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Abstract

The parametrization of multivariate discrete statistical models by marginal log-linear
(MLL) parameters provides a great deal of flexibility; in particular, different MLL para-
metrizations under linear constraints induce various sub-models, including models defined
by some collections of conditional independences. Such models are curved exponential
families, and therefore have regular asymptotic properties. We introduce a sub-class of
MLL models which correspond to Acyclic Directed Mixed Graphs under the usual global
Markov property. We characterize for precisely which graphs the resulting parametrization
is variation independent, and show how it is both intuitive, and easily adapted to sparse
modelling techniques.

1 Introduction

Models defined by conditional independence constraints are central to many methods in mul-
tivariate statistics, and in particular to graphical models (Darroch et al., 1980; Whittaker,
1990). In the case of discrete data, marginal log-linear (MLL) parameters can be used to
parametrize a broad range of models, including some graphical classes and models for condi-
tional independence (Rudas et al., 2010; Forcina et al., 2010). The parameters are defined by
considering any sequence, M1,M2, . . ., of margins of the distribution which respects inclusion
(i.e. Mi precedes Mj if Mi ⊂ Mj), with each such sequence giving rise to a different smooth
parametrization of the saturated model. Useful sub-models can be induced by setting some
of the parameters to zero, or more generally by restricting attention to a linear subspace of
the parameter space.

The amount of flexibility in these models requires some restriction in order to lead to
a tractable search space. We describe a sub-class of marginal log-linear models suitable in
the context of directed acyclic graphs (DAGs) with hidden variables; these correspond to a
class of graphs known as acyclic directed mixed graphs (ADMGs). ADMGs contain directed
(→) and bidirected (↔) edges, subject to the constraint that there are no directed cycles.
Two examples are shown in Figure 1. All the work herein can easily be extended to graphs
which also contain an undirected component, provided no undirected edge is adjacent to an
arrowhead. This latter case strictly includes all ancestral graphs (Richardson and Spirtes,
2002).
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Figure 1: Two acyclic directed mixed graphs.

Markov properties for ADMGs and a parametrization in the case of discrete random
variables were provided by Richardson (2003, 2009). However, that parametrization is subject
to variation dependence constraints, in the sense that setting some parameters to particular
values may restrict the valid range of other parameters; this makes maximum likelihood fitting,
for example, more challenging (Evans and Richardson, 2010). Further, though it parametrizes
all distributions satisfying the Markov model, it does not naturally lead to parsimonious sub-
models.

Taking the graph in Figure 1(a) as an example, the parametrization of Richardson consists
(in the binary case) of the probabilities

P (X1 = 0) P (X3 = 0 | X1 = x1)

P (X2 = 0) P (X4 = 0 | X2 = x2)

P (X3 = 0,X4 = 0 | X1 = x1,X2 = x2),

where x1, x2 ∈ {0, 1}. A disadvantage of this parametrization is that the joint probability
of X3 and X4 both being zero (conditional on X1 = x1 and X2 = x2) is bounded above by
the marginal probability of those events. Consequently, from the point of view of parameter
interpretation, it makes little sense to consider the joint probabilities in isolation. For example,
strong correlation between X3 and X4 is present when the joint probability is large relative
to the marginals.

If we use the conditional odds ratios

P (X3 = 0,X4 = 0 | X1 = x1,X2 = x2) · P (X3 = 1,X4 = 1 | X1 = x1,X2 = x2)

P (X3 = 1,X4 = 0 | X1 = x1,X2 = x2) · P (X3 = 0,X4 = 1 | X1 = x1,X2 = x2)

instead of the joint probabilities, then the variation dependence disappears. The odds ratio
is a measure of correlation without reference to the marginal distributions. This means that
if, for example, we wish to define a prior distribution over the univariate probabilities and
the odds ratios, we can simply use a product of univariate distributions; similarly, to fit a
generalized linear model with the parameters as responses, we only need simple univariate
link functions. We will see that this approach to discrete parametrizations can be generalized.

In Section 2 we introduce marginal log-linear parameters and some of their properties.
Section 3 gives background theory about ADMGs and the parametrization of Richardson
(2009); the application of MLLs to parametrizing these models is presented in Section 4.
In Section 5 we relate this to the framework of Bergsma and Rudas (2002), and classify for
which models the new parametrization is variation independent. Section 6 gives a slightly
different formulation of the parametrization, and demonstrates its advantages for parameter
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interpretation. Section 7 discusses approaches to sparse modelling using MLLs, and contains
simulated and data-based examples. Longer proofs are in Section 8.

2 Marginal Log-Linear Parameters

We consider collections of random variables (Xv)v∈V with finite index set V , taking values
in finite discrete probability spaces (Xv)v∈V under a strictly positive probability measure P ;
without loss of generality, Xv = {0, 1, . . . , |Xv | − 1}. For A ⊆ V we let XA ≡ ×v∈A(Xv),
X ≡ XV and XA ≡ (Xv)v∈A.

For x ∈ X, we denote by xA the sub-vector of x consisting of those indices which belong to
variables in A. Further, X̃ is the subset of X which does not contain the last possible element
in any co-ordinate; that is X̃v = {0, 1, . . . , |Xv | − 2}, and X̃ = ×v∈V (X̃v).

We use the shorthands pA(xA) ≡ P (XA = xA) and pA|B(xA |xB) ≡ P (XA = xA |XB =
xB); for particular instantiations of x we write, for example,

p011 ≡ P (X1 = 0,X2 = 1,X3 = 1),

p0·1 ≡
∑

j∈X2

p0j1

= P (X1 = 0,X3 = 1).

Following Bergsma and Rudas (2002), we define a general class of parameters on discrete
distributions. The definition relies upon abstract collections of subsets, so it may be helpful
to the reader to keep in mind that the sets Mi ∈M are margins, or subsets, of the distribution
over V , and each set Li is a collection of effects in the margin Mi. A pair (L,Mi) corresponds
to a log-linear interaction over the set L, within the margin Mi.

Definition 2.1. For L ⊆ M ⊆ V , the pair (L,M) is an ordered pair of subsets of V . Let P
be a collection of such pairs. Then let

M ≡ {M | (L,M) ∈ P for some L},

be the collection of margins in P. If M = {M1, . . . ,Mk}, write

Li ≡ {L | (L,Mi) ∈ P},

for the set of effects present in the margin Mi. We say that the collection P is hierarchical if
the ordering on M is chosen so that if i < j, then Mj * Mi and also L ∈ Lj ⇒ L * Mi; the
second condition is equivalent to saying that each L is associated only with the first margin
M of which it is a subset. We say the collection is complete if every non-empty subset of V
is an element of precisely one set Li.

The term ‘hierarchical’ is used because each log-linear interaction is defined in the first
possible margin in an ascending class; ‘complete’ is used because all interactions are present.
Some papers (Rudas et al., 2010; Lupparelli et al., 2009) consider only collections which are
complete.
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Definition 2.2. For L ⊆M ⊆ V and xL ∈ XL, let

λM
L (xL) ≡

1

|XM |

∑

yM∈XM

log pM (yM )
∏

v∈L

(

|Xv|I{xv=yv} − 1
)

.

This is a marginal log-linear parameter. For a collection of ordered pairs of subsets P (see
Definition 2.1), we let

Λ(P) ≡ {λM
L (xL) | (L,M) ∈ P, xL ∈ XL},

be the collection of parameters associated with P.

This definition is equivalent to the recursive one given in Bergsma and Rudas (2002);
both expositions are fairly abstract, so we invite the reader to consult the examples below.
In particular note that for binary random variables, the product is always ±1. Any collection
Λ(P) where P is hierarchical and complete smoothly parametrizes the saturated model.

There is redundancy in the parameters (see Proposition 2.5) which leads to some flexibility
in the definition of a marginal log-linear parameter; ours corresponds to ‘effect coding’. We
could use instead ‘dummy coding’, a corner point constraint which sets λM

L (xL) to be zero
whenever any element of xL is zero; this is used in Marchetti and Lupparelli (2010). This
would not affect any major results.

The case where L = ∅ will not interest us here; in terms of a contingency table, the value
of this marginal log-linear parameter is controlled by other MLL parameters and the sum over
all cells, which we assume to be 1. Various examples for these definitions can be found in
Bergsma and Rudas (2002).

2.1 Properties and Examples

We will write λM
L to mean the collection {λM

L (xL) | xL ∈ XL}; if we write λM
L = 0, we are

setting all the parameters in this collection to 0.

Example 2.3. Log-linear and multivariate logistic parameters
The usual log-linear parameters for the saturated model of a discrete distribution over

a set of vertices V are {λV
L | L ⊆ V }. In the more general case of an undirected graph G,

the set of discrete distributions P obeying the global Markov property with respect to G is
parametrized by {λV

L | L ∈ C(G)}, where C(G) is the collection of complete subsets of G.
Up to trivial transformations, the multivariate logistic parameters of Glonek and McCullagh

(1995) are {λL
L | L ⊆ V }.

Example 2.4. Let V = {1, 2, 3} and assume all random variables are binary. Then

λ1
1(0) =

1

2
log

p0··
p1··

,

which, up to a multiplicative constant, is the logit of the probability of the event {X1 = 0}.
Also,

λ12
1 (0) =

1

4
log

p00· p01·
p10· p11·

and λ12
12(0, 0) =

1

4
log

p00· p11·
p10· p01·

,
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the log odds product and log odds ratio between X1 and X2 respectively. Here we have
written, for example, 12 instead of {1, 2}; similarly, for sets A and B we sometimes write AB
for A ∪B, and aB for {a} ∪B.

Proposition 2.5. For any v ∈ L, and fixed xL\{v}

∑

xv∈Xv

λM
L (xL\{v}, xv) = 0.

That is, the sum of the parameters across the support of any variable is 0.

Remark 2.6. A collection of parameters which avoids the redundancy in Proposition 2.5 is

Λ̃(P) = {λM
L (xL) | (L,M) ∈ P, xL ∈ X̃L}.

The next result relates the marginal log-linear parameters to conditional independences.

Lemma 2.7 (Rudas et al. (2010), Lemma 1). For any disjoint sets A, B and C, where C
may be empty, A ⊥⊥ B | C if and only if

λABC
abD = 0 for every a ∈ A, b ∈ B, D ⊆ A ∪B ∪ C \ {a, b}.

The special case of C = ∅ (giving marginal independence) is proved in the context of
multivariate logistic parameters by Kauermann (1997).

Example 2.8. Take a complete and hierarchical parametrization of 3 variables,

λ1
1 λ2

2 λ3
3 λ12

12 λ13
13 λ123

23 λ123
123.

Then we can force X1 ⊥⊥ X3 by setting λ13
13 = 0. Similarly we can force X2 ⊥⊥ X3 | X1 by

setting λ123
23 = λ123

123 = 0.

Lemma 2.9. Suppose that A ⊥⊥ B | C, and A is non-empty. Then for any D ⊆ C,

λABC
AD (xAD) = λAC

AD(xAD), for each xAD ∈ XAD.

3 Acyclic Directed Mixed Graphs

Definition 3.1. A directed mixed graph G consists of a set of vertices V , and both directed
(→) and bidirected (↔) edges. Edges of the same type and orientation may not be repeated,
but there may be multiple edges of different types between a pair of vertices.

A path in G is a sequence of adjacent edges, without repetition of a vertex; a path may
be empty, or equivalently consist of only one vertex. A directed path is one in which all the
edges are directed (→) and are oriented in the same direction. A bidirected path is a path
consisting entirely of bidirected edges. A semi-directed path is one in which all directed edges
are oriented in the same direction, but which may contain bidirected edges as well; thus in
our definition, every bidirected or directed path is also semi-directed.
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A cycle is a non-empty sequence of adjacent edges, also without repetition of a vertex,
except that the last vertex is the same as the first. A directed cycle is non-empty sequence
of edges of the form v → · · · → v. An acyclic directed mixed graph (ADMG) is one which
contains no directed cycles.

Definition 3.2. For a graph G and a subset of the vertices A ⊆ V , we denote by GA the
induced subgraph formed by A; that is, the graph containing the vertices A, and the edges in
G whose end points are both in A.

Definition 3.3. Let a, b and d be vertices in a mixed graph G. If b → a we say that b is a
parent of a, and a is a child of b. The set of vertices which are parents of a is written paG(a),
and the set of children of b is chG(b).

If there is a directed path from a to d, or a = d, we say that a is an ancestor of d,
and that d is a descendant of a. Sets of ancestors and descendants are denoted anG(d) and
deG(a) respectively. The district of a, denoted disG(a), is the set containing a and all vertices
which are connected to a by a bidirected path; a district is referred to by some authors as a
c-component. A district of G is a maximal set of vertices all connected by bidirected paths.

These definitions are applied disjunctively to sets of vertices, so that, for example,

paG(W ) ≡
⋃

w∈W

paG(w), disG(W ) ≡
⋃

w∈W

disG(w).

A set is of vertices A is ancestral if A = anG(A); that is, A contains all its own ancestors.

Note that by the definitions of some authors, vertices are not their own ancestors (Lauritzen,
1996). The above notations may be shortened on induced subgraphs so that paA ≡ paGA

,
and similarly for other definitions. In some cases where the meaning is clear, we will dispense
with the subscript altogether.

We use the now standard notation of Dawid (1979), and represent the statement ‘X is
independent of Y given Z under a probability measure P ’, for random variables X, Y and
Z, by X ⊥⊥ Y | Z [P ]. If P is unambiguous, this part is dropped, and if Z is empty we
write simply X ⊥⊥ Y . Finally, we abuse notation in the usual way: v and Xv are used
interchangeably as both a vertex and a random variable; likewise A denotes a vertex set and
XA.

3.1 Global Markov Property

A Markov property relates a graph to the probability distributions it represents.
A non-endpoint vertex c on a path is a collider on the path if the edges preceding and

succeeding c on the path have an arrowhead at c, for example → c← or ↔ c←; otherwise c
is a non-collider. A path between vertices a and b in a mixed graph is said to be m-connecting
given a set C if

(i) every non-collider on the path is not in C, and

(ii) every collider on the path is an ancestor of C.

If there is no path m-connecting a and b given C, then a and b are said to be m-separated
given C. Sets A and B are said to be m-separated given C if every a ∈ A and every b ∈ B
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are m-separated given C. This concept naturally extends the d-separation criterion of Pearl
(1988) to graphs with bidirected edges.

A probability measure P on X is said to satisfy the global Markov property for G if for
arbitrary disjoint sets A, B and C,

A is m-separated from B given C in G =⇒ XA ⊥⊥ XB | XC [P ].

3.2 Existing Parametrization of ADMGs

This subsection explains the parameters of Richardson (2009) for multivariate discrete distri-
butions satisfying the global Markov property.

Definition 3.4. Let G be an ADMG with vertex set V . We say that a collection of vertices
W ⊆ V is barren if for each v ∈ W , we have W ∩ deG(v) = {v}; in other words v has no
non-trivial descendants in W .

A head is a collection of vertices H which is barren and is ↔-connected in Gan(H). We
write H(G) for the collection of heads in G. The tail of a head H is the set

tailG(H) ≡ paG(disanH(H)) ∪ (disanH(H) \H).

We typically write T for a tail, provided it is clear which head it belongs to.

Richardson (2009) shows that discrete distributions obeying the global Markov property
for an ADMG G are parametrized by the conditional probabilities

{

P (XH = xH | XT = xT )
∣

∣

∣
H ∈ H, T = tailG(H), xH ∈ X̃H , xT ∈ XT

}

.

This is achieved via the factorization

P (XV = xV ) =
∏

H∈[V ]G

P (XH = xH | XT = xT ). (1)

The function [·]G partitions sets of vertices into heads; see Richardson (2009) for details. In
the case of a directed acyclic graph (DAG), this corresponds to the probability distribution
of each vertex conditional on its parents: p(xv | xpa(v)).

Consider again the ADMG in Figure 1(a); its head-tail pairs (H,T ) are (1, ∅), (2, ∅), (3, 1),
(4, 2) and (34, 12). Then the multivariate binary distributions obeying the global Markov
property with respect to this graph are parametrized by

p1(0) p2(0) p3|1(0 | x1) p4|2(0 | x2) p34|12(0, 0 | x1, x2),

for x1, x2 ∈ {0, 1}.

3.3 Graphical Completions

Given a discrete model defined by a set of conditional independence constraints, it is natural
to consider it as a sub-model of the saturated model, which contains all positive probability
distributions. In a setting where the model is graphical, it becomes equally natural to think
of the graph as a subgraph of a complete graph, by which we mean a graph containing at least
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Figure 2: (a) An acyclic directed mixed graph, and (b) its balanced completion.

one edge between any pair of vertices. We can achieve this by inserting edges between each
pair of vertices which lack one, but this leaves a choice of edge type and orientation. These
choices may affect how much of the structure and spirit of the original graph is retained; in
particular, the completion scheme defined below preserves heads (see Proposition 3.7).

Definition 3.5. Given an ADMG G, we define Ḡ, the balanced completion of G to be the
graph obtained by adding edges to G in the following manner: for two vertices i and j with
no edge between them, add in the edge i→ j if there is a directed path from i to j, or there
is a semi-directed path from i to j and no such path from j to i; otherwise consider j → i in
the same manner. If there are semi-directed paths in both directions (but no directed paths),
or in neither direction, insert i↔ j.

It is easy to verify that this notion is well defined; it is also clear that no m-separations
hold in the graph Ḡ, and thus it represents the saturated model. Note that it is not necessary
for every pair of vertices to be joined by an edge in order for a graph to represent the saturated
model, however Ḡ is complete. The name ‘balanced’ is intended to convey that the scheme is
a compromise between completions which add only directed edges, and a scheme which adds
only bidirected edges.

Example 3.6. Figure 2(a) shows an ADMG, together with its balanced completion (b).

Proposition 3.7. H(G) ⊆ H(Ḡ); in other words, heads are preserved by balanced completion.

Of course tails will, in general, be greatly expanded by the process.

4 Ingenuous Parametrization

In this section we use the marginal log-linear parameters defined in Section 2 to parametrize
the distributions discussed in Section 3.

Definition 4.1. Consider an ADMG G with head-tail pairs (Hi, Ti) over some index i, and
let Mi = Hi ∪ Ti. Further, let Li = {A | Hi ⊆ A ⊆ Hi ∪ Ti}. This collection of margins and
associated effects is the ingenuous parametrization of G, denoted Ping(G).

Example 4.2. We return again to the ADMG in Figure 1(a); the head-tail pairs are (1, ∅),
(2, ∅), (3, 1), (4, 2) and (34, 12), meaning that the ingenuous parametrization is given by the
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following margins and effects:

M L
1 1
2 2

13 3, 13
24 4, 24

1234 34, 134, 234, 1234.

In order to use most of the results of Bergsma and Rudas (2002), we need to confirm that
the definition above corresponds to a hierarchical parametrization, which is shown by the
following result.

Lemma 4.3. For any ADMG G, there is an ordering on the sets Mi of the ingenuous
parametrization Ping(G) which is hierarchical.

Proof. Firstly, we show that for distinct heads Hi and Hj , the collections Li and Lj are
disjoint. To see this, assume for contradiction that there exists A such that Hi ⊆ A ⊆ Hi∪Ti

and Hj ⊆ A ⊆ Hj ∪ Tj . Then since Hi 6= Hj, assume without loss of generality that there
exists v ∈ Hi ∩Hc

j ⊆ A.
Then v ∈ Hj ∪ Tj implies that v ∈ Tj , and thus there is a directed path from v to some

w ∈ Hj. Now, w /∈ Hi, since v,w ∈ Hi would imply that Hi is not barren. But then if
w ∈ Hj ∩ Hc

i , then by the same argument as above we can find a directed path from w to
some x ∈ Hi. Then v → · · · → w→ · · · → x is a directed path between elements of Hi, which
is a contradiction. Thus Li and Lj are disjoint.

Now, choose the labelling of heads such that i < j if Hi 6= Hj and Hi ⊂ anG(Hj). This
is a well defined partial ordering, since if it were not then G would contain a directed cycle.
Any total ordering which respects this partial ordering is hierarchical, because any set A ∈ Li

is a subset of the ancestors of Hi.

We proceed to show that the ingenuous parameters produce the set of distributions cor-
responding to the global Markov property.

Lemma 4.4. Given sets M and L ⊆M , the collection of MLL parameters

{λM
A (xA) | L ⊆ A ⊆M,xM ∈ X̃M},

together with the (|L| − 1)-dimensional marginal distributions of XL conditional on XM\L,
smoothly parametrizes the distribution of XL conditional on XM\L.

A proof is given in Section 8. Note that in the case of binary random variables, the
collection consists of just one parameter.

Theorem 4.5. The ingenuous parametrization Λ̃(Ping(G)) of an ADMG G parametrizes pre-
cisely those distributions P obeying the global Markov property with respect to G.
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Proof. We proceed by induction. Use the same partial ordering on heads from the proof of
Lemma 4.3: that is, Hi ≺ Hj if Hi 6= Hj and Hi ⊂ anG(Hj). For the base case, we know that
singleton heads {h} with empty tails are parametrized by the logits λh

h.
Now, suppose that we wish to find the distribution of a head H conditional on its tail

T . Assume that we have the distribution of all heads H ′ which precede H, conditional on
their respective tails; we claim this is sufficient to give the (|H| − 1)-dimensional marginal
distributions of H conditional on T .

Let v ∈ H, and let L = H \ {v} be a (|H| − 1)-dimensional marginal of interest. The
set A = anG(H) \ {v} is ancestral, since v cannot have (non-trivial) descendants in anG(H);
in particular L ∪ T ⊆ A. Theorem 4 of Richardson (2009) states that the factorization in
equation (1) holds for any ancestral set, so

pA(xA) =
∏

H′∈[A]G
T ′=tail(H)

pH′|T ′(xH′ |xT ′).

But all the probabilities in the product are known by our induction hypothesis, and the
marginal distribution of L conditional on T is given by the distribution of A.

The ingenuous parametrization, by definition, contains λH∪T
A for H ⊆ A ⊆ H ∪ T , and

thus the result follows from Lemma 4.4 above.

Example 4.6. Returning to our running example, the graph in Figure 1(a) has the ingenuous
parametrization

λ1
1 λ2

2 λ13
3 λ13

13 λ24
4 λ24

24

λ1234
34 λ1234

134 λ1234
234 λ1234

1234.

Assume the random variables are binary and recall that the parametrization in Richardson
(2009) used the probabilities

p1(0) p2(0) p3|1(0 | x1) p4|2(0 | x2) p34|12(0, 0 | x1, x2),

for x1, x2 ∈ {0, 1}; thus if we can recover these probabilities, we know that we can recover the
whole distribution. First,

λ1
1(0) =

1

2
log

p1(0)

p1(1)
=

1

2
log

p1(0)

1− p1(0)
λ2
2(0) =

1

2
log

p2(0)

p2(1)
=

1

2
log

p2(0)

1− p2(0)

can be solved for the marginal distributions of 1 and 2. Also

λ13
3 (0) + λ13

13(x1, 0) =
1

2
log

p13(x1, 0)

p13(x1, 1)
=

1

2
log

p3|1(0 | x1)

1− p3|1(0 | x1)
,

which is easily solved for the distribution of 3 conditional upon 1. The joint distribution of 2
and 4 follows similarly. Lastly, for each x1, x2 ∈ {0, 1},

λ1234
34 (0, 0)+λ1234

134 (x1, 0, 0) + λ1234
234 (x2, 0, 0) + λ1234

1234(x1, x2, 0, 0)

=
1

16
log

p34|12(0, 0 | x1, x2) · p34|12(1, 1 | x1, x2)

p34|12(1, 0 | x1, x2) · p34|12(0, 1 | x1, x2)
.
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Note that each of the probabilities in this last expression can be written in terms of things
already known and p34|12(0, 0 | x1, x2); for example,

p34|12(1, 1 | x1, x2) = 1− p3|1(0 | x1)− p4|2(0 | x2) + p34|12(0, 0 | x1, x2).

Then we can rearrange to give a quadratic equation for p34|12(0, 0 | x1, x2), which has exactly
one valid solution.

4.1 Completion

We have demonstrated that the ingenuous parametrization is hierarchical, but it is clearly not
complete. To apply many of the results in Bergsma and Rudas (2002) concerning marginal
log-linear parameters, we require completeness; in particular we wish to represent the ingen-
uous parametrization as a sub-model of the saturated model.

Lemma 4.7. The ingenuous parametrization of an ADMG G is a linear subspace of the in-
genuous parametrization of its balanced completion Ḡ, possibly after relabelling some margins.

Proof. Let (H,T ) be a head-tail pair in Ḡ. There are three possibilities for how this pair
relates to G: if (H,T ) is also a head-tail pair in G, then there is no work to be done; otherwise
either (i) H is not a head in G, or (ii) H is a head in G but T is not its tail.

If (i) holds, then we claim that under G, λHT
A = 0 for all H ⊆ A ⊆ H ∪ T . To see this,

first note that H must be a barren set in Ḡ, and since it is maximally connected, this means
that all elements are joined by bidirected edges. H must also be barren in G, and since it is
not a head in G this means that H = K ∪ L for disjoint non-empty sets K and L with no
edges directly connecting them. But this implies that K and L are m-separated conditional
on T , and thus XK ⊥⊥ XL |XT under the Markov property for G. Then, by Lemma 2.7, these
parameters are all identically zero under G.

(ii) implies that H is head in both G and Ḡ, but T ≡ tailḠ H ⊃ tailG H ≡ T ′. Then we
claim that λHT

A = 0 for all H ⊆ A ⊆ H ∪ T such that A ∩ (T \ T ′) 6= ∅; this follows from the
fact that T ′ is the Markov blanket for H in anG(H), and Lemma 2.7.

We have shown that all parameters corresponding to effects not found in Ping(G) are
identically zero under G. The vanishing of these parameters defines the correct sub-model,
but note that some of the remaining margins are not the same in Ping(Ḡ) as in Ping(G). These
remaining cases are again from (ii), but where H ⊆ A ⊆ H ∪ T ′; in this case λHT

A = λHT ′

A

under G, which follows from the fact that T ′ is the Markov blanket for H in anG(H), and
Lemma 2.9. Thus we are simply relabelling some of the parameters.

Setting some of the parameters to zero amounts to a set of linear constraints on the
parameters.

This result allows us to apply Bergsma and Rudas’ results to ADMG models, and thus
shows that each model corresponds to a curved exponential family of distributions with di-
mension equal to its ingenuous parameter count. We could also have used these methods to
prove that Ping(G) is a smooth parametrization of distributions satisfying the Markov property
for G; however, the direct proof is instructive.

Example 4.8. Consider again the ADMG G in Figure 2(a) with its balanced completion Ḡ
in (b). The ingenuous parametrization for Ḡ is

11



M L
1 1
2 2

12 12
123 3, 13, 23, 123
124 4, 14, 24, 124
1234 34, 134, 234, 1234.

The sub-model G corresponds to setting

λ12
12 = λ123

23 = λ123
123 = λ124

14 = λ124
124 = 0,

under which conditions the following equalities hold:

λ123
3 = λ13

3 λ123
13 = λ13

13 λ124
4 = λ24

4 λ124
24 = λ24

24.

Removing the zero parameters and renaming the four others according to these last equations
returns us to the ingenuous parametrization of G.

Remark 4.9. Rudas et al. (2010) parametrize chain graph models of multivariate regression
type, also known as type IV chain graph models, using marginal log-linear parameters. Type
IV chain graph models are a special case of ADMG models, in the sense that by replacing the
undirected edges in a type IV chain graph with bidirected edges, the global Markov property
on the resulting ADMG is equivalent to the Markov property for the chain graph (see Drton,
2009). The graphs in Figure 2(a) and (b) are examples of Type IV models. However, there
are models in the class of ADMGs which do not correspond to any chain graph, such as that
in Figure 1(b).

The parametrization of Rudas et al. (2010) uses different choices of margins to the ingen-
uous parametrization, though their parameters can be shown to be equal to the parameters
considered here under the appropriate Markov property, using Lemma 2.9. Thus the vari-
ation dependence properties of that parametrization are identical to those of the ingenuous
parametrization (see next section).

Marchetti and Lupparelli (2010) also parametrize type IV chain graph models in a similar
manner to Rudas et al. (2010), in that case using multivariate logistic contrasts.

5 Ordered Decomposability and Variation Independence

Definition 5.1. Let θi, for i = 1, . . . , k be a collection of parameters such that θi takes any
value in the set Θi. We say that the vector θ = (θ1, . . . , θk) is variation independent if θ can
take any value in the set Θ1 × · · · ×Θk.

We now seek to categorize which ingenuous parametrizations are variation independent.
Bergsma and Rudas (2002) characterize precisely which hierarchical and complete parametrizations
are variation independent, using a notion they call ordered decomposability.

Definition 5.2. A collection of sets M = {M1, . . . ,Mk} is incomparable if Mi * Mj for every
i 6= j.

12
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Figure 3: (a) a graph with a variation dependent ingenuous parametrization; (b) a Markov
equivalent graph to (a) with a variation independent MLL parametrization; (c) a graph with
no variation independent MLL parametrization.

A collection M of incomparable subsets of V is decomposable if it has at most two elements,
or there is an ordering M1, . . . ,Mk on the elements of M wherein for each i = 3, . . . , k, there
exists ji < i such that

(

i−1
⋃

l=1

Ml

)

∩Mi = Mji ∩Mi.

This is also known as the running intersection property.
A collection M of (possibly comparable) subsets is ordered decomposable if it has at most

two elements, or there is an ordering M1, . . . ,Mk such that Mi * Mj for i > j, and for each
i = 3, . . . , k, the inclusion maximal elements of {M1, . . . ,Mi} form a decomposable collection.
We say that a collection P of parameters is ordered decomposable if there is an ordering on
the margins M which is both hierarchical and ordered decomposable.

The following example is found in Bergsma and Rudas (2002).

Example 5.3. Let M = {12, 13, 23, 123}. In order to have a hierarchical ordering of these
margins it is clear that the set 123 must come last, but there is no way to order the collection
of inclusion maximal margins {12, 13, 23} such that it has the running intersection property.
Thus M is not ordered decomposable.

The next result links variation independence to ordered decomposability.

Theorem 5.4 (Bergsma and Rudas (2002), Theorem 4). Let P be a parametrization which
is hierarchical and complete. Then the parameters are variation independent if and only if P
is ordered decomposable.

For the ingenuous parametrization this has the following consequence.

Theorem 5.5. The ingenuous parametrization for an ADMG G is variation independent if
and only if G contains no heads of size greater than or equal to 3.

The bidirected 3-chain shown in Figure 3(a) has the head 123, and therefore its ingenuous
parametrization is variation dependent. This can easily be seen directly: in the binary case,

13



1

2 3

4

Figure 4: A bidirected 4-cycle.

for example, if the parameters λ12
12(0) and λ23

23(0) are chosen to be very large, it induces very
high correlation between the variables X1 and X2, and between X2 and X3 respectively.
If these correlations are chosen to be too high, then it is impossible for X1 and X3 to be
independent, which is implied by the graph.

Observe that we could use the Markov equivalent graph in Figure 3(b), which has no
heads of size 3, and thus obtain a variation independent parametrization of the same model.
However, if we add incident arrows as shown in Figure 3(c), we obtain a graph where such a
trick is not possible. In fact, this third graph is Markov equivalent to the bidirected 5-chain,
which has no variation independent parametrization in the Bergsma and Rudas framework.

In general, it would be useful for those concerned about variation dependence to choose a
graph from the Markov equivalence class created by their model which has the smallest pos-
sible maximum head size. This could be achieved by reducing the number of bidirected edges
in the graph, where possible; see, for example, Ali et al. (2005) and Drton and Richardson
(2008b) for approaches to this.

Example 5.6. The bidirected 4-cycle, shown in Figure 4, contains a head of size 4, and
so its ingenuous parametrization is variation dependent. However, the model can be given
an ordered decomposable and thus variation independent parametrization in the framework
of marginal log-linear parameters. The 4-cycle is precisely the model with X1 ⊥⊥ X3 and
X2 ⊥⊥ X4. Set M = {13, 24, 1234}, with

L1 = {1, 3, 13}

L2 = {2, 4, 24}

L3 = P({1, 2, 3, 4}) \ (L1 ∪ L2);

here P(A) denotes the power set of A. This gives a hierarchical, complete and ordered
decomposable parametrization, and thus the parameters are variation independent. The 4-
cycle corresponds exactly to setting λ13

13 = λ24
24 = 0, and thus the remaining parameters must

still be variation independent under this constraint.

This method of parametrization by considering disconnected sets is discussed in detail
by Lupparelli et al. (2009). It produces a variation independent parametrization for graphs
where the disconnected sets do not overlap, and may well be preferable to the ingenuous
parametrization in these cases. In sparser graphs however, it does not seem as useful; the
bidirected 5-cycle, for example, has no variation independent MLL parametrization.
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6 Equivalent Parametrizations

It turns out that a simple, invertible, linear transformation of the ingenuous parameters
yields equivalent parameters which may be easier to interpret, and perhaps preferable for
applied users of statistics. For example, it can lead to rather abstruse higher order interaction
parameters being replaced with conditional logits and log odds ratios.

Proposition 6.1. For disjoint sets L,N ⊆ V with M = L ∪N and xM ∈ XM , let

κL|N (xL |xN ) ≡
∑

L⊆A⊆M

λM
A (xA).

Then

κL|N (xL |xN ) =
1

|XL|

∑

yM∈XM

yM\L=xM\L

log p(yM )
∏

v∈L

(

|Xv|I{xv=yv} − 1
)

.

The proof of this result is in Section 8. Note that the summation used to define κ leaves
the indices in N fixed; thus we can think of κL|N (xL |xN ) as the logarithm of the |L|-way
interaction parameter for xL, under the conditional distribution where XN = xN . For |L| = 1
we obtain something equivalent to a conditional probability; for |L| = 2 we obtain a condi-
tional log-odds ratio, and |L| = 3 gives conditional log three-way interactions; for |L| ≥ 4
interpretation becomes difficult.

For example, letting V = {1, 2, 3} with binary random variables,

κ1|2(0 | 0) =
1

2
log

p1|2(0 | 0)

p1|2(1 | 0)

=
1

2
log

P (X1 = 0 | X2 = 0)

P (X1 = 1 | X2 = 0)
,

which is, up to the multiplicative constant, the logit of the event {X1 = 0}, conditional on
{X2 = 0}. Similarly,

κ12|3(0, 0 |x3) =
1

4
log

p12|3(0, 0 |x3) p12|3(1, 1 |x3)

p12|3(1, 0 |x3) p12|3(0, 1 |x3)
,

which is the log odds ratio of X1 and X2 conditional on {X3 = x3}.
These parameters are also used by Marchetti and Lupparelli (2010) (see their Lemma 2);

other more general parameters were used by Bartolucci et al. (2007).

Definition 6.2. For an ADMG G, define

K(G) ≡ {κH|T (xH |xT ) | H ∈ H, xHT ∈ XHT }.

Further, let

K̃(G) ≡ {κH|T (xH |xT ) | H ∈ H, xHT ∈ X̃H × XT }.
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It is not difficult to see that the linear transformation from λ’s to κ’s is invertible, and
that therefore the two parametrizations K̃(G) and Λ̃(Ping(G)) are completely equivalent. In
particular, because the range of each individual parameter in either parametrization is the
whole real line R, then K̃(G) is variation independent if and only if Λ̃(Ping(G)) is variation
independent.

Example 6.3. The ingenuous and κ-parametrizations for binary random variables obeying
the Markov properties of the graph in Figure 1(a) are presented in the table below.

H Ingenuous κ-parametrization

1 λ1
1 κ1(·)

2 λ2
2 κ2(·)

3 λ13
3 , λ13

13 κ3|1(· | 0), κ3|1(· | 1)

4 λ24
4 , λ24

24 κ4|2(· | 0), κ4|2(· | 1)

34 λ1234
34 , λ1234

134 , λ1234
234 , λ1234

1234

κ34|12(· | 0, 0), κ34|12(· | 1, 0),

κ34|12(· | 0, 1), κ34|12(· | 1, 1)

Note, for example, that the ingenuous parameters associated with the head 34 include the
4-way interaction parameter λ1234

1234; the meaning of this parameter may not, on its own, mean
much to an applied user of statistics who fits the model in Figure 1(a) to some data. On
the other hand, in the κ-formulation, the parameters for 34 are all conditional odds-ratios,
as discussed in the introduction. This is simply a measure of the correlation between X3 and
X4 conditional on particular values of X1 and X2, which is easier to interpret.

Remark 6.4. We have presented three parametrizations of the model associated with an
ADMG G: the generalized Möbius parametrization of Richardson (2009), the ingenuous
parametrization, and the ‘κ-parametrization’. A notable feature of all three is that parameters
may be organized according to the unique head they are associated with.

Consider again the partial ordering on heads used in the proof of Theorem 4.5: Hi ≺ Hj if
Hi ⊆ anG(Hj), and Hi 6= Hj . Now let Qk be the set of Richardson’s conditional probabilities
associated with Hk and all the heads preceding it; let Lk and Kk be defined analogously for
the ingenuous and κ-parametrizations respectively.

It is not hard to see that Qk, Lk and Kk are all equivalent for k = 1, 2, . . ., in the sense
that there are smooth bijective maps between these collections of parameters. Further, for any
xTk
∈ XTk

, the set Kk−1 ∪ {κHk|Tk
(0 |xTk

)} is equivalent to Qk−1 ∪ {pHk|Tk
(0 |xTk

)}, though
there is in general no equivalent subset of the ingenuous parameters. This is a result of the
fact that both the κ-parametrization and the generalized Möbius parameters are based on
fixed tail states, whereas each ingenuous parameter involves probabilities for all possible tail
states.

7 Parsimonious Modelling with Marginal Log-Linear Param-

eters

The number of parameters in a model associated with a sparse graph containing bidirected
edges can, in some cases, be relatively large. In a purely bidirected graph, the number of
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Figure 5: (a) A bidirected k-chain and (b) a DAG with latent variables (h1, . . . , hk−1) gener-
ating the same conditional independence structure.

parameters depends upon the number of connected sets of vertices; in the case of a chain of
bidirected edges such as that shown in Figure 5(a), this means that the number of parameters
grows quadratically with the length of the chain.

The parametrization of Richardson (2009), and its special case for purely bidirected graphs
in Drton and Richardson (2008a), does not present us with any obvious method of reducing
the parameter count whilst preserving the conditional independence structure.

In contrast, there are well established methods for sparse modelling with other classes
of graphical models. In the case of an undirected graph with binary random variables, re-
stricting to one parameter for each vertex and each edge leads to a Boltzmann Machine
(Ackley et al., 1985). Rudas et al. (2006) use marginal log-linear parameters to provide a
sparse parametrization of a DAG model, again restricting to one parameter for each vertex
and edge.

7.1 Simulated Data

Consider the DAG with latent variables shown in Figure 5(b); over the observed variables,
the only conditional independences which hold are the same as those in the bidirected chain
in Figure 5(a).

We randomly generated 1,000 distributions from this DAG model with k = 6, where each
latent variable was given three states, and each observed variable two. The probability of
each observed variable being zero, conditional on each state of its parents, was an independent
uniform random draw on (0, 1); latent states were fixed to occur with equal probability. For
each distribution, a sample size of 10,000 was drawn, and the bidirected chain model was fitted
to it by maximum likelihood estimation. For each of the 1,000 data sets, we then measured
the increase in deviance associated with removing the higher level parameters

The histogram in Figure 6(a) demonstrates that the deviance increase from setting the 5-
and 6-way interaction parameters to zero (a total of three parameters) was not distinguishable
from that which would be observed if these parameters contributed nothing to the model. The
deviance increase from setting the 4-, 5- and 6-way interactions to zero appeared to have a
slightly heavier tail than the associated χ2-distribution, as suggested by the outliers in Figure
6(b). Removing the 3-way interactions in addition to this caused a dramatic increase in the
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Figure 6: Histograms showing the increase in deviance caused by setting to zero (a) the 5-
and 6-way interaction parameters; (b) the 4-, 5- and 6-way interaction parameters; (c) the
3-, 4-, 5- and 6-way interaction parameters. The datasets were generated from the DAG in
Figure 5(b). The plotted densities are χ2 with 3, 6 and 10 degrees of freedom respectively.

deviance, as may be observed from the heavy tail of the histogram in Figure 6(c).
Note that under the process which generated these models, each of these parameters was

non-zero almost surely. As the sample size increases the power of a likelihood ratio test
for a fixed distribution tends to one, so it must be the case that a simulation such as the
above would, for large enough data sets, show significant deviation from the associated χ2

distributions. However, even at a fairly large sample sizes of 10,000, a limited effect was
observed in Figures 6(a) and (b), and the following example with real data suggests that
higher order interactions are not particularly useful in practice.

7.2 Example: Trust Data

Drton and Richardson (2008a) examine responses to seven questions relating to trust and
social institutions, taken from the US General Social Survey between 1975 and 1994. Briefly,
the seven questions were:

Trust. Can most people be trusted?

Helpful. Do you think most people are usually helpful?

MemUn, MemCh. Are you a member of a labour union / church?

ConLegis, ConClerg, ConBus. Do you have confidence in congress / organized religion /
business?

In that paper, the model given by the graph in Figure 7 is shown to adequately explain the
data, having a deviance of 32.67 on 26 degrees of freedom, when compared with the saturated
model. The authors also provide an undirected graphical model which has one more edge
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Figure 7: Markov model for trust data given in Drton and Richardson (2008a).

than the graph in Figure 7, and yet has 62 fewer parameters. It too gives a good fit to the
data, having a deviance of 87.62 on 88 degrees of freedom.

For practical and theoretical reasons, the bidirected model may be preferred to the undi-
rected one, even though the latter appears to be much more parsimonious. One may consider
the responses to a questionnaire to be jointly affected by unmeasured characteristics of the
respondent, such as their political beliefs. Such a system would give rise to an observed in-
dependence structure which can be represented by a bidirected graph, but not necessarily by
an undirected one.

The greater parsimony of the undirected model (when defined purely by conditional indep-
endences) is due to its hierarchical nature: if we remove an edge between two vertices a and
b, then this corresponds to requiring that λV

A = 0 for every effect A containing both a and
b. Removing that edge in a bidirected model may correspond merely to setting λab

ab = 0 and
nothing else, depending upon the other edges present. Using the ingenuous parametrization,
it is easy to constrain higher order terms to be zero.

Starting with the model in Figure 7 and fixing the 4-, 5-, 6- and 7-way interaction terms to
be zero increases the deviance to 84.18 on 81 degrees of freedom; none of the 4-way interaction
parameters was found to be significant on its own. Furthermore, removing 21 of the remaining
25 three-way interaction terms increases the deviance to 111.48 on 102 degrees of freedom;
using an aymptotic χ2 approximation gives a p-value of 0.755, so this model is not contradicted
by the data. The only parameters retained are the one-dimensional marginal probabilities,
the two-way interactions corresponding to edges, and the following three-way interactions

MemUn,ConClerg,ConBus Helpful,MemUn,MemCh

Trust,ConLegis,ConBus MemCh,ConClerg,ConBus.

This model retains the marginal independence structure of Drton and Richardson’s model,
but provides a good fit with only 25 parameters, rather than the original 101.
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8 Proofs

Proof of Proposition 6.1. Recalling that M = L ∪N ,

κL|N (xL |xN )

=
∑

L⊆A⊆M

1

|XM |

∑

yM∈XM

log pM (yM )
∏

v∈A

(

|Xv|I{xv=yv} − 1
)

=
1

|XM |

∑

yM∈XM

log pM (yM )
∑

L⊆A⊆M

∏

v∈A

(

|Xv|I{xv=yv} − 1
)

=
1

|XM |

∑

yM∈XM

log pM (yM )
∑

L⊆A⊆M

∏

v∈L

(

|Xv|I{xv=yv} − 1
)

∏

v∈A\L

(

|Xv |I{xv=yv} − 1
)

=
1

|XM |

∑

yM∈XM

log pM (yM )
∏

v∈L

(

|Xv |I{xv=yv} − 1
)

∑

B⊆N

∏

v∈B

(

|Xv|I{xv=yv} − 1
)

.

Now, consider the value of the inner sum, for a fixed yM . In the case that there is some w ∈ N
with xw 6= yw, then

∑

B⊆N

∏

v∈B

(

|Xv|I{xv=yv} − 1
)

=
∑

B⊆N\{w}





∏

v∈B

(

|Xv |I{xv=yv} − 1
)

+
∏

v∈B∪{w}

(

|Xv|I{xv=yv} − 1
)





=
∑

B⊆N\{w}

[

∏

v∈B

(

|Xv|I{xv=yv} − 1
)

−
∏

v∈B

(

|Xv|I{xv=yv} − 1
)

]

= 0.

Alternatively, if xN = yN , then

∑

B⊆N

∏

v∈B

(

|Xv|I{xv=yv} − 1
)

=
∑

B⊆N

∏

v∈B

(|Xv | − 1)

= |XN |,

which is independent of yM . Thus

κL|N (xL |xN ) =
1

|XL|

∑

yL∈XL

log pM (yL, xN )
∏

v∈L

(

|Xv|I{xv=yv} − 1
)

,

since XM = XL × XN .

Proof of Lemma 2.9. Using the independence, we have

pABC(xABC) = pAC(xAC) · pB|C(xB |xC).

Thus

λABC
AD (xAD) =

1

|XABC |

∑

yABC∈XABC

(log pAC(yAC) + log pB|C(yB | yC))
∏

v∈A∪D

(

|Xv|I{xv=yv} − 1
)

.
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We can split this sum into terms involving pAC(yAC) and those involving pB|C(yB | yC). For
the first of these,

1

|XABC |

∑

yABC∈XABC

log pAC(yAC)
∏

v∈A∪D

(

|Xv|I{xv=yv} − 1
)

=
1

|XAC |

∑

yAC∈XAC

log pAC(yAC)
∏

v∈A∪D

(

|Xv |I{xv=yv} − 1
)

= λAC
AD(xAC),

because the summand has no dependence on yB. For the latter,

1

|XABC |

∑

yABC∈XABC

log pB|C(yB | yC)
∏

v∈A∪D

(

|Xv|I{xv=yv} − 1
)

=
1

|XABC |

∑

yBC∈XBC

log pB|C(yB | yC)
∑

yA∈XA

∏

v∈A∪D

(

|Xv |I{xv=yv} − 1
)

= 0,

because the inner sum is zero. This gives the result.

Proof of Lemma 4.4. First we show that we can construct all the local log |L|-way interaction
parameters.

Let N ≡M \ L, and pick some xL ∈ X̃L and xN ∈ XN ; for A ⊆ {1, . . . , |M |}, let 1A be a
vector of length |L| with a 1 in position j if j ∈ A, and 0 otherwise. Then consider

∑

A⊆L

(−1)|L\A|κL|N (xL + 1A |xN )

=
1

|XL|

∑

yL∈XL

log pM (yL, xN )
∑

A⊆L

(−1)|L\A|
∏

v∈L

(

|Xv|I{xv+I{v∈A}=yv} − 1
)

.

We collect terms containing log pM (yM ) for some yM . If for some w ∈ L, yw /∈ {xw, xw + 1},
then the inner sum

∑

A⊆L

(−1)|L\A|
∏

v∈L

(

|Xv|I{xv+I{v∈A}=yv} − 1
)

=
∑

A⊆L\{w}

(−1)|L\A|

[

∏

v∈L

(

|Xv|I{xv+I{v∈A}=yv} − 1
)

−
∏

v∈L

(

|Xv|I{xv+I{v∈A∪{w}}=yv} − 1
)

]

= 0,

because the value of the outer indicator function is 0 in both terms when v = w. Alternatively,
if yw ∈ {xw, xw + 1} for all w ∈ L, then the identity

B(A) = {v ∈ L |xv + I{v∈A} = yv}
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defines a one-to-one map from P(L) to itself. Hence we can rewrite:

∑

A⊆L

(−1)|L\A|
∏

v∈L

(

|Xv |I{xv+I{v∈A}=yv} − 1
)

= (−1)‖xL−yL‖
∑

B⊆L

(−1)|L\B|
∏

v∈L

(

|Xv|I{v∈B} − 1
)

= (−1)‖xL−yL‖
∏

v∈L

|Xv|

= (−1)‖xL−yL‖|XL|,

where ‖xL − yL‖ is just the number of entries in which xL and yL differ. Then
∑

A⊆L

(−1)|L\A|κL|N (xL + 1A |xN ) =
∑

yM∈XM
yN=xN

yw∈{xw,xw+1}

(−1)‖xL−yL‖ log pM(yM )

=
∑

yM∈XM

yN=xN

yw∈{xw,xw+1}

(−1)‖xL−yL‖
[

log pL|N(yL | yN ) + log pN (yN )
]

=
∑

yL∈XL

yw∈{xw,xw+1}

(−1)‖xL−yL‖ log pL|N(yL |xN )

which is the (conditional) local log |L|-way interaction. The collection of all the (conditional)
local log |L|-way interactions together with the (conditional) (|L| − 1)-dimensional marginal
distributions smoothly parametrizes the |L|-way table (Csiszár, 1975).

Lemma 8.1. Let G be an ADMG containing at least one head of size 3 or more. Then G
also contains two heads of the form {v1, v2} and {v2, v3}, where {v1, v2, v3} is barren.

Proof. Suppose not; let G be an ADMG which violates this condition, and let H be a head
in G of size k ≥ 3. Pick 3 vertices {w1, w2, w3} in H. By the definition of a head, we
can pick a bidirected path ρ through anG(H), connecting w1, w2 and w3. Assume that ρ
contains no other verices of H, otherwise we can shorten the path until it contains precisely
3 elements, and redefine w1, w2, w3 appropriately. We also assume that ρ is of the form
w1 ↔ · · · ↔ w2 ↔ · · · ↔ w3, else we can relabel the vertices so that w2 is ‘in the middle’.

According to our assumption that the theorem is false, at least one of {w1, w2} or {w2, w3}
is not a head; assume the former without loss of generality, and let π be the restriction of ρ
from w1 to w2. This implies that the bidirected path π from w1 to w2 must pass through at
least one vertex v which is not an ancestor of {w1, w2}. If there is more than one such vertex,
then choose one which has no distinct descendants on the path π. By the construction of π
we have v ∈ anG(H) \H.

Then letting W be the set of vertices in π, let H∗ = barrenG(W ). SinceW is↔-connected,
H∗ must be a head, and {w1, w2, v} ⊆ H∗. Thus we have created a head distinct from H, of
size at least 3, which is contained in the set of ancestors of H.

The assumption we have made implies that we must be able to repeat this process indefi-
nitely, with each head being contained in the ancestors of the previous head. To see that we
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never obtain the same head twice, note that there is a non-empty directed path from v ∈ H∗

to H; but H is contained within the ancestors of any previous heads in the sequence, so if H∗

had appeared before, this would imply that H∗ was not barren.
Then since H has a finite set of ancestors, the apparently infinite recursion of distinct

heads is a contradiction.

Proof of Theorem 5.5. (⇐). Suppose that G contains no heads of size ≥ 3, and let 1, . . . , n
be a topological ordering on the vertices of G. We will construct a complete, hierarchical and
variation independent parametrization, and then show it to be equivalent to the ingenuous
parametrization.

Let Mi ⊆M be the margins which involve only the vertices in [i] = {1, . . . i}. Assume for
induction, that Mi−1 includes the set [i − 1], is hierarchical and complete up to this point,
and that it satisfies the ordered decomposability criterion. The base case for i = 1 is trivial.

Now, let the heads involving i contained within [i] be H0 = {i},H1 = {j1, i}, . . . ,Hk =
{jk, i}, where j1 < . . . < jk < i. Call the associated tails T0, . . . , Tk. We have

barrenG (disG i) = {jk, i},

since barrenG (disG i) is a head, and cannot have size ≥ 3. This also implies that Hk∪Tk\{i} =
mb(i, [i]), where mb(v,A) is the Markov blanket of v in the ancestral set A (see Richardson,
2003, for the definition).

Now, since the ordering is topological, Ak ≡ [i] is an ancestral set, and the ordered local
Markov property shows that

i ⊥⊥ Ak \ (mb(i, Ak) ∪ {i}) | mb(i, Ak),

so

i ⊥⊥ Ak \ (Hk ∪ Tk) | Hk ∪ Tk \ {i}.

Then

λAk

C = λTk

C for any Hk ⊆ C ⊆ Hk ∪ Tk

λAk

C = 0 for any {i} ⊂ C * Hk ∪ Tk,

where first equality follows from the independence and Lemma 2.9, and the second from the
above independence and Lemma 2.7.

Note that these conditions include every set C which contains both i and any descendant
of jk, since no descendant of jk is in Hk ∪ Tk. Thus we have created parameters for every
subset of Ak which contains some descendant of jk, and shown that the non-zero parameters
are equivalent to the ingenuous parameters.

Now set Ak−1 = Ak \ deG(jk). Then Ak−1 is ancestral and contains i, so applying the
ordered local Markov property again gives

λ
Ak−1

C = λ
Tk−1

C for any Hk−1 ⊆ C ⊆ Hk−1 ∪ Tk−1

λ
Ak−1

C = 0 for any {i} ⊂ C * Hk−1 ∪ Tk−1.
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Continuing this approach gives a parameter for every subset of [i] containing some descendant
of any of j1, . . . , jk. Lastly let A0 = A1 \ deG(j1).

λA0

C = λT0

C for any {i} ⊆ C ⊆ {i} ∪ T0

λA0

C = 0 for any {i} ⊂ C * {i} ∪ T0.

The margins we have added are A0 ⊂ . . . ⊂ Ak, and since they all contain {i}, they
are not a subset of any existing margin. Further, each set C we associate with Al contains
a vertex which is not in Al−1. Thus our new parametrization is complete and hierarchical.
Setting Mi = Mi−1 ∪ {A0, . . . , Ak}, then the new maximal subsets created are all of the form
[i− 1] ∪Al; thus Mi is clearly also ordered decomposable.

(⇒). Our construction will assume the random variables are binary; the general case
is a trivial but tedious extension. Suppose that G has a head of size ≥ 3, and assume for
contradiction that its ingenuous parametrization is variation independent. Then by Lemma
8.1, there exist two heads H1 = {v1, v2} and H2 = {v2, v3} such that {v1, v2, v3} is barren.
Let H3 ≡ {v3, v1} noting that this set may or may not be a head.

Also let Ti = tailG(Hi), where if H3 is not a head, this set is taken to be the tail of H3 if
there were a bidirected arrow between v1 and v3. Further let A = anG(H).

Now choose λBi

Ci
= 0, where Bi = {vi} ∪ tailG(vi) and {vi} ⊆ Ci ⊆ Bi; this sets each vi to

be uniform on {0, 1} for any instantiation of its tail.
Similarly, by choosing λH1∪T1

C1
(0) to be large and positive for each H1 ⊆ C1 ⊆ H1 ∪ T1,

we can force v1 and v2 to be arbitrarily highly correlated conditional on T1, and therefore
conditional on A. We can do the same for v2 and v3:

v1
0 1

v2
0 1

2 − ǫ ǫ
1 ǫ 1

2 − ǫ

v2
0 1

v3
0 1

2 − ǫ ǫ
1 ǫ 1

2 − ǫ

,

where these tables are understood to show the two-way marginal distributions conditional
on any instantiation xA of A.

But now either λH3∪T3

C3
= 0 by design (because H3 is not a head, and v1 and v3 are

independent conditional on their ‘tail’), or we can choose this to be the case by the assumption
of variation independence. This implies that v1 and v3 are independent conditional on A. Thus

1

4
= P (v1 = 1, v3 = 0 |A = xA)

= P (v1 = 1, v2 = 0, v3 = 0 |A = xA) + P (v1 = 1, v2 = 1, v3 = 0 |A = xA)

< P (v1 = 1, v2 = 0 |A = xA) + P (v2 = 1, v3 = 0 |A = xA)

= 2ǫ,

which is a contradiction if ǫ < 1
8 . Thus the parameters are variation dependent.
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