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Abstract

Parameter ensembles or sets of point estimates constitute one of the cornerstones of mod-

ern statistical practice. This is especially the case in Bayesian hierarchical models, where

different decision-theoretic frameworks can be deployed to summarize such parameter ensem-

bles. The estimation of these parameter ensembles may thus substantially vary depending on

which inferential goals are prioritised by the modeller. In this note, we consider the prob-

lem of classifying the elements of a parameter ensemble above or below a given threshold.

Two threshold classification losses (TCLs) –weighted and unweighted– are formulated. The

weighted TCL can be used to emphasize the estimation of false positives over false negatives or

the converse. We prove that the weighted and unweighted TCLs are optimized by the ensem-

bles of unit-specific posterior quantiles and posterior medians, respectively. In addition, we

relate these classification loss functions on parameter ensembles to the concepts of posterior

sensitivity and specificity. Finally, we find some relationships between the unweighted TCL

and the absolute value loss, which explain why both functions are minimized by posterior

medians.

KEYWORDS: Bayesian Statistics, Classification, Decision Theory, Epidemiology, Hierarchical

Model, Loss Function, Parameter Ensemble, Sensitivity, Specificity.

1 Introduction

The problem of the optimal classification of a set of data points into several clusters has occupied

statisticians and applied mathematicians for several decades (see Gordon, 1999, for a overview).

As is true for all statistical methods, a classification is, above all, a summary of the data at hand.

When clustering, the statistician is searching for an optimal partition of the parameter space into

a –generally, known or pre-specified– number of classes. The essential ingredient underlying all

classifications is the minimization of some distance function, which generally takes the form of a

similarity or dissimilarity metric (Gordon, 1999). Optimal classification will then result in a trade-

off between the level of similarity of the within-cluster elements and the level of dissimilarity of

the between-cluster elements. In a decision-theoretic framework, such distance functions naturally

arise through the specification of a loss function for the problem at hand. The task of computing

the optimal partition of the parameter space then becomes a matter of minimizing the chosen loss

function.

In spatial epidemiology, the issue of classifying areas according to their levels of risk has been

previously investigated by Richardson et al. (2004). These authors have shown that areas can

be classified according to the joint posterior distribution of the parameter ensemble of interest.

In particular, a taxonomy can be created by selecting a decision rule D(α,Cα) for that purpose,

where Cα is a particular threshold, above and below which we classify the areas in the region of

interest. The parameter α, in this decision rule, is the cut-off point associated with Cα, which

determines the amount of probability mass necessary for an area to be allocated to the above-

threshold category. Thus, an area i with level of risk denoted by θi will be assigned above the

threshold Cα if P[θi > Cα|y] > α. Richardson et al. (2004) have therefore provided a general

framework for the classification of areas, according to their levels of risk. However, this approach

is not satisfactory because it relies on the choice of two co-dependent values Cα and α, which can

only be selected in an arbitrary fashion.
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Our perspective in this paper follows the framework adopted by Lin et al. (2006), who intro-

duced several loss functions for the identification of the elements of a parameter ensemble that

represent the proportion of elements with the highest level of risk. Such a classification is based

on a particular rank percentile cut-off denoted γ ∈ [0, 1], which determines a group of areas of

high-risk. That is, Lin et al. (2006) identified the areas whose percentile rank is above the cut-off

point γ. Our approach, in this paper, is substantially different since the classification is based

on a real-valued threshold as opposed to a particular rank percentile. In order to emphasize this

distinction, we will refer to our proposed family of loss functions as threshold classification losses

(TCLs).

2 Classification of Elements in a Parameter Ensemble

We formulate our classification problem within the context of Bayesian hierarchical models

(BHMs). In its most basic formulation, a BHM is composed of the following two layers of random

variables,

yi
ind∼ p(yi|θi,σi), g(θ) ∼ p(θ|ξ), (1)

for i = 1, . . . , n and where g(·) is a transformation of θ, which may be defined as a link function

as commonly used in generalised linear models (see McCullagh and Nelder, 1989). The vector of

real-valued parameters, θ := {θ1, . . . , θn}, will be referred to as a parameter ensemble.

2.1 Threshold Classification Loss

For some cut-off point C ∈ R, we define the penalties associated with the two different types of

misclassification. Following standard statistical terminology, we will express such misclassifications

in terms of false positives (FPs) and false negatives (FNs). These concepts are formally described

as

FP(C, θ, θest) := I
{
θ ≤ C, θest > C

}
, and FN(C, θ, θest) := I

{
θ > C, θest ≤ C

}
, (2)

where θ represents the parameter of interest and θest is a candidate estimate. This corresponds to

the occurrence of a false positive (type I error) and a false negative (type II error), respectively.

For the decision problem to be fully specified, we need to choose a loss function based on the

sets of unit-specific FPs and FNs. The p-weighted threshold classification loss (TCLp) function is

then defined as

TCLp(C,θ,θ
est) :=

1

n

n∑
i=1

pFP(C, θi, θ
est
i ) + (1− p) FN(C, θi, θ

est
i ). (3)

One of the advantages of the choice of TCLp for quantifying the misclassifications of the elements

of a parameter ensemble is that it is normalised, in the sense that TCLp(C,θ,θ
est) ∈ [0, 1] for any

choice of C and p. Our main result in this paper is the following minimization.

Proposition 1. For some parameter ensemble θ, and given a real-valued threshold C ∈ R and
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p ∈ [0, 1], we have the following optimal estimator under weighted TCL,

θTCL
(1−p) = argmin

θest

E
[
TCLp(C,θ,θ

est)|y
]
, (4)

where θTCL
(1−p) is the vector of posterior (1− p)-quantiles defined as

θTCL
(1−p) :=

{
Qθ1|y(1− p), . . . , Qθn|y(1− p)

}
, (5)

where Qθi|y(1 − p) denotes the posterior (1 − p)-quantile of the ith element, θi, in the parameter

ensemble. Moreover, θTCL
(1−p) is not unique.

We prove this result by exhaustion in three cases. The full proof is reported in Appendix A.

Note that the fact that TCLp is minimized by θTCL
(1−p) and not θTCL

(p) is solely a consequence of

our choice of definition for the TCLp function. If the weighting of the FPs and FNs had been

(1− p) and p, respectively, then the optimal minimizer of that function would indeed be a vector

of posterior p-quantiles.

2.2 Unweighted Threshold Classification Loss

We now specialize this result to the unweighted TCL family, which is defined analogously to

equation (3), as follows,

TCL(C,θ,θest) :=
1

n

n∑
i=1

FP(C, θi, θ
est
i ) + FN(C, θi, θ

est
i ). (6)

The minimizer of this loss function can be shown to be trivially equivalent to the minimizer of

TCL0.5. That is, we have

argmin
θest

E[TCL(C,θ,θest)|y] = argmin
θest

E[TCL0.5(C,θ,θest)|y], (7)

for every C, which therefore proves the following corollary.

Corollary 1. For some parameter ensemble θ and C ∈ R, the minimizer of the posterior expected

TCL is

θmed := θTCL
(0.5) =

{
Qθ1|y(0.5), . . . , Qθn|y(0.5)

}
, (8)

and this optimal estimator is not unique.

The posterior expected loss under the unweighted TCL function takes the following form,

E
[
TCL(C,θ,θest)|y

]
=

1

n

n∑
i=1

C∫
−∞

dP[θi|y]I
{
θesti > C

}
+

+∞∫
C

dP[θi|y]I
{
θesti ≤ C

}
, (9)

whose formulae is derived using I {θ ≤ C, θest > C} = I {θ ≤ C} I {θest > C}. It is of special

importance to note that when using the posterior TCL, any classification –correct or incorrect–

will incur a penalty. The size of that penalty, however, varies substantially depending on whether

or not the classification is correct. A true positive can be distinguished from a false positive, by
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the fact that the former will only incur a small penalty proportional to the posterior probability

of the parameter to be below the chosen cut-off point C.

2.3 Relationship with Posterior Sensitivity and Specificity

Our chosen decision-theoretic framework for classification has the added benefit of being readily

comparable to conventional measures of classification errors widely used in the context of test

theory. For our purpose, we will define the Bayesian sensitivity of a classification estimator θest,

also referred to as the posterior true positive rate (TPR), as follows

TPR(C,θ,θest) :=

∑n
i=1 E[TP(C, θi, θ

est
i )|y]∑n

i=1 P[θi > C|y]
, (10)

where the expectations are taken with respect to the joint posterior distribution of θ. Similarly,

the Bayesian specificity, or posterior true negative rate (TNR), will be defined as

TNR(C,θ,θest) :=

∑n
i=1 E[TN(C, θi, θ

est
i )|y]∑n

i=1 P[θi ≤ C|y]
, (11)

where in both definitions, we have used TP(C, θi, θ
est
i ) := I {θi > C, θesti > C} and

TN(C, θi, θ
est
i ) := I {θi ≤ C, θesti ≤ C}. It then follows that we can formulate the relationship

between the posterior expected TCL and the Bayesian sensitivity and specificity as

E[TCL(C,θ,θest)|y] =
1

n
FPR(C,θ,θest)

n∑
i=1

P[θi ≤ C|y] +
1

n
FNR(C,θ,θest)

n∑
i=1

P[θi > C|y].

where FPR(C,θ,θest) := 1− TNR(C,θ,θest) and FNR(C,θ,θest) := 1− TPR(C,θ,θest).

3 Conclusion

The fact that the posterior median is the minimizer of the posterior expected absolute value loss

(AVL) function is well-known Berger (1980). That is, the posterior median minimizes the posterior

expected AVL, where AVL(θ, θest) := |θ − θest|. One may therefore ask whether there is link

between the minimization of the AVL function, which is an estimation loss and the classification

loss function described in this paper. The proof of the optimality of the posterior median under

AVL proceeds by considering whether θmed − θest R 0. This leads to a proof by exhaustion in

three cases, which includes the trivial case where θmed and θest are equal. Similarly, in the proof of

proposition 1, we have also obtained three cases, which are based on the relationships between the

θi’s and θesti ’s with respect to C. However, note that by subtracting θ
(1−p)
i ≤ C from C < θesti and

ignoring null sets, we obtain θ
(1−p)
i − θesti < 0, for the second case. Similarly, a subtraction of the

hypotheses of the third case gives θ
(1−p)
i − θesti > 0 for the third case, which therefore highlights

the relationship between the optimization of the AVL and the TCL functions.
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Appendix A: Proof of TCL Minimization

Proof of proposition 1 on page 3.
Let ρp(C,θ,θ

est) denote E[TCLp(C,θ,θ
est)|y]. We prove the result by exhaustion over three cases.

In order to prove that
ρp(C,θ,θ

(1−p)) ≤ ρp(C,θ,θest), (12)

for any θest ∈ Θ with θ
(1−p)
i := Qθi|y(1−p), it suffices to show that ρp(C, θi, θ

(1−p)
i ) ≤ ρp(C, θi, θesti )

holds, for every i = 1, . . . , n. Expanding these unit-specific risks,

pI{θ(1−p)i > C}P [θi ≤ C|y] + (1− p)I{θ(1−p)i ≤ C}P [θi > C|y]

≤ pI{θesti > C}P [θi ≤ C|y] + (1− p)I{θesti ≤ C}P [θi > C|y] .
(13)

Now, fix C and p ∈ [0, 1] to arbitrary values. Then, for any point estimate θesti , we have

ρp(C, θi, θ
est
i ) =

{
pP[θi ≤ C|y], if θesti > C,

(1− p)P[θi > C|y], if θesti ≤ C.
(14)

The optimality of θ
(1−p)
i over θesti as a point estimate is therefore directly dependent on the

relationships between θ
(1−p)
i and C, and between θesti and C. This determines the following three

cases:

i. If θ
(1−p)
i and θesti are on the same side of C, then clearly,

ρp(C, θi, θ
(1−p)
i ) = ρp(C, θi, θ

est
i ), (15)

ii. If θ
(1−p)
i ≤ C and θesti > C, then,

ρp(C, θi, θ
(1−p)
i ) = (1− p)P[θi > C|y] ≤ pP[θi ≤ C|y] = ρp(C, θi, θ

est
i ), (16)

iii. If θ
(1−p)
i > C and θesti ≤ C, then,

ρp(C, θi, θ
(1−p)
i ) = pP[θi ≤ C|y] < (1− p)P[θi > C|y] = ρp(C, θi, θ

est
i ), (17)

Equation (15) follows directly from an application of the result in (13), and cases two and three
follow from consideration of the following relationship:

pP[θi ≤ C|y] R (1− p)P[θi > C|y], (18)

where R means either <, = or >. Using P[θi > C|y] = 1− P[θi ≤ C|y], this gives

P[θi ≤ C|y] = Fθi|y(C) R 1− p. (19)

Here, Fθi|y is the posterior CDF of θi. Therefore, we have

C R F−1θi|y(1− p) =: Qθi|y(1− p) :=: θ
(1−p)
i , (20)

where R takes the same value in equations (18), (19) and (20).

This proves the optimality of θ(1−p). Moreover, since one can construct a vector of point

estimates θesti satisfying θesti R C, whenever θ
(1−p)
i R C, for every i, it then follows that θ(1−p) is

not unique.
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