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Abstract: The problem of test of fit for Vector AutoRegressive (VAR) processes

with unconditionally heteroscedastic errors is studied. The volatility structure is

deterministic but time-varying and allows for changes that are commonly observed

in economic or financial multivariate series such as breaks or smooth transitions.

Our analysis is based on the residual autocovariances and autocorrelations obtained

from Ordinary Least Squares (OLS), Generalized Least Squares (GLS) and Adap-

tive Least Squares (ALS) estimation of the autoregressive parameters. The OLS

residuals are the standards estimates of the VAR model errors. To build the GLS

residuals we use the GLS estimate of the VAR coefficients to estimate the model

errors that we further standardize by the time-varying volatility. Hence, the GLS

estimates require the knowledge of the variance structure. The ALS approach is the

GLS approach adapted to the unknown time-varying volatility that is then estimated
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by kernel smoothing. The properties of the three types of residual autocovariances

and autocorrelations are derived. In particular it is shown that the ALS and GLS

residual autocorrelations are asymptotically equivalent. It is also found that the

asymptotic distribution of the OLS residual autocorrelations can be quite different

from the standard chi-square asymptotic distribution obtained in a correctly speci-

fied VAR model with iid innovations. As a consequence the standard portmanteau

tests are unreliable in our framework. The correct critical values of the standard

portmanteau tests based on the OLS residuals are derived. Moreover, modified

portmanteau statistics based on ALS residual autocorrelations are introduced and

their asymptotic critical values are obtained. The finite sample properties of the

goodness-of-fit tests we consider are investigated by Monte Carlo experiments. The

theoretical results are also illustrated using a U.S. economic data set.

Keywords: VAR model; Unconditionally heteroscedastic errors; Residual autocorre-

lations; Portmanteau tests.
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1 Introduction

In the econometric analysis numerous tools are routinely used in the framework

of VAR (Vector AutoRegressive) modeling of time series variables (see Lütkepohl

(2005) and references therein). Nevertheless it is well known that these tools are

in general noticeably affected by the adjusted autoregressive order. For instance

Thornton and Batten (1985), Stock and Watson (1989) or Jones (1989) discussed

the importance of well specified VAR model for the test of linear Granger causality

in mean. Therefore the checking of goodness-of-fit of the autoregressive order is com-

monly performed in applied works before proceeding to the analysis of the dynamics

of time series. The dominant tests for the adequacy of the autoregressive order

are the portmanteau tests introduced in the VAR framework by Chitturi (1974)

and Hosking (1980). The properties of the tests based on the residual autocorrela-

tions are well explored in the case of stationary processes (see e.g. Francq, Roy and

Zakoïan (2005) in the univariate case, Francq and Raïssi (2007) or Boubacar Mainas-

sara (2010) in the multivariate case). Duchesne (2005), Brüggemann, Lütkepohl and

Saikkonen (2006) and Raïssi (2010) developed tests for residual autocorrelation in

a cointegrated framework with stationary innovations.

However many applied studies pointed out the presence of non stationary volatil-

ity in economic time series. For instance Ramey and Vine (2006) found a declining

volatility in the U.S. automobile industry. Watson (1999) noted a declining volatility

of short-term U.S. interest rates and increasing volatility for long-term U.S. interest

rates. Sensier and van Dijk (2004) considered 214 U.S. macroeconomic variables and

found that approximately 80% of these variables have a volatility that changes in

time. These findings stimulated an interest on the effects of non-stationary volatil-

ity in time series analysis amongst econometricians (see e.g. Kim, Leybourne and
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Newbold (2002) or Cavaliere and Taylor (2007)).

The present paper is motivated by the need of reliable tools for testing the

adequacy of the autoregressive order of VAR models with non stationary volatility.

On one hand, we show that in such cases the use of standard procedures for testing

the adequacy of the autoregressive order can be quite misleading. On the other hand,

valid portmanteau tests based on Ordinary Least Squares (OLS) and Adaptive Least

Squares (ALS) residual autocovariances are proposed for testing the goodness-of-fit

tests of non-stationary but stable VAR processes. More precisely we consider the

VAR model of order p ≥ 0 and dimension d ≥ 1

Xt = A01Xt−1 + · · ·+ A0pXt−p + ut, (1.1)

ut = Htǫt, t = 1, 2, ...

where Xt are random vectors of dimension d and the d × d−matrices A0i, i ∈

{1, . . . , p}, are such that the process (Xt) is stable, that means det(A(z)) 6= 0 for all

|z| ≤ 1, with A(z) = Id −
∑p

i=1A0iz
i. Here, Ht is an unknown d × d matrix-valued

deterministic function of time and (ǫt) is an innovation process of unit variance that

could be serially dependent. Phillips and Xu (2005), Xu and Phillips (2008) already

studied the problem of estimation of such univariate stable autoregressive processes.

Patilea and Raïssi (2010) investigated the estimation and the test of parameter

restrictions of multivariate stable autoregressive processes like in (1.1).

The usual way to check the adequacy of a stable VAR(p) model, implemented

in any specialized software, is to assume that the error term ut is second order

stationary, to fix an integer m > 0 and to test

H0 : Cov(ut, ut−h) = 0, for all 0 < h ≤ m, (1.2)

using a classical (Box-Pierce or Ljung-Box) portmanteau test statistic and chi-square
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type critical values. The errors ut are approximated using the OLS type estimates

of the coefficients A0i. With the volatility structure we assumed in model (1.1),

the variance of ut depends on t and the usual chi-square type critical values are in

general inaccurate, that is the asymptotic distribution of the classical portmanteau

statistics under H0 is no longer of chi-square type.

Here we propose two ways to correct this problem. First, we derive the correct

asymptotic distribution of the classical portmanteau test statistics under H0 and

the conditions of model (1.1). This asymptotic distribution is a weighted sum of

d2m independent chi-square distributions. Next, we indicate how the correct critical

values can be approximated.

To explain our second approach, let us notice that Cov(ut, ut−h) = 0 is equivalent

to Cov(ǫt, ǫt−h) = 0 and the variance of ǫt does not depend on the time t. Thus an

alternative idea for checking the adequacy of a model like (1.1) is to test

H′
0 : Cov(ǫt, ǫt−h) = 0, for all 0 < h ≤ m. (1.3)

The values ǫt are approximated by residuals built using a nonparametric estimate of

the deterministic function Ht and Adaptive Least Squares (ALS) type estimates of

the coefficients A0i that take into account the volatility structure. More precisely, to

build the ALS residual vector at time t we use the ALS estimate of the VAR coeffi-

cients to estimate the VAR model error vector at time t that we further standardize

by the nonparametric estimate of time-varying volatility Ht. Next, we build classical

portmanteau test statistics using the estimates of ǫt and we derive the asymptotic

distribution under H0. The asymptotic distribution is again a weighted sum of d2m

independent chi-square distributions and the weights can be easily estimated from

the data. In some important particular cases, including the univariate (i.e. d = 1)

autoregressive models, we retrieve the standard chi-squared asymptotic distribution.
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The remainder of the paper is organized as follows. In section 2 we specify

the framework of our study and state the asymptotic behavior of the OLS and the

Generalized Least Squares (GLS) estimators of the VAR coefficients. The asymp-

totic normality of the OLS and the infeasible GLS residual autocovariances and

autocorrelations is established in section 3. The GLS residuals are defined as the

standardized (by the true volatility Ht) estimates of the model error vector obtained

with the GLS estimates of the VAR coefficients. In section 4 we highlight the unreli-

ability of the chi-square type critical values for standard portmanteau statistics and

we derive their correct critical values in our framework. In section 5 the ALS resid-

ual autocovariances and autocorrelations are introduced. Since the GLS residual

autocovariances and autocorrelations are infeasible, we investigate the relationship

between the GLS and ALS residual autocovariances and autocorrelations and we

show that, in some sense, they are asymptotically equivalent. This result is used to

introduce portmanteau tests based on the ALS residuals that have the same critical

values like those based on the infeasible GLS residuals. In section 6 we propose suit-

ably modified quadratic forms of OLS and ALS residual autocovariances in order to

obtain alternative test statistics with chi-square asymptotic distributions under the

null hypothesis. Such modified statistics are nothing but Wald type test statistics

for testing the nullity of a vector of autocovariances. In section 7 some theoret-

ical comparisons of the asymptotic power, in the Bahadur sense, are carried out:

classical Box-Pierce portmanteau test vs. modified quadratic forms of OLS resid-

ual autocorrelations based test; and ALS vs. OLS residual autocorrelations based

portmanteau tests. A possible extension of our findings on testing the order of a

VAR model to the case of heteroscedastic co-integrated variables is briefly described

in section 8. The finite sample properties of the different tests considered in this
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paper are studied by mean of Monte Carlo experiments in section 9. In section 10

applications to U.S. economic real data sets are used to illustrate the theoretical

results: the U.S. balance on services and balance on merchandise trade data, and

the U.S. energy-transport consumer price indexes. The summary of our finding and

some concluding remarks are given in section 11. The proofs and the tables and

figures are relegated in the appendices.

2 Parameters estimation

In the following weak convergence is denoted by ⇒ while
P
→ stands for convergence

in probability. The symbol ⊗ denotes the usual Kronecker product for matrices

and A⊗2 stands for A ⊗ A. The symbol vec(·) is used for the column vectorization

operator. We denote by [a] the integer part of a real number a. For a squared matrix

A, tr(A) denotes the trace. For a random variable x we define ‖ x ‖r= (E ‖ x ‖r)1/r,

where ‖ x ‖ denotes the Euclidean norm. We also define the σ−field Ft = σ(ǫs : s ≤

t). The following conditions on the innovations process (ut) are assumed to hold.

Assumption A1: (i) The d × d matrices Ht are positive definite and the com-

ponents {gij(r) : 1 ≤ k, l ≤ d} of the matrix G(r) are measurable determinis-

tic functions on the interval (0, 1], such that Ht = G(t/T ) and, ∀ 1 ≤ k, l ≤ d,

supr∈(0,1] |gk,l(r)| <∞ and gk,l(·) satisfies a Lipschitz condition piecewise on a finite

number of some sub-intervals that partition (0, 1] (the partition may depend on k, l).

The matrix Σ(r) = G(r)G(r)′ is assumed positive definite for all r.

(ii) The process (ǫt) is α-mixing and such that E(ǫt | Ft−1) = 0, E(ǫtǫ
′
t | Ft−1) = Id

and supt ‖ ǫit ‖4µ<∞ for some µ > 1 and all i ∈ {1, . . . , d}.
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The second approach we propose for checking the adequacy of a VAR(p) model

requires the estimation of the innovations ǫt, and hence we will need an identification

condition for G(r) and an estimate of the matrix Ht. The condition Ht is positive

definite matrix identifies G(r) as the square root of Σ(r) and this is a convenient

choice for the mathematical proofs. Nevertheless one can notice from the following

that our results could be stated using alternative conditions, like for instance Ht

is a lower triangular matrix with diagonal components restricted to be positive.

The conditions on the unknown volatility function G(r) are general and allow for

a large set of dynamics for the innovation variance as for instance abrupt shifts or

piecewise affine functions. This assumption generalizes to a multivariate framework

the specification of the innovation variance considered in Xu and Phillips (2008).

The conditional homoscedasticity of (ǫt) imposed in (ii) ensures the identifiability

of Σ(r). We call a model like in (1.1) with the innovation process (ut) satisfying

Assumption A1 a stable VAR(p) model with time-varying variance.

To introduce the OLS and GLS estimators of the autoregressive parameters, set

the observations X−p+1, . . . , X0 equal to the null vector of Rd (or any other initial

values) and denote by θ0 = (vec (A01)
′ . . . vec (A0p)

′)′ ∈ R
pd2 the vector of true

parameters. The equation (1.1) becomes

Xt = (X̃ ′
t−1 ⊗ Id)θ0 + ut, t = 1, 2, . . . (2.1)

ut = Htǫt,

with X̃t−1 = (X ′
t−1, . . . , X

′
t−p)

′. Then the OLS estimator is

θ̂OLS = Σ̂−1

X̃
vec

(
Σ̂X

)
,
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where

Σ̂X̃ = T−1
T∑

t=1

X̃t−1X̃
′
t−1 ⊗ Id and Σ̂X = T−1

T∑

t=1

XtX̃
′
t−1.

Multiplying by H−1
t on the left in equation (2.1) we obtain

H−1
t Xt = H−1

t (X̃ ′
t−1 ⊗ Id)θ0 + ǫt,

and then the GLS estimator is

θ̂GLS = Σ̂−1

X̃
vec

(
Σ̂X

)
, (2.2)

with

Σ̂X̃ = T−1

T∑

t=1

X̃t−1X̃
′
t−1 ⊗ Σ−1

t , Σ̂X = T−1

T∑

t=1

Σ−1
t XtX̃

′
t−1.

In general, the GLS estimator is infeasible since it involves the true volatility matrix.

Due to the stability condition, we can write Xt =
∑∞

i=0 ψiut−i, where ψ0 = Id

and the components of the ψi’s are absolutely summable d× d−matrices. Then

X̃t =
∞∑

i=0

ψ̃iu
p
t−i,

where upt is given by upt = 1p ⊗ ut, 1p is the vector of ones of dimension p, and

ψ̃i = diag{ψi, ψi−1, . . . , ψi−p+1},

taking ψj = 0 for j < 0.

Let 1p×p stand for the p× p−matrix with all components equal to one. Patilea

and Raïssi (2010) proved that under A1

T
1

2 (θ̂GLS − θ0) ⇒ N (0,Λ−1
1 ), (2.3)

where

Λ1 =

∫ 1

0

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′

i

}
⊗ Σ(r)−1dr,
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and

T
1

2 (θ̂OLS − θ0) ⇒ N (0,Λ−1
3 Λ2Λ

−1
3 ), (2.4)

with

Λ2 =

∫ 1

0

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′

i

}
⊗ Σ(r)dr,

Λ3 =

∫ 1

0

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′

i

}
dr ⊗ Id.

Moreover, they showed that Λ−1
3 Λ2Λ

−1
3 − Λ−1

1 is positive semi-definite.

3 Asymptotic behavior of the residual autocovari-

ances

Let us define the OLS-based estimates of ut and the GLS-based estimates of ǫt

ût = Xt − (X̃ ′
t−1 ⊗ Id)θ̂OLS and ǫ̂t = H−1

t Xt −H−1
t (X̃ ′

t−1 ⊗ Id)θ̂GLS.

The corresponding residual autocovariances are defined as

Γ̂u
OLS(h) = T−1

T∑

t=h+1

ûtû
′
t−h and Γ̂ǫ

GLS(h) = T−1

T∑

t=h+1

ǫ̂tǫ̂
′
t−h.

In general the estimated residuals ǫ̂t as well as the autocovariances Γ̂ǫ
GLS(h) are

not computable since they depend on the unknown matrices Ht and the infeasible

estimator θ̂GLS.

For any fixed integer m ≥ 1, the estimates of the first m residual autocovariances

are defined by

γ̂u,OLS
m =vec

{(
Γ̂u
OLS(1), . . . , Γ̂

u
OLS(m)

)}
, γ̂ǫ,GLS

m =vec
{(

Γ̂ǫ
GLS(1), . . . , Γ̂

ǫ
GLS(m)

)}
.
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To state the asymptotic behavior of γ̂u,OLS
m and γ̂ǫ,GLS

m let us define

K =




A01 . . . A0p−1 A0p

Id 0 . . . 0

. . .
. . .

...

0 Id 0




.

Note that if ũt = (u′t, 0 . . . , 0)
′, X̃t = KX̃t−1 + ũt. Now, let ΣG =

∫ 1

0
Σ(r)dr, ΣG⊗2 =

∫ 1

0
Σ(r)⊗2dr and

Φu
m =

m−1∑

i=0

{em(i+ 1)ep(1)
′ ⊗ ΣG ⊗ Id}

{
Ki ′ ⊗ Id

}
, (3.1)

Λu,θ
m =

m−1∑

i=0

{em(i+ 1)ep(1)
′ ⊗ ΣG⊗2}

{
Ki ′ ⊗ Id

}
, (3.2)

Λǫ,θ
m =

m−1∑

i=0

{
em(i+ 1)ep(1)

′ ⊗

∫ 1

0

G(r)′ ⊗G(r)−1dr

}{
Ki ′ ⊗ Id

}
, (3.3)

Λu,u
m = Im ⊗ ΣG⊗2 , (3.4)

where em(j) is the vector of dimension m such that the jth component is equal to

one and zero elsewhere.1

Proposition 1 If model (1.1) is correct and Assumption A1 holds true, we have

T
1

2 γ̂u,OLS
m ⇒ N (0,Σu,OLS), (3.5)

where

Σu,OLS = Λu,u
m − Λu,θ

m Λ−1
3 Φu ′

m − Φu
mΛ

−1
3 Λu,θ ′

m + Φu
mΛ

−1
3 Λ2Λ

−1
3 Φu ′

m , (3.6)

T
1

2 γ̂ǫ,GLS
m ⇒ N (0,Σǫ,GLS), (3.7)

where

Σǫ,GLS = Id2m − Λǫ,θ
m Λ−1

1 Λǫ,θ ′

m . (3.8)

In the particular case p = 0, Σu,OLS = Λu,u
m and Σǫ,GLS = Id2m.

1Recall that our identification condition for Ht implies G(r) = Σ(r)1/2.
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Let us discuss the conclusions of Proposition 1 in some particular situations. In

the case where Σ(·) = σ2(·)Id for some positive scalar function σ(·), we have

Λǫ,θ
m =

m−1∑

i=0

{em(i+ 1)ep(1)
′ ⊗ Id ⊗ Id}

{
Ki ′ ⊗ Id

}
, Λ1=

∞∑

i=0

{
ψ̃i(1p×p ⊗ Id)ψ̃

′
i

}
⊗Id,

so that in this case the asymptotic distribution of the ǫt autocovariances estimates

γ̂ǫ,GLS
m do not depend on the volatility function Σ(·). Meanwhile, the (asymptotic)

covariance matrix Σu,OLS still depends on the volatility function.

If we suppose that (ut) have a time-constant variance Σ(r) ≡ Σu, we obtain

Λ1 =E
[
X̃tX̃

′
t

]
⊗Σ−1

u , Λǫ,θ
m =E

[
ǫmt X̃

′
t

]
⊗G−1

u , Λu,u
m = Im⊗Σ⊗2

u , Λ3 =E
[
X̃tX̃

′
t

]
⊗ Id,

where Σu = GuG
′
u, and

Λu,θ
m = E

[
umt X̃

′
t

]
⊗ Σu, Λ2 = E

[
X̃tX̃

′
t

]
⊗ Σu, Φu

m = E
[
umt X̃

′
t

]
⊗ Id,

where umt = (u′t, . . . , u
′
t−m)

′ and ǫmt = (ǫ′t, . . . , ǫ
′
t−m)

′. By straightforward computa-

tions

Σu,OLS = Im ⊗ Σ⊗2
u − E

[
umt X̃

′
t

]
E
[
X̃tX̃

′
t

]−1

E
[
umt X̃

′
t

]′
⊗ Σu, (3.9)

Σǫ,GLS = Id2m − E
[
ǫmt X̃

′
t

]
E
[
X̃tX̃

′
t

]−1

E
[
ǫmt X̃

′
t

]′
⊗ Id. (3.10)

Formula (3.9) (resp. (3.10)) corresponds to the (asymptotic) covariance matrix

obtained in the standard case with an i.i.d. error process of variance Σu (resp. Id),

see Lütkepohl (2005), Proposition 4.5. Herein, some dependence of the error process

is allowed. In particular, equation (3.10) indicates that the homoscedastic (time-

constant variance) case is another situation where Σǫ,GLS does not depend on error

process variance Σu.

Proposition 1 shows that in general VAR models with time-varying variance

the covariance matrix Σǫ,GLS depends on Σ(·). For the sake of simpler notation,
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hereafter we write Γ̂OLS(h) (resp. γ̂OLS
m ) (resp. ΣOLS) instead of Γ̂u

OLS(h) (resp.

γ̂u,OLS
m ) (resp. Σu,OLS). Similar notation simplification will be applied for Γ̂ǫ,GLS(h),

γ̂ǫ,GLS
m and Σǫ,GLS.

The following example shows that when the error process is heteroscedastic,

the covariance matrices ΣOLS and ΣGLS can be quite different and far from the

covariance matrices obtained in the stationary case.

Example 3.1 Consider a bivariate AR(1) model Xt = A0Xt−1 + ut with true pa-

rameter A0 equal to the zero 2×2−matrix. One can use such a model to study linear

Granger causality in mean between uncorrelated variables. However in practice one

has first to check that the error process is a white noise. If we assume for simplicity

that

Σ(r) =




Σ1(r) 0

0 Σ2(r)


 ,

we obtain diagonal covariance matrices ΣOLS = diag{04×4, Im−1⊗Σ̆OLS} and ΣGLS =

diag{Σ̆GLS, I4(m−1)}, with

Σ̆OLS =




∫ 1

0
Σ1(r)

2dr 0 0 0

0
∫ 1

0
Σ1(r)Σ2(r)dr 0 0

0 0
∫ 1

0
Σ1(r)Σ2(r)dr 0

0 0 0
∫ 1

0
Σ2(r)

2dr




and

Σ̆GLS =




0 0 0 0

0 1−
(
∫
1

0
Σ1(r)

1
2 Σ2(r)

− 1
2 dr)2

∫ 1

0
Σ1(r)Σ2(r)−1dr

0 0

0 0 1−
(
∫
1

0
Σ1(r)

−
1
2 Σ2(r)

1
2 dr)2

∫ 1

0
Σ2(r)Σ1(r)−1dr

0

0 0 0 0




.
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We denote by 0q×q the null matrix of dimension q × q. Note that the matrix

I4(m−1) which appears in the expression of ΣGLS is a consequence of the assump-

tion A0 = 02×2. If we suppose that the errors are homoscedastic, that is Σ(r)

is constant, equal to some Σu, we obtain ΣOLS = diag{04×4, Im−1 ⊗ Σ⊗2
u } and

ΣGLS = diag{04×4, I4(m−1)}. Therefore in the OLS approach and if the innova-

tions variance is spuriously assumed constant, the asymptotic spurious covariance

matrix ΣOLS
S = diag{04×4, Im−1 ⊗ Σ⊗2

u,S} is used with

Σu,S =



∫ 1

0
Σ1(r)dr 0

0
∫ 1

0
Σ2(r)dr


 .

Now we illustrate the difference between the covariance matrices obtained if we take

into account the unconditional heteroscedasticity of the process and the case where

the process is spuriously supposed homoscedastic. We take

Σ1(r) = σ2
10 + (σ2

11 − σ2
10)× 1{r≥τ1}(r) (3.11)

and

Σ2(r) = σ2
20 + (σ2

21 − σ2
20)× 1{r≥τ2}(r), (3.12)

where τi ∈ [0, 1] with i ∈ {1, 2}. This specification of the volatility function is

inspired by Example 1 of Xu and Phillips (2008) (see also Cavaliere (2004)). In

Figure 1, we take τ1 = τ2, σ
2
10 = σ2

20 = 1 and σ2
11 = 0.5, so that only the break dates

and σ2
21 vary freely. In figure 2 only the break dates vary with τ1 6= τ2 in general,

and σ2
10 = σ2

20 = 1, σ2
11 = σ2

21 = 4. In Figure 1 and 2 we plot in the left graphics the

second component ΣGLS(2, 2) on the diagonal of ΣGLS and in the right graphics the

ratio of ΣOLS(6, 6)/ΣOLS
S (6, 6).

From the left graphic of Figure 1 it turns out that ΣGLS(2, 2) could be far

from zero for larger values of σ21 and when the breaking point τ1 is located early
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in the sample. From the right graphic of Figure 1 we can see that the ratio of

ΣOLS(6, 6)/ΣOLS
S (6, 6) can be far from 1, however the relation between this ratio

and the variations of τ1, σ21 is not clear. From the left graphic of Figure 2, it

appears that ΣGLS(2, 2) can be far from zero. According to the right graphic of

Figure 2, the relative difference between ΣOLS(6, 6) and ΣOLS
S (6, 6) is significantly

larger when the breaking points τ1 and τ2 are located at the end of the sample. This

example shows that the standard results for the analysis of the autocovariances can

be quite misleading when the unconditional homoscedasticity assumption on the

innovations process does not hold.

We also consider the vector of residual autocorrelations: for a given integer

m ≥ 1, define

ρ̂OLS
m = vec

{(
R̂OLS(1), . . . , R̂OLS(m)

)}
where R̂OLS(h) = Ŝ−1

u Γ̂OLS(h)Ŝ
−1
u

with Ŝ2
u = Diag{σ̂2

u(1), . . . , σ̂
2
u(d)}, σ̂

2
u(i) = T−1

∑T
t=1 û

2
it, and

ρ̂GLS
a,m = vec

{(
R̂GLS(1), . . . , R̂GLS(m)

)}
where R̂GLS(h) = Ŝ−1

ǫ Γ̂GLS(h)Ŝ
−1
ǫ ,

with Ŝ2
ǫ = Diag{σ̂2

ǫ (1), . . . , σ̂
2
ǫ (d)}, σ̂

2
ǫ (i) = T−1

∑T
t=1 ǫ̂

2
it. Since ǫt has identity

variance matrix, we can also define

ρ̂GLS
b,m = γ̂GLS

m .

Proposition 2 If model (1.1) is correct and Assumption A1 holds true, we have

T
1

2 ρ̂OLS
m ⇒ N (0,ΨOLS), (3.13)

where

ΨOLS = {Im ⊗ (Su ⊗ Su)
−1}ΣOLS{Im ⊗ (Su ⊗ Su)

−1},
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where S2
u = Diag{ΣG,11, . . . ,ΣG,dd}. Moreover,

T
1

2 ρ̂GLS
m ⇒ N (0,ΣGLS), (3.14)

where ρ̂GLS
m stands for any of ρ̂GLS

a,m or ρ̂GLS
b,m .

Using Proposition 2, Ŝu and a consistent estimator of ΣOLS (that can build in a

similar way to that of ∆OLS
m , see Section 4, p. 18), one can easily build a consistent

estimate of ΨOLS and confidence intervals for the OLS residual autocorrelations.

4 Modified portmanteau tests based on OLS esti-

mation

Corrected portmanteau tests based on the OLS residual autocorrelations are pro-

posed below. We use the standard Box-Pierce statistic, Box and Pierce (1970),

introduced in the VAR framework by Chitturi (1974)

QOLS
m = T

m∑

h=1

tr
(
Γ̂′
OLS(h)Γ̂

−1
OLS(0)Γ̂OLS(h)Γ̂

−1
OLS(0)

)

= T γ̂OLS′

m

(
Im ⊗ Γ̂−1

OLS(0)⊗ Γ̂−1
OLS(0)

)
γ̂OLS
m . (4.1)

We also consider the Ljung-Box statistic (Ljung and Box (1978)) introduced in the

VAR framework by Hosking (1980)

Q̃OLS
m = T 2

m∑

h=1

(T − h)−1tr
(
Γ̂′
OLS(h)Γ̂

−1
OLS(0)Γ̂OLS(h)Γ̂

−1
OLS(0)

)
.

The following result, a direct consequence of Proposition 1 equation (3.13), provides

the asymptotic distribution of QOLS
m and Q̃OLS

m .
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Theorem 4.1 If model (1.1) is correct and Assumption A1 holds true, the statistics

QOLS
m and Q̃OLS

m converge in law to

U(δOLS
m ) =

d2m∑

i=1

δolsi U2
i , (4.2)

as T → ∞, where δOLS
m = (δols1 , . . . , δolsd2m)

′ is the vector of the eigenvalues of the

matrix

∆OLS
m = (Im ⊗ Σ

−1/2
G ⊗ Σ

−1/2
G )ΣOLS(Im ⊗ Σ

−1/2
G ⊗ Σ

−1/2
G ),

ΣG =
∫ 1

0
Σ(r)dr and the Ui’s are independent N (0, 1) variables.

When the error process is homoscedastic i.i.d. and m is large, it is well known

that the asymptotic distribution of the statistics QOLS
m and Q̃OLS

m under the null

hypothesis H0 can be approximated by a chi-square law with d2(m − p) degrees

of freedom, see Box and Pierce (1970). In our framework, even for large m, the

limit distribution in (4.2) can be very different from a chi-square law. The following

example illustrate this point.

Example 4.1 Consider the bivariate process in Example 3.1. Then

∆OLS
m = diag{04×4, Im−1 ⊗ ∆̆OLS}

with

∆̆OLS =




∫
1

0
Σ1(r)2dr

(
∫ 1

0
Σ1(r)dr)2

0 0 0

0
∫
1

0
Σ1(r)Σ2(r)dr

∫ 1

0
Σ1(r)dr

∫ 1

0
Σ2(r)dr

0 0

0 0
∫ 1

0
Σ1(r)Σ2(r)dr

∫
1

0
Σ2(r)dr

∫
1

0
Σ1(r)dr

0

0 0 0
∫ 1

0
Σ2(r)2dr

(
∫
1

0
Σ2(r)dr)2




.

If we suppose that Σ(r) is constant and A0 = 02×2, we obtain ∆̆OLS = I4, so that

the asymptotic distribution of QOLS
m and Q̃OLS

m is χ2(d2(m − p)) with p = 1 and
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d = 2. However it is easy to see that the d2(m − p) non zero diagonal elements in

∆OLS
m can be far from one if the error process is heteroscedastic. From the Jensen

inequality the components ∆̆OLS(1, 1) and ∆̆OLS(4, 4) are greater or equal than one.

For illustration, in the right graphics of Figures 1 and 2 we present the second

diagonal element of ∆̆OLS when the volatility function is like in (3.11)-(3.12).

Estimates of the weights which appear in (4.2) can be obtained as follows. First,

let us recall the following results proved by Patilea and Raïssi (2010):

Σ̂G⊗2 := T−1

T∑

t=2

ût−1û
′
t−1 ⊗ ûtû

′
t = ΣG⊗2 + op(1), (4.3)

Σ̂G := T−1
T∑

t=1

ûtû
′
t = ΣG + op(1), (4.4)

Λ̂2 := T−1

T∑

t=1

X̃t−1X̃
′
t−1 ⊗ ûtû

′
t = Λ2 + op(1), (4.5)

and

Λ̂3 := Σ̂X̃ = Λ3 + op(1). (4.6)

A consistent estimator of Φu
m and Λu,θ

m given in (3.1) and (3.2) is easily obtained by re-

placing A01, . . . , A0p with their OLS estimators in K and using (4.3) and (4.4). Thus

from this and the equations (4.3) to (4.6), one can easily define a consistent estimator

of ∆OLS
m . Denote the estimated eigenvalues of ∆OLS

m by δ̂OLS
m = (δ̂ols1 , . . . , δ̂olsd2m)

′.

We are now ready to introduce the OLS residuals-based corrected versions of

the Box-Pierce (resp. Ljung-Box) portmanteau tests for testing the order of the

VAR model (1.1). With at hand a vector δ̂OLS
m , at the asymptotic level α, the Box-

Pierce (resp. Ljung-Box) procedure consists in rejecting the null hypothesis (1.2) of

uncorrelated innovations when

P (QOLS
m > UOLS(δ̂

OLS
m ) | X1, . . . , XT ) < α
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(resp. P (Q̃OLS
m > UOLS(δ̂

OLS
m ) | X1, . . . , XT ) < α). The p-values can be evaluated

using the Imhof algorithm (Imhof, 1961) or the saddle point method, see e.g. Kuonen

(1999).

Let us end this section with some remarks on the particular case Σ(·) = σ2(·)Id

(that includes the univariate AR(p) models with time-varying variance). In this

case

∆OLS
m =

[∫ 1

0

σ2(r)dr

]−2

ΣOLS =

[∫ 1

0

σ2(r)dr

]−2 [∫ 1

0

σ4(r)dr

]
ΣGLS =: cσΣ

GLS,

(4.7)

and clearly, cσ ≥ 1. If in addition p = 0, by Proposition 1 we have ΣGLS = Id2m and

hence δOLS
m = cσ(1, · · · , 1)′.

5 Adaptive portmanteau tests

An alternative way to build portmanteau tests for VAR(p) models with time-varying

variance we consider herein is to use approximations of the innovation ǫt. A nonpara-

metric estimate of the volatility function is needed for building such approximations.

For this purpose we generalize the approach of Xu and Phillips (2008) to the mul-

tivariate case, see also Patilea and Raïssi (2010). Let us denote by A ⊙ B the

Hadamard (entrywise) product of two matrices of same dimension A and B. Define

the symmetric matrix

Σ̌0
t =

T∑

i=1

wti ⊙ ûiû
′
i,

where, as before the ûi’s are the OLS residuals and the kl−element, k ≤ l, of the

d× d matrix of weights wti is given by

wti(bkl) =

(
T∑

i=1

Kti(bkl)

)−1

Kti(bkl),
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with bkl the bandwidth and

Kti(bkl) =





K( t−i
T bkl

) if t 6= i,

0 if t = i.

The kernel function K(z) is bounded nonnegative and such that
∫∞

−∞
K(z)dz = 1.

For all 1 ≤ k ≤ l ≤ d the bandwidth bkl belongs to a range BT = [cminbT , cmaxbT ]

with cmin, cmax > 0 some constants and bT ↓ 0 at a suitable rate that will be specified

below.

When using the same bandwidth bkl ∈ BT for all the cells of Σ̌0
t , since ûi,

i = 1, ..., T are almost sure linear independent each other, Σ̌0
t is almost sure positive

definite provided T is sufficiently large. When using several bandwidths bkl a regu-

larization of Σ̌0
t could be necessary in order to ensure positive definiteness. Let us

consider

Σ̌t =
{(

Σ̌0
t

)2
+ νT Id

}1/2

where νT > 0, T ≥ 1, is a sequence of real numbers decreasing to zero at a suit-

able rate that will be specified below. Our simulation experiments indicate that in

applications with moderate and large samples νT could be even set equal to 0.

In practice the bandwidths bkl can be chosen by minimization of a cross-validation

criterion like
T∑

t=1

‖ Σ̌t − ûtû
′
t ‖

2,

with respect to all bkl ∈ BT , 1 ≤ k ≤ l ≤ d, where ‖ · ‖ is some norm for a

square matrix, for instance the Frobenius norm that is the square root of the sum

of the squares of matrix elements. Like in Patilea and Raïssi (2010), the theoretical

results below are obtained uniformly with respect to the bandwidths bkl ∈ BT and

this provides a justification for the common cross-validation bandwidth selection

approach in the framework we consider.
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Let us now introduce the following adaptive least squares (ALS) estimator

θ̂ALS = Σ̌−1

X̃
vec

(
Σ̌X

)
,

with

Σ̌X̃ = T−1
T∑

t=1

X̃t−1X̃
′
t−1 ⊗ Σ̌−1

t , and Σ̌X = T−1
T∑

t=1

Σ̌−1
t XtX̃

′
t−1.

The ALS residuals, proxies of the infeasible GLS residuals, are defined as ǫ̌t =

Ȟ−1
t Xt−Ȟ

−1
t (X̃ ′

t−1⊗Id)θ̂ALS , and the adaptive autocovariances and autocorrelations

Γ̂ALS(h) = Γ̂ǫ
ALS(h) = T−1

T∑

t=h+1

ǫ̌tǫ̌
′
t−h, R̂ALS(h) = Š−1

ǫ Γ̂ALS(h)Š
−1
ǫ ,

where Šǫ = Diag{σ̌ǫ(1), . . . , σ̌ǫ(d)}, σ̌2
ǫ (i) = T−1

∑T
t=1 ǫ̌

2
it, and Ȟt is the nonparamet-

ric estimator obtained from Σ̌t and the identification condition on Ht (see Assump-

tion A1(i)), that is Ȟt = Σ̌
1/2
t .

Let γ̂ALS
m = vec{(Γ̂ALS(1), . . . , Γ̂ALS(m))}. Following the notation of the previous

section, for a given integer m ≥ 1, define the residual autocorrelations

ρ̂ALS
a,m = vec

{ (
R̂ALS(1), . . . , R̂ALS(m)

)}
and ρ̂ALS

b,m = γ̂ALS
m .

The main result of this section shows that γ̂ALS
m and ρ̂ALS

a,m are asymptotic equivalent

to γ̂GLS
m and ρ̂GLS

a,m . This will allow us to define new portmanteau statistics based on

the ALS residuals. For this purpose, we need the following assumptions.

Assumption A1’: Suppose that all the conditions in Assumption A1(i) hold

true. In addition:

(i) infr∈(0,1] λmin(Σ(r)) > 0 where for any symmetric matrix A the real value

λmin(A) denotes its smallest eigenvalue.

(ii) supt ‖ǫkt‖8 <∞ for all k ∈ {1, ..., d}.
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Assumption A2: (i) The kernel K(·) is a bounded density function defined

on the real line such that K(·) is nondecreasing on (−∞, 0] and decreasing on [0,∞)

and
∫
R
v2K(v)dv < ∞. The function K(·) is differentiable except a finite number

of points and the derivative K ′(·) is an integrable function. Moreover, the Fourier

Transform F [K](·) of K(·) satisfies
∫
R
|sF [K](s)| ds <∞.

(ii) The bandwidths bkl, 1 ≤ k ≤ l ≤ d, are taken in the range BT = [cminbT , cmaxbT ]

with 0 < cmin < cmax <∞ and bT + 1/Tb2+γ
T → 0 as T → ∞, for some γ > 0.

(iii) The sequence νT is such that Tν2T → 0.

Below, we say that a sequence of random matrices AT , T ≥ 1 is op(1) uniformly

with respect to (w.r.t.) bkl ∈ BT as T → ∞ if sup1≤k≤l≤d supbkl∈BT
‖vec (AT ) ‖

P
−→ 0.

The following proposition gives the asymptotic behavior of variances, autocovari-

ances and autocorrelations estimators based on the ALS estimator of θ0 and the

nonparametric estimate of the time-varying variance structure Σt. The results are

uniformly w.r.t the bandwidths.

Proposition 3 If model (1.1) is correct and Assumptions A1’ and A2 hold, uni-

formly w.r.t. b ∈ BT

T−1

T∑

t=1

Ȟ ′
t ⊗ Ȟ−1

t =

∫ 1

0

G(r)′ ⊗G(r)−1dr + op(1), (5.1)

Σ̌X̃ = Λ1 + op(1). (5.2)

Moreover, given any m ≥ 1,

T
1

2

{
γ̂ALS
m − γ̂GLS

m

}
= op(1) and T

1

2

{
ρ̂ALS
m − ρ̂GLS

m

}
= op(1), (5.3)

where ρ̂ALS
m (resp. ρ̂GLS

m ) stands for any of ρ̂ALS
a,m and ρ̂ALS

b,m (resp. ρ̂GLS
a,m and ρ̂GLS

b,m ).

This asymptotic equivalence result allows us to propose portmanteau test statis-

tics adapted to the case of time-varying variance. Consider the Box-Pierce type
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statistic

QALS
a,m = T

m∑

h=1

tr
(
Γ̂′
ALS(h)Γ̂

−1
ALS(0)Γ̂ALS(h)Γ̂

−1
ALS(0)

)

= T γ̂ALS′

m

(
Im ⊗ Γ̂−1

ALS(0)⊗ Γ̂−1
ALS(0)

)
γ̂ALS
m ,

and

QALS
b,m = T ρ̂ALS′

b,m ρ̂ALS
b,m .

Consider also the Ljung-Box type statistics

Q̃ALS
a,m = T 2

m∑

h=1

(T − h)−1tr
(
Γ̂′
ALS(h)Γ̂

−1
ALS(0)Γ̂ALS(h)Γ̂

−1
ALS(0)

)

and

Q̃ALS
b,m = T 2

m∑

h=1

(T − h)−1tr
(
Γ̂′
ALS(h)Γ̂ALS(h)

)
.

The following theorem is a direct consequence of (3.7) and Proposition 3 and hence

the proof is omitted.

Theorem 5.1 Under the assumptions of Proposition 3, the statistics QALS
a,m , QALS

b,m

and Q̃ALS
a,m , Q̃ALS

b,m converge in distribution to

U(δALS
m ) =

d2m∑

i=1

δalsi U2
i , (5.4)

as T → ∞, where δALS
m = (δals1 , . . . , δalsd2m)

′ is the vector of the eigenvalues of ΣGLS,

and the Ui’s are independent N (0, 1) variables.

To compute the critical values of the adaptive portmanteau tests, we first obtain

a consistent estimator of Λǫ,θ
m given in (3.3) by replacing A01, . . . , A0p by their ALS

estimators in K and using (5.1). Next we consider the estimate of Λ1 given in (5.2).

Plugging these estimates into the formula (3.8), we obtain a consistent estimator of

ΣGLS with eigenvalues δ̂ALS
m = (δ̂als1 , . . . , δ̂alsd2m)

′ that consistently estimate δALS
m .
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There are several important particular cases that could be mentioned. In the

case of a VAR(0) model (i.e., the process (ut) is observed), ΣGLS = Id2m (see Propo-

sition 1) and hence the asymptotic distribution of the four test statistics in Theorem

5.1 would be χ2
d2m, that means independent of the variance structure given by Σ(·).

In the general case p ≥ 1 where the autoregressive coefficients A0i, i = 1, ..., p have

to be estimated, the matrix Id2m−ΣGLS being positive semi-definite, the eigenvalues

δals1 , ..., δalsd2m are smaller or equal to 1. Since, in some sense, the unconditional het-

eroscedasticity is removed in the ALS residuals, one could expect that the χ2
d2(m−p)

asymptotic approximation is reasonably accurate for the ALS tests. Example 3.1

indicates that this is may not the case, the asymptotic distribution we obtain for the

ALS portmanteau statistics can be very different from the χ2
d2(m−p) approximation

when the errors are heteroscedastic. Finally note that Patilea and Raïssi (2010)

pointed out that using the adaptive estimators of autoregressive parameters instead

of the OLS estimators lead to a gain of efficiency, so that it is advisable to compute

the kernel smoothing estimator of the variance function Σ(·) at the estimation stage.

Therefore since the kernel estimator of the variance Σt is available for the validation

stage, the ALS tests are not more complicated than the OLS tests to implement.

Let us also point out that the eigenvalues δals1 , ..., δalsd2m will not depend on the

variance structure when Σ(·) = σ2(·)Id (in particular in the univariate case), what-

ever the value of p is. Moreover, using the arguments of Box and Pierce (1970), see

also Brockwell and Davis (1991, pp. 310–311), one can easily show that for large

values of m, the law of U(δALS
m ) is accurately approximated by a χ2

d2(m−p) distribu-

tion. However, in the general the multivariate setup the asymptotic distribution in

(5.4) depend on the variance function Σ(·).
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6 Modified portmanteau statistics with standard chi-

square asymptotic distributions

In the previous sections we considered portmanteau tests for which the asymptotic

critical values are given by weighted sums of chi-squares in the general VAR(p)

case. Using a suitable change of our quadratic forms one can propose alternative

portmanteau test statistics with chi-squared asymptotic distributions under the null

hypothesis. This type of modification was already proposed in the recent time series

literature but in different contexts.

First note that as remarked above when testing that the observed process is

uncorrelated (p = 0) and using the standard portmanteau statistic (4.1) we obtain

a non standard asymptotic distribution. Then following the approach of Lobato,

Nankervis and Savin (2002) we consider the modified portmanteau test statistic

QOLS

m
= T γ̂OLS′

m

(
Λ̂u,u

m

)−1

γ̂OLS
m ,

where Λ̂u,u
m = Im ⊗ Σ̂G⊗2 with Σ̂G⊗2 defined in equation (4.3). The invertibility

of Λ̂u,u
m is guaranteed asymptotically by our assumptions. In view of Proposition

1 it is clear that under the null hypothesis of uncorrelated observed process, the

asymptotic distribution of theQOLS

m
statistic is χ2

d2m. Recall that this kind of statistic

correction is not necessary to obtain a standard asymptotic distribution for the

adaptive portmanteau tests when the non correlation of the observed process is

tested.

This approach can be generalized to the case of VAR(p) models with possibly

p > 0 using the approach of Katayama (2008) for building tests with standard

asymptotic distributions. In this part we take p < m < T . Let us introduce

DOLS
m = Φm

{
Φ′

m (Λu,u
m )−1Φm

}−1
Φ′

m (Λu,u
m )−1
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DGLS
m = Λǫ,θ

m

{
Λǫ,θ′

m Λǫ,θ
m

}−1

Λǫ,θ′

m

so that (Id2m − DOLS
m )Φm = 0 and (Id2m − DGLS

m )Λǫ,θ
m = 0. From the proof of

Proposition 1 (equation (12.17)), it is easy to see that

(Id2m −DOLS
m )T

1

2 γ̂OLS
m = (Id2m −DOLS

m )T
1

2 cum + op(1)

where T 1/2cum is asymptotically normal of mean 0 and variance Λu,u
m . Deduce that

(Id2m −DOLS
m )T

1

2 γ̂OLS
m ⇒ N (0, V ),

where V = (Id2m −DOLS
m )Λu,u

m (Id2m −DOLS
m )′. Now, notice that

(Id2m −DOLS
m )Λu,u

m = Λu,u
m − Φm

{
Φ′

m (Λu,u
m )−1Φm

}−1
Φ′

m = Λu,u
m (Id2m −DOLS

m )′.

From this and the fact that Id2m −DOLS
m is a projector, deduce that the matrix AV

is idempotent, where

A = (Id2m −DOLS
m )′(Λu,u

m )−1(Id2m −DOLS
m ).

Moreover, since Φm is of full column rank d2p, it is easy to see that the rank of A is

d2(m− p). A classical result in multivariate data analysis implies

T γ̂OLS′

m (Id2m −DOLS
m )′(Λu,u

m )−1(Id2m −DOLS
m )γ̂OLS

m ⇒ χ2
d2(m−p). (6.1)

Similarly we obtain

(Id2m −DGLS
m )T

1

2 γ̂GLS
m ⇒ N (0, Id2m −DGLS

m ) (6.2)

and we deduce

T γ̂GLS′

m (Id2m −DGLS
m )γ̂GLS

m ⇒ χ2
d2(m−p). (6.3)

The matrices DOLS
m and Λu,u

m could be estimated as suggested in Section 4, see

comments after equation (4.6), and hence a modified portmanteau test statistic
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based on the OLS estimates γ̂OLS
m and having standard chi-square critical values

could be derived from equation (6.1). On the other hand, using a nonparametric

estimate of Ht one could easily estimate DGLS
m , see Proposition 3 and the comments

after Theorem 5.1. Moreover, Proposition 3 allows us to replace γ̂GLS
m with γ̂ALS

m

and thus to introduce an adaptive portmanteau test with a modified statistic and

standard chi-square critical values based on equation (6.3). Clearly one can consider

similar modification for Ljung-Box type statistics.

The chi-square critical values are certainly more convenient for portmanteau

tests. Moreover, in section 7 we provide evidence that the test based on the statistic

(6.1) could be more powerful, in the Bahadur slope sense, than the OLS estimates

based test based on the QOLS
m statistic investigated in Theorem 1.1. However, it

is not necessarily true that the modified procedures presented in this section are

preferable in applications. Indeed, the empirical evidence presented in Section 9

shows that test statistics like in (6.1) and (6.3) are unstable and induce bad levels

even with series of few hundred observations.

7 Testing for autocorrelation in heteroscedastic se-

ries: some theoretical power comparisons

In this part we carry out some theoretical power comparisons for the tests we consid-

ered above in the important case where the non correlation of the observed process

Xt = ut is tested. The case p ≥ 1 will be considered elsewhere. On one hand we

compare the classical Box-Pierce portmanteau test and modified quadratic forms of

OLS residual autocorrelations based test introduced in section 6. On the other hand

we compare ALS and OLS residual autocorrelations based portmanteau tests. For
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this purpose we use the Bahadur slope approach that we briefly recall here. Let QA

denote a test statistic and, for any x > 0, define qA(x) = − logP0(QA > x) where

P0 stands for the limit distribution of QA under the null hypothesis. Following Ba-

hadur (1960) (see also van der Vaart 1998, chapter 14), consider the (asymptotic)

slope cA(̺) = 2 limT→∞ T−1qA(QA) under a fixed alternative H1 such that the limit

exists in probability. The asymptotic relative efficiency of the test based on QA

with respect to a competing test based on a test statistic QB is then defined as the

ratio AREA,B(̺) = cA(̺)/cB(̺). A relative efficiency AREA,B(̺) ≥ 1 suggests that

the test given by QA is better suited to detect H1 because the associated p−values

wanes faster or equally faster compared to the p−values of the test based on QB.

For the sake of simplicity we restrict our attention to the BP statistics and

consider the case where one tests the non correlation of the observed process, while

the underlying true process is the autoregressive process of order 1

ut = But−1 + H̃tǫt, (7.1)

where det(Id−Bz) 6= 0 for all |z| ≤ 1 and B 6= 0. We keep the notation E(XtX
′
t) =

E(utu
′
t) = Σt and we introduce E(H̃tǫtǫ

′
tH̃

′
t) = H̃tH̃

′
t := Σ̃t. Under the alternative

hypothesis (7.1) we have the relationship

Σt =

∞∑

i=0

BiΣ̃t−iB
i′ . (7.2)

Using similar arguments to that of the proofs of Lemmas 12.1 to 12.3 in the Ap-

pendix, deduce that

Γ̂OLS(h) = T−1
T∑

t=h+1

utu
′
t−h = Bh

∫ 1

0

Σ(r)dr + op(1) (7.3)

and

Γ̂GLS(h) = T−1
T∑

t=h+1

H−1
t utu

′
t−hH

−1′

t−h =

∫ 1

0

G(r)−1BhG(r)dr + op(1). (7.4)
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Using basic properties of the vec(·) operator and the Kronecker product we obtain

T−1QOLS
m = B′

{
Im ⊗

∫ 1

0

Σ(r)dr ⊗

(∫ 1

0

Σ(r)dr

)−1
}
B + op(1)

T−1QOLS

m
=B′

{
Im ⊗

(∫ 1

0

Σ(r)dr⊗Id

)(∫ 1

0

Σ(r)⊗Σ(r)dr

)−1(∫ 1

0

Σ(r)dr⊗Id

)}
B + op(1)

and

T−1QALS
i,m = B′

{
Im ⊗

(∫ 1

0

G(r)′ ⊗G(r)−1dr

)2
}
B + op(1),

with i ∈ {a, b} and B = vec {(B1, . . . , Bm)}.

Proposition 4 (i) If Assumption A1 holds true and the observations follow the

model (7.1), the asymptotic relative efficiency of the portmanteau test based on QOLS

m

with respect to the portmanteau tests based on QOLS
m is larger or equal to 1.

(ii) Suppose that Σ(·) = σ2(·)Id where σ(·) is some positive scalar function.

Suppose that Assumptions A1’ and A2 holds true and the observations follow the

model (7.1). Then asymptotic relative efficiencies of the portmanteau test based on

QALS
m with respect to the portmanteau tests based on QOLS

m or QOLS

m
are larger or

equal to 1.

In the first part of Proposition 4 the result is obtained without additional restric-

tion on Σ(·) while in the second part we impose Σ(·) = σ2(·)Id which is for instance

true in the univariate case (d = 1). In the general multivariate case the portmanteau

test based on ALS residual autocorrelations does not necessarily outperforms, in the

sense of the Bahadur slope, the tests based on the OLS residual autocorrelations

considered above.
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8 Extending the scope: testing the order of a het-

eroscedastic co-integration model

Consider the case of a unit root multivariate process (Xt) with time-varying volatil-

ity, see for instance Cavaliere, Rahbek and Taylor (2010) or Boswijk (2010). With

Z0t := Xt −Xt−1 the model (1.1) can be rewritten in its error correction form

Z0t = Π01Xt−1 +

p∑

i=2

Π0iZ0t−i+1 + ut (8.1)

ut = Htǫt.

The matrices Π0i are functions of the Ai’s, and such that the assumptions of the

Granger representation theorem hold (see for instance Assumption 1 of Cavaliere,

Rahbek and Taylor (2010)), Π01 = α0β
′
0 where the d × s-dimensional matrices α0

and β0 are identified in some appropriate way (see e.g. Johansen 1995, p. 72, for

the identification problem). If p = 1 the sum in (8.1) vanishes. In this section we

follow Cavaliere, Rahbek and Taylor (2010) and we slightly strengthen A1 assuming

that (ǫt) is iid. Then it follows from their Lemma 1 that (Xt) have a random walk

behavior and also that (β ′
0Xt) is stable. By analogy with the homoscedastic case, the

number s of independent linear stable combinations in (β ′
0Xt) is the cointegrating

rank (see section 2.3 of Cavaliere, Rahbek and Taylor 2010, for a detailed discussion

on the concept of cointegration in our framework). If s = 0 the process (Xt) is not

cointegrated and the procedures described in the previous sections apply directly to

the process (Z0t). Many contributions in the literature that considered the standard

homoscedastic framework pointed out that the choice of the lag length is important

for the contegrating rank analysis, see e.g. Boswijk and Franses (1992, section 4). It

seems reasonable to imagine that a similar remark remains true with a time-varying

variance.
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To describe the estimation procedure of (8.1), let us define Z1t(β) = (X ′
t−1β, Z

′
0t−1,

. . . , Z ′
0t−p+1)

′ for any d× s-matrix β and rewrite model (8.1) under the form

Z0t = (Z1t(β0)
′ ⊗ Id)ϑ0 + ut,

where ϑ0 = vec {(α0,Π02, . . . ,Π0p)}. The estimator of the long run relationships β̂

can be obtained using the reduced rank regression method introduced by Anderson

(1951). Cavaliere et al (2010) showed that in our framework

T (β̂ − β) = Op(1). (8.2)

Now, let us define

ϑ̂OLS(β) = Σ̂−1
Z1
(β)vec

(
Σ̂Z0

(β)
)
,

where

Σ̂Z1
(β) = T−1

T∑

t=1

Z1t(β)Z1t(β)
′ ⊗ Id and Σ̂Z0

(β) = T−1
T∑

t=1

Z0tZ1t(β)
′,

and similarly to (2.2) let us introduce

ϑ̂GLS(β) = Σ̂Z1
(β)−1vec

(
Σ̂Z0

(β)
)
,

with

Σ̂Z1
= T−1

T∑

t=1

Z1t(β)Z1t(β)
′ ⊗ Σ−1

t , Σ̂Z0
= T−1

T∑

t=1

Σ−1
t Z0tZ1t(β)

′,

where the volatility Σt is assumed known. Next, for any fixed β, let us define the

estimated residuals

ût(β) = Z0t − (Z1t(β)
′ ⊗ Id)ϑ̂OLS(β),

ǫ̂t(β) = H−1
t Z0t −H−1

t (Z1t(β)
′ ⊗ Id)ϑ̂GLS(β)
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and the corresponding estimated autocovariance matrices

Γ̂OLS(h, β) = T−1
T∑

t=h+1

ût(β)ût−h(β)
′ and Γ̂GLS(h, β) = T−1

T∑

t=h+1

ǫ̂t(β)ǫ̂t−h(β)
′.

From (8.2) we obviously have

Γ̂OLS(h, β̂) = Γ̂u
OLS(h, β0) + op(T

− 1

2 ) and Γ̂GLS(h, β̂) = Γ̂u
GLS(h, β0) + op(T

− 1

2 ).

Defining

Σ̌0
t (β) =

T∑

i=1

wti ⊙ ûi(β)ûi(β)
′,

it is also obvious that

Σ̌0
t (β̂) = Σ̌0

t (β0) + op(T
− 1

2 ).

It is clear now that one can treat β0 as known and, following the lines of the pre-

vious sections, one can use Γ̂OLS(h, β̂) and the ALS version of Γ̂GLS(h, β̂) to build

portmanteau tests for checking the order p of the model (8.1).

9 Monte Carlo experiments

In the sequel LBOLS
m and LBALS

m will denote the Ljung-Box type portmanteau tests

based on the adaptive approach with non standard distributions (4.2) and (5.4).

For the sake of brevity, only the results obtained with the test statistic Q̃ALS
a,m will

be reported. Moreover, since we found similar results for the BP and LB tests,

we only report on LB tests. The LB tests based on modified statistics which are

built using the results in Section 6 are denoted by L̃B
OLS

m and L̃B
ALS

m . If we assume

that the volatility function is known, one can also build portmanteau tests using the

result in (3.14) in a similar way to the adaptive portmanteau tests. These infeasible

tests denoted by LBGLS
m and L̃B

GLS

m will serve as a benchmark for comparison with

the ALS tests LBALS
m and L̃B

ALS

m . It is clear that the asymptotic critical values of
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the ALS tests are the same as the critical values of the GLS tests. In this section

we investigate by simulations the finite sample properties of the ALS and GLS

portmanteau tests and we compare them with the OLS estimation-based tests. In

the next section we study the model adequacy of two real data sets: the US energy

and transportation price indexes for all urban consumers on one hand and the US

balances on merchandise trade and on services on the other hand.

9.1 Empirical size

Our Monte Carlo experiments are based on the following Data Generating Process

(DGP) specification




X1t

X2t


 =




0.3 −0.3

0 −0.1







X1t−1

X2t−1


+




a 0

0 a







X1t−2

X2t−2


+




u1t

u2t


 ,

(9.1)

where a = 0 in the empirical size part of the study and a = −0.3 in the empirical

power part. The autoregressive parameters are such that the stability condition hold

and are inspired from the ALS estimation obtained for the U.S. balance on services

and merchandise trade data (see Table 5 below). In the case of smooth variance

structure we consider

Σ(r) =




(1 + π1r)(1 +̟2) ̟(1 + π1r)
1

2 (0.1 + π2r)
1

2

̟(1 + π1r)
1

2 (0.1 + π2r)
1

2 (0.1 + π2r)


 , (9.2)

where we take π1 = 250 and π2 = 5. In order to investigate the properties of the

tests when a volatility break is present we also consider the following specification

Σ(r) =




(6 + f1(r))(1 +̟2) ̟(6 + f1(r))
1

2 (0.5 + f2(r))
1

2

̟(0.5 + f2(r))
1

2 (6 + f1(r))
1

2 (0.5 + f2(r))(1 + ρ2)


 , (9.3)
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with f1(r) = 54 × 1(r≥1/2)(r) and f2(r) = 3 × 1(r≥1/2)(r). In this case we have a

common volatility break at the date t = T/2. In all experiments we fix ̟ = 0.2.

These volatility specifications are inspired by the real data studies we consider in the

next section. For instance to fix the (1, 1)−component of the specification (9.2) we

noticed that the last estimated variances with the balance services and merchandise

trade data are all greater than 200. In the energy-transport price indexes data

some of the last estimated variances of the first component are even greater than

300. The amplitudes of the functions f1(·) and f2(·) in the volatility specification

with an abrupt break defined in (9.3) were calibrated close to the means of the first

T/2 estimated volatilities and of the T/2 last volatilities for the balance services

and merchandise trade data. To assess the finite sample properties of the tests

under comparison when the errors are stationary, we also considered standard i.i.d.

Gaussian error processes. For each experiment N = 1000 independent trajectories

are simulated using DGP (9.1). Samples of length T = 50, T = 100 and T = 200

are simulated.

We first study the empirical size of the tests taking a = 0, and adjusting a VAR(1)

model to the simulated processes. The portmanteau tests for the non correlation

of the error terms are applied using m = 5 and m = 15 at the asymptotic nominal

level 5%. The results are given in Tables 1, 2 and 3. Since N = 1000 replications are

performed and assuming that the finite sample size of the tests is 5%, the relative

rejection frequencies should be between the significant limits 3.65% and 6.35% with

probability 0.95. Then the relative rejection frequencies are displayed in bold type

when they are outside these significant limits. Note that the distributions (4.2)

and (5.4) are given for fixed m, while the χ2
d2(m−p) approximation (see discussion

after Theorem 4.1 above) should be accurate only for large m. Therefore we only
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comment the results for small and moderate samples (T = 50 and T = 100) for

the standard portmanteau tests with m = 5, while the results for large samples

(T = 200) are considered when m = 15 is taken.

In Table 1 i.i.d. standard Gaussian errors are used, that means Σ(·) ≡ I2. In this

simple case the relative rejection frequencies of the tests converge to the asymptotic

nominal level. In general we do not remark a major loss of efficiency of the LBALS
m

test when compared to the standard test. Therefore one can use the LBALS
m test in

case of doubt of the presence of unconditional heteroscedasticity. The same remark

can be made for the LBOLS
m test when m is small. However we note that the LBOLS

m

is oversized for small samples and when m is large. It also appears that the tests

based on modified statistics are oversized when m is large. This can be explained

by the fact that the matrices Λǫ,θ′

m Λǫ,θ
m and Φ′

m(Λ
u,u
m )−1Φm are difficult to invert in

such situations.

In Table 2 heteroscedastic errors with an abrupt volatility break are considered,

while the trending specification (9.2) is used for the volatility in Table 3. In line with

the theoretical the relative rejection frequencies of the ALS, GLS and OLS tests con-

verge to the asymptotic nominal level. As expected the standard portmanteau test

is not valid. In general it emerges from this part that the LBALS
m and LBGLS

m tests

have similar results. Then it seems that estimating the volatility entails no major

loss of efficiency when building this kind of test. We did not found clear advantage

for the LBALS
m when compared to the LBOLS

m in the presented experiments. However

note that the asymptotic distribution (4.2) of the standard portmanteau statistic

seems estimated with less precision than the asymptotic distribution of the ALS

portmanteau statistic. For instance we see in Table 4 that for m = 5 the standard

deviations of the ALS weights are lower or equal to the standard deviations of the

35



OLS weights. We found that this difference is more marked for m = 15 which may

lead to problems for the control of the error of first kind for the LBOLS
m as already

noted in the homoscedastic case (see Table 1 for m = 15). Other simulation results

not reported here show that the LBOLS
m test can be oversized when m is large as

in the homoscedastic case with m = 15 and we noted that the estimation of the

weights requires a relatively large number of observations for the OLS approach. A

possible explanation is also that δalsi ∈ [0, 1] while δolsi ∈ [0,∞) for i ∈ {1, . . . , d2m},

which may proceed more instable estimation for δolsi in many cases. In addition the

energy-transportation price indexes example below show that the estimation of the

weights may be problematic in the OLS case. Therefore we recommend to choose

small m when the samples are small and use large m only when the samples are

large despite the asymptotic results hold true for fixed m when the LBOLS
m is con-

sidered. We again note that the tests with modified statistics are in general clearly

oversized. A possible explanation is that White (1980) type correction matrices are

inverted in the modified portmanteau statistics which may lead to oversized tests as

pointed out in Vilasuso (2001) in the stationary case. We can conclude that with

a data generating process close to our simulation design the LBALS
m test controls

reasonably well the error of the first kind in all the situations we considered.

9.2 Empirical power

In the empirical power part of this section, we examine the ability of the different

tests to detect underspecified autoregressive order. The power investigation is real-

ized in the Bahadur sense, that is the sample size is increased while the alternative

is kept fixed. More precisely we set a = −0.3, and we adjusted a VAR(1) model to

the simulated VAR(2) processes with T = 50, 100, 200, 300. We simulated N = 1000
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independent trajectories using DGP (9.1) with standard Gaussian innovations and

heteroscedastic volatility specifications (9.2) and (9.3). The non correlation of the

error process is again tested at the asymptotic nominal level 5%, but taking m = 10

in all the experiments. In Figure 3 we consider the homoscedastic case, errors where

an abrupt volatility shift is observed and errors with smoothly varying variance.

When the variance is constant it appears that the tests with non standard distri-

bution have similar power to the standard test when the errors are homoscedastic.

Therefore we again note that there is no major loss of efficiency when the tests

with modified distribution are used while the variance is constant. The tests with

standard distribution may seem more powerful when the samples are small, but this

mainly comes from the fact that these tests are oversized. When the errors are

heteroscedastic the standard test seems more powerful than the other tests. How-

ever the standard test is oversized and in this case and the comparison is again not

fair. A similar comment can be made when the tests with modified distribution are

compared to the tests with standard distribution. It emerges that the LBALS
m test

is more powerful than the LBOLS
m . The relation between the powers of L̃B

OLS

m and

L̃B
ALS

m is not clear. Finally we can remark that in the presented experiments the

GLS type tests are not necessarily more powerful than the ALS tests.

The results of section 7 are also illustrated. To this aim N = 1000 independent

trajectories are simulated using a VAR(1) DGP with A01 = −0.3I2. We consider

heteroscedastic errors with trending behavior volatility specification:

Σ(r) =




(1 + π1r) 0

0 (1 + π1r)




where we take π1 = 150, and a volatility with an abrupt shift at T/2:
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Σ(r) =




(1 + f1(r)) 0

0 (1 + f1(r))


 ,

where f1(r) = 10 × 1(r≥1/2)(r). The lengths of the simulated series are T =

50, 100, 200. The non correlation of the observed process is tested at the asymp-

totic nominal level 5% taking m = 10. From Figure 4 the L̃BOLS test may appear

more powerful than the LBALS test when the samples are small. However this comes

from the fact that the L̃BOLS test is strongly oversized in small samples. In accor-

dance with the theoretical we see that the LBALS test clearly outperform the L̃BOLS

and LBOLS as the samples become large.

10 Illustrative examples

For our real data illustrations we use two U.S. economic data sets. First we consider

the quarterly U.S. international finance data for the period from January 1, 1970 to

October 1, 2009: the balance on services and the balance on merchandise trade in

billions of Dollars. The length of the balance data series is T = 159. We also consider

monthly data on the U.S. consumer price indexes of energy and transportation for

all urban consumers for the period from January 1, 1957 to February 1, 2011. The

length of the energy-transportation series is T = 648. The series are available

seasonally adjusted from the website of the research division of the Federal Reserve

Bank of Saint Louis.

10.1 VAR modeling of the U.S. balance trade data

In our VAR system the first component corresponds to the balance on merchandise

trade and the second corresponds to the balance on services trade. From Figure 5 it
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seems that the series have a random walk behavior. We applied the approach of unit

root testing proposed by Beare (2008) in presence of non constant volatility using the

Augmented Dickey-Fuller (ADF) test for each series. The ADF statistic is 0.72 for

the merchandise trade balance data and is −0.15 for the services balance data. These

statistics are greater than the 5% critical value −1.94 of the ADF test, so that the

stability hypothesis have to be rejected for the studied series. Furthermore we also

applied the Kolmogorov-Smirnov (KS) type test for homoscedasticity considered by

Cavaliere and Taylor (2008, Theorem 3) for each series. The KS statistic is 3.05 for

the merchandise trade balance data and is 7.62 for the services balance data. These

statistics are greater than the 5% critical value 1.36, so that the homoscedasticity

hypothesis has to be rejected for our series. Therefore we consider the first differences

of the series to get stable processes, so that the evolutions of the U.S. balance data

are studied in the sequel. From Figure 6 we see that the first differences of the

series are stable but have a non constant volatility. We adjusted a VAR(1) model to

capture the linear dynamics of the series. The ALS and OLS estimators are given

in Table 5. The standard deviations into brackets are computed using the results

(2.3) and (2.4). In accordance with Patilea and Raïssi (2010), we find that the

ALS estimation method seems better estimate the autoregressive parameters than

the OLS estimation method, in the sense that the standard deviations of the ALS

estimators are smaller than those of the OLS estimators. The bandwidth we use for

the ALS estimation, b = 7.67× 10−2, is selected by cross-validation in a given range

and using 200 grid points (Figure 7).

A quick inspection of Figures 8 and 9 suggests that the OLS residuals have a

varying volatility, while the stationarity of the ALS residuals is plausible. Thus it

seems that the volatility of the error process (ut) is satisfactorily estimated by the
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adaptive method. Now we examine the possible presence conditional heteroscedas-

ticity in the ALS residuals. From Figure 10 we see that the autocorrelations of the

squared ALS residuals components are not significant. In addition we also consid-

ered the ARCH-LM test of Engle (1982) with different lags in Table 6 for testing the

presence of ARCH effects in the ALS residuals. It appears that the null hypothesis

of conditional homoscedasticity cannot be rejected at the level 5%. These diagnos-

tics give some evidence that the conditional homoscedasticity assumption on (ǫt) is

plausible in our case. To analyze the changes of the variance of the OLS error terms,

we plotted the estimated variances and cross correlation of the components of the

error process in Figures 11 and 12. It appears from Figure 11 that the variance of

the first component of the residuals does not vary much until the end of the 90’s

and then increase. Similarly the volatility of the second component of the residuals

does not vary much until the end of the 80’s and then increase. From Figure 12 we

also note that the correlation between the components of the innovations seems to

be positive until the beginning of the 90’s and then become negative.

Now we turn to the check of the goodness-of-fit of the VAR(1) model adjusted

to the first differences of the series. To illustrate the results of Proposition 1 we

plotted the ALS residual autocorrelations in Figures 13 and 14, and the OLS residual

autocorrelations in Figures 15 and 16, where we denote

R̂ij
OLS(h) =

T−1
∑T

t=h+1 ûi tûj t−h

σ̂u(i)σ̂u(j)
and R̂ij

ALS(h) =
T−1

∑T
t=h+1 ǫ̌i tǫ̌j t−h

σ̌ǫ(i)σ̌ǫ(j)
.

The ALS 95% confidence bounds obtained using (3.14) and (5.3) are displayed in

Figures 13 and 14. In Figures 15 and 16 the standard 95% confidence bounds

obtained using (3.9) and the OLS 95 % confidence bounds obtained using (3.13) are

plotted. We can remark that the ALS residual autocorrelations are inside or not
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much larger than the ALS significance limits. A similar comment can be made for

the OLS residual autocorrelations when compared to the OLS significance limits.

However we found that the OLS significance limits can be quite different from the

standard significance limits. This can be explained by the presence of unconditional

volatility in the analyzed series. In particular we note that the R̂21
OLS(5) is far from

the standard confidence bounds. We also apply the different portmanteau tests

considered in this paper for testing if the errors are uncorrelated. The test statistics

and p-values of the tests are displayed in Tables 7 and 8. It appears that the p-

values of the standard tests are very small. Therefore the standard tests clearly

reject the null hypothesis. We also remark that the p-values of the modified tests

based on the OLS estimation and of the adaptive tests are far from zero. Thus in

view of the tests introduced in this paper the null hypothesis is not rejected. These

contradictory results can be explained by the fact that we found that the distribution

in (4.2) is very different from the χ2
d2(m−p) standard distribution. For instance we

obtained supi∈{1,...,d2m}

{
δ̂olsi

}
= 11.18 for m = 15 in our case. Our findings may

be viewed as a consequence of the presence of unconditional heteroscedasticity in

the data. Since the theoretical basis of the standard tests do not include the case

of stable processes with non constant volatility, we can suspect that the results of

the standard tests are not reliable. Therefore we can draw the conclusion that the

practitioner is likely to select a too large autoregressive order in our case when using

the standard tools for checking the adequacy of the VAR model. From Table 8 we

see that the OLS and ALS statistics are quite different. We also noted that the

weights (not reported here) of the sums in (4.2) and in (5.4) are quite different for

our example.
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10.2 VAR modeling of the U.S. energy-transportation data

In this example the first component of the VAR system corresponds to the trans-

portation price index and the second corresponds to the energy price index. We first

briefly describe some features of the energy-transportation price indexes. In Figure

17 we again see that the studied series seems to have a random walk behavior and

then we again consider the first differences of the series. The KS type statistic is

7.05 for the energy price index and is 6.81 for the transportation price index, so that

the homoscedasticity hypothesis has to be rejected for these series. From Figure

18 we see that the first differences of the series are stable but have a non constant

volatility. We adjusted a VAR(4) model to capture the linear dynamics of the se-

ries. The results in Table 9 indicate that the ALS approach is more precise than the

OLS approach for the estimation of the autoregressive parameters. The bandwidth

obtained by the cross-validation for the ALS estimation is b = 9.53 × 10−2 (Figure

19). From Figure 21 we see that the OLS residuals seem to have a varying volatility.

The stationarity of the ALS residuals is plausible (Figure 20) and ARCH-LM tests

(not reported here) show that the conditional homoscedasticity of the ALS residuals

cannot be rejected. From Figure 22 we see that the shape of the variance structure

of the components of the OLS residuals are similar. More precisely it can be noted

that the variance of the components of the OLS residuals is relatively low and seems

constant until the beginning of the 80’s. The OLS residual variance seems to switch

to an other regime where the variance is increased but constant from the beginning

of the 80’s to the end of the 90’s. The volatility of the OLS residual variance seems to

increase from the end of the 90’s. From Figure 12 we also note that the components

of the OLS residuals seem highly correlated.

Now we check the adequacy of the VAR(4) model. The ALS and OLS residual
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autocorrelations are given in Figures 24, 25 and 26, 27. The OLS residual autocor-

relations with the standard bounds are given in Figures 28 and 29. From Figures

24 and 25 it can be noted that the ALS residual autocorrelations are inside or not

much larger than the ALS significance limits. The OLS confidence bounds seems

not reliable since we remark that some confidence bounds (corresponding to the

R̂ij
OLS(2)’s) are unexpectedly much larger than the OLS residual autocorrelations.

From Figures 28 and 29 it can also be noted that some of the OLS residual auto-

correlations are far from the standard confidence bounds. However considering the

standard confidence bounds in presence of non constant variance can be misleading

in view of our theoretical findings. In addition we also remark that some standard

confidence bounds (corresponding to the R̂11
OLS(2), R̂

21
OLS(2) and R̂22

OLS(8), R̂
12
OLS(8))

are unexpectedly far from the residual autocorrelations. The non correlation of the

residuals is tested using the different portmanteau tests considered in this paper.

The test statistics and p-values of the tests are displayed in Tables 10 and 11. The

standard tests again lead to select complicated models since the adequacy of the

VAR(4) model is rejected. We also remark that the p-values of the OLS tests are

very large. In fact we found that the OLS tests do not reject the hypothesis of the

adequacy of a VAR(1) model for the studied series. From Table 12 we see that some

of the estimated weights for the asymptotic distribution of the standard statistic

take very large values. It appears that the OLS method seems not able to esti-

mate correctly the asymptotic distribution of the standard statistics and may be

suspected to have a low power in this example. Then the OLS portmanteau test

seem not reliable in this example on the contrary to the ALS portmanteau test. In-

deed it can be noted that the asymptotic distribution seems well estimated. Finally

note that we found that the estimators of the Λǫ,θ′

m Λǫ,θ
m and Φ′

m(Λ
u,u
m )−1Φm are not
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invertible, so that the L̃B
ALS

m and L̃B
OLS

m are not feasible in this example. In view

of the different outputs we presented, it seems that the LBALS
m test is the only test

which give reliable conclusions in this example. This may be explained by the fact

that the variance strongly change in this second example when compared to the first

example and hence make the tests based on inverted matrices or the tests which do

not exploit the variance structure difficult to implement.

11 Conclusion

In this paper the problem of specification of the linear autoregressive dynamics of

multivariate series with deterministic but non constant volatility is studied. Consid-

ering such situations is important since it is well known that economic or financial

series commonly exhibit non stationary volatility. The unreliability of the standard

portmanteau tests for testing the adequacy of the autoregressive order of VAR pro-

cesses is highlighted through theoretical results and empirical illustrations. From

the statistical methodology point of view, the main contribution of the paper is

two-fold. In the setup of a stable VAR with time-varying variance, (a) we show how

to compute corrected critical values for the standard portmanteau statistics imple-

mented in all specialized software; and (b) we propose new portmanteau statistics

based on the model residuals filtered for the non constant variance. Moreover, we

provide some theoretical and empirical power comparisons of the two approaches

and we show that they are well-suited for replacing the usual test procedures even

when the volatility is constant. The new portmanteau statistics require the estima-

tion of the time-varying variance that is done by classical kernel smoothing of the

outer product of the OLS residuals vectors. Then another contribution of the paper
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is represented by the fact that our asymptotic results are derived uniformly in the

bandwidth used in the kernel. This makes the theory compatible with the practice

where people usually use the data to determine the bandwidth. Our theoretical

and empirical investigation could be extended to other setups, like for instance the

co-integrated systems. We briefly mention this extension but a deeper investigation

is left for future work.

12 Appendix A: Proofs

For the sake of a simpler presentation, hereafter we stick to our identification con-

dition for Ht and hence we replace everywhere G(r) by Σ(r)1/2. Recall that

X̃t =

∞∑

i=0

ψ̃iu
p
t−i =

∞∑

i=0

Kiũt−i,

(see pages 9 and 11). Let us introduce

Υu
t−1 = (u′t−1, . . . , u

′
t−m, X̃

′
t−1)

′ = (um
′

t−1, X̃
′
t−1)

′

and

Υǫ
t−1 = (ǫ′t−1, . . . , ǫ

′
t−m, X̃

′
t−1)

′ = (ǫm
′

t−1, X̃
′
t−1)

′,

for a given m > 0. To prove Propositions 1 and 2 we need several preliminary results

that are gathered in Lemmas 12.1 to 12.3 below.

Lemma 12.1 Under Assumption A1 we have

lim
T→∞

E
[
X̃[Tr]−1X̃

′
[Tr]−1

]
=

∞∑

i=0

ψ̃i {1p×p ⊗ Σ(r)} ψ̃′
i := Ω(r), (12.1)

lim
T→∞

E
[
Υu

[Tr]−1Υ
u′

[Tr]−1

]
= Ωu(r), (12.2)

lim
T→∞

E
[
Υǫ

[Tr]−1Υ
ǫ′

[Tr]−1

]
= Ωǫ(r), (12.3)

45



for values r ∈ (0, 1] where the functions gij(·) are continuous. The matrices in (12.2)

and (12.3) are given by

Ωu(r) =




Im ⊗ Σ(r) Θu
m(r)

Θu
m(r)

′ Ω(r)


 , Θu

m(r) =

m−1∑

i=0

{em(i+ 1)ep(1)
′ ⊗ Σ(r)}Ki ′

and

Ωǫ(r) =




Idm Θǫ
m(r)

Θǫ
m(r)

′ Ω(r)


 , Θǫ

m(r) =

m−1∑

i=0

{
em(i+ 1)ep(1)

′ ⊗ Σ(r)1/2
}
Ki ′.

Proof of Lemma 12.1 Statement 12.1 is a direct consequence of Lemma 7.2 in

Patilea and Raïssi (2010). For the proof of (12.2) we write2

E(umt−1X̃
′
t−1) =

∞∑

i=0

E(umt−1ũ
′
t−i−1K

i ′)

=

m−1∑

i=0

E(umt−1ũ
′
t−i−1K

i ′)

=

m−1∑

i=0

{em(i+ 1)ep(1)
′ ⊗Ht−i−1H

′
t−i−1}K

i ′

=

m−1∑

i=0

{em(i+ 1)ep(1)
′ ⊗ Σ((t− i− 1)/T )}Ki ′.

Therefore

lim
T→∞

E(um[Tr]−1X̃
′
[Tr]−1) = lim

T→∞

m−1∑

i=0

{em(i+ 1)ep(1)
′ ⊗ Σ(([Tr]− i− 1)/T )}Ki ′

=
m−1∑

i=0

{em(i+ 1)ep(1)
′ ⊗ Σ(r)}Ki ′.

Similarly we have

lim
T→∞

E(um[Tr]−1u
m′

[Tr]−1) = Im ⊗ Σ(r), (12.4)

2Here we make a common abuse of notation because in Assumption A1 the matrix-valued

function Σ(·) is not defined for negative values. To remedy this problem it suffices to extend the

function Σ(·) to the left of the origin, for instance by setting Σ(r) equal to the identity matrix if

r ≤ 0.

46



so that using (12.1) we obtain the result (12.2). The proof of (12.3) is similar. �

Let us define vut = vec(Υu
t−1Υ

u′

t−1 ⊗ utu
′
t) and vǫt = vec(Υǫ

t−1Υ
ǫ′

t−1 ⊗ ǫtǫ
′
t). The

following lemma is similar to Lemma 7.3 of Patilea and Raïssi (2010), and hence

the proof is omitted.

Lemma 12.2 Under A1 we have

T−1
T∑

t=i+1

vec(utX̃
′
t−i)

P
−→ 0, (12.5)

T−1
T∑

t=i+1

vec(ǫtX̃
′
t−i)

P
−→ 0, (12.6)

for i > 0, and

T−1
T∑

t=m+1

vec(umt−1X̃
′
t−1)

P
−→ lim

T→∞
T−1

T∑

t=m+1

vec
{
E(umt−1X̃

′
t−1)

}
, (12.7)

T−1
T∑

t=m+1

vec(ǫmt−1X̃
′
t−1)

P
−→ lim

T→∞
T−1

T∑

t=m+1

vec
{
E(ǫmt−1X̃

′
t−1)
}
. (12.8)

In addition we have

T−1
T∑

t=1

vut
P

−→ lim
T→∞

T−1
T∑

t=1

E(vut ) = lim
T→∞

T−1
T∑

t=1

vec
{
E(Υu

t−1Υ
u′

t−1)⊗ Σt

}
,

(12.9)

T−1

T∑

t=1

vǫt
P

−→ lim
T→∞

T−1

T∑

t=1

E(vǫt) = lim
T→∞

T−1

T∑

t=1

vec
{
E(Υǫ

t−1Υ
ǫ′

t−1)⊗ Id

}
.

(12.10)

Lemma 12.3 Under A1 we have

Σ̂X̃ = Λ1 + op(1), (12.11)

Σ̂X̃ = Λ3 + op(1). (12.12)
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In addition we also have

T− 1

2

T∑

t=1

Υu
t−1 ⊗ ut ⇒ N (0,Ξu), (12.13)

T− 1

2

T∑

t=1

J−1
t (Υǫ

t−1 ⊗ ǫt) ⇒ N (0,Ξǫ), (12.14)

where

Jt =




Id2m 0

0 Idp ⊗Ht




and

Ξu =

∫ 1

0




Im ⊗ Σ(r)⊗2 Θu
m(r)⊗ Σ(r)

Θu ′
m (r)⊗ Σ(r) Ω(r)⊗ Σ(r)


 dr =




Λu,u
m Λu,θ

m

Λu,θ ′
m Λ2


 ,

Ξǫ =

∫ 1

0




Id2m Θǫ
m(r)⊗ Σ(r)−

1

2

Θǫ′

m(r)⊗ Σ(r)−
1

2 Ω(r)⊗ Σ(r)−1


 dr =




Λu,u
m Λǫ,θ

m

Λǫ,θ ′
m Λ1


 .

Proof of Lemma 12.3 Statements (12.11) and (12.12) lemma are direct conse-

quences of Lemma 7.4 of Patilea and Raïssi (2010). We only give the proof of (12.14)

and (12.13). To prove (12.14), using the well known identity (B ⊗ C)(D ⊗ F ) =

(BD)⊗ (CF ) for matrices of appropriate dimensions, we obtain

J−1
t (Υǫ

t−1 ⊗ ǫt)(Υ
ǫ′

t−1 ⊗ ǫ′t)J
−1
t = J−1

t (Υǫ
t−1Υ

ǫ′

t−1 ⊗ ǫtǫ
′
t)J

−1
t .

From (12.10) we write

T−1
T∑

t=1

J−1
t (Υǫ

t−1Υ
ǫ′

t−1 ⊗ ǫtǫ
′
t)J

−1
t

P
→ lim

T→∞
T−1

T∑

t=1

J−1
t

[
E
{
Υǫ

t−1Υ
ǫ′

t−1

}
⊗ Id

]
J−1
t .
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Now let us denote the discontinuous points of the functions gij(.) by ξ1, ξ2, . . . , ξq

where q is a finite number independent of T . We write

lim
T→∞

T−1
T∑

t=1

J−1
t

[
E(Υǫ

t−1Υ
ǫ′

t−1)⊗ Id

]
J−1
t

= lim
T→∞

T∑

t=1

∫ (t+1)/T

t/T

J−1
[Tr]

[
E(Υǫ

[Tr]−1Υ
ǫ′

[Tr]−1)⊗ Id

]
J−1
[Tr]dr + op(1)

= lim
T→∞

∫ ξ1

1/T

J−1
[Tr]

[
E(Υǫ

[Tr]−1Υ
ǫ′

[Tr]−1)⊗ Id

]
J−1
[Tr]dr + . . .

· · ·+

∫ (T+1)/T

ξq

J−1
[Tr]

[
E(Υǫ

[Tr]−1Υ
ǫ′

[Tr]−1)⊗ Id

]
J−1
[Tr]dr + op(1).

Then from (12.3) we obtain

T−1
T∑

t=1

J−1
t (Υǫ

t−1Υ
ǫ′

t−1 ⊗ ǫtǫ
′
t)J

−1
t

P
−→

∫ 1

0

J(r)−1




Id2m Θǫ
m(r)⊗ Id

Θǫ′

m(r)⊗ Id Ω(r)⊗ Id


J(r)−1dr,

where

J(r) =




Id2m 0

0 Idp ⊗ Σ(r)−
1

2




and Σ(r)1/2 = G(r) = H[Tr]. Noting that J−1
t (Υǫ

t−1 ⊗ ǫt) are martingale differences,

we obtain the result (12.14) using the Lindeberg central limit theorem. Using re-

lations (12.2) and (12.9), the proof of (12.13) is similar. Finally, the equivalent

compact expressions of Ξǫ and Ξu can be easily derived using elementary properties

of the Kronecker product. �

Proof of Proposition 1 First we establish the result (3.5). Let us define

Γu(h) = T−1
T∑

t=h+1

utu
′
t−h and cum = vec {(Γu(1), . . . ,Γu(m))} .

Let us first show the asymptotic normality of T 1/2(cu ′
m , (θ̂OLS − θ0)

′)′. Note that

cum = T−1
T∑

t=1

ũmt−1 ⊗ ut and θ̂OLS − θ0 = Σ̂−1

X̃

{
T−1

T∑

t=1

(X̃t−1 ⊗ ut)

}
,
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with ũmt−1 = (1(0,∞)(t− 1)× u′t−1, . . . , 1(0,∞)(t−m)× u′t−m)
′. From (12.12) we write

T
1

2




cum

θ̂OLS − θ0


 = Λ̇−1

3

{
T− 1

2

T∑

t=1

Υu
t−1 ⊗ ut

}
+ op(1),

with

Λ̇3 =




Id2m 0

0 Λ3


 .

Then we can obtain from (12.13)

T
1

2




cum

θ̂OLS − θ0


⇒ N (0, Λ̇−1

3 ΞuΛ̇
−1
3 ), (12.15)

with Ξu defined in Lemma 12.3. Now, define ut(θ) = Xt−(X̃ ′
t−1⊗Id)θ with θ ∈ R

d2p.

Considering γ̂u,OLS
m and cum as values of the same function at the points θ0 and θ̂OLS,

by the Mean Value Theorem

γ̂u,OLS
m = cum + T−1

T∑

t=1

{
ũmt−1(θ)⊗

∂ut(θ)

∂θ′
+
∂ũmt−1(θ)

∂θ′
⊗ ut(θ)

}

θ=θ∗
(θ̂OLS − θ0),

with θ∗ between θ̂OLS and θ0.
3 Using T 1/2(θ̂OLS−θ0) = Op(1) and since ∂ut−i(θ)/∂θ

′=

−(X̃ ′
t−i−1 ⊗ Id), it follows from (12.5) and (12.7) that

γ̂u,OLS
m = cum + lim

T→∞
T−1

T∑

t=1

E

{
ũmt−1 ⊗

∂ut
∂θ′

}
(θ̂OLS − θ0) + op(T

− 1

2 )

= cum + lim
T→∞

T−1
T∑

t=1

−E
{
ũmt−1 ⊗ X̃ ′

t−1 ⊗ Id

}
(θ̂OLS − θ0) (12.16)

+ op(T
− 1

2 ).

From (12.2) and using arguments like in the proof of (12.14), it is easy to see that

lim
T→∞

T−1

T∑

t=1

−E
{
ũmt−1 ⊗ X̃ ′

t−1 ⊗ Id

}
= −

∫ 1

0

Θu
m(r)dr ⊗ Id + op(1) = −Φu

m + op(1).

3The value θ∗ between θ̂OLS and θ0 may be different for different components of γ̂OLS
m and cum.
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Finally from (12.16) we have

γ̂u,OLS
m = cum − Φu

m(θ̂OLS − θ0) + op(T
− 1

2 ), (12.17)

so that it follows from (12.15) that T 1/2γ̂OLS
m is asymptotically normal with covari-

ance matrix

Σu,OLS = Λu,u
m + Φu

mΛ
−1
3 Λ2Λ

−1
3 Φu ′

m − Λu,θ
m Λ−1

3 Φu ′
m − Φu

mΛ
−1
3 Λu,θ ′

m . (12.18)

The proof of (3.7) is very similar, here we only present a sketch. Let us define

Γǫ(h) = T−1

T∑

t=h+1

ǫtǫ
′
t−h and cǫm = vec {(Γǫ(1), . . . ,Γǫ(m))} .

Using (12.11) and (12.14) it can be shown that

T
1

2




cǫm

θ̂GLS − θ0


⇒ N (0, Λ̇−1

1 ΞǫΛ̇
−1
1 ), (12.19)

with Ξǫ defined in Lemma 12.3 and

Λ̇1 =




Id2m 0

0 Λ1


 .

From (12.6), (12.8) and since ∂ǫt−i(θ)/∂θ
′ = −(X̃ ′

t−i−1 ⊗H−1
t ) we write

γ̂ǫ,GLS
m = cǫm + lim

T→∞
T−1

T∑

t=m+1

−E
{
ǫmt−1 ⊗ X̃ ′

t−1 ⊗H−1
t

}
(θ̂GLS − θ0) + op(T

− 1

2 )

= cǫm − Λǫ,θ
m (θ̂GLS − θ0) + op(T

− 1

2 ).

By (12.19), T 1/2γ̂ǫ,GLS
m is asymptotically normal with covariance matrix Σǫ,GLS =

Id2m − Λǫ,θ
m Λ−1

1 Λǫ,θ ′
m . The particular case where the order of the VAR model is p = 0

is an easy consequence of the arguments above in this proof. �
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Proof of Proposition 2 For the proof of (3.13), we write

uit =
d∑

j=1

hij,tǫjt and E(u2it) =
d∑

j=1

h2ij,t = σ2
ii,t, say.

It is clear from (12.4) that

lim
T→∞

E(u2i[Tr]) = σ2
ii(r),

where σ2
ii(r) is the ith diagonal element of Σ(r). Following similar arguments used

in Phillips and Xu (2005 p 303) for the proof of Lemma 1 (iii), we write

T−1
T∑

t=1

u2it =

∫ 1

0

σ2
ii(r)dr + op(1).

Let us define Σu = T−1
∑T

t=1 utu
′
t and Σ̂u = T−1

∑T
t=1 ûtû

′
t. We have using again

the Mean Value Theorem

vec(Σ̂u) = vec(Σu) + T−1
T∑

t=1

{
ut(θ)⊗

∂ut(θ)

∂θ′
+
∂ut(θ)

∂θ′
⊗ ut(θ)

}

θ=θ∗
(θ̂OLS − θ0),

with θ∗ is between θ̂OLS and θ0.
4 Therefore using ∂ut(θ)/∂θ

′ = −(X̃ ′
t−1 ⊗ Id) and

from the consistency of θ̂OLS, we write

T
1

2 vecΣ̂u = T
1

2vecΣu + op(1),

and

T−1
T∑

t=1

û2it =

∫ 1

0

σ2
ii(r)dr + op(1),

so that the result follows from the Slutsky lemma. We obtain the expression (3.13)

noting that

ρ̂OLS
m = {Im ⊗ (Ŝu ⊗ Ŝu)

−1}γ̂OLS
m .

The proof of (3.14) is similar to that of (3.13) and hence is omitted. �

4The value θ∗ may be different for different components of vec(Σ̂u) and vec(Σu).
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Proof of Proposition 3 In the following, c, C, ... denote constants with possibly

different values from line to line. To simplify notation, let b denote the d(d + 1)/2

vector of bandwidths bkl, 1 ≤ k ≤ l ≤ d. Below we will simply write uniformly

w.r.t. b instead of uniformly w.r.t. bkl, 1 ≤ k ≤ l ≤ d, and supb instead of

supbkl∈BT ,1≤k≤l≤d. Here the norm ‖ · ‖ is the Frobenius norm which in particular is a

sub-multiplicative norm, that is ‖AB‖ ≤ ‖A‖‖B‖, and for a positive definite matrix

A, ‖A‖ ≤ C[λmin(A)]
−1 with C a constant depending only on the dimension of A.

Moreover, ‖A⊗ B‖ = ‖A‖‖B‖.

To obtain the asymptotic equivalences in equation (5.3) it suffices to notice that

for all 1 ≤ i ≤ d, σ̂2
ǫ (i)− 1 = op(1), and to prove

sup
1≤i≤d

sup
b

∣∣σ̌2
ǫ (i)− σ̂2

ǫ (i)
∣∣ = op(1) (12.20)

and

sup
b

∣∣∣T 1

2 {ΓALS(h)− ΓGLS(h)}
∣∣∣ = op(1), (12.21)

for any fixed h ≥ 1. Let us write

ǫ̌t − ǫ̂t = (Σ̌
− 1

2

t − Σ
− 1

2

t )ut + Σ̌
− 1

2

t (X̃ ′
t−1 ⊗ Id)(θ̂GLS − θ̂ALS)

+(Σ
− 1

2

t − Σ̌
− 1

2

t )(X̃ ′
t−1 ⊗ Id)(θ̂GLS − θ0)

=: (Σ̌
− 1

2

t − Σ
− 1

2

t )ut + δǫt

where ‖δǫt‖ ≤ ‖X̃t−1‖ŘT (b) with

ŘT (b) = d

{
‖θ̂GLS−θ̂ALS‖ sup

1≤t≤T

∥∥∥Σ̌− 1

2

t

∥∥∥+ ‖θ̂GLS − θ0‖ sup
1≤t≤T

∥∥∥Σ̌− 1

2

t − Σ
− 1

2

t

∥∥∥
}

By Lemma 12.4-(a,b) and given that θ̂GLS−θ0 = Op(T
−1/2) and supb ‖θ̂GLS−θ̂ALS‖ =

op(T
−1/2), we obtain that

sup
b
ŘT (b) = op(T

−1/2). (12.22)
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From this and the moment conditions on (Xt) induced by Assumption A1, deduce

that (12.20) holds true. On the other hand,

ΓALS(h)− ΓGLS(h) =
1

T

T∑

t=h+1

ǫ̂t(ǫ̌t−h − ǫ̂t−h)
′ +

1

T

T∑

t=h+1

(ǫ̌t − ǫ̂t)ǫ̂
′
t−h

+
1

T

T∑

t=h+1

(ǫ̌t − ǫ̂t)(ǫ̌t−h − ǫ̂t−h)
′

=: R1T (h) +R2T (h) +R3T (h).

The terms R1T (h) and R2T (h) could be handled in a similar manner, hence we will

only analyze R2T (h). Let us write

R2T (h) =
1

T

T∑

t=h+1

[
(Σ̌

− 1

2

t −Σ
− 1

2

t )ut + δǫt

][
Σ

− 1

2

t−hut−h−Σ
− 1

2

t−h(X̃
′
t−h−1⊗Id)(θ̂GLS−θ0)

]′

=:
1

T

T∑

t=h+1

(Σ̌
− 1

2

t −Σ
− 1

2

t )utu
′
t−hΣ

− 1

2
′

t−h +R22T (h; b) =: R21T (h; b) +R22T (h; b).

By (12.22) and the moment conditions on the innovation process (ǫt), and the rate

of convergence of θ̂GLS and 12.4-(b), it is clear that supb ‖R22T (h; b)‖ = op(T
−1/2).

Next let us write

R21T (h) =
1

T

T∑

t=h+1

(
Σ̌

− 1

2

t − (Σ̌0
t )

− 1

2

)
utǫ

′
t−h +

1

T

T∑

t=h+1

(
(Σ̌0

t )
− 1

2−
◦

Σ
− 1

2

t

)
utǫ

′
t−h

+
1

T

T∑

t=h+1

( ◦

Σ
− 1

2

t − Σ̄
− 1

2

t

)
utǫ

′
t−h +

1

T

T∑

t=h+1

(
Σ̄

− 1

2

t − Σ
− 1

2

t

)
utǫ

′
t−h

=: R211T (h; b) +R212T (h; b) +R213T (h; b) +R214T (h; b),

where, like in Patilea and Raïssi (2010),

◦

Σt=
◦

Σt (b) =
T∑

i=1

wti ⊙ uiu
′
i and Σ̄t = Σ̄t(b) =

T∑

i=1

wti ⊙ Σi.

From classical matrix norm inequalities (see for instance Horn and Johnson, 1994),

we have that for any d×d−positive definite matrices A and B, for a = 1 or a = −1,

‖A− a
2 −B− a

2 ‖ ≤ ca (max{‖Aa‖, ‖Ba‖})
1

2

∥∥∥A− 1+a
2

∥∥∥
∥∥∥B− 1+a

2

∥∥∥ ‖A−B‖, (12.23)
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where ca is a constant that depends only on d (by definitionA0 = B0 = Id). Applying

this inequality twice we deduce

∥∥∥Σ̌− 1

2

t − (Σ̌0
t )

− 1

2

∥∥∥ ≤ νT c1c−1

∥∥Σ̌−1
t

∥∥ ∥∥(Σ̌0
t )

−1
∥∥

×
(
max{‖Σ̌t‖, ‖Σ̌

0
t‖}
) 1

2
(
max{‖[(Σ̌0

t )
2 + νT Id]

−1‖, ‖(Σ̌0
t )

−2‖}
) 1

2 .

Take the norm of R211T , use the inequality in the last display, Lemma 12.4-(a) below,

the moment conditions on the innovation process and the condition Tν2T → ∞

to deduce that supb ‖R211T (h; b)‖ = op(T
−1/2). Next, using similar matrix norm

inequalities, Lemma 12.4-(a) and the Cauchy-Schwarz inequality,

sup
b

‖R212T (h; b)‖ ≤ Op(1) sup
b

{
1

T

T∑

t=h+1

∥∥∥(Σ̌0
t )−

◦

Σt

∥∥∥ ‖utǫ′t−h‖

}

≤Op(1)

(
sup
b

{
1

T

T∑

t=h+1

∥∥∥(Σ̌0
t )−

◦

Σt

∥∥∥
2
})1/2(

1

T

T∑

t=h+1

‖utǫ
′
t−h‖

2

)1/2

= Op(1)Op(T
−1b−1

T )

(
1

T

T∑

t=h+1

‖utǫ
′
t−h‖

2

)1/2

,

where for the equality we used Lemma 7.6-(i) in Patilea and Raïssi (2010). Deduce

that supb ‖R212T (h; b)‖ = op(T
−1/2). The uniform rate of convergence for R213T (h; b)

is obtained after replacing
◦

Σ
−1/2

t −Σ̄
−1/2
t by a Taylor expansion of the power −1/2

function for positive definite matrix, a key and apparently new ingredient we provide

in section 12.1 below. The reminder term of the Taylor expansion could be controlled

taking expectation, using Cauchy-Schwarz inequality and Lemma 12.4-(d). The

term under the integral that represents the first order term of this Taylor expansion

could be treated similarly to the term Σ̄−1
t [Σi − uiu

′
i]Σ̄

−1
t utX̃

′
t−1 in the proof of the

Proposition 4.1 of Patilea and Raïssi (2010). That means we use the CLT for m.d.

sequences indexed by classes of functions, see Bae, Jun and Levental (2010), see also

Bae and Choi (1999). Here the uniformity to be considered is also with respect to
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the integration variable v, but this can be handled with very little additional effort,

like in Patilea and Raïssi (2010). The details are omitted. Finally, to derive the

uniform order R214T (h; b), let us write it as

R214T (h; b) = R214T (h; b)− R214T (h; bT ) +R214T (h; bT ) =: r214T (b) +R214T (h; bT ).

The term R214T (h; bT ) is centered and the variance of each element of this matrix

decreases to zero at the rate o(1/T ) (use Lemma 12.4-(d) and Assumption A1’

to derive the rate of the variance). Deduce that R214T (h; bT ) = op(T
−1/2). Next

consider the d2 stochastic processes corresponding to the elements of r214T (b) and

indexed by ϑ ∈ [cmin, cmax] where b = ϑbT . For each such process apply Theorem 1

of Bae, Jun and Levental (2010) to deduce that supb ‖r214T (b)‖ = op(T
−1/2). Finally,

deduce that supb ‖R214T (h; b)‖ = op(T
−1/2)

To handle the term R3T (h), let us write

R3T (h) =
1

T

T∑

t=h+1

[
(Σ̌

− 1

2

t − Σ
− 1

2

t )ut + δǫt

][
(Σ̌

− 1

2

t−h − Σ
− 1

2

t−h)ut−h + δǫt−h

]′

=:
1

T

T∑

t=h+1

(Σ̌
− 1

2

t − Σ
− 1

2

t )utu
′
t−h(Σ̌

− 1

2

t−h − Σ
− 1

2

t−h)
′ +R32T (h)

=: R31T (h) +R32T (h).

The term R32T (h) could be easily handled taking the norm, using the bound on δǫt

and Lemma 12.4-(b) below. For R31T (h), we could decompose Σ̌
−1/2
t −Σ

−1/2
t in four

term exactly as we did for R21T (h) and apply the same techniques. The details are

omitted and are available from the authors upon request. �

Lemma 12.4 Let ‖·‖ denote the Frobenius norm. Under the Assumptions of Propo-

sition 3 we have:

(a) As T → ∞, for a = 1 or a = −1, we have

sup
1≤t≤T

sup
b∈BT

{∥∥∥Σ̌− 1

2

t

∥∥∥+
∥∥Σ̌a

t

∥∥+
∥∥(Σ̌0

t )
a
∥∥+

∥∥∥
◦

Σ
a
t

∥∥∥+
∥∥Σ̄a

t

∥∥
}
= Op(1).
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(b) As T → ∞,

sup
1≤t≤T

sup
b∈BT

∥∥∥Σ̌− 1

2

t − Σ
− 1

2

t

∥∥∥ = op(1).

(c) As T → ∞,

sup
b∈BT

1

T

T∑

t=1

∥∥Σ̄t − Σt

∥∥2 = o(1).

(d) As T → ∞,

max
1≤t≤T

E

(
sup
b∈BT

‖
◦

Σt −Σ̄t‖
4

)
= O(

(
1/(TbT )

2
)
. (12.24)

The proof of Lemma 12.4 is a direct consequence of Lemmas 7.5 and 7.6 of Patilea

and Raïssi (2010) and Lemma A of Xu and Phillips (2008) applied elementwise, and

hence will be omitted.

Proof of Proposition 4 The notation in this proof are those of section 7. First let

us notice that qA(x) = x/2{1 + o(1)} for large values of x, provided the asymptotic

law of a test statistic QA under the null hypothesis is χ2
m with some m ≥ 1. In the

case where a test statistic QA has the asymptotic distribution of U(δOLS
m ) defined in

equation (4.2),

qA(x) = − logP (U(δOLS
m ) > x) ≤ − logP

(
max

i
{δOLS

i }U2 > x
)

=
x

2maxi{δOLS
i }

{1 + o(1)},

and

qA(x) = − logP (U(δOLS
m ) > x) ≥ − logP

(
max

i
{δOLS

i }Σd2m
j=1U

2
j > x

)

=
x

2maxi{δOLS
i }

{1 + o(1)},

with U and Uj independent N (0, 1) variables. Thus to prove (i) it suffices to show

that

∫ 1

0

Σdr ⊗

(∫ 1

0

Σdr

)−1

≪ max
i

{δOLS
i }

(∫ 1

0

Σdr⊗Id

)
Σ−1

G⊗2

(∫ 1

0

Σdr⊗Id

)
. (12.25)
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Herein, for any A and B symmetric matrices, A≪ B means that B −A is positive

semidefinite. Now, in the last display, multiply both sides of the order relationship

on the left and on the right by
(∫ 1

0
Σdr

)−1/2

⊗
(∫ 1

0
Σdr

)1/2
and deduce that it

suffices to prove

Id ⊗ Id ≪ max
i

{δOLS
i }

[(∫ 1

0

Σdr

)1/2
⊗

(∫ 1

0

Σdr

)1/2]
Σ−1

G⊗2

[(∫ 1

0

Σdr

)1/2
⊗

(∫ 1

0

Σdr

)1/2]

=: max
i

{δOLS
i }∆̃−1

m .

To obtain (12.25) it remains to notice that ∆OLS
m = Im ⊗ ∆̃m and that δOLS

i , 1 ≤

i ≤ d2m are the eigenvalues of ∆OLS
m .

In (ii) we suppose Σ(·) = σ2(·)Id and in this case it suffices to notice that

(∫ 1

0

Σdr⊗Id

)
Σ−1

G⊗2

(∫ 1

0

Σdr⊗Id

)
=

(∫ 1

0
σ2(r)dr

)2

∫ 1

0
σ4(r)dr

Id ⊗ Id ≪ Id ⊗ Id,

where for the order relationship we use Cauchy-Schwarz inequality, while

(∫ 1

0

G(r)′ ⊗G(r)−1dr

)2

= Id ⊗ Id.

�

12.1 A Taylor expansion of the matrix function f(A) = A−1/2

Recall that the differential of a function F that maps a r× r matrix X into a r× r

matrix F (X) is defined by the equation

vec(dF ) = df

where f is a r2×1 vector function such that f(vec(X)) = vec(F (X)). In other words,

the (first-order) differential of F at X in the r × r matrix obtained by unstacking

the differential of df at vec(X). See also Schott (2005), section 9.3. Basic properties
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of vector differentials implies

0 = d(X−1/2XX−1/2) = d(X−1/2)X1/2 +X−1/2d(X)X−1/2 +X1/2d
(
X−1/2

)
.

Now, recall that for any A positive definite matrix, the Lyapunov equation AY +

Y A = B has a unique solution that can be represented as

Y =

∫ ∞

0

exp(−vA)B exp(−vA)dv.

See Horn and Johnson (1991), section 6.5. All these facts brings us to the following

technical result.

Lemma 12.5 Let A and Â be two positive definite r×r−matrices such that 0 < c1 ≤

λmin(B) < ∞ for some constant c1 and B = A and B = Â, where λmin(B) is the

smallest eigenvalue of the symmetric matrix B. Moreover, suppose that ‖Â−A‖ ≤ c2

for some small constant c2. Then

Â−1/2 − A−1/2 = −

∫ ∞

0

exp(−vA)A−1/2{Â− A}A−1/2 exp(−vA)dv +Rn

where Rn is a r×r−symmetric matrix with ‖Rn‖ ≤ C‖Â−A‖2 and C is a constant

depending only on c1, c2.

Proof of Lemma 12.5 Let ∆ be some arbitrary matrix. By Taylor expansion, for

sufficiently small values of ε and for some matrices Gi, i = 1, 2, ...

(A + ε∆)−1/2 = A−1/2 + εG1 + ε2G2 + ... = A−1/2 + εG1 +R1 (12.26)

with ‖R1‖ ≤ C1ε
2 and C1 a constant depending on c1 and the norm of ∆. This kind

of representation could be derived from a Taylor formula for the vector function

f defined by the equation f(vec(X)) = vec(X−1/2) considered in a neighborhood

of the vec(A) for a positive definite matrix A. See, for instance, Schott (2005),
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section 9.6. On the other hand, recall that for B a square matrix with ‖B‖ < 1,

(I−B)−1 = I+B+B2+ ... = I+B+R2 where R2 is the reminder of the expansion

with ‖R2‖ ≤ ‖B‖2(1− ‖B‖)−1. Thus for sufficiently small values of we can write

(A + ε∆)−1 = A−1/2(I + εA−1/2∆A−1/2)−1A−1/2 (12.27)

= A−1/2(I − εA−1/2∆A−1/2 + ε2A−1/2∆A−1∆A−1/2 + ...)A−1/2

Taking the square on both sides of the first equality in (12.26) and identifying the

coefficients of the power of ε in equation (12.27) deduce that G1 is the solution of

the Lyapunov equation

A−1/2Y + Y A−1/2 = −A−1∆A−1.

Finally, the result follows by taking ∆ = (Â− A)/‖Â− A‖ and ε = ‖Â−A‖. �
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13 Appendix B: Tables and Figures

Table 1: Empirical size (in %) of the portmanteau tests with iid standard Gaussian errors.

Case m = 5 m = 15

T 50 100 200 50 100 200

LBS
m 2.6 4.6 5.5 4.4 4.1 4.6

LBOLS
m 4.2 4.9 5.2 11.5 8.1 6.9

LBALS
m 2.2 4.1 5.1 4.1 3.7 4.4

LBGLS
m 2.0 3.9 5.1 3.7 3.8 4.3

L̃B
OLS

m 14.2 9.0 6.5 30.9 15.4 10.5

L̃B
ALS

m 6.3 5.9 5.6 15.8 7.4 6.8

L̃B
GLS

m 4.6 4.7 4.8 8.6 8.1 8.1

τ1

τ1 σ21

0
0.2

0.4
0.6

0.8
1

1

2

3

4

5

0

0.2

0.4

0.6

0
0.2

0.4
0.6

0.8

0
0.2

0.4
0.6

0.8
1

1

2

3

4

5

0.5
0.75

1
1.25
1.5

0
0.2

0.4
0.6

0.8

Figure 1: The asymptotic variance ΣGLS(2, 2) on the left and the ratio ΣOLS(6, 6)/Σ
S
OLS(6, 6)

on the right for τ1 = τ2 in Example 3.1.
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Table 2: Empirical size (in %) of the portmanteau tests. The innovations are heteroscedas-

tic with an abrupt break at T/2.

Case m = 5 m = 15

T 50 100 200 50 100 200

LBS
m 27.9 35.3 40.1 35.7 63.0 76.7

LBOLS
m 4.5 3.3 4.8 5.4 6.1 6.0

LBALS
m 3.2 3.7 5.0 3.8 3.8 3.9

LBGLS
m 2.6 4.2 5.7 3.7 4.2 4.7

L̃B
OLS

m 28.9 13.8 9.7 30.9 21.9 15.2

L̃B
ALS

m 18.6 8.7 7.1 35.0 15.9 9.0

L̃B
GLS

m 6.4 5.3 6.3 12.5 10.0 9.7

Table 3: Empirical size (in %) of the portmanteau tests. The innovations are heteroscedas-

tic with trending behaviour.

Case m = 5 m = 15

T 50 100 200 50 100 200

LBS
m 12.8 15.1 19.2 18.4 27.5 36.8

LBOLS
m 4.9 4.5 4.8 9.2 7.3 6.3

LBALS
m 4.4 5.0 5.0 8.0 6.0 6.0

LBGLS
m 2.3 3.7 5.2 2.8 4.0 4.0

L̃B
OLS

m 32.4 22.6 15.3 38.3 25.1 16.5

L̃B
ALS

m 10.0 4.2 3.3 22.7 6.7 5.2

L̃B
GLS

m 5.7 5.3 6.3 10.8 9.7 9.2
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Table 4: The empirical means and standard deviations of the weights in the sums

(4.2), (5.4) and their GLS counterparts over the N = 1000 iterations. The innova-

tions are heteroscedastic with trending behaviour.

i 1 2 3 4 5

δ̂olsi 0.02[0.02] 0.06[0.04] 0.11[0.06] 0.2[0.09] 0.89[0.11]

δ̂alsi 0.03[0.02] 0.05[0.02] 0.09[0.03] 0.11[0.03] 1.00[0.00]

δ̂glsi 0.05[0.04] 0.06[0.04] 0.15[0.08] 0.17[0.08] 1.00[0.00]

i 6 7 8 9 10

δ̂olsi 0.89[0.11] 0.89[0.11] 0.91[0.11] 1.11[0.13] 1.11[0.13]

δ̂alsi 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00]

δ̂glsi 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00]

i 11 12 13 14 15

δ̂olsi 1.11[0.13] 1.12[0.13] 1.36[0.17] 1.36[0.17] 1.36[0.17]

δ̂alsi 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00]

δ̂glsi 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00]

i 16 17 18 19 20

δ̂olsi 1.36[0.17] 1.69[0.27] 1.71[0.27] 1.71[0.27] 1.71[0.27]

δ̂alsi 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00]

δ̂glsi 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00] 1.00[0.00]

Table 5: The estimators of the autoregressive parameters of the VAR(1) model for the

balance data for the U.S..

Parameter θ1 θ2 θ3 θ4

ALS estimate 0.33[0.08] 0.02[0.02] −0.35[0.30] −0.07[0.08]

OLS estimate 0.45[0.23] 0.00[0.02] −1.02[0.60] 0.1[0.17]
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Table 6: The balance data for the U.S.: the p-values of the ARCH-LM tests (in %) for

the components of the ALS-residuals of a VAR(1).

lags 2 5 10

ǫ̌1t 22.26 45.05 36.44

ǫ̌2t 25.32 73.32 77.18

Table 7: The p-values of the portmanteau tests (in %) for the checking of the adequacy

of the VAR(1) model for the U.S. trade balance data.

m 5 15

LBS
m 0.00 0.01

LBOLS
m 50.80 99.94

LBALS
m 6.36 15.95

L̃B
OLS

m 0.00 7.87

L̃B
ALS

m 5.61 15.50

Table 8: The balance data for the U.S.: the test statistics of the portmanteau tests used

for checking the adequacy of the VAR(1) model. The Q̃
OLS

m
and Q̃

ALS

m
correspond to the

statistics of the LB version of the Katayama portmanteau tests with standard asymptotic

distribution.

m 5 15

Q̃OLS
m 6.84 106.34

Q̃ALS
m 25.73 66.83

Q̃
OLS

m
6.84 106.34

Q̃
ALS

m
48.73 66.83
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Table 9: The estimators of the autoregressive parameters of the VAR(4) model for the

U.S. energy-transportation price indexes.

Parameter θ1 θ2 θ3 θ4

ALS estimate 0.36[0.08] 0.37[0.14] 0.10[0.04] 0.43[0.08]

OLS estimate 0.74[0.32] 1.08[0.67] −0.08[0.13] 0.10[0.28]

Parameter θ5 θ6 θ7 θ8

ALS estimate 0.06[0.08] −0.02[0.14] −0.09[0.04] −0.13[0.08]

OLS estimate −0.53[0.35] −1.26[0.73] 0.10[0.14] 0.27[0.30]

Parameter θ9 θ10 θ11 θ12

ALS estimate 0.18[0.08] 0.13[0.14] −0.05[0.04] 0.01[0.08]

OLS estimate 0.21[0.24] 0.13[0.52] −0.05[0.14] 0.03[0.31]

Parameter θ13 θ14 θ15 θ16

ALS estimate 0.17[0.08] 0.15[0.14] −0.07[0.04] 0.03[0.08]

OLS estimate 0.32[0.26] 0.64[0.57] −0.17[0.15] 0.31[0.32]

Table 10: The p-values of the portmanteau tests (in %) for the checking of the adequacy

of the VAR(4) model for the U.S. energy-transportation price indexes (n.a.: not available).

m 3 6 12

LBS
m n.a. 2.08 0.00

LBOLS
m 100.00 100.00 100.00

LBALS
m 85.44 98.72 10.07

L̃B
OLS

m n.a. n.a. n.a.

L̃B
ALS

m n.a. n.a. n.a.
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Table 11: VAR modeling of the energy-transportation price indexes: the test statistics of

the portmanteau tests used for checking the adequacy of the VAR(4) model.

m 3 6 12

Q̃OLS
m 1.87 18.06 117.51

Q̃ALS
m 5.03 9.50 57.69

Q̃
OLS

m
n.a. n.a. n.a.

Q̃
ALS

m
n.a. n.a. n.a.

Table 12: VAR modeling of the energy-transportation price indexes: the weights of the

non standard distributions of the portmanteau tests used for checking the adequacy of the

VAR(4) model with m = 3.

i 1 2 3 4 5 6 7 8 9 10 11 12

δ̂olsi 0.05 0.48 1.94 2.05 2.66 2.85 4.97 6.58 10.51 16.06 64.14 312.18

δ̂alsi 0.01 0.09 0.24 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 2: The same as in Figure 1 but for τ1 6= τ2 in general.
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Figure 3: Empirical power (in %) of the portmanteau tests with m = 10. The adequacy of a

VAR(1) model to VAR(2) processes is tested. The innovations are homoscedastic on the right.

The variance exhibits a break at T/2 on the left and have a trending behavior in the middle.
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Figure 4: Empirical power (in %) of the portmanteau tests with m = 10. The non correlation

of VAR(1) processes is tested. The variance have a trending behavior on the left and exhibits an

abrupt shift on the right.
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Figure 5: The balance on merchandise trade for the U.S. on the left and the balance on services

for the U.S. on the right in billions of dollars from 1/1/1970 to 10/1/2009, T=160. Data source:

The research division of the federal reserve bank of Saint Louis, www.research.stlouis.org.

Figure 6: The differences of the balance on merchandise trade (on the left) and of the balance

on services for the U.S. (on the right).

Figure 7: The cross validation score (CV) for the ALS estimation of the VAR(1) model for the

differences of the balance on merchandise trade and on services in the U.S..
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Figure 8: The ALS residuals of a VAR(1) for the differences of the balance on merchandise trade

and on services in the U.S.. The first component of the ALS residuals is on the left and the second

is on the right.

Figure 9: The same as in Figure 8 but for the OLS residuals.
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Figure 10: The balance data for the U.S.: the autocorrelations of the squares of the first compo-

nent of the ALS residuals (on the left) and of the second component of the ALS residual (on the

right).
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Figure 11: The balance data for the U.S.: the logarithms of the û2

1t’s (full line) and the logarithms

of the non parametric estimates of Var(u1t) (dotted line) on the left and the same for the û2

2t’s and

Var(u2t) on the right.

Figure 12: The balance data for the U.S.: estimation of the correlation between of the components

of the error process.
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Figure 13: The balance data for the U.S.: the ALS residual autocorrelations R̂11

ALS(h) (on the

left) and R̂22

ALS(h) (on the right), with obvious notations. The 95% confidence bounds are obtained

using (3.7) and (5.3).

75



R̂21
ALS(h) R̂12

ALS(h)

h h2 4 6 8 10 12 14

-0.15

-0.1

-0.05

0.05

0.1

0.15

2 4 6 8 10 12 14

-0.15

-0.1

-0.05

0.05

0.1

0.15

Figure 14: The same as in Figure 13 but for R̂21

ALS(h) (on the left) and R̂12

ALS(h) (on the right).
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Figure 15: The balance data for the U.S.: the OLS residual autocorrelations R̂11

OLS(h) (on the

left) and R̂22

OLS(h) (on the right). The full lines 95% confidence bounds are obtained using (3.13).

The dotted lines 95% confidence bounds are obtained using the standard result (3.9).
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Figure 16: The same as in Figure 13 but for R̂21

OLS(h) (on the left) and R̂12

OLS(h) (on the right).
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Figure 17: The energy price index (full line) and the transportation price index (dotted line) in

the U.S. from 1/1/1957 to 2/1/2011, T=648. Data source: The research division of the federal

reserve bank of Saint Louis, www.research.stlouis.org.
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Figure 18: The differences of the energy price (on the left) and of the transportation price indexes

for the U.S. (on the right).

Figure 19: The cross validation score (CV) for the ALS estimation of the VAR(4) model for the

differences of the energy-transportation price indexes in the U.S..
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Figure 20: The ALS residuals of a VAR(4) model for the differences of the energy and trans-

portation price indexes for the U.S.. The first component of the ALS residuals is on the left and

the second is on the right.
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Figure 21: The same as in Figure 8 but for the OLS residuals.

Figure 22: The energy-transportation data for the U.S.: the logarithms of the û2

1t’s (full line)

and the logarithms of the non parametric estimation of Var(u1t) (dotted line) on the left and the

same for the û2

2t’s and Var(u2t) on the right.
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Figure 23: The energy-transportation data for the U.S.: estimation of the correlation between

the components of the error process.
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Figure 24: The energy-transportation data for the U.S.: the ALS residual autocorrelations

R̂11

ALS(h) (on the left) and R̂22

ALS(h) (on the right), with obvious notations. The 95% confidence

bounds are obtained using (3.7) and (5.3).
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Figure 25: The same as in Figure 24 but for R̂21

ALS(h) (on the left) and R̂12

ALS(h) (on the right).
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Figure 26: The energy-transportation data for the U.S.: the OLS residual autocorrelations

R̂11

OLS(h) (on the left) and R̂22

OLS(h) (on the right). The full line 95% confidence bounds are

obtained using (3.13). The dotted lines 95% confidence bounds are obtained using the standard

result (3.9).

R̂21
OLS(h) R̂12

OLS(h)

h h2 4 6 8 10 12 14

-10

-5

5

10

2 4 6 8 10 12 14

-10

-5

5

10

Figure 27: The same as in Figure 26 but for R̂21

OLS(h) (on the left) and R̂12

OLS(h) (on the right).
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Figure 28: The energy-transportation data for the U.S.: the OLS residual autocorrelations

R̂11

OLS(h) (on the left) and R̂22

OLS(h) (on the right). The dotted lines 95% confidence bounds are

obtained using the standard result (3.9).

83



R̂21
OLS(h) R̂12

OLS(h)

h h2 4 6 8 10 12 14

-0.2

-0.1

0.1

0.2

2 4 6 8 10 12 14

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 29: The same as in Figure 28 but for R̂21

OLS(h) (on the left) and R̂12

OLS(h) (on the right).
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