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Abstract

Let X1,X2, . . . ,Xn be independent and identically distributed ran-

dom variables. We present an analytic method for computing the

moments of Sn =
∑n

i=1
Xi. The method is illustrated with a simple

example, and is used to prove the strong law of large numbers.
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1 Introduction

We consider the moments of the sum Sn of the independent and identically
distributed (iid) random variables X1, X2, . . . , Xn. The distribution of these
random variables is assumed to be the same as the random variable X . Such
sums often appear in probability and statistics (e.g., in the law of large
numbers) and in stochastic analysis (e.g., in the study of random walks).
There are many papers which prove bounds for the moments (see e.g., [1],
[2] and [3] and the references therein), however to the best of my knowledge
there are no reports of a general analytic approach to their calculation.

2 Central result

Fix a p ∈ {1, 2, . . .} and define

Qp =

{
E(Xr)E(Xs) · · ·E(X t) : r, s, . . . , t ∈ {1, 2, . . . , p}

r + s+ · · ·+ t = p

}

.

The pth moment of Sn =
∑n

i=1
Xi is

E(Sp
n) =

∑

qi∈Qp

aiqi, (1)

where, for qi = E(Xp1)E(Xp2) · · ·E(Xpm),

ai =
1

l1!l2! · · · lh!

n!

(n−m)!

p!

p1!p2! · · ·pm!
. (2)

In equation (2), h is the number of distinct constants in the sequence
{p1, p2, . . . , pm}, l1 the number of elements equal to the first constant, l2
the number equal to the second constant, . . ., and lh the number equal to
the hth constant (e.g., for the sequence {1, 1, 1, 1}, h = 1 and l1 = 4, and for
{1, 2, 2, 1}, h = 2, l1 = 2, and l2 = 2). Note that E(Sp

n) < ∞ if an only if
E(Xα) < ∞ for all integers α ≤ p.

3 Example calculation

The third and fourth moments work out to be
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E(S3

n) =

(
1

1!

n!

(n− 1)!

3!

3!

)

E(X3) +

(
1

1!1!

n!

(n− 2)!

3!

2!1!

)

E(X2)E(X)

+

(
1

3!

n!

(n− 3)!

3!

1!1!1!

)

E(X)3

= nE(X3) + 3n(n− 1)E(X2)E(X) + n(n− 1)(n− 2)E(X)3

E(S4

n) =

(
1

1!

n!

(n− 1)!

4!

4!

)

E(X4) +

(
1

1!1!

n!

(n− 2)!

4!

3!1!

)

E(X3)E(X)

+

(
1

2!

n!

(n− 2)!

4!

2!2!

)

E(X2)2 +

(
1

2!1!

n!

(n− 3)!

4!

2!1!1!

)

E(X2)E(X)2

+

(
1

4!

n!

(n− 4)!

4!

1!1!1!1!

)

E(X)4

= nE(X4) + 4n(n− 1)E(X3)E(X) + 3n(n− 1)E(X2)2

+ 6n(n− 1)(n− 2)E(X2)E(X)2 + n(n− 1)(n− 2)(n− 3)E(X)4

If X1, X2, . . . , Xn are independent normal random variables with mean 1 and
variance 1, the above formulae give E(S3

10
) = 1300 and E(S4

10
) = 16300.

These values, as well as various others calculated with (1) and (2), agree
with estimates from numerical simulations performed in R 2.12.0 [4]. These
simulations involved generating 104 to 106 samples of Sn and calculating the
average of their pth power.

A certain amount of tedium can be avoided by supposing that X has a
symmetric distribution about zero. In this case, all factors qi in the expansion
in equation (1) involving an odd moment of X vanish, and therefore all odd
moments of Sn also vanish. The even moments take on relatively simple
forms, for example

E(S4

n) = nE(X4) + 3n(n− 1)E(X2)2.

For certain applications involving sums of random variables, inequalities
for the moments and coefficients {ai} may be more useful than the mo-
ments themselves. Equations (1) and (2) allow for these to be obtained in a
straightforward way. For example, in general we have

E(Sp
n) ≤ nE(Xp), (3)
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and we can see from equation (2) that

ai ≤ n!p!. (4)

4 Application: The law of large numbers

The various laws of large numbers involve sums of iid random variables.
For example, Cantelli’s theorem states that if X1, X2, . . . , Xn are iid random
variables with mean zero and finite fourth moments, then Sn/n → 0 almost
surely. The results derived above provide new ways to investigate the laws
of large numbers, and here we use them to give a straightforward proof of
Cantelli’s theorem.

Fix a positive integer n and ǫ > 0. Applying Chebyshev’s inequality to the
random variable S2

n gives P (|S2

n| > n2ǫ2) ≤ E(|S2

n|
2)/n4ǫ4, or equivalently,

P (|Sn| > nǫ) ≤
E(|Sn|

4)

n4ǫ4
. (5)

Summing both sides of equation (6) and substituting in the inequality (3)
gives

∞∑

n=1

P (|Sn| > nǫ) ≤

∞∑

n=1

E(X4)

n3ǫ4
< ∞. (6)

The Borel-Cantelli lemma therefore implies that

P (ω that are in infinitely many {|Sn| > nǫ}) = 0,

and so there exists an m such that for n > m, P (|Sn| < nǫ) = 1. Letting
ǫ → 0 then gives the result.

5 Proof of equations (1) and (2)

The pth moment of Sn is

E(Sp
n) =

n∑

i=1

n∑

j=1

· · ·
n∑

k=1
︸ ︷︷ ︸

p sums

E(XiXj · · ·Xk), (7)
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Because X1, . . . , Xn are iid random variables, each term in the sum can
be factored into the form

E(Xp1)E(Xp2) · · ·E(Xpn),

where p1, p2, . . . , pn are positive integers that sum to p. (7) can therefore
be written as (1). To determine the constants a1, a2, . . . fix a positive value of
p and positive non-zero integers p1, p2, . . . , pm such that p1+p2+ . . .+pm = p.
For each choice of i, j, . . . , k ∈ {1, 2, . . . , n}, with i 6= j 6=, . . . 6= k, define the
collection

Cip1 ,jp2 ,...,kpm =







all unique permutations of the sequence
Xi, Xi, . . .Xi
︸ ︷︷ ︸

p1 factors

, Xj, Xj, . . .Xj
︸ ︷︷ ︸

p2 factors

, . . . , Xk, Xk, . . .Xk
︸ ︷︷ ︸

pm factors







Each of the sequences in Cip1 ,jp2 ,...,kpm corresponds to an expectation of
the form E(Xp1

i Xp2
j · · ·Xpm

k ). These are each equivalent to

qm = E(Xp1)E(Xp2)E(Xpm)

The subscript m on qm is only for bookkeeping purposes. The number of
elements in Cip1 ,jp2 ,...,kpm is the number of ways in which qm can be created
from p1 copies of Xi, p2 copies of Xj , . . ., pm copies of Xk. For any choice of
i, j, . . . , k, this number is

|Cip1 ,jp2 ,...,kpm | =
p!

p1!p2! · · · pm!
. (8)

The number of elements in the union

Qp
p1,...,pm

=
⋃

i, j, . . . , k ∈ {1, . . . , n}
i 6= j 6= · · · 6= k

Cip1 ,jp2 ,...,kpm (9)

is the number of ways qm can be created from the p1 copies of Xi, p2
copies of Xj, . . ., pm copies of Xk, n choices of i, n − 1 choices of j, . . .,
n− (m− 1) choices of k. This gives the identity

am = |Qp
p1,...,pm

|. (10)
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If there are no equalities between the constants p1, p2, . . . , pm, then the
collections {Cip1 ,jp2 ,...,kpm} are mutually exclusive and so |Qp

p1,...,pm
| is given by

(8) times the number of collections in the union, namely

n(n− 1) · · · (n− (m− 1))
p!

p1!p2! · · · pm!
.

If there are equalities between p1, p2, . . . pm, then some of the collections
in {Cip1 ,jp2 ,...,kpm} are equivalent. For example, if p1 = p2 = p3, then

Cap1 ,bp2 ,cp3 ,...,kpm = Cbp1 ,cp2 ,ap3 ,...,kpm
= Ccp1 ,ap2 ,bp3 ,...,kpm
= Ccp1 ,bp2 ,ap3 ,...,kpm
= Cap1 ,cp2 ,bp3 ,...,kpm
= Cbp1 ,ap2 ,cp3 ,...,kpm

In the above equalities, the indices given by the ellipses and kpm do not
change. Furthermore, if we also had p4 = p5 = p6 = p7 in addition to
p1 = p2 = p3, then we could also write an additional 4! equivalent collections
for each of the 3! equivalent collections given above, leading to 4!3! equivalent
collections in the union (9). In general, if there are h distinct constants in the
sequence {p1, p2, . . . pm}, with l1 of the elements equal to one of these con-
stants, l2 equal to another of these constants, . . . , lh equal to the remaining
of these constants, then

l1!l2! · · · lh!

of the collections in the union (9) are equivalent. The number of elements
in Qp

p1,...,pm
for the general case is therefore found by taking the mutually

exclusive result given above and dividing through by l1!l2! · · · lh!, namely

|Qp
p1,...,pm

| =
1

l1!l2! · · · lh!

n!

(n−m)!

p!

p1!p2! · · ·pm!
.

Equation (10) then gives the results of section 2.
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