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Abstract

Using the classical estimation method of moments, we propose a new semiparametric estima-

tion procedure for multi-parameter copula models. Consistency and asymptotic normality of

the obtained estimators are established. By considering an Archimedean copula model, an

extensive simulation study, comparing these estimators with the pseudo maximum likelihood,

rho-inversion and tau-inversion ones, is carried out. We show that, with regards to the other

methods, the moment based estimation is quick and simple to use with reasonable bias and

root mean squared error.
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1 Introduction

Recently, considerable attention has been paid to the problem of inference about copulas. The

monographs of Cherubini et al. (2004), Nelsen (2006) and Joe (1997) summarize to some extent the

activities in this area. Roughly speaking, a copula function is a multivariate distribution function

with uniform margins. It is used as a linking block between the joint distribution function (df) F

of a vector of random variables X = (X1, ...,Xd) and its marginal df’s F1, ..., Fd. This probabilistic
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interpretation of copulas is justified by the famous Sklar’s theorem (Sklar, 1959) which states that,

under some mild conditions, there exists a unique copula function C, such that

F (x1, ..., xd) = C (F1 (x1) , .., Fd (xd)) .

In other words, the copula C is the joint df of the random vector U =(U1, ..., Ud) , with Uj =

Fj (Xj) . That is, for u =(u1, ..., ud) , we have

C (u) = F
(
F−1
1 (u1) , ..., F

−1
d (ud)

)
,

where F−1
j (s) := inf {x : Fj (x) ≥ s} denotes the generalized inverse function (or the quantile

function) of Fj .

A parametric Archimedean copula model arises for X when the copula C belong to a class C :=

{Cθ, θ ∈ O} , where O is an open subset of R
r for some integer r ≥ 1. Statistical inference

on the dependence parameter θ is one of the main topics in multivariate statistical analysis.

Several methods of copula parameter estimation have been developed, including the methods

of concordance (Oakes, 1982; Genest, 1987), fully maximum likelihood (ML), pseudo maximum

likelihood (PML) (Genest et al., 1995), inference function of margins (IFM) (Joe, 1997, 2005),

and minimum distance (MD) (Tsukahara, 2005). The performance of the PML procedure vis-a-vis

to the other methods has been discussed by several authors. For example, the simulation study

carried out by Kim et al. (2007) has concluded that the PML method is conceptually almost the

same as the IFM one. It overcomes its non robustness against misspecification of the marginal

distributions. Moreover, by using the PML method, one would not lose any important statistical

insights that would be gained by applying the IFM. An advantage of the PML over the IFM is that

the former does not require modeling the marginal distributions explicitly. Therefore, the PML

estimator is better than those of the ML and IFM in most practical situations. However, in time-

consuming point of view the PML, ML and IFM methods require intensive computations, notably

when the copula dimension increases. Moreover, when using these methods the copula density

has to be involved, therefore a serious inaccuracy at boundry points arises. Several numerical

methods are proposed to solve this problem, but they are still inefficient when dealing with high

dimensional copula models, more precisely for d > 2 (see, Yan, 2007, Section 5).

The aim of this paper is to propose an alternative estimation method similar to the concordance

one, avoiding technical problems caused by copula density and providing estimators with reason-

able time-consuming, bias and root mean squared error (RMSE). The concordance method, also
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called the τ -inversion and ρ-inversion, which are based, respectively, on Kendal’s τ and Spear-

man’s ρ rank correlation coefficients, used to estimate parametric copula models with at more two

parameters. Indeed, the τ−inversion and ρ−inversion methods use the functional representations

of τ and ρ in terms of the underling copula C (Schmid et al., 2010), given by

τ = τ (C) =
1

2d−1 − 1

{
2d
∫

[0,1]d
C (u) dC (u)−1

}
,

ρ = ρ (C) =
d+ 1

2d − (d+ 1)

{
2d
∫

[0,1]d
C (u) du− 1

}
.

More precisely, suppose that copula C is a parametric model, i.e. C = Cθ, then both τ and ρ

become functions in θ as well, that is τ = τ (θ) and ρ = ρ (θ) . Let τ̂ and ρ̂ be, respectively,

empirical versions of τ and ρ pertaining to the sample (X1, ...,Xn) from the random vector X and

suppose that Cθ is one-parameter copula model (i.e. r = 1). Then, the estimators of θ obtained

by τ−inversion or ρ−inversion methods are defined by θ̂ := τ−1 (τ̂) or θ̂ := ρ−1 (ρ̂) , where τ−1

and ρ−1 are the inverses, if they exist, of functions θ → τ (θ) and θ → τ (θ) respectively. In the

case when r = 2, that is when θ = (θ1, θ2) , we have to use jointly the two inversion methods,

called (τ , ρ)−inversion, to have a system of two equations

τ (θ1, θ2) = τ̂ , ρ (θ1, θ2) = ρ̂. (1)

In conclusion, when the dimension of parameter θ equals r, we have to use r measures of associ-

ation, for example Blomqvist’s beta β, Gini’s gamma γ, ... (see, Nelsen, 2006, page, 207) which,

in general, is not convenient on the choice of measures point of view. More precisely, suppose

that we are dealing with a parameter θ = (θ1, θ2) of a copula model Cθ, then one has the right to

ask the following question: What couple among all measures of association have to be chosen to

get a better estimation for θ?. On the other hand, it is worth mentioning that often there exist

difficulties while using Spearman’s rank correlation coefficient. One such difficulty is when using

very large or very small samples. For example, in the case of very large samples, it is very time

consuming to perform Spearman’s coefficient since it requires ranking of the data of all variables.

Then we have to look for an alternative more convenient class of measures providing estimators

with nice properties. A solution to this problem may be given by applying the classical method

of moments to random variable (rv) C (U) . Indeed, let us define the kth-moment Mk (C) , called

copula moment, of rv C (U) as the expectation of (C (U))k , that is

Mk (C) := E
[
(C (U))k

]
=

∫

[0,1]d
(C (u))k dC (u) , k = 1, 2, ... (2)
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Notice that the case k = 1 corresponds to

M1 (C) = E [C (U)] =

(
2d−1 − 1

)
τ + 1

2d
.

In other words, Mk (C) may be considered as a generalization of Kendal’s rank correlation τ . To

our knowledge, the method of moments is only used in one-parameter copula models, also known

by the τ -inversion method (see for instance, Tsukahara, 2005). Note that, since 0 ≤ C (u) ≤ 1,

then Mk (C) are finite for every integer k. Now we are in position to present a new estimation

method that we call copula moment (CM) estimation. Suppose that, for unknown parameter

θ ∈ O ⊂R
r, we have C = Cθ, then Mk (C) = Mk (θ) , where

Mk (θ) :=

∫

[0,1]d
(Cθ (u))

k dCθ (u) , k = 1, 2, ... (3)

From equations 3, we may consider Mk : θ →Mk (θ) as a mapping from O ⊂R
r to R, that will be

used as a means to estimate the parameter θ. More precisely, for a given sample (X1, ...,Xn) of

the random vector X, let us denote θ̂
CM

as the estimator of θ defined by (Mk)1≤k≤r . That is

θ̂
CM

:= M−1
k

(
M̂k

)
, k = 1, ...r, (4)

where M̂k is the empirical version of Mk (C) and M−1
k is the inverse of the mapping Mk, provided

that it exists. The rest of the paper is organized as follows. In Section 2, we present the main

steps of the copula moment estimation procedure and establish the consistency and asymptotic

normality of the proposed estimator. In Section 3, an application to multiparameter Archimedean

copula models is given. In Section 4, an extensive simulation study is carried out to evaluate and

compare the CM based estimation with the PML and (τ , ρ)−inversion methods. Comments and

conclusion are given Section 4. The proofs are relegated to the appendix.

2 Copula Moments based estimation

In this section we present a semiparametric estimation procedure for the copula models based on

the CM’s 3. First suppose that the underlying copula C belongs to a parametric family Cθ, with

θ = (θ1, · · · , θr), and satisfies the concordance ordering condition of copulas (see, Nelsen, 2006,

page 135), that is:

for every θ1,θ2 ∈ O : θ1 6= θ2 =⇒ Cθ1
(> or <)Cθ2

. (5)
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It is clear that this condition implies the well-known identifiability condition of copulas:

for every θ1,θ2 ∈ O : θ1 6= θ2 =⇒ Cθ1
6= Cθ2

.

Identifiability is a natural and even a necessary condition: if the parameter is not identifiable then

consistent estimator cannot exist (see, e.g., van der Vaart, 1998, page 62).

For a given sample (X1, ...,Xn) from random vector X =(X1, ...,Xd) , we define the corresponding

joint empirical df by

Fn (x) = n−1
n∑

i=1

1 {X1i ≤ x1, ...,Xdi ≤ xd} ,

with x := (x1, ..., xd) , and the marginal empirical df’s pertaining to the sample (Xj1, ...,Xjn) ,

from rv Xj , by

Fjn (xj) = n−1
n∑

i=1

1 {Xji ≤ xj} , j = 1, ..., d.

According to Deheuvels (1979), the empirical copula function is defined by

Cn (u) := Fn

(
F−1
1n (u1) , ..., F

−1
dn (ud)

)
, for u ∈ [0, 1]d ,

where F−1
jn (s) := inf {x : Fjn (x) ≥ s} denotes the empirical quantile function pertaining df Fjn.

We are now in position to present, in three steps, the semiparametric CM-based estimation:

• Step 1: For each j = 1, ..., d, compute Ûji := Fjn (Xji) , then set

Ûi :=
(
Û1i, ..., Ûdi

)
, i = 1, ..., n.

• Step 2: For each k = 1, ..., r, compute

M̂k := n−1
n∑

i=1

(
Cn

(
Ûi

))k
(6)

as the natural estimators of CM’s Mk given in equation (2).

• Step 3: Solve the following system




M1 (θ1, ..., θr) = M̂1

M2 (θ1, ..., θr) = M̂2

...

Mr (θ1, ..., θr) = M̂r.

(7)

The obtained solution θ̂
CM

:=
(
θ̂1, ..., θ̂r

)
is called the CM estimator for θ = (θ1, ..., θr) .
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Consistency and asymptotic normality of θ̂
CM

are stated in Theorem 2 below whose proof is

relegated to the appendix. For convenience we set

Lk (u;θ) := (Cθ (u))
k −Mk (θ) and L (u;θ)= (L1 (u;θ) , ..., Lr (u;θ)) . (8)

Let θ0 be the true value of θ and assume that the following assumptions [H.1]− [H.3] hold.

• [H.1] θ0 ∈ O ⊂ R
r is the unique zero of the mapping θ →

∫
[0,1]d L (u;θ) dCθ0

(u) which is

defined from O to R
r.

• [H.2] L (·;θ) is differentiable with respect to θ with the Jacobian matrix denoted by

•

L (u;θ) :=

[
∂Lk (u;θ)

∂θℓ

]

r×r

,

•

L (u;θ) is continuous both in u and θ, and the Euclidian norm

∣∣∣∣
•

L (u;θ)

∣∣∣∣ is dominated by a

dCθ-integrable function h (u) .

• [H.3] The r × r matrix A0 :=
∫
[0,1]d

•

L (u;θ0) dCθ0
(u) is nonsingular.

Theorem 1 Assume that the condition (5) and assumptions [H.1]− [H.3] hold. Then with prob-

ability tending to one as n → ∞, there exists a solution θ̂
CM

to the system (7) which converges

to θ0. Moreover
√
n
(
θ̂
CM − θ0

)
D→ N

(
0, A−1

0 D0

(
A−1

0

)T)
, as n → ∞,

where D0 := var {L (ξ;θ0) +V (ξ;θ0)} and V (ξ;θ0) = (V1 (ξ;θ0) , ..., Vr (ξ;θ0)) with

Vk (ξ;θ0) :=

d∑

j=1

∫

[0,1]d

∂ (Cθ0
(u))k

∂uj

(
1
{
ξj ≤ uj

}
− uj

)
dCθ0

(u) , k = 1, ..., r,

where ξ := (ξ1, ..., ξd) is a (0, 1)d-uniform random vector with joint df Cθ0 .

Remark 1 The asymptotic variance A−1
0 D0

(
A−1

0

)T
may be consistently estimated by the sample

variance of Â−1
i D̂i

(
Â−1

i

)T
where

Âi :=

∫

[0,1]d

•

L
(
u; θ̂

CM
)
dC

θ̂
CM (u) and D̂i := L

(
Ûi; θ̂

CM
)
+V

(
Ûi; θ̂

CM
)
, i = 1, ..., n,

as is done, in Genest et al. (1995) and Tsukahara (2005) in the case of PML’s estimator and

Z-estimator respectively.
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3 Application: Archimedean copula models

As application to the CM estimation method, we consider the Archimedean copula family defined

by C(u) = ϕ−1
(∑d

j=1 ϕ(uj)
)
, where ϕ : [0, 1] → R is a twice differentiable function called the

generator, satisfying: ϕ (1) = 0, ϕ′ (x) < 0, ϕ′′ (x) ≥ 0 for any x ∈ (0, 1) . The notation ϕ−1 stands

for the inverse function of ϕ. Archimedean copulas are easy to construct and have nice properties.

A variety of known copula families belong to this class, including the models of Gumbel, Clayton,

Frank, ... (see, Table 4.1 in Nelsen, 2006, page 116). Let KC(s) := P (C (U) ≤ s) , s ∈ [0, 1] , be

the df of rv C (U) , then equation 2 may be rewritten into:

Mk (C) =

∫ 1

0
skdKC(s), k = 1, 2, ....

Suppose now, for unknown θ ∈ O, that ϕ = ϕθ, it follows that C = Cθ, KC = Kθ and Mk (C) =

Mk (θ) , that is

Mk (θ) =

∫ 1

0
skdKθ(s), k = 1, 2, ...,

Notice that, one of the nice properties of Archimedean copula is that the df KC of C (U) may be

represented in terms of the first and second derivatives of the generator. Indeed from Theorem

4.3.4 in Nelsen, 2006, page 127, for any s ∈ [0, 1] , Kθ(s) = s − ϕθ (s) /ϕ
′
θ
(s) , it follows that the

corresponding density is K′
θ
(s) = ϕ′′

θ
(s)ϕθ (s) / (ϕ

′
θ
(s))2 . Therefore the kth CM, defined in (2),

may be rewritten into

Mk (θ) =

∫ 1

0
sk

ϕ′′
θ
(s)ϕθ (s)(
ϕ′
θ
(s)
)2 ds, k = 1, 2, ... (9)

In terms of Kθ, the assumptions [H.1]− [H.3] and Theorem 1 may be rephrased, respectively, to

[H.1′]− [H.3′] and Theorem 2 below. For convenience, we set

L (t;θ)= (L1 (t;θ) , ...,Lr (t;θ)) with Lk (t;θ) := tk −Mk (θ) .

• [H.1′] θ0 ∈ O ⊂ R
r is the unique zero of the mapping θ →

∫ 1
0 L (t;θ) dKθ0(t) that is defined

from O to R
r.

• [H.2′] L (·;θ) is differentiable with respect to θ with the Jacobian matrix denoted by

•

L (t;θ) :=

[
∂Mk (θ)

∂θℓ

]

r×r

,

•

L (t;θ) is continuous both in t and θ, and the Euclidian norm

∣∣∣∣
•

L (t;θ)

∣∣∣∣ is dominated by a

dKθ-integrable function h (t) .
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• [H.3′] The r × r matrix A0 :=
∫ 1
0

•

L (t;θ0) dKθ0
(t) is nonsingular.

Theorem 2 Assume that the condition (5) and assumptions [H.1′] − [H.3′] hold. Then with

probability tending to one as n → ∞, there exists a solution θ̂
CM

to the system (7) which converges

to θ0. Moreover

√
n
(
θ̂
CM − θ0

)
D→ N

(
0Rr ,A−1

0 D0

(
A−1

0

)T)
, as n → ∞,

where

D0 := var

{
L (ξ;θ0) +

∫ 1

0
g (t) (1 {ξ ≤ t} − t) dKθ0

(t)

}
,

where ξ is a (0, 1)-uniform rv and g (t) :=
(
ktk−1

)
k=1,r

is r−dimensional vector.

3.1 Illustrative example

The Gumbel family is an Archimedean copula defined by

Cβ(u) = exp


−




d∑

j=1

(− lnuj)
β




1/β

 , β ≥ 1,

with generator ϕβ (t) = (− ln t)β , β ≥ 1. For the sake of flexibility in data modelling, it is better

to use the multi-parameters copula models than the one-parameter ones. To have a copula with

more than one parameter, we use, for instance, the transformed (or distorted) copula defined by

CΓ (u) = Γ−1 (C (Γ (u1) , ...,Γ (ud))) ,

where Γ : [0, 1] → [0, 1] is a continuous, concave and strictly increasing function with Γ (0) = 0 and

Γ (1) = 1. As an example, suppose that Γ = Γα, with Γα (t) = exp (t−α − 1) , α > 0 and consider

the Gumbel copula Cβ, then the transformed copula Cα,β (u) = Γ−1
α (Cβ (Γα (u1) , ...,Γα (ud))) is

given by

Cα,β (u) :=







d∑

j=1

(
u−α
j − 1

)β



1/β

+ 1




−1/α

, (10)

which is also a two-parameter Archimedean copula with generator ϕα,β (t) := (t−α − 1)
β
. Note

that Cα,β verifies the concordance ordering condition of copulas (5) (see, Nelsen, 2006, page, 145).

By an elementary calculation we get the kth CM:

Mk (α, β) =
(k + 1)β + αβ − k

(k + 1)2 β + (k + 1)αβ
.
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In particular the first two CM’s are

M1 (α, β) :=
2β + αβ − 1

4β + 2αβ
and M2 (α, β) :=

3β + αβ − 2

9β + 3αβ
.

Let (X1, ...,Xn) be a sample of random vector X = (X1, ...,Xd) , then the CM estimator
(
α̂, β̂

)

of (α, β) is the unique solution of the system




M1 (α, β) = M̂1

M2 (α, β) = M̂2.

That is

α̂ =
8M̂1 − 9M̂2 − 1

1− 4M̂1 + 3M̂2

, β̂ =
1− 4M̂1 + 3M̂2(

1− 2M̂1

)(
1− 3M̂2

) . (11)

4 Simulation study

First notice that all numerical computations are performed on a personal computer with a micro-

processor speed of 2.4 GHz. To evaluate and compare the performance of CM’s estimator with the

PML and (τ , ρ)−inversion estimators, a simulation study is carried out by considering the trans-

formed bivariate Gumbel copula family Cα,β defined above. The evaluation of the performance is

based on the bias and the RMSE defined as follows:

Bias =
1

N

N∑

i=1

(
θ̂i − θ

)
, RMSE =

(
1

N

N∑

i=1

(
θ̂i − θ

)2
)1/2

, (12)

where θ̂i is an estimator (from the considered method) of θ from the ith samples for N generated

samples from the underlying copula. In both parts, we selected N = 1000. The procedure outlined

in Section (2) is repeated for different sample sizes n with n = 30, 50, 100, 200 to assess the

improvement in the bias and RMSE of the estimators with increasing sample size. Furthermore,

the simulation procedure is repeated for a large set of parameters of the true copula Cα,β. For

each sample, we solve system (11) to obtain the CM-estimator
(
α̂i, β̂i

)
of (α, β) for i = 1, ..., N,

and the estimators α̂ and β̂ are given by α̂ = 1
N

∑N
i=1 α̂i and β̂ = 1

N

∑N
i=1 β̂i. The choice of

the true values of the parameter (α, β) have to be meaningful, in the sense that each couple

of parameters assigns a value of one of the dependence measure, that is weak, moderate and

strong dependence. In other words, if we consider Kendall’s τ as a dependence measure, then

we should select values for copula parameters that correspond to specified values of τ by means

of the equation τ (α, β) = 4
∫
[0,1]2 Cα,β (u1, u2) dCα,β (u1, u2)−1. The selected values of the true

parameters are summarized in the following table:

9



τ α β

0.01 0.1 1.059

0.2 0.2 1.137

0.5 0.5 1.6

0.8 0.9 3.45

Table 1: The true parameters of transformed Gumbel copula used for the simulation study.

τ = 0.01 τ = 0.5 τ = 0.8

α = 0.1 β = 1.059 α = 0.5 β = 1.6 α = 0.9 β = 3.45

n Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE CPU

30 −0.081 0.330 0.032 0.180 −0.051 0.654 0.039 0.481 −0.073 0.907 −0.372 1.130 22.013 sec

50 −0.046 0.253 0.022 0.139 −0.043 0.487 0.018 0.367 −0.032 0.723 0.261 0.916 49.563 sec

100 −0.026 0.173 0.009 0.097 −0.023 0.350 0.012 0.262 −0.027 0.548 −0.089 0.733 2.789 mins

200 −0.011 0.122 0.002 0.064 −0.009 0.243 0.006 0.180 0.003 0.386 −0.056 0.506 10.370 mins

500 −0.005 0.075 0.000 0.041 −0.007 0.155 0.003 0.117 −0.007 0.241 −0.026 0.323 1.035 hours

Table 2: Bias and RMSE of the CLM estimator of two-parameters transformed Gumbel copula.
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τ = 0.01 τ = 0.2 τ = 0.5 τ = 0.8

α = 0.1 β = 1.059 α = 0.2 β = 1.137 α = 0.5 β = 1.6 α = 0.9 β = 3.45

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

n = 30

CM −0.082 0.313 0.039 0.190 −0.064 0.642 0.033 0.486 −0.068 0.567 0.074 0.466 −0.072 0.955 −0.359 1.128

PML −0.067 0.068 −0.485 0.486 −0.117 0.128 −0.561 0.568 0.078 0.394 −0.426 0.594 −0.043 0.421 0.253 1.027

ρ-τ 1.236 2.895 −0.213 1.775 1.101 2.984 −0.913 1.641 −0.556 2.312 −0.975 1.142 −0.439 0.691 0.919 1.039

n = 50

CM −0.046 0.245 −0.021 0.141 −0.052 0.468 0.029 0.357 −0.037 0.506 0.015 0.364 −0.033 0.732 0.206 0.892

PML −0.060 0.062 −0.478 0.482 0.102 0.112 −0.516 0.526 −0.072 0.240 −0.472 0.556 0.025 0.315 0.330 0.772

ρ-τ 1.115 2.033 −0.289 1.378 1.035 2.537 −0.354 1.341 −0.478 2.110 −0.952 1.021 −0.392 0.508 0.801 0.991

n = 100

CM −0.022 0.171 0.009 0.100 −0.019 0.342 0.016 0.258 0.029 0.367 −0.005 0.257 −0.025 0.551 0.155 0.704

PML −0.058 0.059 −0.483 0.485 −0.109 0.113 −0.524 0.528 −0.071 0.158 −0.403 0.469 −0.023 0.167 −0.017 0.237

ρ-τ 0.973 1.220 −0.176 1.273 0.923 2.335 −0.340 1.457 −0.365 1.114 −0.852 1.001 −0.255 0.397 0.708 0.686

n = 200

CM −0.016 0.122 0.002 0.064 −0.011 0.244 0.001 0.383 −0.014 0.245 0.005 0.180 −0.001 0.396 −0.060 0.527

PML −0.041 0.062 −0.503 0.505 −0.099 0.102 −0.514 0.516 −0.050 0.116 −0.333 0.415 −0.059 0.144 0.038 0.400

ρ-τ 0.874 1.025 −0.235 1.215 −0.890 2.414 −0.330 1.041 −0.321 0.997 −0.786 0.988 −0.239 0.331 0.580 0.625

Table 3: Bias and RMSE of the CM, PML and τ -ρ estimators of two-parameters transformed Gumbel copula.
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5 Comments and conclusions

From Table (4) , we conclude that by considering three dependence cases: weak (τ = 0.01) , mod-

erate (τ = 0.5) and strong (τ = 0.8) , the performance, in terms of bias and RMSE, of the CM

based estimation is well justified. In each case, for small and large samples, the bias and RMSE

are sufficiently small. Moreover, in time-consuming point of view, we observe that for a sample

size n = 30 and for N = 1000 replications, the central processing unit (CPU) time to process

CM’s method took 22.013 seconds, which is relatively small. For one replication N = 1, the CPU

time (in seconds) for different sample sizes are summarized as follows: (n,CPU) = (30, 0.437) ,

(100, 0.312) , (200, 0.844) , (500, 3.922). Table (4) shows that both the PML and the CM based

estimation perform better than the (τ , ρ)-inversion method. However, in weak dependence case

τ = 0.01, the CM method provides better results than the PML one, mainly when the sample

size increases. On the other hand, it is worth mentioning that our method is quick with respect

to the PML one. The main advantage of our method is that it provides estimators with explicit

forms, as far as Archimedean copula models are concerned. This is not the case of the other

methods which require numerical procedures leading to eventual problems in execution time and

inaccuracy issues. In conclusion, the CM based estimation method performs well for the chosen

model. Furthermore, its usefulness in the weak dependence case particularly makes it a good

candidate for statistical tests of independence.

References

[1] Bickel, P. J., Klaassen, C.A.J., Ritov, Y. and Wellner, J.A., 1993. Efficient and Adaptive

Estimation for Semiparametric Models. Baltimore, MD: The Johns Hopkins University Press.

[2] Cherbini, U., Luciano, E. and Vecchiato, W., 2004. Copula Methods in Finance, Wiley.
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A Appendix

A.1 Proof of Theorem 1

By considering CM’s estimator as a RAZ-estimator (van der Vaart, 1998, page 41), a straight

application of Theorem 1 in Tsukahara (2005) leads to the consistency and asymptotic normality

of the considered estimator. Indeed, the existence of a sequence of consistent roots θ̂
CM

to (4),
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may be verified by using similar arguments as the proof of Theorem 1 in Tsukahara (2005). More

precisely, we have to check only the conditions in Theorem A.10.2 in Bickel et al. (1993). Indeed,

first recall 8 and set

Φ (θ) :=
∫
Id
L (u;θ) dCθ0

(u) , and Φn (θ) := n−1
n∑

i=1
L
(
Ûi;θ

)
,

where Ûi = (F1n (X1i) , ..., Fdn (Xdi)) , with (Xj1, ...,Xjn) is a given random sample from the r.v.

Xj . In view of assumption [H.2] the following derivatives exist

•

Φ(θ) =

∫

Id

•

L (u;θ) dCθ0
(u) ,

•

Φn (θ) =
1

n

n∑

i=1

•

L
(
Ûi;θ

)
.

Next, we verify that

sup

{∣∣∣∣
•

Φn (θ)−
•

Φ (θ)

∣∣∣∣ : |θ − θ0| < ǫn

}
P→ 0, as n → ∞, (13)

for any real sequence ǫn → 0. Indeed, since
•

L is continuous in θ, then

sup

{∣∣∣∣
•

L
(
Ûi;θ

)
−

•

L
(
Ûi;θ0

)∣∣∣∣ : |θ − θ0| < ǫn

}
= oP (1) , i = 1, ..., n,

and the fact that ∣∣∣∣
•

Φn (θ)−
•

Φn (θ0)

∣∣∣∣ ≤
1

n

n∑

i=1

∣∣∣∣
•

L
(
Ûi;θ

)
−

•

L
(
Ûi;θ0

)∣∣∣∣ .

implies

sup

{∣∣∣∣
•

Φn (θ)−
•

Φn (θ0)

∣∣∣∣ : |θ − θ0| < ǫn

}
P→ 0, as n → ∞. (14)

On the other hand, in view of the law of the large number, we have

1

n

n∑

i=1

•

L (Ui;θ0)
P→

•

Φ (θ0) , as n → ∞,

where Ui = {Fj (Xji)}j=1,d . Moreover, in view of the continuity of function
•

L in u and Glivenko-

Cantelli, that is

sup
xj

|Fjn (xj)− Fj (xj)| → 0, j = 1, ..., d, almost surely, as n → ∞,

we have

n−1
n∑

i=1

∣∣∣∣
•

L
(
Ûi;θ0

)
−

•

L (Ui;θ0)

∣∣∣∣
P→ 0,

it follows that

∣∣∣∣
•

Φn (θ0)−
•

Φ (θ0)

∣∣∣∣
P→ 0, which together with (14), implies (13). Conditions (MG0)

and (MG3) in Theorem A.10.2 in Bickel et al. (1993) are trivially satisfied by our assumptions
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[H1]−[H3] . In view of the general theorem for Z-estimators (see, van der Vaart and Wellner, 1996,

Theorem 3.3.1), it remains to prove that
√
n

(
•

Φn −
•

Φ

)
(θ0) converges in law to the appropriate

limit. But this follows from Proposition 3 in Tsukahara (2005), which achieves the proof of

Theorem 1. �

A.2 Proof Theorem 2

The proof of Theorem 2 is straightforward by using similar argument as the proof of Theorem 1,

therefore the details are omitted. �
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