH

H

t Qt(ŷN,t)HtH
H

t Qt(E(ŷN,t))

)
= O

(
1

M2

)
.

Both estimates can be established with the help of Poincaré-Nash inequality. Therefore:

E(ŷN,t) =
1

M
E(ŷN,t) trHtH

H

t Tt(E(ŷN,t)) +
M −N

M
+ O(M−2)

= 1− 1

M(1 + κ(E(ŷN,t))
tr((GtG

H

t + σ2IN )Tt(E(ŷN,t))) + O(M−2)

= 1− κ(E(ŷN,t))

1 + κ(E(ŷN,t))
+ O(M−2)

=
1

1 + κ(E(ŷN,t))
+ O(M−2) . (65)

Now recall the definition ofyN,t = (1 + κ(yN,t))
−1. One can prove easily thaty 7→ κ(y) is a contraction, i.e. that

there existskN < 1 such that

|κ(y1)− κ(y2)| ≤ kN |y1 − y2|, ∀y1, y2 > 0 ,

and thatlim supN,n kN < 1. Using the mere definition ofyN,t and (65), we obtain:

E(ŷN,t)− yN,t =
1

1 + κ(E(ŷN,t))
− 1

1 + κ(yN,t)
+ O(M−2) ,

=
κ(yN,t)− κ(E(yN,t))

(1 + κ(E(yN,t)))(1 + κ(yN,t))
+ O(M−2) .

Hence,

|E(ŷN,t)− yN,t| ≤ kN |E(ŷN,t)− yN,t|+ O(M−2) ,

thus proving that|E(ŷN,t)− yN,t| = O(M−2), which concludes the proof.
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