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Abstract

In this paper, we address the problem of fast point-to-poi@nnel capacity estimation in the situation where
the receiver undergoes unknown colored interference fratipte sources, whereas the channel with the transmitter
is perfectly known. We consider the scenario where the nurob@bservations is not sufficient to guarantee high
performance of traditional estimators. Using estimatieohhiques associated to large random matrix theory, we
derive an estimator referred to as the G-estimator and caifm performance against the conventional estimator.
In particular, we prove that, unlike the conventional estion, the G-estimator is consistent in the large dimens$iona
setting, its variance going to zero as both space and timerdimans increase simultaneously. We finally complete
the analysis by describing its fluctuations: When prope#dptered and rescaled, the G-estimator satisfies a central
limit theorem, hence has Gaussian fluctuations. Simulstame provided which clearly show that the G-estimator
outperforms the conventional one; simulations also stsosgpport the theoretical results even for small system
dimensions.

I. INTRODUCTION

The use of multiple-input-multiple-output (MIMO) techrgjies has the potential to achieve high data rates, since
several independent channels between the transmittethaene:¢eiver can be exploited. However, the effectiveness
of this technology may depend on the conditions of the sumdimg environment such as the availability of the
channel state information or the presence of colored iaterfce. From a practical point of view, in a fast varying
fading channel, it is of fundamental importance for userafmdly estimate the maximum rate that can be achieved
in the communication to other users.

Conventional methods for channel capacity estimation oglythe use of classical estimation techniques which
assume a large number of observations. In general, congidee parameter we wish to estimate, ahfl the
number of independent and identically distributed obs@warectorsy, - -- ,yar € CV. The parametef is often
a function of the covariance matr® = E [ylylH] of the received random process, f.e- f(X), for some function
f. Using the strong law of large numbers, a consistent estirmfithe covariance of the random process is simply
given by the empirical covariance &f = [y, -+ ,yu], i.e. & £ SYYH =1 S M. yiy™. Classical estimation
methods then consist in using the empirical covariance asod gpproximation o, thus yielding the estimator

9 of 0, wheref = f(f]). Such methods provide good performance as long as the nuohldrservations\V/ is
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very large compared to the vector si2g a situation rarely encountered in wireless communicatiespecially in
fast changing environments.

To address the scenario where the number of observalibnis of the same order as the dimensidyhof each
observation, new consistent estimation methods basedrga fandom matrix theory have been proposed in the
context of wireless communications. They were initiallypbgd to eigenvector and eigenvalue estimation problems
[1], which has given rise to improved subspace estimatiohrtgues([2],[[3]. Recently, the use of these methods to
estimate performance indexes has spurred the interestrof maearchers. In the field of wireless communications,
the capacity estimation of MIMO systems under imperfectncigh knowledge has been addressed In [4] and [5],
where methods based respectively on free probability thand large random matrix theory have been proposed.

In this paper, we consider a different situation where tloeiker perfectly knows the channel with the transmitter
but does not a priori know the experienced interferenceh $usituation can be encountered in multi-cell scenarios,
where interference stemming from neighboring cell use@nghs fast, which is a natural assumption in packet
switch transmissions. The estimated capacity can serveafiran upper-bound for the maximum rate that could
be achieved. Indeed, this rate cannot be achieved if thenehamerference is not exactly estimated and therefore
the estimator may serve only as an approximate achievablerpmnce. Another usage is found in the context of
cognitive radios where multiple frequency bands are sefmetlture transmissions. In this setting, the proposed
estimator provides the expected rate performance acHeimleach frequency band. The transmitter-receiver pair
then elects the bands achieving the highest rates, for wiiehexact interference is then inferred for proper
transmission at the estimated rate. This approach is muale meccurate than the approach consisting only in
evaluating the total noise variance in each band and mudbrféisan the approach consisting in evaluating the
exact interference matrix for each band.

We specifically derive first a consistent estimator of theodig capacity in the case where the channel from
the transmitter to the receiver is assumed to be known. Ircangestep, we study the asymptotic performance of
the proposed estimator and compare it with that of the i@t one. In particular, we prove that both estimators
converge to Gaussian random variables and identify theiorétical variances.

Notations: In the following, boldface lower case symbols representorse capital boldface characters denote
matrices [y is the sizeN identity matrix). If A is a given matrix,A" stands for its transconjugate; A is square,
tr(A), det(A) and ||A|| respectively stand for the trace, the determinant and teetsgd norm of A. We say
that the variableX has a standard complex Gaussian distributioXif= U + iV (i2 = —1) , whereU,V are
independent real random variables with Gaussian distaibat(0,2-1). Almost sure convergence will be denoted
by 2%, and convergence in distribution b%. Notation O will refer to Landau’s notationu,, = O(v,,) if there
exists a bounded sequeng&g, such thatu,, = K, v,.

Paper organization:In Section[1l, we present the system model and formalize ematiically the considered
problem. In Sectionll, we provide first order results foethonventional and the proposed estimator. We show
that while the proposed one is consistent with growisigM/, the traditional estimator is asymptotically biased.

In Section1V, we study the fluctuations of both estimators: @stablish central limit theorems (CLT), hence we
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Fig. 1. System model.

prove the Gaussianity of the fluctuations, and we derive Hyenatotic variances. Finally, we provide in Section
[Vl numerical simulations that support the accuracy of thevddrresults. Mathematical details are provided in the

appendices.

Il. SYSTEM MODEL AND PROBLEM SETTING
The system model

Consider a communication link between two users: a tratsn@hd a receiver equipped witly and N antennas,
respectively. Also assume that the communication link fisca¢d by the presence &f interferers withn; antennas
each,1 < k < K. Figure[1 describes this scenario, in the case of two imiadeaisers. Similar to[[5], we assume
that time is slotted. We denofg the number of time slots and assume that the channel ma#aieedeterministic
and remain constant in every time slote {1,--- ,T}. In other words, we assume that within each slothe
N x ng channel matrixH; representing the channel between the transmitter and teves, and theV x ny
channel matrixG, ;, standing for the channel between the transmitter and:ttieinterferer are deterministic and
constant. Denote b}/ the data transmission periods in each slot. Tiieconcatenated signal vectors received in

slot t are gathered if¥; € CV*M given by:

K
?t = HtXt70 + Z Gt,kXt,k + oWy,
k=1

whereX; o € C"*M is the concatenated matrix of the transmitted sign¥ils, € C™=*M represents the interfering
signal andW,; € CN*M stands for the additive noise. Their formal statisticalganties are given in the following
assumption:

Assumption Al: For givent and k wherel < ¢t < T and1 < k < K, the entries of the matriceX; o,
X and W, are random variables, independent and identically disteib (i.i.d.) with standard complex Gaussian

distribution and independent acrass:.
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Assuming a perfect decoding &; o, initially transmitted at low rate, and a perfect knowledygehe channel

matrix H;, the residual interference to which the receiver has adsegsen by:

K
Y. =Y, - H, X0 = Z Gy Xk + oWy
k=1
This is also the received signal at skoif no transmissions occurred.

The receiver wants to evaluate the average rate that canHievad during theT" slots, or equivalently by
approximating the ergodic capacity (per transmit antendayler AssumptiofA1, an approximate of the ergodic

capacity is given by:

T K K
1
Cog = o7 > logdet <021N +) GGl + HtH';'> — log det <021N +)° thkG';kﬂ
t=1 k=1 k=1
1 T
= 7 > [logdet (0°Iy + G¢GY + H/H}') — logdet (0”Iy + G;G})] 1)
t=1
where
G, = [Gt,la T aGt,K] e CmN 2
with n = Zszl N
In this paper, we address the problem of estimatifig, based on thé’ successive observatiois,, ..., Yr
assuming perfect knowledge #f,,--- ,Hr.

The conventional large-M estimatd?;,.q

If the numberM of available observations in each slot is very large congbaoethe channel vectol, the

standard estimatat,.q, hereafter referred to as the largé-estimator, reads:

T T
. 1 1o oy y 1 1o oy
Ctrad = W t:E - 10g det (MYth + Hth > - W t:E - 10g det (MYth . (3)

However, in practice, the situatiol/ > N is rarely encountered, especially in systems embeddedmutitiple
antennas and under fast fading channel conditions implihag)M is of the same order of magnitude A5

In this case, it can be proved that the lalye-estimator is asymptotically biased, henwet consistent. The
objective of this work is to propose a consistent estimato€’Q, when the number of available observations is of
the same order (although larger) thah We will refer to this estimator as the G-estimator in refe@to Girko
who introduced many estimatoid [6]/) [7] in similar conteatsl coined these techniques as G-estimation techniques
(standing forgeneralestimation techniques).

It will be convenient in the sequel to consider the followingtation:
1 & 1 1« 1
A _ H H H
Otrad(y) = W ; 10g det (MYth + yHth > — W ; 10g det (MYth > . (4)

With this notation at hand;aq = Ciraa(1).
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The asymptotic regime, remaining assumptions

Recall that, = "1, nx. The derivation of the G-estimator will be carried out untfes following assumptions:

Assumption A2: M, N,n,ng — +oo, and:

... N . N

0 < liminf — < limsup — < +oo,
M,N—oo n M,N—oo T

1 < liminf — < limsup — < +oo,
M,N—oco N M,N—00

0 < liminf -2 < limsup 2 < 4.
N,ng—oc0 N,ng—00

Remark 1:The constraints oveN andn simply state that these quantities remain of the same oftherlower
bound for the ratiol/ /N accounts for the fact that that is larger thanV, although of the same order.
In the rest of the paper, this regime will simply be referre@s M, N, n — oo. We are now in position to formalize
the assumptions over the channel matrices:

Assumption A3: Lett € {1,---,T} (T fixed). Consider the familyG,) of N xn matrices and the familyH,)
of N x ng matrices whereV, n, ny satisfy AssumptiofA2l Then the spectral norms &; andH; are uniformly

bounded in the sense that:

sup sup ||Gi|| < oo, sup sup [|[Hi|| < oo .
1<t<T N,n 1<t<T N,no

Assumption A4: Denote byr, the rank ofH,. Then

0 < liminf Tt < 1imsupﬁ < 1.

N,ng—oc0 N,ng—00
IIl. CONVERGENCE OF THE CAPACITY ESTIMATORS

In this section, we study the asymptotic behaviour of thgda¥/ estimatorCi..q and prove that under the
asymptotic regimdA2, this estimator is biased. We then build a consistent estimbased on G-estimation
techniques. Both results are essentially based on larggonarmatrix theory. Let us first briefly introduce the
G-estimation techniques. G-estimation techniques canobghly classified into two categories. The first one is
based on the Stieltjes transform (the definition of whichdsatled below) and was taken up by Mestre who
developed a framework for eigenvalue and eigenvector asitim issues([1].

Let P be a probability distribution ofR*, then the Stieltjes transform(z) of P is defined as

m(z)—/R%, z€ C\RYT. (5)

For example, the Stieltjes transforthY? associated to the empirical distribution of the eigenwaloé the

Hermitian matrixY,Y! is simply the normalized trace of the associated resolvent:

1 1 1 1
_ H -1
thY?(z)—Ntr(Yth — 2Iy) _N»E_l N
where A1, --- , Ay denotes the eigenvalues MtYf'. Since their introduction by Marcenko and Pastur in their

seminal paper(]8], Stielties transforms have proved to baghhh efficient tool to study the spectrum of large
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random matrices. From an estimation point of view, Stisltfansform are, in the large dimension regime of interest,
consistent estimates of well-identified deterministic mjitees. Therefore, the approach consists in expressiag th
parameters of interest as functions of the Stieltjes tansbf the eigenvalue distribution &f ;Y. This approach
is appropriate as long as we consider estimation of paramefepending either on the eigenvalues or on the
eigenvectors o, Y, but cannot be used when the dependence is on both of therifl; lilewillustrated in Lemma
below.

The second approach is based on other consistent estintifferent from the Stieltjes transformzYtY.: (2).

Details will be provided in Section II13B.

A. The large-M estimator is biased

Recall the definition of the largé4 estimatorCt..q given in [3). Before providing the expression of the asyrtipto
bias for Ciraq, We shall define some deterministic quantities and alsoystiueir properties under the appropriate
asymptotic regimé\/, N,n — oc.

Lemma 1:Let Assumption$&ATHAZ hold true. Denotd™; = G;G! + 021y and lety > 0. Then:

1) The functional equation:

“1
ke(y) = % tr (Ft (%ﬁtt(y) + yHtH?) ) (6)

admits a unique positive solutioty(y).

Denote byT;(y) and Q:(y) the following quantities:

I‘t _1 H 1 H
-t Q = HH'+—Y;Y
1+ Iit(y)) ’ «(v) (y U VR

-1
n@=@mﬂ+

2) Then, for any deterministic famil§S,) of N x N complex matrices with uniformly bounded spectral norm,

we have:
1 1 a.s.
i tr SnQe(y) — M tr SnTe(y) m 0
3) Let
K
Vi(y) = —logdet(T(y)) + M log(1 + r+(y)) — Ml—Fti/(’z()y) ’

then, the following convergence holds true:

1 1 a.s.
¥ logdet Q¢(y) — Nvt(y) m 0.

Proof of Lemmdll is postponed to Appendix A.

Remark 2:Note that items 2) and 3) provide deterministic equivaleftsarious random quantities under the
asymptotic regime of interest.

In the next lemma, we show how the Stieltjes transform meited be used to compute a consistent estimate
of & 377 logdet(c?Iy + G,GY). This term only depends on the eigenvalues@f which are not directly

observable. The idea underlying G-estimation is to userazbérandom matrix theory tools to link the asymptotic
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non-observable Stieltjes transform Gf; to that of the observable covariance matj%j?(YtY,'ﬂ. More precisely, we

prove the following:
Lemma 2:Let Assumption$ATHA4 hold true. Then, the following convergence holds true:

N_Mlo <M—N)_1 as.

N M M,N,n—co 0

1 1
N logdet(G; G + o?Iy) — N logdet (Y, YH) +

Proof of Lemmd_R is postponed to Appendik B.

Remark 3:As a consequence of this lemma, it turns out that a consisgtimate 0% log det(G;GH+0%1y) is
simply the traditionnal largé4 estimator (recall tha;lwIEYtYl';' = G;GH +621Iy) up to a term of bias depending
on the time and space dimensions.

We now derive the bias of the estimatof,.q. Prior to that, define the deterministic quantityy) as :

T
1 Mr(y) H, 2

V(y) = —— log det(T M log(1 — ———— —logdet I

) =57 22 1wt (Ty) M1+ ) = T o det( GGl +0°L)

M—-N M—-N
+ 10g< % )—i—l. @)
wherer,(y) is the unique solution of(6).
Theorem 1 (Bias of the large-M estimatof)et AssumptionAIHAZ hold true. Then,
Ciraa — V(1) —22 0.
M,N ,n—o0
Proof: Gathering items 3) and 4) in Lemrhé 1 yields the desired result ]

B. A G-estimator for the capacity

The term 4 logdet(o?Iy + G;GY + H,HY') in the definition of the capacity depends on the eigenvalides o
GtG!{' + HtH!j'. Since matrixH; is assumed to be known and to not necessarily share the sgemevector space
as G, the capacity depends simultaneously on the eigenvalugdheneigenvectors of the unobservable matrix
G;. Hence, the use of the Stieltjes transform cannot be applesimilar situation was successfully addressed in
[5], by using a novel approach based on deterministic etprite as developed inl[9]. In the sequel, we follow the
same approach in|[5].

Theorem 2 (a G-estimator for the capacitypssume thal&1 and[AJ hold true; consider the quantity:

T —1
1 . 1
Co = ﬁ ti 1 log det <IN + yNﬂgHtH:;I (MYtY?) )

—|—(M_N) lo M +1 M,
N g M_NyN,t NyN.,t )

wheregy ; is the unique real positive solution of the following equoati

-1
YtYE') +

. N, . 1
YNt = ynt tr HtH? <yN.¢ HtH:;| + —

M

M- N
o

M
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Then,

A a.s.
Cg — Copg —2550.
M,N,n—oco

In the sequel, we will refer t€’¢ as the G-estimator.
Remark 4:Note thatC writes:

. M,
gng | +1| — =N s

N M—-N N

. A . M—N
CG - Ctrad(yN,t) + (7) |:10g (
a relation that sheds some light on the difference betwfégarand Cirad-
In order to prove Theorefd 2, it is sufficient to provide a cetesit estimate of each quantity in the sum of the

expression of the ergodic capacity. Denote@®ythe capacity at time given by:
1 1
c, 2 + log det(o’Iy + G,GH + H/H) — ~ o8 det(c’Iy + G,GH) |
£ Ci1—Cz .

As a consistent estimaiém of Ct 2 has already been provided by Lemira 2, it remains to build @istamt
estimate forC ;.

The proof of Theorern]2 is postponed to Apperidix C. Althougihiecal, this proof is very illustrative on how to
build consistent estimators based on deterministic etpritg. We therefore provide below an outline of the proof.

Outline of the proof: The proof is divided into 4 steps:

1) Inthe first step, we exploit the convergence of paramedriuantities of interest. Denoféy) = % log det(ﬁYtijL
yH,H") and recall the definition of,(y) as given in Lemma]1-1). By Lemnia 1-3), we have:

GtG!{' + 0'2IN % fit(y) a.s
1+ Iit(y) N1+ Iit(y) M,N,n—oc0

Clearly, the deterministic quantity to whicf(y) converges differs front, ;.

0.

1 M
—f(y) + N log det < + yHtH:;') + ~ log(1 + s¢(y)) —

2) In the second step, we find a specific valug &b enforce the desired quantify; ; to appear: one can readily
check that ifyy ; is the solution of the following equation:

1

=, 8
Y T ) ®)
then one would immediately obtain:
1 1 - N M s.
Cer — [N log det (MY,gY:;| + yN7thH:;|) + log(yn.+) + N(l — YN, m 0. (9

Based on the definition of.(y), one can prove that there exists a unique posijive solution of [8), given

by the following closed-form expression:
1 _
yne=1=gotr [(G:GY + o?Iy)(HHY + GG + o°In) 7] . (10)

Unfortunately, the value ofy ; depends upon the unknown mati;.
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3) In the third step, we provide a consistent estimgtog of yn ;. Based on an analysis ef(y), and on finding
a consistent estimate for this quantity, one can prove theetexists a unique positive solutig ; to the
following equation:

M—-N
o

) 1 ) 1 -t
YNt = s tryne HtH:s-' (l/N,t HtH:;' + _YtY?) + (11)

M M
Moreover,jy ; satisfies:

~ a.s. 0
— — U
YNt YNt M,N,n—o0

4) Finally, it remains to check that one can replage; by g+ in the convergencgl(9). This will immediately
yield a consistent estima@m for Cy,1. For the proof of the theorem to be complete, it remains theyat

the estimates of’; ; andC; ». This yields :

R 1. R
Co = T;(Ct,l_ctﬂ) ,

which is the announced result.

IV. FLUCTUATIONS FOR THE CAPACITY ESTIMATORS

We develop in this section fluctuation results for the capmtimatorsé’trad and CG already introduced. More
precisely, we establish CLTs, provide explicit expressifor the variance, and prove that these estimators when
correctly centered and rescaled converge in distributievatd a Gaussian random variable.

While the entries of the matrice; and W, (cf. AssumptioAI) could have easily been taken non Gaussian to
establish first order results in Sectionl 11, the Gaussiaspprty of the entries is a central assumption to establish
fluctuation results. This assumption is natural in the aurréreless communications context.

The Gaussianity of the entries allows one to use the pow&®#ulssian methods adapted along the years to the
study of large random matrices by Pastur and co-authorse(ge¢10] - for application to wireless communication,
see [11], etc.). The Gaussian calculus heavily relies (lotiteclusively) on the integration by parts formula and

the Poincaré-Nash inequality, recalled in Apperidix D.

A. Fluctuations of the large-M estimator

In the previous section, we have shown that the large-M estims asymptotically biased, in the sense that it
converges to a deterministic equivalent which is differieom the theoretical ergodic capacity.

In the sequel, we shall study its fluctuations around thiemieinistic equivalent. We will prove that when properly
centered and rescaled, the large-M estimator convergestandard Gaussian random variable.

This result is an important first step to the study of the flatians of the G-estimator.

Theorem 3:Let Assumptionf8THAZ hold true and recall the definitiofl(4) «fftrad(y). Then,
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1) the sequence of real numbérsy (y)):

~ 2log(M)

T —2
amw——7?—7%2}%QM—NNM@@HJV—m(—ﬂ—wmeWmG%mﬁm1))
=1

ki(y) + 1
is well-defined. Furthermore:
0 < liminf ay(y) < limsup ayn(y) < +oo.
M,N,n—oco M,N,n—o0
2) The following convergence holds true:
N .
—— (Cira -V
oy (Grsal) = V()
whereV(y) is defined in[(I7).

D

N,M,n—co NO,1)

Proof: See AppendixD. ]

B. Fluctuations of the G-estimator

As opposed to the large-M estimator, the G-estimator hadaosed-form expression, as tljg;,'s are solutions
of implicit equations (easily solved through numerical gutations, though). Establishing the CLT might seem
more difficult since the randomness comes from both the vedanatrixY; and the quantityjy ;.
In the following lemma, we shall prove that the fluctuatiofisj& ; — yn . are of order9(M—2), a rate which
is sufficient, as we will see later, to discard the randomisessiming fromy ;. in the study of the fluctuations.
Lemma 3:Fort € {1,--- ,T}, the following estimates hold true, a4, N,n — occ:
1) var(yn,:) = O(M~?) ,
2) Egne =yne+0O(M7?) .
Proof: See AppendiXE. [ |
We are now in position to state the CLT for the G-estimator.

Theorem 4:Let Assumption$ATHAJ hold true. Then,

(G — Clrg) —=— N(0,1),
9N N—00

wherefy given by:

T

ot (10 (e (G 517 ))

is well-defined and satisfies

0 < liminf 0y < limsup Oy < +oo.
M,N,n—oco M,N,n—00

Proof: Consider the functiort,(y) defined fory > 0 as:

1 Y. Y!H M- N M M Y. YH
= oo o 55) 5 o) ] o)

M N M —-N
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ThenC = % Zthl Ci(gn.¢). Since all the random variablé8,(yn¢), 1 <t < T) are independent, it is sufficient
to prove a CLT forC.(¢n,.), for a givent € {1,---,T}. In order to handle the randomnessf ;, we shall

perform a Taylor expansion d@f; aroundgy ;. Recall the following differentiation formula:
d
I logdet A(x) = tr A'(x) A~ (2)
X

(see for instance _[12, Section 15]). A direct applicatiortto$ formula, together with the mere definition f; ,

yields:
ac; .
- 0.
dy (yN,t)
Hence, the Taylor expansion writes:
. 5 2 d2€ ) 5 3 d3(?
NC. () = N€y () + NIl dCp |y lume = Iva)” S(Ene) . (13)
2 dy 6 dy
whereéy . lies betweeryy : and gy .. The mere definition[(11) of v ; yields:
M — N <4 <14 M — N
M = yN.,t = .

In particular,jx; uniformly belongs to a fixed compact interval, so dggs; for similar reasons. One can easily
prove that the second and third derivativesGpfy) are uniformly bounded on the union of these intervals. This
result combined with the fact tha¥E(jn+ — yn ) = O(M ') implies that the last two terms in the right hand
side (r.h.s.) of[(113) converge to zero in probability. By tSky’s Theorem[[13], it suffices to establish the CLT for
NC(yn,.) instead of NC(jn ) = NC(th). This is extremely helpful since unlikgy » whih is randomyy ; is

deterministic. The result is thus obtained by applying Teed3 and noticing that (yn ) + 1 = — [ ]

YN,t"

V. SIMULATIONS

In the simulations, we consider the case where a mobile tadmiith N = 4 antennas receives duridg = 15
slots, data stemming from am, = 4 antenna secondary transmitter. We assume that the comationidink is
interfered by K = 8 mono-antenna users. For each {1,--- ,7}, matricesH; and G; are randomly chosen as
standard Gaussian matrices and remain constant during timeMCarlo averaging. In a first experiment we Fet
to 10 and represent in Fidl] 2 the theoretical and empirical ndeedlvariances for the G-estimator with respect
to SNR = 0—12 We also display in the same graph the empirical variancén@flarged/ estimator. We note that
the G-estimator exhibits better performance for all SNRgear\We study in a second experiment the effecfl’of
when the SNR is set td0 dB. Fig.[3 represents the obtained results. We note thaé ¢hes larged/ estimator is
biased, its mean square error does not significantly dezneite 7' and remains almost unchanged, whereas the
G-estimator exhibits a low variance which drops linearlyhvi’. Finally, to assess the Gaussian behaviour of both
estimators, we represent in Fig. 4 and [Eig. 5 their corredipgrhistograms. We note a good fit between theoretical

and empirical results although the system dimensions aged.sm
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Fig. 2. Empirical and theoretical variances with respedht® SNR.

—x— Theoretical normalized variance (G-estimator)
—o— Empirical normalized variance (G-estimator)
—H— Empirical normalized variance (large-M estimatqr)
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Fig. 3. Empirical and theoretical variances with respedht® SNR.

VI. CONCLUSION

In this paper, we have proposed a novel G-estimator for fstétnation of the ergodic capacity in presence of
unknown interference in the case where the number of avaitatservations is of the same order as the dimension
of each observation. In particular, we have shown that the/eational estimator, based on the replacement of
the unknown covariance matrix of the observations by theigoap covariance matrix, is biased. Based on large

random matrix theory, we have introduced a novel G-estimatuich is unbiased and consistent. We then have
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Fig. 4. Histogram of s (Ciraa — V(1)).
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0o Histogram
—— Theoretical

Frequency of occurence

Fig. 5. Histogram of- (C; — Cerg).

studied the fluctuations of the two estimators and estaddli<bLTs for both of them. Numerical simulations have

been provided and strongly support the accuracy of our éénmesults even for usual system dimensions.
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APPENDIXA

PROOF OF LEMMA[I

Define forp > 0:

-1
1
Q:i(py) = <PIN+yHtH?+MYtY?) :
1 H 1 H -
9e(pyy) = 3y logdet ( ply +yHHY + Y Y, :

Denote byX; = [X!,,---,X!]", andZ, = [W" X}]" thenY; = [0Iy G/]Z:. Denote bylsIy G| =
Utthf the singular value decomposition pfly G;] whereX; = [Dt% ONXH}, D, being the diagonal matrix

of eigenvalues oiG;G! + o2I; in particular,D;’s entries are nonnegative and bounded away from zero. Let
Z, = VH (Wi X'{']H. Since the entries oZ; are i.i.d. and GaussiarZ; has the same entry distribution @s.

~ —~ ~ H
Writing Z; = [W? X?} , g¢(p,y) becomes:
1 o, L 357 GoHTY S TTH
ge(p,y) = N logdet | pIn + yH:H; + MUtDt WWiD U )
1 H H I 30 wHp
—  logdet ( pLy +yU'H/HIU, + D/ W, WD} ).

Obviously, we have-+ log det(Q:(y)) = ¢:(0,y) and 3; tr Q.(y) = 7 tr Q;(0, ). Deterministic equivalents for
g:(p,y) and Q:(p,y) have been derived inl[9] and are recalled in the lemma below.

Lemma 4 (cf.[|9]): Let p > 0.

1) Denote byI'; = G, G + oIy and lety > 0. The following functional equation:

1 T, -1
— —tr|T, (oI HH!  ——t
W) = 51 r( t<pN+y ! t+1+m(p,y)) )

admits a unique positive solutiof(p, y).
2) Define

T, -1
Ti(p,y) = | pIn +yHH! + ——L ) .
(P, y) (pzv yH.H; 1+Kt(p’y))

Then, for any sequence of deterministic matri€gs € CV>" with uniformly bounded spectral norm:

1 1 a.s.
MtrSNQt(p,y) - MtrsNTt(p’y) MNmooo 0.

In particular, settindSy = I'y, we get:

1 a.s.
37 TTQi0.w) = Falpry) S 0
3) Let
M K/t(pa y)

1 M
Vilp,y) = N logdet(Ty(p,y)) + ~ log(1 + ke(p, y)) — Nty

then

_ V a.s. 0 .
a(p,y) — Vi(p,y) VN
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The general idea of the proof of Lema 1 is to transfer theseraiénitic equivalents to the cage, 0; we will
proceed by taking advantage from from the fact that all theganal elements ab, are positive and uniformly
bounded away from zero.

We first prove the existence and uniqueness.df)). Consider the functiorf defined on[0, co[ by:

1 D, \ "
f:xHI—HtrDt (yU?HtH:;'Ut_F 1+tx) .

An easy computation yields the derivative piwith respect tor:

f’(x)zl—itrD UtHENU, + 2 oD UMH,HMU, + -2 -
Mtytttt1+x (1+I)2ytttt1+x

which is obviously always positive. Functiofi is thus always increasing and thus establishes a bijectiom f
[0,00] to [f(0), +o0]. Since f(0) is negative, we conclude thgthas a single zero. This proves the existence and
uniqueness of:(y). It remains to extend the asymptotic convergence resultsega@asey = 0.

In the sequel, we only prove item 2) f8y = Dy as it captures the key arguments of the proof; the extension
to general sequencéS y) will then be straightforward. Writel; tr I':Q;(y) — x:(y) as:

1 1 1
A LQu(y) — ke(y) = u rQu(y) — v T Qu(e,y)
1
+ M tr FtQt(Ev y) - Ht(E, y)
+ rile, y) — Ke(y)

wheree > 0. We now handle sequentially each of the differences of the.rof the previous decomposition. We
first prove that there exists a fixed constdnt> 0 (which only depends ofimsup N M ~') such that for every
e > 0, there existsV; (which depends on the realization and hence is random) $wthfar everyN > Np, we

have:
€

1 1
—tr Qe (y) — —trI‘tQt(e,y)‘ < i

M M (14)

This can be proved by noting that from the resolvent identity have:

1 1
Mtf TQuy) — i trQq(e,y) = % trT':Q:(0,4)Q:(e,y)

2

€
S —trI‘t

L pdwwrnd)
7 17D WW"D;

Recall thatW, is a N x M matrix and that by AssumptidA2, lim sup,, y NM~ < 1. Therefore the spectrum
of Wtﬁ/ff' is almost surely eventually bounded away from Qetn particular, there exists a constaktsuch that

— -1]|?
eventually, we haV(H (ﬁDéWWHDf) < K-1, hence:

€

1 1
dN;, VN > Ny, ‘MtrrtQt(y) - MtrFtQt(eay)‘ < i

IRecall that iflim NM~! = ¢ < 1, then the smallest eigenvalu’qmn(wtw;*) converges to(1 — y/c)2 > 0; it remains to argue on

subsequences to conclude in the case whietiesup,, y NM ! < 1.
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The second step consists in proving that for some cons??a(ﬂiepending orimsup N M 1) there existsN,

(depending on the realization) such that for &ll> No:
(e, y) — ray)] < Ke . (15)
The proof of [1Y) relies on the following identity:

ke (y) — ki€, y) = ean + Bn (ke(y) — Ke(e, ) (16)

where

1
an = 37 e To(e, )T To(y)

1 tr( T, T (e, y)T: Ty (y) )
M\ (L+r(y) 1+ ree,y) )

It is clear that5y < 1 and one can prove that there exigfs> 0 such thafim sup ay < K. In fact, an satisfies:

Bn =

an < S ITP [T (4 m) (1 + ) @)

One can prove that,(y) andx:(e,y) are lower thanm. In fact, k. (y) writes:

_ N +re(y) (A +ry) T, -
’ft(y) = M - M tr <yHthH (yHtH? + m) ) ,

N (14 rKe(y)

r —1
- - tr HHH(HHH+7t) :
M- M- (y O ()

N

<

Similar arguments hold fok; (¢, y), thus proving thatim sup ay < K. From [16), we conclude that there exists

N3 such that for allV > N3,
|mt(e,y) - ﬁt(y)| < Ke .

We are now in position to prove the almost sure convergenqgothQt(y) — k¢(y). Consider the constanfs
and K as defined previously and let> 0. According to [(I#), there existd; such that:

€

1 1
VN > Ny, ’M tr Qe (y) — MtrI‘tQt(e,y) < e

Using the almost sure convergence resultﬁptr I';Q: (¢, y) stated in Lemmal4, there existé, such that:
NN | D) - e < .
Finally from (I3), there exist@Vs such that for allNV > Ns:
(e, y) — ma(y)| < Ke .
Combining all these results, we have, f§r> max (N7, Na, N3):

%trrtQ(y) —nt(y)‘ <e (% +1+ff> ,
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hence proving that:

1 a.s.
27 UTQu(y) = ke(y) 22— 0,

which is the desired result.

APPENDIXB

PROOF OFLEMMA 2]

Using the same eigenvalue decomposition as in AppdnHix Acameprove thaly, = UtDt% W, whereW, is a
N x M standard Gaussian matrix, and wh®gis a diagonal matrix with the same eigenvaluesa&! + %Iy .
In the sequel, ifA is ap x p hermitian matrix, denote by the empirical distribution of its eigenvalues, i.e.
FA =137 dx(a) and byma the associated Stieltjes transform.

Denote bme?Yt (z) the Stieltjes transform corresponding to the empiricakriglue distribution ofy 1Y,
ie.,

1 -1
myny, (2) = i tr (Y'Y, — 21n)

Notice thatmp, () = mq,an(z — o2). Using this fact, and the result in_[14], on can easily pravat tyny,

satisfies:
a.s.

0,
M,N,n—o0

Vze C\R*, myhy, (2) — m(z)

wherem(z) is the unique Stieltjes transform of a probability disttibn F, solution of the following functional

equation:
-1

= —Zz ﬁ /\+02 GtG?
me) = (457 [ o remme ) (18)

Moreover,m(z) is analytical onC* = {z € C,J(z) > 0} whereS(z) stands for the imaginary part af € C.
Using [18), one can prove thaig, () satisfies:

1
mg,GY <_m(2) - 02) =m(z)(1 - N) N zm?(z) . (19)

The link between the unobservable Stielties transforg, g« and the deterministic equivalent(z) being es-

tablished, it remains to expres§ —!logdet(Ixy + o 2G;GH) in terms of meg,Ghs which follows easily by

differentiation:

o 1 G,GH 1 o ooe -1 1
Wﬁlogdet (IN + 2 = Ntr (Gth + 0o IN) — ; .
Hence:
1 GG teop 1 b1\t
Nlogdet (IN + 02 = L2 ; — Ntr Gth + g:[]v dt ,
1
o2 1 1 1

We shall now perform a change of variables within the integrarder to substituten for mg,g with the help

of (19). It has been proved i [15] that(z) is continuous and increasing & ; in particular, the application

u (mzu) + 02) -
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o2, (20) writes:

establishes a bijection fro* to (0,1/02).

GtG )

1
N log det (IN +

0 B 2 /
_ 1 2 1 2 _ 1 ) m/ (u)
- [ |aw (m(U) e ) ey ( mu) 7 ) @+ oPm()?
0 m/(u) M\ m'(u) M
N /m | m(u)(1+ o?m(u)) <1 - W) m N (U)] a
O M m!(u) am/ (u) M,
B Lm N m(w)  1+o’m@  NE (u)] -
We shall now compute this integral, denoted byn the sequel. Writd = limz o I, Where
y—0
(Y[ M m () o?m/ (u) M
Im,y —‘/I |:N m(u) - 1+0_2m(u) + Num( ) du .
Straightforward computations yield:
(m)™¥ | | (wE)¥ | oMo M _ / M
Iyy =log|7  o%m(y) log |7 o) " v ymy) — rrm() ’ v m(u)du . (21)

As our objective is to compute the limit df,,, asz — —oo andy — 0, we need to obtain equivalents for at 0
and —oo. A direct application of the dominated convergence theoyetds:

1
mlz) o~

Recall thatF is the probability distribution associatedite Then,F({0}) = M ~1(M — N). Although this property
is not easy to write down properly, it is quite intuitive if @seest” as close taFYr Y (the empirical distribution
of the eigenvalues o*Y,) which clearly satisfiestY+Y+({0}) = M~'(M — N) by AssumptionA2 This
assumption implies in fact that zero is an eigenvalu&¥fY; of order M — N. Hence,

W) M-N
m ~ — .
Y S0 T T My

Using these relations, we can derive equivalents for thefbitg terms in the right-hand side df (21). In particular,

we obtain:
log % o (% - ) log (%) —log(o?) + (1 — %) log |yl , (22)
—log % o % log |z| , (23)
yomo s -(Fo1) &9
Mo~ A (25)
Let us now handle the last term in the. bfi(21). Denotefbyhe probability distribution defined by
F(dz) = W&J(dw) + %F(dw) .
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If m is the Stietjes transform associatedKothen:

M (M—-N) 1
Note in particular thatnYtY? —m — 0, hence thatt" is a deterministic approximation drY:Y! | the empirical

distribution of the eigenvalues (YtYf'. Now,

v M Y [dF(t) M-N
Nm(u)du = /w/t—udu_ N du ,

x

(log|z| —logly]) - (26)

/(—log [t —y| +log|t — x|)d F(t) +

Using the dominated convergence theorem, one can prowvtnath.s. of[(2B) is equivalent to:

Y M M M —N
/z Nm(u)du IHEOOO - /1og(t)dF(t) + ~ log |z| — I log|y| - 27)
y

Plugging [22), [(ZB),[(24)[(25) an@_(27) info {21) yields:

M- N M—-N
lim I, = log( i ) —log o® +/1og(t)dF(t).

T——00 N
y—0

Since the spectrum OI‘J}YtYLJI is almost surely eventually bounded away from zero and uppended, uniformly

along N, we have:

N
1 a.s.

where (\;,1 < i < N) are the eigenvalues of; Y, Y}'. A consistent estimator of; log det(c?Iy + G,G}') is
thus given by:

N
M- N M—-N 1
c, = log (*) +1+ Nzllog(/\i)

=

I
=

2
—
=

I
=

1 1
—) +1+ Nlogdet (MYtYf') ,
which concludes the proof.

APPENDIXC

PROOF OFTHEOREMI[Z

As previously mentionned, the proof of TheorEim 2 relies andRistence of a consistent estimate for
1
Cra =+ log det(o?Iy + GG} + H,H) .
Denote byf(y) the parametrized quantity:
1 H H
fly) = N logdet(Y:Y; + yHH}) .

Then by Lemmall-3), we obtain:
GtG!;' + UQIN
1+ re(y)

_ % fit(y) a.s.
N 1+ Iit(y) M,N ,n—o0

—f(y) + %bg det < + yHthH) + % log(1 + s¢(y)) 0. (28)
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Obviously, if y is replaced byyy ;, solution of:

1
1+ kelyng)
then the ternC} ; appears in[(28). The existence and uniquenessyqfimmediatly follows from the fact that the

YN, t (29)

function g defined as:
gz (1+ x)% tr(G: G + o?Iy)(HH! + G, GH 4 6%Ty) 7!
is a contraction. Moreover, straightforward computatigiedd:
g =1 = 1 (GG + oLy (L HY + GG+ 07Ty) (30)

Unfortunately,y ; depends on the unobservable mai@x. One need therefore to provide a consistent estimate

9~ Of yn ¢ In order to proceed, we shall study the asymptotics4f). By Lemma1-2), we have:

Y Y a.s.

On the other hand, we have:

1 G,GH 4 02T\ !
7 tr HHI'T (y) = o try HHY (yHH“ + $> ,

1+ ke(y)

N 1 GG + 02T\
= tr | (GG + 0% H,H tt—) ,
M~ Msi(y) + 1) “"<( G+ In) (y T T )
_N Ry
M 1+xk(y)’
N 1
= 1+ 32
M + 1+ ke(y) (32)
Substituting [(3R) into[(31), we obtain:
1 N 1 a.s.
— tryH,H" - 41— . 33
M Ty t Qt(y) M + Klt(y) +1 M,N,n—00 O ( )

Intuitively, a consistent estimate @fy ; of yx ; should satisfyjx ; = M1y, tr HtH!j'Qt(g;Nyt). This intuition
is confirmed by the following lemma:

Lemma 5:There exists a unique positive solutigr ; to the equation:

UN ¢ . N .
= ——+1- =0.
i r Q¢ (9N .1) Vi + YNt
Moreover, the following convergence holds true:
UNt — YNt —> 0,
M,N ,n—o0

whereyy . is defined by[(29) (see alsb (30)).

Proof: The existence and uniqueness ¥, follows from the fact thaty :— %tr Q:(y) — % +1lisa
contraction. Moreover, using Assumpti@®, it is straightforward to check thaty  is eventually lower than 1.
Using [33), we get that:

YNt a.s.

N
T THALQiuv) = 3 1w 0 0.
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Beware that in[(33), the convergence holds true for a fixeghile yx; depends upoV. A way to circumvent
this issue is to merggy ; into H; and to consider the slightly different model basedfﬁn: VUN H;.
Therefore, the mere definition @fy ; and the previous convergence yield:

A EENQN ) — ety — 5 wEHIQuy ) T2 0.

It can be easily proved thaty : y — 2 tr H;H'Q,(y) is a contraction ofR™, i.e. that there exist8 < ky <1

such that:

|hn () — hn(y)| < knlz —yl,

wheneverz, y > 0; moreover, due to Assumptiéd®2, lim sup kx < 1. On the other hand, we have:

lyn.t — Inel = lyne — Ine — hn(yne) + b (@) — hn(@ne) + hv(yne)|
< lynvie =8t — hn(yne) + (@)l + v (Gne) — (el
<lynt—Ine — hn(yne) + (@GNl + En|gne — yne -
Hence, we get:
0< (X —kn)|Ine—ynel < lyne — v — h(yne) +h(Gn)] -

Since the r.h.s. converges to zegg; : — yn,+ converges also to zero almost surely. [ ]

With the help of Lemm&]5, the following convergences can tsilyeaerified:

a.s.
M,N,n—o0

a.s.

1
08 det(Qulya)) — 77 logdet(Qu(9.0) 0.

k(UNt) — K(Yn,t) 0.

M,N,n—oco

Therefore:

. 1 M — N . M . a.s.
_f(yNJE) + N logdet(GthH + O'QIN + HthH) — T log(yN_’t) — N(l — yN_’t) m 0 )

which in turn implies that:

~ - ~ M ~ a.s.
Cy,1 — log det (v HHY + Y Y[ — log(4n,t) — ﬁ(l —INt) ———— 0.
M ,N,n—o0

Using this estimate of’; ; together with the estimate 6%, » as provided in Lemmia 2 immediatly yields a consistent

estimate forC;(0?) = Cy1 — C; 2, and the theorem is proved.

APPENDIXD

PROOF OF THEOREM3

The proof of theorem]3 relies on the tools used[in [11] suitdol dealing with Gaussian random variables.

Recall thatCy..q4(y) is given by:

T
A 1 1 1
Curaa (y) = 577 D log det <yHth” + MYthH) — log det (MYtYP> :
t=1
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W
whereY; = [ocIn Gy "l andX, = (XM, ,XEK]H. Similarly, as in AppendiX_A and Appendix]B, we

t
can prove thaly, = UtDt%Wt whereW‘t is a N x M standard Gaussian matrix, afi} is the N x N diagonal
matrix containing the eigenvalues GItGH +02Iy. Then, C’trad( ) becomes:
A 1 ) 1 L~ —~ 1 1 1~ ~ 1
Ciraa(y) = 555 D log det(yH;H{' + - U;DZF W, W'D7 U}') — log det(1-Df W, W;'D7),
t=1

T
_1 11—~ 1~ —
7 O logdet(yD, SUMH,HYU,D; * + W W) — log det (- W, W),
t=1

T -1
1 1 11—~ ~
= == > logdet <yDt *UMH,H!I'U,D, * (thwﬁ) +IN> .
t=1

Denote byD;%U?HtH?UtD;% = U,A,U" be the eigenvalue decomposition]bf;%U?HtH!j'UtD;%. Since
r is the rank ofH,H!, matrix A, has exactlyr non zero entries which we denote B¢, 1 <@ <r). We get

then:
~ 1 T 1 ~ — 0 —1
Cirad(y) = NT ;logdet yA¢ <thwt) +1Iy].
Let A,; = diag (A1 ¢, ..., Art). Then using theorem 3.2.11 in [16], we can prove tﬁ@'gd(y) can be written as:

T —1

A 1 1~ ~

Cirad (y) = NT E log det <3JAr,t (M W+ W l:t) + IN> )
t=1

whereW,., is ar x M — N + r standard Gaussian matrix. LBf = WA”, we finally get:

T
N 1 1 ~ o~
Ctrad(y) = :E Og det (mM2W tWT tM2 +1 > IOg det (M) — 10g det <7Wr,twgt)

1

NT M—N+r
T

Z trddt

Let s = M — N + r. By AssumptiorAZ, we have:

[I>

0 < lim inf s < limsup s < +o0.
r r

Moreover, matrixM satisfies:

1
sup |[M|| < oo and inf — tr M > 0.
s

We retrieve then the same model aslinl[11], with the slighfiedihce tha@trad,t(y) has an extra random term
log det (ﬁWT,tVVEt). As we will see next, this has no impact on the applicabilityh@ method and one can get
the desired result by following the same lines|ofi[11]. Intjzattar, we consider to prove a CLT for the functional
log det(2M2 WWHM? +1,) — log det(1M> WWHM?2) where> > 0. The expression of the variance for this

CLT will depend on some deterministic quantities which weatehereafter.
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A. Notations
Let Z = M:W and define the resolvent matr8(z) by:
_ (AMEWWHME T (ZggH -
S(z) = (SM2WW M? +IT) - (Szz +IT) ,
Let alsol,(z) be given by:
LA o R |
I,(2) = log det (—M2WW M +Ir) — _logdet S(2).
S
We introduce the following intermediate quantities:
1 1 0
B(z) = —trMS, «a(z) = —tr MES, and =5 —a.
S S
Matrix R(z) is as x s diagonal matrix defined by:
R(z) = 71y,

wherer = oy We also defindR(z) the r x r matrix given by:

R(z) = (I, + 27 (z)M) .

We also definej(z) as the unique positive solution of the following equation:

1 z -t
5(2)—gtrM<Ir+mM> y

where the existence and uniquenes9 @f) have already been proven in [11]. LBtandE ther x r ands x s

diagonal matrices defined by:

-1
z = 1
E=|I,+ —M and E= — 1
( T30 ) 1+ 20(2)
Define alsoy, §(z) andy asy = £ tr M?E2, §(2) = 2z andy = iy

B. Mathematical tools

We recall here the mathematical tools that will be used tabdish theorem]3.

1) Differentiation formulas:

g _ % o
Zi; s [278]; Spa
0Sp.q z
= =——|[SZ 9,9
0Zf; s 182, Sia
0l(2) =z 57
0zr; s “i’
dlog det(1ZZ") Hy —1
0z} - {(ZZ ) Z]i,j
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2) Integration by parts formula for Gaussian functionalenbte by® be aC' complex function polynomially
bounded with its derivatives, then

99(Z)
07;,

wherem; is thei-th diagonal element oM.

3) Poincaré-Nash inequality: The variance®(fZ) can be upper-bounded as:

var(®(Z)) < Z Z m;E

i=1 j=1

2 oaz)|

9Z; ;

9D(Z)

4) Deterministic approximations of some functionals:
Proposition 1: Let A,. andB,. be two sequences of respectively r ands x s diagonal deterministic matrices
with uniformly bounded spectral norm. Assume that assungi\IHAZ hold true. Then, the following holds
true:

étrATRzétrArE—i-O(s*Q), 7::54—0(872) and EétrAerétrArE—i—O(s*Q).

Proposition 2: Let A,, B, and C,. be three sequences ofx r, s x s andr x r diagonal deterministic
matrices whose spectral norm are uniformly bounded. i€onsider the following:

H H
8(2) = Lur (ATSZBTZ ZB,Z ) |
S S

> L w(Z) = ta <ATSMS
S

and assume th&@1HA4 hold true. Then,
a) The following estimations hold truear(®(Z)), var(¥(Z)), var(3) are O (s~2).

b) The following approximations hold true:

E[®(Z)] = Sl ME+o0 (s72), (34)
S
E[¥(Z)] ! SltBlt(AM2—2) Lo leame +0(s7?)
= —trb,—1r r fl —Z —tro,—1r r = S )
1—229% \Us s s s
(35)
1 - Y -2
s 1 —2z%vy

C. Central limit theorem

All the notations being defined, we are now in position to shiogvCLT. We recall that our objective is to study
the fluctuations 0fCiaa(y) = 31—y Ciraac(y). Since (C‘trad,t(y),t =1, - ,T) are independent, it suffices to
consider the CLT foC;aq.¢(y), fort € {1,--- , T'}. We consider thus the random quantityz) —log det (1zz").
Before getting into the proof details, we shall first rech# CLT of g(Z) = — log det(1ZZ") whose proof can be

found in [17]. Indeed, it is shown that:

1 D
— | —logdet(=ZZ") — b, N(0,1).
e (o322 1) S N0y

N,M,n—oco
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whereb, = —r [(1— 2)log (1 — ) —1]. Like in [11], define ¥, (u, 2) = E [evU:(x)=Va(z)+9(Z)=b)]  where
Vs (z) is the deterministic equivalent defined by:

z

Vs(z) = slog (1 4 26(2)) + log det (IT + WM) — 526(2)8(2),

and verifying:

L (1(2) - Vi) == 0.

The principle of the proof is to establish a differential atjon verified by¥,(u, z). Writing the derivative of

W, (u, z) with respect toz, we get:

a\IjS _ aIS(Z) Juls(z)+ug(Z) —guVs(z)—gubs 6V9(2)

5 E |:ju7€ e —juT\I/S(u,z). (37)
On the other hand, we have:

H
B |:8IS(Z) e]uls(z)+gug(Z):| -F |:tI‘ (SZZ > eju15(2)+jug(Z):|
S

(92
1 ks S
e g g E |:Z’LjS ZZ .’je]u}(z) ]U/g(z):| .

p,i=1j=1
Applying the integration by part formula, we get:

0

* uls(z)+gug(Z = pea——
E [Z.,5,.2; ¢ (2)+gug( >} —E mzaZ;j

55 17200

= B [mi Sy id(p — i)+

z w _quls(2)+oug(Z
- EE {[Sz]m m;SiiZ, ;€ (2)+ug( )}

Juz * uls(2)+jug(Z
+ TE [miSpﬂin)j [SZ] el (2)+gug( ):|

,J

+E |jum;S, _—

D, *
0z} ;

* 89(2) eJUIs(Z)+Ju9(Z)] .

After summing over index, we obtain:
E|[SZ],, Z; jejuls(z)JrJug(Z)} ) [mpsp pejuls(z)+Jug(Z):|
D,J 7P ,

z * uls(z ug(Z
-ZE [tr(MS) (8], 7, e 1) +u0(2)|

D,J

Jzu x oquls(2)+oug(2)
+ £UE [[SMSZ),,, Z; e 74

— juE HSM (zz") " 2] _Z;jewls<2>+ﬂu9<z>] . (38)

p,J
Recall the relation3 = % tr MS andéz B — o wherea = 1 tr MES. Plugging the relatior = o+ é into (39),

we get:

E (182, ;O 79@] = E [m, 5, (@] .k {B 52), Z;je]ufs(Z)-Hug(Z)]

* uls(2)+ug(Z Jru * uls(2)+gug(Z
_ saE [[sz]p)j 7z et ls () ks )} +Z°E [[SMSZ]M 73 et ls () ks )}
— JuEE HSM (zz") ™ ZL ,- Z;_jeﬂ“ls@ﬂug(z)} . (39)
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Hence, solving this equation with respectEk{[SZ]p)j Z;JeJ“IS(ZHJ“g(Z)} and using the fact that= -, we

get:
E [[Sz]p,j Z;)jeguls(z)Jrgug(Z)] -F {mpfsp)pejufs(z)Jrjug(Z)} —.E |:ﬁ P [Sz]p,j Z;)ljejuls(z)+Jug(Z):|

+2E [juf [SMSZ], . Z je-wfs@ﬂug(Z)}
. :

D,J

N

D,J

— ulE [f [SM (ZZH)il Z} Z; jeJuIs(z)Jrjug(Z)] . (40)

Using the relationS, , =1 — 2 [SZZH}M, we get after summing with respect jo

H H
[SZZ } egu13<z>+.7ug<Z>] _E [mp,:egufs<z>+gug<zq B HSZZ } eguuz)ﬂug(z)]
S
p,p p,p

S

E

H
7 {SMSE] eaufs<z>+aug<z>1
§ p,p

)

o H
) [ﬁ 7 [SZZ } eIuls(2)+gug(Z)
§ p,p

s

+ 2R
S

— JuE |7 {%] eauls(Z)JrJug(Z)] .
§ b,p
Using the relationr, = % we get:
H 0 H
E |:SZZ :| eguls(z)+jug(Z)] —E [mprpfejuls(z)JrJug(Z)] —E [ﬁ pr [SZZ :| eJUIs(Z)+J“9(Z)‘|
S S
p,p p,p

+ g
S

H
r {SMSZZ } eguu(z)ﬂug(m] uE lm {%} eaufs<z>+gug<Z>] _
§ p,p s p,p
Summing ovemp, we finally get:

SZzZ" o ZzH
E [tr ( ) eauls(Z)JrJug(Z)} =7tr(MR)E {eJuIS(Z)JrJug(Z)} —:E [ﬁ Ftr (RS

S S

) eguuzmug(zq

H
+ ZJuE [f tr <RSMS—ZZ ) e-f“fs@ﬂ“g(Z)}
S n
R {tr <RSM> eauls(Z)JrJug(Z)]
S

=x1+tx2+x3+ x4
It remains thus to deal with the ternfg;, 1 <: < 4). Using propositiof 11, we have:
x1 = Ftr MRE [eﬂuls(z)““g(z)} = $00E [eﬂ"s(z)”“g(Z)} +0(s7). (41)

To deal withxs, we apply the results of propositidh 2-b, with, = R andB,. = I. In this case;; writes as :

X3 = zguiEW (Z)erv!:(2)+1u9(Z) " Using Cauchy-Schwartz inequality, we get:

£ (w(@)ert- ) _ port:(rm@E (w(z)| < | [E [

b

where J (Z) = V(Z) — E(¥(Z)). Therefore,
z]ug

W=y

~1 A
[5— (M=% — 0 gy MEQ] E [l (1) 4o (s71). (42)
n S
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The termy, can be dealt with in the same way, thus proving:

x2 = —zE [é e]“IS(Z)J”“g(Z)} ﬁtr(ME2) +0 (8_1) . (43)

Since tr(MZ2) is of orders, we shall expand {B eﬂ“Is(ZHJ“g(Z)] to at least the ordes—', and thusj and
E [eru!:(2)+7u9(Z)] cannot be separated in the same way as above.

Indeed, we shall first take the sum ovein (40), thus yielding:

E [[szz“] eauuz)ﬂug(Z)} —E [Smpfsp peJuIs(Z)-Hug(Z)} _E {5 7 [S22Z"] eJuIs(Z)-Hug(Z)]
p,p ’ p,p

z ~
+ ZE [ur [SMSZZ"] |

)

eJuls(Z)JrJug(Z)} _ ]u]E[ [SM], el )JFJUQ(Z)}'
(44)
Using the fact that:

z [[SZZH} e]uls(z)JrJug(Z)} ) [ejuls(z)Jrjug(Z)} -k |:Sp pGJUIS(Z)+Jug(Z):|
S p,p s 9

(44) becomes:
E eJuls(Z)JrJug(Z)] o) {S eJUIs(Z)JrJuQ(Z)} —E [m 7S eJuls(Z)JrJug(Z)} é SZZ eIuds(2)+yug(2)
p,p P ~p,p s
22 YAAL Juz
+ 2 E | jur |SMS etuls(2)+pug(z) | _ J*Ep { BN e7uls(z)+3uq(z)} _
S S p,p S
(45)

Solving E [ S, ye?/=(x)+7u9(Z)] in @8) and using the relation, = m we obtain:

E [Sp)peauls(—Z)ﬂug(Z)} —FE [rpeJuIS(Z)-Hug(Z)} + %IE [é T [SZZHL) )

)

eguuzmug(zq

2
§ b,p

L { Fry [SM] | e (z)+7uq(z)]
S

(46)
Multiplying both sides in[(46) byn, and summing ovep, we get:

o 2 o r
E {ﬂ eﬂ“fs@)ﬂ“g(Z)] =K [1 tr(MR — MES)eJ“IS(ZHJ“g(Z)} +ZR [ﬂ . tr(MRSZZH)eJ“Is(Z)ﬂ“Q(Z)}
S S S

2 1 zzH
_ Z_E [juf— tr(MRSMS )eJuIs(Z)-Hug(Z)} + ju_jﬂg [tr (RMS) eJuIS(Z)-i-Jug(Z)} )
S S S S
Using the approximating expressions in proposifibn 2, we ge

o o 2~
E |3 eruls(tug(@) | — 2051 | g erule(2)+ug(@) | 2 Ogu _ 51 tr(M3E%) — 29%5 | E [eauls(z)ﬂug(z)}
s(1—22%) \U s

+ L2 [ (MRSM)e (V5] 4 0 (57).

Hence,
2 uls(z u, ZQ-]U’ ~ 1 —_ IS uls (2 U
E {5 eIt ls(2)+7 g(Z)} — A <7§ tr(M32%) — 27253> E [eJ Ls(2)+y g(Z)}
JUZS”Y [ uly(2)+ou (z)} -2
— [ | Jug O . 47
+ s(1— 2247) € +0(s77) (47)
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Plugging [47) into[(43), we get:

23u7y 1 _ = = uls(2)+gu
X2 = 027 (7; tr(MPE?) — 27263) tr(MZ?)E {eﬂ L(2)+ug(Z) (48)
2,53
1
- %; tr (MZ2)E [ewWHJ“g(Z)} +O(s7). (49)

Finally, it remains to deal withy4. Using propositiofiIl, we get:
]ug

Xo = =0 tr (ME?) E [ (100 0 (s71). (50)

From [41), [42),[(4B) and_(50), we then have:

ZzH . St 1 y 1
E [tr S— etuls()+gug(Z) | — | 555 + %— tr (MgEB) tr (MEQ) + ﬂ— tr(MQE?’)
s s(1—2%249)2 s 1—22v7 s

2 53 N
_ 2ot Loy - 2 LomE?| <k [ @ms@) o (571)
(1—2299)2s 1—22v7 s
(51)
HenceU,(u, z) satisfies:
\I/s 02,352 1 1 2, x5 1
0% | =0 L ovwes?) L ey - 0Ly vee)
0z (1—2%299)2s s (1—2299) s
u222753 1 w2 1
——— —tr (ME?) + ————tr (ME?) | ¥, O (st
(1—2299)%s r( )+1—Z27:Ys r )| Yol 2)+0(s7)
Following the same lines as i [11], one can prove that:
a dlog (1 — 2271) _ 1 (- 22763% tr (l\iIEz) n z:yl o (M253) n z3ﬁ2% tr (M3E3) % tr (MEQ) '
dz 1— 22v5 1 — 22vy s 1— 22v5
(52)
Moreover, from the system of equations (54)[in|[11], one cad fthat:
ldlogy  0%tr(ME2) (53)
2 dz 1— 2295
Using [52) and[(53), we finally get:
o, u? d dlog#

—2 |- log(1 = 229) +

9z 2 dz

- } Uy(u,z)+0(s).

Let 07 = —log (1 — 2275) + logy and K(u, z) = ¥, (u, z) exp “2;%) Therefore K, (u, z) satisfies:

0K u?c
e e (V22),

wheree(s,z) = O (s~'). On the other hand, we have:

Ks(u,2) =E [eﬂ‘(*bgd“(%ZZH*bS))} )

Hence,

Ks(u,2) = Ks(u,0) + /OZ €s(u, x)dx

= eu2 1032(172) +0 (3_1) .
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The characteristic functio®;(u, z) can be thus approximated as:

u?o?  u®log(l—1)

U,(u, z) = exp (— 5 + 5 = ) + 0 (3_1) . (54)

The characteristic function satisfies the same equation fisli. The single difference is that the varianeg +(y)

given by:

avel) = —tog (27) ~tog(1 - ) 5)

has two additive terms accounting for the variancg/@) and the correlation betweer{Z) and I;(z). The CLT
can be thus established by using the same argumeritslin [fbijdpd that we show thdim inf an +(y) > 0. For

that, we need only to prove that:

1-— z%ﬁ

lim inf — > 0.

Deriving 6 with respect toz, one can easily see that:

— 22~5
Lk AL Y =08
¥ 4 s

It has been shown in 11, eq.(67)] thaljj—f satisfies:
s r
0 - _Amax 9
< dz < s ot
whereAnax = max (A1, -+ , Ar¢). This fact combined withim inf < tr (ME?) implies thatlim inf ay ¢ (y) > 0.

It remains thus to express the varianeg ;(y) using the original notations. One can easily show that:

1 My BT b —t Iy NN (N=r)(1+0)
5= ¢ D, *U'HHIUD,? + Y ) D79
M—N+r r(M—N—i—r A M—N+r
—1
1 My GG + 0?1y (N —7)(1+9)
=————tr| (GG} +0%Iy) ( ——HH + —L——— -
M—N+r r<( thae +o N)(M—N—i-r Het T M—N+r

—1
_ L W 2 W, (M= N+1)(G:G]' + 0”Iy) W -n)(+9)
= MtI‘ ((Gth +o IN) (yHth + M(1+5) M—_N=+r . (56)
Then, from [(56), we can prove th:ﬁ% — 1 is solution inz of:
1 G,GH\ !
T =t <(GtG;* +o2Iy) <yHtH't" + 1;; ) ) . (57)
Sincex; is the unique solution of ($7), we have:
M@ +1) L=
M—N+r =~
or equivalently:
S 1+8 (M —=N+r)(s+1)
Therefore:
_ 2
5o M (58)

(M —N+7)2(s + 12
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In the same way, one can prove thatan be expressed in terms of the original notations as:

(M —N +7) 9y Ho ooe -1 Iy NP (ki 4+ DEN =) (M —N+7)
v = T tr yHth (G'tG't + 0o IN) + m - M2 . (59)
Substituting [(5P) and_(58) intd_(b5) (y) becomes
_ 1 —2
an.i(y) = log M? — log <(M —N) (M(/{t +1)% —tr (yHtH';' (GGl +o’1y) o K i 1) )) .
t
APPENDIXE
PROOF OF THEOREM3
1) Denote byR(y) and f(y) the functionals given by:
1 M —N
fly) = i tr(yHHP Qi () + Y
R(y) = —logdet(Q¢(y)) + (M — N)log(y) — My.
whereQ,(y) = (yHH + A—ZYtYL*)_l. According to Poincaré-Nash inequality, we have:
N M 05 2 0i 2
N,t N,t
)< YN,
var(gn) < K ; ; oYy, +E ‘ Y, (60)

We only deal with the first sum in the previous inequality; #seond one can be handled similarly. By the implicit

function theorem, ifg—{; # 0 then ‘Z‘@i’f writes:
: T

of (g
Ojns _ 7, ~(Un.t) (61)
oY gfj (In.t)

As will be shown later, to conclude thatr(gy ;) = O(M~2), we need to establish th%%(ijyt) is lower

bounded away from zero, which is a much stronger requiremhmg—g # 0. This can be proved by noticing that

9k — MJ Hence
C 51 (g.)
0’R M5, (N4
i = . 62
Dy? (Un,t) UN,¢ (62)
)| >N 2 N which, plugged into
N,t
(62), yields:
, 63
’ - MyNt (63)

which is eventually uniformily lower bounded away from 0 dweAssumptiorfAZ and to the fact thagy,, < 1

by mere definition. Therefore,

ayst ’ K Al
ZZE < 3 2o D | v QEETQY],
=1 j=1 =1 j=1
K
< M (QthHHQt QtH HHQt> )
K
e

May 27, 2011 DRAFT



31

To prove 2), we rely on the resolvent identity which states:
Q:(a) — Qi(b) = (b — a)Q:(a)HHIQ,(D) . (64)

Using [64), we obtain:

1

. N N . 1 R . M — N
YNt = M(yN,t —Egn ) tr HtH?Qt(yN,t) + i tr E(yN,t)HthHQt(yN,t) +

M ’
. . . 1 . . . .
Ine — v ) HiHY Qu(Ejn,e) — i tr(gn,e — Egn,) *HHP Qu(9n,) HiHE Qu(Efin )

M- N
M

. . 1 . . . . .
trE(gn ) HHY Qi (Egiv ) — i trE(gn ) (On,e — E(On,e)) HHE Qi (9, ) HyHY Qu(E(9v,e)) +
(@) 1

. . . 1. .
= M(ZIN,t — Ejn,) tr HHPT(E(jn,)) + ME(QN,t)HtH?T(E(yN,t))
M- N
M

wheree satisfiesE(¢) = O(M ~2). Note that equalitya) follows from the fact that

1
M?

= Bl ) v ~ BB | 37 o HE QU R QB )| + 2 2

var(gn,) = O ( ) and var (% tr HtH't"Qt(gN7t)HtH?Qt(IE(gN7t))) =0 (%) )

Both estimates can be established with the help of Poirldash inequality. Therefore:
M—-N

E(gn,:) = %E(QNJ) tr HtH?Tt(E(?]Nyt)) 4 i + O(MfQ)
1 , ) .
= @Gy UGG + I Tu(E(Gn)) + O(M )
“(E@N,t)) s
TRy O
- +0O(M™?%) . (65)

1T+ A(E(n)
Now recall the definition oy, = (1 + x(yn.))”'. One can prove easily thgt— «(y) is a contraction, i.e. that

there existsiy < 1 such that

|k(y1) — k(y2)| < knlyr —y2l, VYyi,y2 >0,

and thatlimsup,y ,, kx < 1. Using the mere definition ofy; and [€5), we obtain:

1 1
1+ w(E®@N)) L+ r(yne)
C rluwa) — w(E() .
= T rE v+ gy O

E(In.t) —yne = +0(M™?),

Hence,

E(Gnt) — ynt| < by [E(@n,e) — ynel + O(M72)

thus proving thatE(gn +) — yn.+| = O(M ~2), which concludes the proof.
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