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Abstract

It is now practically the norm for data to be very high dimensional in areas such as genetics, machine
vision, image analysis and many others. When analyzing such data, parametric models are often too
inflexible while nonparametric procedures tend to be non-robust because of insufficient data on these
high dimensional spaces. It is often the case with high-dimensional data that most of the variability
tends to be along a few directions, or more generally along a much smaller dimensional submanifold of
the data space. In this article, we propose a class of models that flexibly learn about this submanifold
and its dimension which simultaneously performs dimension reduction. As a result, density estimation is
carried out efficiently. When performing classification with a large predictor space, our approach allows
the category probabilities to vary nonparametrically with a few features expressed as linear combinations
of the predictors. As opposed to many black-box methods for dimensionality reduction, the proposed
model is appealing in having clearly interpretable and identifiable parameters. Gibbs sampling methods
are developed for posterior computation, and the methods are illustrated in simulated and real data
applications.

keywords: Dimension reduction; Classifier; Variable selection; Nonparametric Bayes

1 Introduction

Data that are generated from experiments or studies carried out in areas such as genetics, machine vision,

and image analysis (to name a few) are routinely high dimensional. Because such data sets have become

so commonplace, designing data efficient inference techniques that scale to massive dimensional Euclidean

and even non-Euclidean spaces has attracted considerable attention in the statistical and machine learning

literature.

When dealing with high dimensional data, it is typically the case that parametric models are too rigid

to explain all the variability present in the data. Conversely, flexible nonparametric approaches suffer from
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the well known curse of dimensionality. With this in mind, a common approach is to make procedures more

scalable to high dimensions by learning a lower dimensional subspace the data are concentrated near. This

approach is supported by the success of mixture models with a few components in fitting high-dimensional

data. In particular, consider a mixture of N Gaussian kernels,
∑N
j=1 πjNm(·;µj , σ2Im), µj ∈ <m. The

k = N − 1 largest eigenvalues corresponding to the covariance matrix for this type of density will typically

be very large, while the remaining m− k eigenvalues will all be equal and relatively much smaller. We may

visualize such data lying close to some affine k dimensional subspace of <m containing the mean and the k

corresponding eigen-vectors as its directions. If we knew that subspace, we could model the data projected

onto that subspace with a nonparametric density model, while using some simple parametric distribution on

the orthogonal residual vector. Robustness would be attained by fitting a flexible model on only a selected

few coordinates.

There is a large literature on the estimation of Euclidean subspaces, affine subspaces, and manifold

subsets. Many procedures are algorithmic based. Elhamifar and Vidal [11] propose an algorithmic based

method of clustering data that lie close to multiple affine subspaces. See the references there in for a nice

overview of algorithmic type approaches. Because such methods are deterministic, no measures of uncertainty

are available. A probabilistic modeling approach is proposed by Chen et al. [7]. They employ a fully Bayesian

model for density estimation of high dimensional data that reside close to a lower dimensional subregion

(possibly a manifold) of unknown dimension. This subregion is approximated using a nonparametric Bayes

mixture of factor analyzers in which Dirichlet and beta processes are employed to simultaneously allow

uncertainty in the number of mixture components, the number of factors in each component and the locations

of zeros in the loadings matrix. Although their methodology is flexible, it is very much a complex and over-

parametrized “black box” leading to challenging computation.

We propose a fully Bayesian procedure that very flexibly and uniquely identifies a lower dimensional

affine subspace in a coherent modeling framework. After having identified the subspace and its dimension

we model the coordinates of the orthogonal projection of the data onto that subspace using an infinite mixture

of Gaussians while independently using a zero mean Gaussian to model the data component orthogonal to

that subspace. Among all possible coordinate choices, we prefer isometric coordinates (those which preserve

the geometry of the space). To obtain such coordinates, an orthogonal basis for the subspace must be

employed which will require working on the Stiefel manifold (the space of all such basis matrices). In

addition to interpretability and identifiability, advantages to using an orthogonal basis include equivalence

of matrix inversion and transpose and faster MCMC convergence. We do not limit the cluster contours to be
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homogeneous, but use a singular value decomposition type sparse representation for the kernel covariance.

By doing so, we avert the problem of dealing with massive matrices and yet make the model highly flexible.

An appealing feature to our methodology is that it is not a “black box”, rather nice interpretations

accompany model parameters. For example, when estimating the affine subspace, which is proved to be

unique, concern lies in estimating the orthogonal projection matrix associated with that space, and its

orthogonal shift from the origin. Indeed, under our setting, the subspace turns out to be the k-principal

subspace for the distribution, k being the subspace dimension. In this regard, the methodology developed here

provides a coherent extension of the Principal Component Analysis (PCA) of Hoff [17] to a nonparametric

setting. The estimation of the projection matrix and orthogonal shift are carried out explicitly under

appropriate loss functions.

We also consider building efficient classifiers that entertain a high dimensional feature space. The idea

is to seek the minimal subspace of the feature space such that the response depends on the predictors only

through their projection onto that subspace. There has been recent developments in the machine learning

and statistical communities with regards to building classifiers in the presence of a high dimensional feature

space. Sun et al. [28] propose a classifier that essentially breaks a complex nonlinear problem into a set of

local linear problems that scales nicely to a very high dimensional space. They also provide a nice review

of algorithmic based procedures to building classifiers most of which are black boxes and estimation of a

principal subspace is not entertained. Recently, Cucala et al. [10] proposed a probabilistic perspective to the

k-nearest neighbor classifiers. However, apart from not scaling well to a high dimensional feature space, the

minimal subspace of the feature space is not estimated. Estimating a minimal subspace of a high dimensional

feature space has been addressed in a regression setting. Tokdar et al. [29] model the conditional distribution

of a response given the minimal subspace directly with a Gaussian process. Recently, Reich et al. [23] propose

a method of sufficient dimension reduction by modeling a conditional distribution directly after placing a

prior distribution on the minimal subspace (which they call a central subspace). See references there in

for frequentist approaches to estimating this subspace. Hannah et al. [13] use Dirichlet process mixtures

to flexibly model the relationship between a set of features and a response in a generalized linear model

framework. Shahbaba and Neal [27] focus on Dirichlet process mixture models in a nonlinear modeling

framework.

We focus on modeling the joint so that given the subspace, the response and the projection of the features

onto that subspace follow a nonparametric infinite mixture model while the feature component orthogonal

to the subspace follows a parametric model independent of the response and the projection. Dependence
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between the response and features is induced through the mixture distribution.

The remainder of this article is organized as follows. Section 2 provides some preliminaries, Section

3 details the class of models to be used for density estimation along with theoretical results dealing with

large prior support and strong posterior consistency. In Section 4 we investigate the identifiability of model

parameters and give details of their estimation. Section 5 details computational strategies while Section 6

outlines a small simulation study and examples. In Section 7 we develop an efficient classifier and provide

some examples and a small simulation study in addition to briefly introducing ideas with regards to regression.

We finish with some concluding remarks in Section 8.

2 Preliminaries

A k-dimensional affine subspace of <m (which is a k-dimensional Euclidean manifold) can be expressed as

S = {Ry + θ : y ∈ <m}

with R being a m × m rank k projection matrix (it satisfies R = R′ = R2, rank(R) = k) and θ ∈ <m

satisfying Rθ = 0. Notice that there is a one to one correspondence between the subspace S and the pair

(R, θ) with θ being the projection of the origin into S and R the projection matrix of the shifted linear

subspace

L = S − θ = {Ry : y ∈ <m}.

The projection of any x ∈ <m into S is defined as the x0 ∈ S satisfying ‖x − x0‖ = min{‖x − y‖ : y ∈ S}

where ‖ · ‖ denotes the Euclidean norm. For any affine subspace S as defined above, the solution turns out

to be x0 = Rx+ θ. Similarly, the projection of x ∈ <m into L is x∗0 = Rx, hence the name projection matrix

for R. We denote the projection of x ∈ <m into S as PrS(x).

Each x ∈ <m can be given coordinates x̃ ∈ <k such that x = Ux̃+ θ where U is a matrix whose columns

{U1, . . . , Uk} form a basis of the column space of R. If U is chosen to be orthonormal (i.e., U ′U = Ik and

R = UU ′), then the coordinates (x̃) are isometric. That is, they preserve the inner product on S (and hence

volume and distances). With such a basis, the projection PrS(x) of an arbitrary x ∈ <m into S has isometric

coordinates U ′x. Thus, U gives k mutually perpendicular ‘directions’ to S while θ may be viewed as the

‘origin’ of S. We will call θ the origin and U an orientation for S.

The residual of x ∈ <m (which we denote as RS(x) = x−PrS(x) = x−Rx− θ) lies on a linear subspace
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that is perpendicular to L. That is, RS(x) ∈ S⊥ where

S⊥ = {(I −R)y : y ∈ <m}.

Notice that the projection matrix of S⊥ is I − R. Now if we let V denote an orthonormal basis for the

column space of I − R (i.e., V ′V = Im−k, V V ′ = I − R), then isometric residual coordinates are given by

V ′x ∈ <m−k.

For a sample lying close to such a subspace S, it is natural to assume that the data residuals are centered

around 0 with low variability while the data projected into S comes from a possibly multi-modal distribution

supported on S. Figure 1 illustrates such a sample cloud. The observations are drawn from a two-component

mixture of bivariate normals with cluster centers (1, 0) and (0, 1) and band-width of 0.5. As a result they

are clustered around the subspace (line) x+ y = 1. For a specific sample point x, PrS(x), RS(x), and θ are

highlighted.
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Figure 1: Graphical representation of the affine subspace (S), the orthogonal shift (θ), and the projection of
a point into S (these are the solid dots with particular emphasis given to Rx+ θ).
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If we let Q to be a distribution on <m with finite second order moments, then for d ≤ m the d principal

affine subspace of Q is the minimizer of following risk function

R(S) =

∫
<m
‖x− PrS(x)‖2Q(dx), (2.1)

with the minimization carried out over all d-dimensional affine subspaces S. The minimum value of expression

2.1 turns out to be
∑m
d+1 λj , where λ1 ≥ . . . ≥ λm are the ordered eigenvalues of the covariance of Q.

In addition, a unique minimizer exists if and only if λd > λd+1. If this is indeed the case, then the d

principal affine subspace (So) has projection matrix R = UU ′ (here U is any orthonormal basis for the

subspace spanned by a set of d independent eigenvectors corresponding to the first d eigenvalues) and origin

θ = (I −R)µ (with µ being the mean of Q). Notice that when d = 0, So is the point set µ.

In the case that d is unknown, we can find an optimal value of d by considering

R(d, S) = f(d) +

∫
<m
‖x− PrS(x)‖2Q(dx), 0 ≤ d ≤ m (2.2)

as a risk function for some fixed increasing convex function f . For f linear, say, f(d) = ad, a > 0, the risk

has a unique minimizer if and only if λd+1 < a < λd for some d, with λ0 = ∞ and λm+1 = 0. Then the

minimizing dimension do is that value of d while the optimal space So is the do principal affine subspace.

We will call do the principal dimension of Q. For the observations in Figure 1, the principal dimension is

do = 1 with principal subspace

So =


 1/2 −1/2

−1/2 1/2

x+

 1/2

1/2

 : x ∈ <2

 .

Before detailing general modeling strategies, we introduce notation that will be used through out. By

M(S) we denote the space of all probabilities on the space S. M(m, k) will denote real matrices of order m×k

(with M(m) denoting the special case of m = k), M+(m) will denote the space of all m×m positive definite

matrices. For U ∈M(m, k), C(U) and N (U) will represent the column and null space of U respectively. We

will represent the space of all m×m rank k projection matrices by Pk,m. That is,

Pk,m = {R ∈M(m) : R = R′ = R2, rank(R) = k}.

One important manifold referred to in this paper is the Steifel manifold (denoted by Vk,m) which is the
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space whose points are k-frames in <m (here k-frame refers to a set of k orthonormal vectors in <m). That

is,

Vk,m = {A ∈M(m, k) : A′A = Ik}.

We denote the orthogonal group {A ∈ <m : A′A = Im} by O(m) which is Vm,m. The space Vk,m is a

compact non-Euclidean Riemannian manifold. Because M(m, k) is embedded in Euclidean space, it inherits

the Riemannian metric tensor which can be used to define the volume form, which in turn can be used as the

base measure to construct a parametric family of densities. Several parametric densities have been studied

on this space, and exact or MCMC sampling procedures exist. For details, see Chikuse [9]. One important

density which we will be using as a prior is the Bingham-von Mises-Fisher density which has the expression

BMF (x;A,B,C) ∝ etr(A′x+ Cx′Bx).

The parameters are A ∈ M(k,m), B ∈ M(k) symmetric and C ∈ M(m), while etr denotes exponential

trace. As a special case, we obtain the uniform distribution which has the constant density 1/Vol(Vk,m).

3 Density model

Consider a random variable X in <m. Let there be a k dimensional affine subspace S, 0 ≤ k ≤ m, with

projection matrix R and origin θ such that the projection of X into this subspace follows a location mixture

density on the subspace (with respect to its volume form) given by

Y = PrS(X) ∼
∫
S

(2π)−k/2|U ′AU |1/2 exp{−1

2
(y − w)′A(y − w)}Q(dw)

where y ∈ S is the projection of x with parameters Q ∈ M(S), U ∈ Vk,m, and A a m ×m positive semi-

definite (p.s.d.) matrix such that U ′AU ∈ M+(k). When k = 0, S denotes the point set {θ} and Y = θ.

Note that the density expression depends on U only through UU ′. A general choice for A besides being

positive definite (p.d.) could be A = U0Σ−1
0 U ′0 for some specific orientation U0 and p.d. Σ0 ∈ M+(k). As

a result, the isometric coordinates U ′0X of PrS(X) follow a non-parametric Gaussian mixture model on <k

given by

U ′0X ∼
∫
<k
Nk(·;µ,Σ0)P (dµ), P ∈M(<k). (3.1)
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Here µ = U ′0w for w ∈ S. Independently, let the residual RS(X) follow a mean zero homogeneous density

on S⊥ given by

RS(X) ∼ σ−(m−k) exp{−‖x‖
2

2σ2
},

x ∈ S⊥ and parameter σ > 0. If k = m, then S⊥ = {0} and RS(X) = 0. As a result, with any orientation

V ∈ Vm−k,m for S⊥, the isometric coordinates V ′X of RS(X) follow the Gaussian density

V ′X ∼ Nm−k(;V ′θ, σ2Im−k). (3.2)

Combine equations (3.1) and (3.2) to get the full density of X as

X ∼ f(x; Θ) =

∫
<k
Nm(x;φ(µ),Σ)P (dµ), (3.3)

φ(µ) = U0µ+ θ, Σ = U0(Σ0 − σ2Ik)U ′0 + σ2Im, (3.4)

with parameters Θ = (k, U0, θ,Σ0, σ, P ). Here U0 ∈ Vk,m and θ ∈ <m satisfies U ′0θ = 0. The affine subspace

S has projection matrix R = U0U
′
0 and origin θ. For k = 0, f(x; Θ) = Nm(x; θ, σ2Im). Using a flexible

multimodal density model for a few data coordinates (which are chosen using a suitable basis) and an

independent centered Gaussian structure on the remaining coordinates allows efficient density estimation on

very high dimensional spaces.

A common choice of nonparametric prior on P can be a full support discrete model, such as a Dirichlet

process, which allows clustering of the data around S. An alternative way to identify the intercept θ would

be to set it equal to E(X). However, this would require the prior on P to be such that µ̄ ≡
∫
µP (dµ) = 0

making the Dirichlet process prior inappropriate. For this reason, we set θ to be the origin of S instead.

With Σ0 p.d. and σ2 > 0, the within cluster covariance Σ lies in M+(m) and has a sparse representation

without being homogeneous. The residual variance σ2 dictates how “close” X lies to S, with σ2 = 0 implying

that X ∈ S. In (3.3), one may mix across Σ0 by replacing P (dµ) by P (dµ dΣ0) and achieve more generality.

To make model (3.3) even more sparse, without loss of generality, we can allow Σ0 to be a p.d. diagonal

matrix. To prove that we do not lose any generality, consider a singular value decomposition (s.v.d.) of

a general Σ0, say Σ0 = ODO′, O ∈ O(k), and replace Σ0 by diagonal D, and U0 by U0O
′. If P is

appropriately transformed, then the model is unaffected. With a diagonal Σ0, the within cluster covariance

has k eigenvalues from Σ0 and the rest all equal to σ2. The columns of U0 are the orthonormal eigenvectors

corresponding to Σ0.
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It is easy to check that S is the k-principal subspace for the model, if and only if Σ0 +
∫
<k(µ − µ̄)(µ −

µ̄)′P (dµ) > σ2Ik. Here A1 > A2 refers to A−B being p.d. This holds, for example, when Σ0 ≥ σ2Ik and P

is non-degenerate. Further under the model, k is the principal dimension of X for a range of risk functions

as in (2.2) with linear f .

3.1 Weak Posterior Consistency

Consider a mixture density model f as in (3.3). Let D(<m) denote the space of all densities on <m. Let Πf

denote the prior induced on D(<m) through the model and suitable priors on the parameters. Theorem 3.1

shows that Πf satisfies the Kullback-Leibler (KL) condition at the true density ft on <m. That is, for any

ε > 0, Πf (Kε(ft)) > 0, where Kε(ft) = {f : KL(ft; f) < ε} denotes a ε-sized KL neighborhood of ft and

KL(ft; f) =
∫

log ft
f ftdx is the KL divergence. As a result, using the Schwartz theorem [25], weak posterior

consistency follows. That is, given a random sample Xn = X1, . . . , Xn i.i.d. ft, the posterior probability of

any weak open neighborhood of ft converges to 1 a.s. ft.

Let p(k) denote the prior distribution of k. We consider discrete priors that are supported on the set

{0, . . . ,m}. Let π1(U0, θ|k) denote some joint prior distribution of U0 and θ that has support on {(U0, θ) ∈

Vk,m × <m : U ′0θ = 0}. As previously recommended, we consider a diagonal Σ0 = diag(σ2
1 , . . . , σ

2
k) and set

a joint prior on the vector σ = (σ, σ1, . . . , σk) ∈ (<+)k+1 that we denote with π2(σ|k). Further, we assume

that parameters (U0, θ), σ, and P are jointly independent given k. That said, Theorem 3.1 can be easily

adapted to other prior choices. We also consider the following reasonable conditions on the true density ft.

A1: 0 < ft(x) < A for some constant A for all x ∈ <m.

A2: |
∫

log{ft(x)}ft(x)dx| <∞.

A3: For some δ > 0,
∫

log ft(x)
fδ(x)ft(x)dx <∞, where fδ(x) = infy:‖y−x‖<δ ft(y).

A4: For some α > 0,
∫
‖x‖2(1+α)mft(x)dx <∞.

Theorem 3.1. Set the prior distributions for k, (U0, θ), σ, and P to those described previously such that

p(m) > 0, π2(<+ × (0, ε)m|k = m) > 0 for any ε > 0, and the conditional prior on P given k = m contains

Pft in its weak support. Then under assumptions A1-A4 on ft, the KL condition is satisfied by Πf at ft.

Proof. The result follows if it can be proved that Πf (Kε(ft)|k = m,U0) > 0 for all ε > 0 and U0 ∈ O(m),
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because then

Πf (Kε(ft)) ≥ p(m)

∫
O(m)

Πf (Kε(ft)|k = m,U0)dπ1(U0|k = m) > 0

Now, given k = m and U0, density (3.3) can be expressed as

f(x;Q,Σ) =

∫
<m

Nm(x; ν,Σ)Q(dν), (3.5)

with Q = P ◦ φ−1. Here φ(x) = U0x, and Σ = U0Σ0U
′
0. The isomorphism φ : <m → <m being continuous

and surjective ensures the same for the mapping P 7→ Q. This in turn ensures that under the Theorem

assumptions on the prior, the prior on P and σ induces a prior on Q that contains Pft in its weak support and

an independent prior on Σ which induces a prior on its maximum eigen-value that contains 0 in its support.

Then with a slight modification to the proof of Theorem 2 in Wu and Ghosal [32], under assumptions A1-A4

on ft, we can show that ft is in the KL support of Πf .

3.2 Strong Posterior Consistency

Using the density model (3.3) for ft, Theorem 3.5 establishes strong posterior consistency, that is, the

posterior probability of any total variation (or L1 or strong) neighborhood of ft converges to 1 almost surely

or in probability, as the sample size tends to infinity. The priors on the parameters are chosen as in Section

3.1. To be more specific, the conditional prior on P given k (k ≥ 1) is chosen to be a Dirichlet process

DP (wkPk) (wk > 0, Pk ∈ M(<k)). The proof requires the following three Lemmas. The proof of Lemma

(3.2) can be found in [1], while the proofs of Lemmas (3.3) and (3.4) are provided in the appendix.

In what follows Br,m refers to the set {x ∈ <m : ‖x‖ ≤ r}. For a subset D of densities and ε > 0, the

L1-metric entropy N(ε,D) is defined as the logarithm of the minimum number of ε-sized (or smaller) L1

subsets needed to cover D.

Lemma 3.2. Suppose that ft is in the KL support of the prior Πf on the density space D(<m). For every

ε > 0, if we can partition D(<m) as Dεn ∪ Dεcn such that N(ε,Dεn)/n −→ 0 and Pr(Dεc
n |Xn) −→ 0 a.s.

or in probability Pft , then the posterior probability of any L1 neighborhood of ft converges to 1 a.s. or in

probability Pft .

Lemma 3.3. For positive sequences hn → 0 and rn →∞ and ε > 0, define a sequence of subsets of D(<m)
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as

Dεn = {f(·; Θ) : Θ ∈ Hε
n}, Hε

n = {Θ: min(σ) ≥ hn, ‖θ‖ ≤ rn, P (Bcrn,k) < ε}

with f(·; Θ) as in (3.3). Set a prior on the density parameters as in Section 3.1. Assume that supp(π2(·|k)) ⊆

[0, A]k+1 for some A > 0 for all 0 ≤ k ≤ m. Then N(ε,Dεn) ≤ C(rn/hn)m where C is a constant independent

of n.

Lemma 3.4. Set a prior as in Lemma 3.3 with a DP (wkPk) prior on P given k, k ≥ 1. Assume that the

base probability Pk has a density pk which is positive and continuous on <k. Assume that there exist positive

sequences hn → 0 and rn →∞ such that

B1 : lim
n→∞

nδ−1
kn h

−k
n exp(−r2

n/8A
2) = 0

holds where

δkn = inf{pk(µ) : µ ∈ <k, ‖µ‖ ≤ A+ rn/2}, k = 1, . . . ,m.

Also assume that under the prior π2(·|k) on σ, Pr(min(σ) < hn|k) decays exponentially. Then under the

Assumptions of Theorem 3.1, for any ε > 0, k ≥ 1,

Eft
{
Pr
(
P (Bcrn,k) ≥ ε

∣∣k,Xn

)}
−→ 0.

If B1 is strengthed to

B1′ :

∞∑
n=1

nδ−1
kn h

−k
n exp(−r2

n/8A
2) <∞,

and the sequence rn satisfies
∑∞
n=1 r

−2(1+α)m
n <∞ with α as in Assumption A4, then the conclusion can be

strengthed to
∞∑
n=1

Eft
{
Pr
(
P (Bcrn,k) ≥ ε

∣∣k,Xn

)}
<∞.

With these three Lemmas we are now able to state and proof the theorem that ensures strong posterior

consistency is attained.

Theorem 3.5. Consider a prior and sequences hn and rn for which the Assumptions of Lemma 3.4 are

satisfied. Further suppose that n−1(rn/hn)m −→ 0. Also assume that the sequence rn and the prior π1(·|k)

on (U, θ) satisfy the condition Pr(‖θ‖ > rn|k) decays exponentially for k ≤ m − 1. Assume that the true

density satisfies the conditions of Theorem 3.1. Then the posterior probability of any L1 neighborhood of ft
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converges to 1 in probability or almost surely depending on Assumption B1 or B1′.

Proof. Theorem 3.1 implies that the KL condition is satisfied. Consider the partition D(<m) = Dεn ∪ Dεcn .

Then N(ε,Dεn)/n −→ 0. Write

Pr(Dεcn |Xn) = Pr
(
{f(.; Θ) : Θ ∈ Hεc

n }
∣∣Xn

)
,

where

Hεc
n = {Θ : min(σ) < hn} ∪ {Θ : ‖θ‖ > rn} ∪ {Θ : P (Bcrnk) > ε}.

The posterior probability of the first two sets above converge to 0 a.s. because the prior probability decays

exponentially and the prior satisfies the KL condition. Note that

Pr
(
{Θ : P (Bcrnk) > ε}

∣∣Xn

)
≤

m∑
j=1

Pr
(
{Θ : P (Bcrnk) > ε}

∣∣Xn, k = j
)

and Lemma 3.4 implies that this probability converges to 0 in probability/a.s. based on Assumption B1/B1′.

Using Lemma 3.2, the result follows.

Now we give an example of a prior that satisfies the conditions of Theorem 3.5. Any discrete distribution

on {0, . . . ,m} having m in its support can be used as the prior p for k. Given k (k ≥ 1), we draw U0 from a

density on Vk,m. Given k and U0, under π1, θ is drawn from a density on the vector-space N (U0) if k < m.

If k = m, then θ = 0. When k < m, we set θ = rθ̃ with r and θ̃ drawn independently from <+ and the set

{θ̃ ∈ <m : ‖θ̃‖ = 1, θ̃′U0 = 0} respectively. The scalar ra is drawn from a Gamma density for appropriate

a > 0. As a special case, a truncated normal density can be used for θ when θ̃ is drawn uniformly, a = 2

and r2 ∼ Gam(1, σ0), σ0 > 0. Then θ has the density

σ
−(m−k)
0 exp

−1

2σ2
0

‖θ‖2I(θ′U0 = 0)

with respect to the volume form of N (U0). Given k, σ follows π2 supported on [0, A]k+1. Under π2, the

coordinates of σ may be drawn independently with say, σ−2
j following a Gamma density truncated to [0, A].

If reasonable, assuming σ1 = . . . = σk = σ with σ−2 following a Gamma density will simplify computations.

That said, a Gamma distribution only satisfies the conditions of Theorem 3.1 when m ≥ 2. To satisfy the

conditions of Theorem 3.5 a truncated transformed Gamma density may be used. That is, for appropriate

b > 0, we draw σ−b from a Gamma density truncated to [0, A]. Given k, k ≥ 1, P follows a DP (wkPk)

12



prior. To get conjugacy, we may select Pk to be a Gaussian distribution on <k with covariance τ2Ik. With

such a prior the conditions of Theorem 3.5 are satisfied if we choose a, b, τ and A such that τ2 > 4A2,

a < 2(1 + α)m and a−1 + b−1 < m−1. This result is available from Corollary 3.6 the proof of which is

provided in the Appendix.

Corollary 3.6. Assume that ft satisfies Assumptions A1-A4. Let Πf be a prior on the density space as in

Theorem 3.5. Pick positive constants a, b, {τk}mk=1 and A and set the prior as follows. Choose π1(.|k) such

that for k ≤ m − 1, ‖θ‖a follows a Gamma density. Pick π2(.|k) such that σ, σ1, . . . , σk are independently

and identicaly distributed with σ−b following a Gamma density truncated to [0, A]. Alternatively let σ =

σ1 = . . . = σk with σ distributed as above. For the DP (wkPk) prior on P , k ≥ 1, choose Pk to be a normal

density on <k with covariance τ2
k Ik. Then almost sure strong posterior consistency results if the constants

satisfy τ2
k > 4A2, a < 2(1 + α)m and 1/a+ 1/b < 1/m.

A multivariate gamma prior on σ satisfies the requirements for weak but not strong posterior consistency

(unless m = 1). However that does not prove that it is not eligible because Corollary 3.6 provides only

sufficient conditions. Truncating the support of σ is not undesirable because for more precise fit we are

interested in low within cluster covariance which will result in sufficient number of clusters. However the

transformation power b increases with m resulting in lower probability near zero which is undesirable when

sample sizes are not high.

In [5], a gamma prior is proved to to be eligible for a Gaussian mixture model (that is, k = m) as long

as the hyperparameters are allowed to depend on sample size in a suitable way. However there it is assumed

that ft has a compact support. We expect the result to hold true in this context too.

4 Identifiability of Parameters

In many applications, the goal may not be density estimation but estimating the low dimensional set S and

its dimension. To do so S must be identifiable. That is, there must be a unique S corresponding to the

model (3.3). Denoting by Pf , the distribution corresponding to f , it follows that

Pf = Nm(0,Σ) ∗ (P ◦ φ−1), (4.1)

13



with * denoting convolution. Now let ΦP (t) be the characteristic function of a distribution P , then (4.1)

implies that the characteristic function of f (or Pf ) is

Φf (t) = exp(−1/2t′Σt)ΦP◦φ−1(t), t ∈ <m. (4.2)

Once we let P to be discrete, (4.2) suggests that Σ and P ◦ φ−1 can be uniquely determined from f . Now

φ : <k −→ <m, φ(<k) = S and P ◦ φ−1 is the distribution of φ(Y ) with Y ∼ P . It is a distribution on <m

supported on the k dimensional affine plane S. To identify S and k, we further assume that the affine support

asupp(P ) of P is <k. We define asupp(P ) as the intersection of all affine subspaces of <k having probability

1. It is an affine subspace containing supp(P ) (but may be larger). In other words, we use a prior for which

P is discrete and asupp(P ) = <k w.p. 1. The Dirichlet process prior on P given k with a full support base is

an appropriate choice. Then, from the nature of φ, asupp(P ◦φ−1) is an affine subspace of <m of dimension

equal to that of asupp(P ). Since asupp(P ◦ φ−1) is identifiable, this implies that k is also identifiable as

its dimension. Since S contains asupp(P ◦ φ−1) and has dimension equal to that of asupp(P ◦ φ−1), hence

S = asupp(P ◦φ−1). Hence we have shown that the (sub) parameters (Σ, k, S, P ◦φ−1) are identifiable once

we set a full support discrete prior on P given k. Then U0U
′
0 and θ are identifiable as the projection matrix

and origin of S. However P and the coordinate choice φ (hence U0) are still non-identifiable. However, if we

consider the structure Σ = U0Σ0U
′
0 + σ2(Im − U0U

′
0) with a diagonal Σ0 and impose some ordering on the

diagonal entries of Σ0, then the columns of U0 become identifiable up to a change of signs as the eigen-rays.

4.1 Point estimation for subspace S

To obtain a Bayes estimate for the subspace S, one may choose an appropriate loss function and minimize the

Bayes risk defined as the expectation of the loss over the posterior distribution. Any subspace is characterized

by its projection matrix and origin. That is, the pair (R, θ) whereR ∈M(m) and θ ∈ <m satisfyR = R′ = R2

and Rθ = 0. We use Sm to denote the space of all such pairs. One particular loss function on Sm is

L1((R1, θ1), (R2, θ2)) = ‖R1 −R2‖2 + ‖θ1 − θ2‖2, (Ri, θi) ∈ Sm.

For a matrix A = ((aij)), its norm-squared is defined as ‖A‖2 =
∑
ij a

2
ij = Tr(AA′). We find the average of

L1 over repeated draws of (R2, θ2) from their posterior and choose the value of (R1, θ1) for which the average

is minimized (if a unique minimizer exists). Then the subspace S is estimated as {R1x + θ1 : x ∈ <m}. It

has dimension equal to the rank of R1.
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If the goal is to estimate the directions of the subspace, we may instead use the loss function

L2((U1, w1), (U2, w2)) = ‖U1 − U2‖2 + (w1 − w2)2, (Ui, wi) ∈ Sm2.

Here the m × m matrix Ui has the first few columns as the directions of the corresponding subspace Si,

the next column gives the direction of the subspace origin θi and the rest are set to the zero vector while

wi = ‖θi‖. Therefore

Sm2 =

(U,w) ∈M(m)×<+ : U ′U =

 I 0

0 0


 .

We find the minimizer (if unique) (U1, w1) of the expected value of L2 under the posterior distribution of

(U2, w2) and set the estimated subspace dimension k as the rank of U1 minus 1, the principal directions

consisting of the first k columns of U1 and the origin as w1 times the last column. Since the k orthonormal

directions of the subspace are only identifiable as rays, one may even look at the loss

L3((U, θ1), (V, θ2)) =

m∑
j=1

‖UjU ′j − VjV ′j ‖2 + ‖θ1 − θ2‖2,

where

(U, θ1), (V, θ2) ∈ Sm3 =

(U, θ) ∈M(m)×<m : U ′U =

 I 0

0 0

 , U ′θ = 0

 .

Theorems 4.1 and 4.2 (proofs of which can be found in the appendix) derive the expression for minimimizer

of the risk function corresponding to L1 and L2 and present conditions their uniqueness. Hereby we denote

by Pn the posterior distribution of the parameters given the sample. It is assumed to have finite second

order moments. For a matrix A, by A(k) we shall denote the submatrix of A consisting of its first k columns.

Theorem 4.1. Let f1(R, θ) =
∫

(R2,θ2)
L1((R, θ), (R2, θ2))dPn(R2, θ2), (R, θ) ∈ S. This function is mini-

mized by R =
∑k
j=1 UjU

′
j and θ = (I − R)θ̄2 where R̄2 =

∫
M(m)

R2dPn(R2) and θ̄2 =
∫
<m θ2dPn(θ2) are

the posterior means of R2 and θ2 respectively, 2R̄2 − θ̄2θ̄
′
2 =

∑m
j=1 λjUjU

′
j, λ1 ≥ . . . ≥ λm is a s.v.d. of

2R̄2 − θ̄2θ̄
′
2, and k minimizes k −

∑k
j=1 λj on {0, . . . ,m}. The minimizer is unique if and only if there is a

unique k minimizing k −
∑k
j=1 λj and λk > λk+1 for that k.

Theorem 4.2. Let f2(U,w) =
∫

(U2,w2)
L2((U,w), (U2, w2))dPn(U2, w2), (U,w) ∈ Sm2. Let w̄ and Ū denote

the posterior means of w2 and U2 respectively. Then f2 is minimized by w = w̄ and any U = [U1, 0], where
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U1 ∈ Vk+1,m satisfys Ū(k+1) = U1(Ū ′(k+1)Ū(k+1))
1/2, and k minimizes g(k) = k − 2Tr(Ū ′(k+1)Ū(k+1))

1/2 over

{0, . . . ,m− 1}. The minimizer is unique if and only if there is a unique k minimizing g and Ū(k+1) has full

rank for that k.

5 Posterior Computation

We now present an algorithm to sample from the joint posterior distribution of Θ = (k, U0, θ,Σ0, σ, P ) and

as a result the density of X, given iid realizations X1, . . . , Xn. Since exact sampling is not possible, we resort

to MCMC draws from the posterior. We first present an algorithm with k being treated as a fixed known

quantity. We then generalize the algorithm to allow unknown k. In both cases, a straight forward Gibbs

sampler can be used.

5.1 MCMC algorithm for the fixed k

We use a Dirichlet process (DP) prior for P (i.e., P ∼ DP (w0P0)). For simplicity and to preserve conjugacy

we set P0 = Nk(mµ, Sµ) with w0 = 1. We employ the stick breaking representation of the Dirichlet process

(Sethuraman [26]) so that P =
∑∞
j=1 wjδµj where µj is drawn iid from P0 and wj = vj

∏
`<j(1 − v`) with

vj ∼ Beta(1, w0). After introducing cluster labels S1, . . . , Sn, the likelihood becomes

f(x;U0, θ,Σ0, σ, P, µ, S) =

n∏
i=1

wSiNm(xi;U0µSi + θ,Σ) (5.1)

=

n∏
i=1

wSiNk(U ′0xi;µSi ,Σ0)Nm−k(V ′xi;V
′θ, σ2Im−k) (5.2)

where once again Σ = U0Σ0U
′
0+σ2(Im−U0U

′
0). After prior distributions for (U0, θ,Σ0, σ, µ) are appropriately

selected (details of which are given concurrently within the description of the algorithm) it is now possible

to describe an algorithm that can be used to construct an MCMC chain that provides draws from the joint

posterior distribution of interest by cycling through the following steps.

Step 1. Let π(U0) denote a prior distribution for U0 ∈ Vk,m. Using straightforward matrix algebra it can be

shown that the full conditional of U0 is

[U0|−] ∝ exp{tr
[
1/2(σ−2Ik − Σ−1

0 )U ′0(

n∑
i=1

xix
′
i)U0 + Σ−1

0 (

n∑
i=1

µSix
′
i)U0

]
}π(U0)

∝ etr{F ′1U0 + F2U
′
0F3U0}π(U0), (5.3)
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where F1 = (
∑n
i=1 xiµ

′
Si

)Σ−1
0 , F2 = 1

2 (σ−2Ik − Σ−1
0 ), and F3 =

∑n
i=1(xix

′
i). In (5.3) etr(A) denotes

exp(tr(A)). Thus, if one selects a matrix Bingham-von Mises-Fisher prior distribution for U0 (the Uniform

distribution on the Steifel manifold being a special case), then the full conditional of U0 is a matrix Bingham-

von Mises-Fisher distribution on the space U ′0θ = 0. Strategies for sampling from matrix Bingham-von

Mises-Fisher are developed in Hoff [18]. A straightforward extension of their work can be implemented to

sample from a matrix Bingham-von Mises-Fisher that has U ′0θ = 0 as a constraint.

Step 2. As discussed in Section 3.2 a good prior choice for θ is a truncated normal θ ∼ Nm(mθ, Sθ)I[U ′0θ = 0].

The full conditional under this prior is the following truncated multivariate normal

[θ|−] ∼ Nm(m∗θ, S
∗
θ )I[U ′0θ = 0], (5.4)

where S∗θ = (nΣ−1 + S−1
θ )−1 and m∗θ = S∗θ (Σ−1

∑n
i=1 xi + S−1

θ mθ).

Notice that if W is an orthonormal basis of N (U ′0), then there exists a θ̃ ∈ <m−k such that θ = Wθ̃ and

θ̃ ∼ Nm−k(W ′m∗θ,W
′S∗θW ). This fact can be exploited to sample from (5.4).

Step 3. Update Si for i = 1, 2, . . . , n by sampling from the multinomial conditional posterior distribution

Pr(Si = j|−) ∝ wj exp{−1/2(U ′0xi − µj)′Σ−1
0 (U ′0xi − µj)}, j = 1, . . . ,∞.

To make the total number of states finite the block Gibbs sampler of Ishwaran and James [19] may be

implemented. Alternatively, the slice sampling ideas described in Yau, Papaspiliopoulos, Roberts, and

Homes [33], Walker [31], or Kalli, Griffin, and Walker [20] could be used. The remainder of the algorithm

is described from the perspective of using a block Gibbs sampler which requires truncating the number of

atoms to N .

Step 4. Update the DP atom weights by setting wj = vj
∏j−1
l=1 (1− vl), j = 1, . . . , N after drawing

[vl|−] ∼ Beta(1 + nj , w0 +
∑
i

I(Si > j))

with nj =
∑
i I(Si = j) and setting vN = 1.

Step 5. Update the DP atoms {µj : j = 1, . . . , N} independently by sampling from

[µj |−] ∼ Nk(m∗µ, S
∗
µ),
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where S∗µ = (njΣ
−1
0 + S−1

0 )−1 and m∗µ = S∗µ(U ′0Σ−1
0

∑
i:Si=j

xi + S−1
µ mµ).

Step 6. Using a σ−2 ∼ Ga(a, b) prior, σ−2 can be updated using

[σ−2|−] ∼ Ga(
1

2
n(m− k) + a, b+

1

2

n∑
i=1

x′ixi +
n

2
θ′θ − 1

2

n∑
i=1

x′iU0U
′
0xi − θ′

n∑
i=1

xi)

Under the simplifying assumption that Σ0 = σ2Ik the full conditional of σ−2 becomes

[σ−2|−] ∼ Ga(
1

2
nm+ a, b+

1

2

n∑
i=1

(xi − U0µSi − θ)′(xi − U0µSi − θ))

Step 7. Using a truncated Gamma distribution for σ−2
j (i.e., σ−2

j ∼ Gam(a, b)I[σ−2
j ∈ [0, A]]) allows one to

update σ−2
j using the following truncated Gamma distribution.

[σ−2
j |−] ∼ GAM(

n

2
+ a, b+

1

2

n∑
i=1

(U ′0xi − µSi)2
j )I[σ−2

j ∈ [0, A]].

Reasonable starting values can decrease the number of MCMC iterates discarded as burn in and therefore

may be desirable. For U0, the first k eigen-vectors of the sample covariance matrix can be used. For θ one

may use (Im − UsU ′s)x̄ where Us denotes the starting value for U0. The initial labels (Si) and coordinate

cluster means (µj) can be obtained by applying a k-means algorithm to U ′sxi.

5.2 MCMC algorithm for k unknown

In the case that k is unknown, a prior distribution needs to be assigned to k and U0 ∈ O(m). In what follows,

to denote the kth coordinate and the 1st k coordinates of µj we use µjk and µj(k) respectively. Similarly,

let U0(k) represent the first k columns of U0 while U0(−k) will represent the remaining m− k columns.

After introducing cluster labels, the full posterior is proportional to

π(w, µ, σ,Σ0, U0, θ, k, S) ∝
n∏
i=1

wSiNm
(
xi;U0(k)µSi(k) + θ,Σ

)
.

Here π is a general expression for the prior. The first k columns of the m×m matrix U0 explain the subspace

directions and the first k coordinates of µj the cluster locations.

Allowing k to be unknown requires altering steps 1 and 5 of the MCMC algorithm described in the previous

section and adding an additional step. We first describe the additional step and then the adjustments to

18



steps 1 and 5. Continuing from step 7 from the previous section we add

Step 8. Update k by drawing a value for k from the following complete conditional

Pr(k = `|−) ∝ p(`)
n∏
i=1

Nm(xi;U0(`)µSi(`) + θ,Σ) for ` = 1, . . . ,m− 1. (5.5)

When the data dimension m is very high, computing all m− 1 probabilities can become computationally

expensive. An approach to reduce the number of states would be to introduce a slice sampling variable u

drawn from Unif(0, 1). In this setting we replace p(k) in (5.5) by I(u < p(k)). This means that k will

be drawn from the set {k : p(k) > u} and u ∼ Unif(0, p(k)). Updating the upper bound for the subspace

dimension (K) can be done by drawing u ∼ Unif(0, p(k)) and setting K = max{k ≤ m : p(k) > u)}.

Step 1b. Use the complete conditional derived in step 1 from Section 6.1 to update U0(k), then draw U0(−k) =

[U0k+1, . . . , U0K ] from π(U0(−K)|U0k) such that U ′0(−k)θ = 0.

When a uniform prior is being considered, step1b requires one to sample uniformly from VK−k,m perpen-

dicular to the column space of [U0k, θ] ≡ Uθ. As discussed in Chikuse[8], U∗ is a uniform sample from VK−k,m

if U∗ = T (T ′T )−1/2 for T a m×(K−k) matrix of independent standard normal random variables. To ensure

that U∗ ∈ N (U ′θ) first project T into N (U ′θ) by setting T ∗ = (I − UθU ′θ)T . Then U∗ = T ∗(T ∗
′
T ∗)−1/2 is a

uniform draw from VK−k,m perpendicular to column space of Uθ. If π(U0) is not a uniform distribution on

O(m) see Hoff [18] for sampling strategies.

Step 5b. Use the full conditional found in step 5 from Section 6.1 to update µj(k). Then draw µjk+1, . . . , µjK

from their respective prior distributions.

With k unknown, the MCMC chain tends to get stuck on certain values of k for many iterations. The

stickiness occurs because the probabilities in step 8 are computed for all ` = 1, . . . ,K using a U0 that was

updated for a particular value of k. To make the chain less sticky, we employ adaptive MCMC methods as

outlined in Roberts and Rosenthal [24]. We applied the adaptation to step 8 and step 5 of the algorithm.

Specifically, we raised each of the un-normalized probabilities in (5.5) to the 1 − exp(−0.0001t) power

(where t = 1, . . . ,M denotes the tth MCMC iterate) and replace S∗µ found in step 5 of Section 5.1 with

(1 + 100 exp(−0.001t))S∗µ. In this way, the space of cluster locations is initially more thoroughly explored.

Notice that the adaptation vanishes at an exponential rate, which guarantees that the proper regularity

conditions hold.
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6 Simulation Study

To assess the proposed methodology’s density estimation ability we conducted a small simulation in which

a density is estimated using observations in <m originating from the following finite mixture

x ∼
c+1∑
h=1

πhNm(ηh, σ
2I). (6.1)

Here ηh is a vector of zeros save for the hth entry which is 1. We considered the following three factor’s

influence on the density estimate.

1. Bandwidth (setting σ2 = 0.01, σ2 = 0.05, and σ2 = 0.1)

2. Sample size (setting n = 50, n = 100, n = 200)

3. Dimension of the affine subspace (considering k = 2 and k = 5).

To show that (6.1) falls into the current class of models, consider the case of k = 2 and m = 100. For this

case we have the 100-dimensional vector θ = (1/3, 1/3, 1/3, 0, . . . , 0)′. Further one possible representation of

the 100× 2 dimensional U0 is

U0 =

 1/
√

2 −1/
√

2 0 . . . 0

1/
√

6 1/
√

6 −2/
√

6 . . . 0


′

. (6.2)

As competitors, we considered a finite mixture with f(x) =
∑c
h=1 πhNm(µh, σ

2Im) and an infinite

mixture f(x) =
∑∞
h=1 πhNm(µh, σ

2Im). The number of components employed in the finite mixture were 3

and 6 for the two respective affine subspace dimensions considered. For each synthetic data set created, 100

observations were generated to assess out of sample density estimation. To compare the density estimates

between the procedures employed, we used the following Kullback-Leibler type distance

1

D

D∑
d=1

1

T

T∑
t=1

(
100∑
`=1

log f0(x∗`d)−
100∑
`=1

log f̂t(x
∗
`d)

)
. (6.3)

Here f0 denotes the true density function, d is an index for the D = 25 datasets that were generated, and

x∗`d is the `th out of sample observation generated from the dth data set and f̂t is the estimated density.

For each of the 25 generated data sets, a density estimate was obtained using the proposed method with

k unknown and for k = 1, k = 2, and k = 5. We entertained a discrete uniform and stick-breaking type prior

for k with no appreciable difference in parameter estimation. We set σ1 = . . . , σk = σ. For each scenario

20



1000 MCMC iterates were used to approximate the density. A burn-in of 1000 was used when k was fixed.

When k was considered an unknown a burn-in of 10,000 was used with a thin of 100. Convergence was

monitored using trace plots of the collected MCMC iterates.

The value of equation (6.3) for each scenario considered averaged across the 25 datasets can be found

in Table 1. Under the column “Unknown k” can be found the results when k was treated as an unknown.

The results from the method when k is fixed at a specified value can be found under one of the three “k =”

columns. Results from the finite mixture and infinite mixture are under the columns “Fin Mix” and “Inf

Mix”.

Table 1: Results of the Kullback-Liebler type distance comparing estimated densities from each of the
procedures considered in the simulation study to the density used to generate data.

True k σ2 n Unknown k k = 1 k = 2 k = 5 Fin Mix Inf Mix

2

0.01
50 582.98 1557.39 392.84 412.77 2580.81 2612.92
100 274.76 1494.65 205.49 214.32 1539.74 1619.44
200 139.21 1474.90 106.06 111.85 165.92 1429.98

0.05
50 590.24 421.93 314.44 394.53 710.46 714.26
100 271.79 371.65 172.61 192.39 465.87 499.58
200 128.30 315.85 96.37 105.34 153.54 160.66

0.1
50 589.01 232.33 250.50 365.38 426.69 426.29
100 280.99 189.05 154.91 201.62 320.02 324.92
200 134.07 162.34 87.55 104.65 160.54 176.29

5

0.01
50 2292.44 2645.34 2268.70 1015.80 3003.87 3029.25
100 2075.99 2564.26 2164.32 500.65 2341.99 2838.46
200 2138.87 2503.26 2065.54 256.78 1646.43 2046.68

0.05
50 872.18 646.12 654.20 714.96 798.29 801.22
100 604.07 604.73 556.36 421.40 676.65 690.04
200 506.53 550.92 489.39 231.47 460.85 512.93

0.1
50 773.15 315.85 357.02 484.87 447.79 456.62
100 431.56 294.42 309.34 358.66 351.17 353.89
200 283.02 246.20 237.94 206.01 286.96 288.10

Generally speaking, the procedure outlined in Section 3 does a much better job at recovering the true

density relative to the mixtures. This is the case even if k is fixed at the wrong value. That said, as expected,

fixing k at the true value provides the best results. The only instances in which the finite mixture estimated

the density more accurately than our density estimator is when the dimension of the affine subspace is set

to 5 and the sample size is small. However, even in small samples, if k is fixed at the correct value, then

the density is recovered more accurately using our procedure compared to mixtures. Also, it appears as

21



σ2 increases, then cluster separation diminishes and estimating k is more difficult. Hence the varying k

procedure does not perform as well in estimating the density (which is to be expected) but still out performs

the mixtures. In addition, as expected larger sample sizes are conducive to better density estimation as the

Kullback-Leibler type distance generally gets smaller as n increases.

7 Nonparametric Classification with Feature Coordinate Selection

We consider a categorical Y that takes on values from the set {1, . . . , c}. The goal of classification is to

identify the class to which Y belongs using m characteristics of Y . These characteristics are typically

denoted by X ∈ <m. Because the association between X and Y may not be causal, our approach is to model

X and Y jointly and from the joint derive the conditional. Letting Mc(y;ν) =
∏c
`=1 ν

I[y=`]
` , we consider the

following joint model

(X,Y ) ∼ f(x, y) =

∫
<k×Sc

Nm(x;φ(µ),Σ)Mc(y;ν)P (dµ dν), (7.1)

with Sc = {ν ∈ [0, 1]c :
∑
ν` = 1} denoting the c−1 dimensional simplex. Note that (7.1) is a generalization

of (3.3) and (3.4) along the lines of the joint model proposed in Bhattacharya and Dunson [4], though

they focus on kernels for predictors on models that accommodate non-Euclidean manifolds and there is no

dimensionality reduction.

When m is large it is often the case that most of the information present in the data is used to model

the marginal of X while the association between X and Y is disregarded. In order to avoid this, we instead

pick a few coordinates of X, say k many, and model the joint density of the k coordinates of X and Y . The

remaining coordinates of X are modeled independently as equal variance Gaussians, though in preliminary

simulation studies, we find that our performance in estimating the subspace and predicting Y is robust to

the true joint distribution of the ‘non-signal’ predictors that are not predictive of Y . By setting a prior on

the coordinate selection method, we can pick out those few ‘important’ coordinates which completely explain

the conditional distribution of Y , very flexibly. Without loss of generality an isotropic transformation on X

can be used which would provide some benefit with regards to coordinate inversion. That is, we can locate

a k ≤ m and U0 ∈ Vk,m such that

(U ′0X,Y ) ∼ f1(x1, y) =

∫
<k×Sc

Nk(x1;µ,Σ0)Mc(y;ν)P (dµ dν), x1 ∈ <k, (7.2)
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along with a θ ∈ <m and V ∈ Vm−k,m satisfying V ′U0 = 0 and θ′U0 = 0, such that

V ′X ∼ Nm−k(V ′θ, σ2Im−k) (7.3)

independently of (U ′0X,Y ). With such a structure, the joint distribution of (X,Y ) becomes (7.1) where

φ : <k → <m, φ(y) = U0y + θ, U0 ∈ Vk,m, θ ∈ <m, U ′0θ = 0,

Σ = U0(Σ0 − σ2Ik)U ′0 + σ2Im, Σ0 ∈M+(k), σ2 ∈ <+.

The conditional density of Y = y given X = x can be expressed as

p(y|x; Θ) =

∫
<k×Sc Nk(U ′0x;µ,Σ0)Mc(y;ν)P (dµ dν)∫

<k×Sc Nk(U ′0x;µ,Σ0)P (dµ dν)
(7.4)

with parameters Θ = (k, U0,Σ0, P, θ, σ
2). A draw from the posterior of Θ given model (7.1) will give us a

draw from the posterior of the conditional. When P is discrete (which is a standard choice), the conditional

distribution of Y given X and Θ can be thought of as a weighted c dimensional multinomial probability

vector with the weights depending on X only through the selected k-dimensional coordinates U ′0X. For

example, if P =
∑∞
j=1 wjδ(µj ,νj), then

p(y|x; Θ) =

∞∑
j=1

w̃j(U
′
0x)Mc(y;νj) (7.5)

where w̃j(x) =
wjNk(x;µj ,Σ0)∑∞
i=1 wiNk(x;µi,Σ0) and x ∈ <k for j = 1, . . . ,∞. We refer to (7.5) as the principal subspace

classifier (PSC).

The above is easily adapted to a regression setting by considering a low dimensional response Y ∈ <l and

replacing the multinomial kernel used for Y with a Gaussian kernel. In this setting the joint model becomes

(X,Y ) ∼
∫
<k×<l

Nm(x;φ(µ),Σx)Nl(y;ψ,Σy)P (dµ dψ), (7.6)

which produces the following conditional model

p(y|x; Θ) =

∫
<k×<l Nk(U ′0x;µ,Σ0)Nl(y;ψ,Σy)P (dµ dψ)∫

<k×<l Nk(U ′0x;µ,Σ0)P (dµ dψ)
. (7.7)
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For a discrete P this conditional distribution becomes the following mixture whose weights depend on X

only through its k-dimensional coordinates U ′0X

p(y|x; Θ) =

∞∑
j=1

w̃j(U
′
0x)Nl(y;ψj ,Σy). (7.8)

As the regression model is a straightforward modification of the classifier, we focus on the classification case

for sake of brevity.

7.1 MCMC algorithm

Sampling from the posterior of Θ = (k, U0,Σ0, P, θ, σ
2) requires adjusting step 3 of Section 6’s algorithm

and adding a step to update ν. We continue to assume P ∼ DP (α, P0). However, in the present setting

P0 = N(m,S) ⊗ Dir(aν). Now the data likelihood, after introducing cluster labels S1, . . . , Sn, becomes∏n
i=1 wsiNm(xi;UµSi + θ,Σ0)Mc(yi;νSi). An MCMC chain that provides draws from the joint posterior of

Θ can be obtained by adding the following two steps to the algorithm in Section 6.

Step 3. Update Si for i = 1, 2, . . . , n by sampling from the following conditional posterior distribution

Pr(Si = j|−) ∝ wj exp
{
−1/2(µ′jΣ

−1
0 µj − 2µ′jΣ

−1
0 U ′0xi)

} c∏
`=1

ν
I[yi=`]
j`

for j = 1, . . . ,∞. Once again, one may introduce slice sampling latent variables and implement the

exact block Gibbs sampler or use the block Gibbs sampler directly to make the total number of states

finite.

Step 9. Update the νj ’s by sampling from [νj |−] ∼ Dir(a∗1, . . . , a∗c), where a∗` =
∑n
i=1 I[yi = `, Si = j] + a` for

` = 1, . . . , c.

7.2 Simulation Study

To demonstrate the performance of the classifier we conduct a small simulation study. Synthetic data sets

are generated using two methods. The first method treats the PSC as a data generating mechanism, the

second is similar to the data generating scheme found on page 16 of Hastie, Tibshirani and Freedman [16]

(here after referred to as HTF). We briefly describe both.

When the PSC is being used as a data generating mechanism, the X matrix is generated using (6.1).

We set m = 100, σ2 = 0.1, and k = 2. As this produces a feature space with three clusters, Y takes on

24



values in {1, 2, 3} with probabilities [w̃1(U ′0X), w̃2(U ′0X), w̃3(U ′0X)] where U0 is found in (6.2). The second

data generating scenario consists of two classes with 100 observations each. The observations are drawn

from the Gaussian mixture
∑10
j=1 1/10N100(mj , 1/5I). The 10 means, mj , for the two classes are generated

independently from N100(η1, I) and N100(η2, I) respectively (η1 and η2 are defined in (6.1)). For each scenario

100 data sets are generated. For the first, 100 training and 100 testing observations were generated and for

the second 200 test and 200 training observations were used. The PSC, k nearest neighbor (KNN), and

mixture discriminant analysis (MDA) were employed to classify the response from the testing data sets.

KNN and MDA procedures were selected as competitors because KNN is an algorithmic based procedure

that is known to perform well in a variety of settings (see HTF) and MDA is a flexible model based Gaussian

mixture classifier (see Hastie and Tibshirani [14]). We employ the knn [30] and mda [15] functions both of

which are available freely from the R software [22] to implement the KNN and MDA methods. For the KNN

we set k = 6 for data generated from the PSC and k = 25 for HTF data. These values were deemed to produce

the smallest misclassification rate for a few synthetic data sets from both data generating scenarios. For the

same reason, with regards to the MDA, the number of components for each classes Gaussian mixture was set

at 5. Choosing k in this manner provides an advantage to KNN and MDA when comparing misclassification

rates to the PSC.

For the PSC, 1000 MCMC iterates were collected after a burn-in of 10,000 and thinning of 100. Con-

vergence was assessed using history plots of the MCMC draws for a few data sets. The out of sample

misclassification rates averaged over the 100 data sets can be found under each procedures respective head-

ing in Table 2.

Table 2: Misclassification rates from the simulation study. Data were generated using the PSC and the
method detailed on page 16 of Hastie, Tibhshirani and Feedman (HTF)[16]

Data Generating
Mechanism PSC KNN MDA

PSC 0.060 0.158 0.639
HTF 0.047 0.269 0.369

It appears as if the PSC is able to more accurately classify the categorical response from the testing data

compared to KNN and MDA. This appears to be true regardless of what k is fixed to be. Preliminary studies

indicated that the PSC classifier still out preformed KNN and MDA (though not as drastically) even with

correlated and non-Gaussian non-signal predictors.
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7.3 Illustration on Real Datasets

We now apply the PSC to two real data sets both of which are readily available in R. The first consists of two

classes and 7 quantitative predictors. The predictors are physiological measurements taken on Pima Indian

women with the goal of predicting the presence or absence of diabetes. To these 7 predictors we add another

93 which are comprised of random standard Gaussian draws. The dataset is split randomly into training

and testing sections. The training section consists of 200 women, 68 of which are diagnosed with diabetes,

while the testing section consists of 332 women, 109 of which are diagnosed with diabetes.

The second data set we consider is the so called iris data set. Here the response consists of three classes

each one representing a specific flower species. The four predictors are length and width measurements

corresponding to the sepal and petal of a flower. The goal is to use these four measurements to predict the

flower species. To the four predictors we add 96 that are comprised of random standard Gaussian draws. The

data set consists of 150 observations with each flower species having 50. Fifty observations were randomly

selected to comprise the testing data while the remaining 100 were used for the training data set.

To both data sets we applied the PSC in addition to KNN classifier and a MDA classifier. For the KNN

classifier, we chose the value of k that minimized the misclassification rate which turned out to be k = 5

for the iris data and k = 24 for the diabetes data. Similarly, the number of components comprising the

Gaussian mixtures of the MDA classifier was selected on the basis of minimizing the misclassification rate.

The number of components turned out be 5 for the iris data and 7 for the diabetes data. Note that choosing

k in this manner gives an unfair advantage to KNN and MDA relative to PSC, which does not use the test

data at all in training. We fit the PSC to both data sets by collecting 1000 MCMC iterates after a burn-in of

10,000 and thinning of 100. Convergence was monitored using trace plots from two chains that were started

at different values. Prior to analysis variables were standardized. The misclassification rates can be found

in Table 3

Table 3: Misclassification rates for the iris and diabetes data sets.

Data set PSC KNN MDA

Iris 0.22 0.55 0.51
Diabetes 0.26 0.29 0.37

It appears that the PSC was able to classify the testing data response in the presence of a high dimensional

feature space much more accurately than either KNN or MDA.
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8 Conclusions

This article has proposed a novel methodology for nonparametric Bayesian learning of an affine subspace

underlying high-dimensional data. Clearly, massive-dimensional data are now commonplace and there is a

need for flexible methods for dimensionality reduction that avoid parametric assumptions. In this context,

the Bayesian paradigm has substantial advantages over commonly used machine learning, computer science

and frequentist statistical methods that obtain a point estimate of the subspace or manifold which the data

are concentrated near. As there is unavoidably substantial uncertainty in subspace or manifold learning,

it is important to fully account for this uncertainty to avoid misleading inferences and obtain appropriate

measures of uncertainty in estimating densities, performing predictions and identifying important predictors.

We accomplish this in a Bayesian manner by placing a probability model over the space of affine subspaces,

while developing a simple and efficient computational algorithm relying on Gibbs sampling to estimate the

subspace and its dimension or model-average over subspaces of different dimension. The model is theoretically

proved to be highly flexible and posterior consistency is achieved under appropriate prior choices. The

proposed model and computational algorithm should be broadly useful beyond the density estimation and

classification settings we have considered.

A potential alternative to our approach mentioned in Section 1 is to use a mixture of sparse factor

models to build a tangent space approximation to the manifold the data are concentrated near. Sparse

Bayesian normal linear factor models are a successful approach for dimensionality reduction (Carvalho et

al., [6]; Bhattacharya and Dunson [3]), but make restrictive normality assumptions and are limited in their

ability to reduce dimensionality by linearity assumptions. By mixing factor models, one can certainly obtain

a more flexible characterization, but challenging computational issues arise in accommodating uncertainty

in the number of factors and locations of zeros in the factor loadings matrix for each of the multivariate

Gaussian components in the mixtures. Indeed, even in modest dimensions for a normal linear factor models,

Lopes and West [21] encountered difficulties in efficiently inferring the number of factors, and recommending

using a reversible jump MCMC algorithm that required a preliminary MCMC run for each choice of the

number of factors. For mixture of factor models, one obtains a extremely rich over-parametrized black box.

We propose a fundamentally new alternative that directly specifies an identifiable model based on geometry,

while also developing an efficient Gibbs sampler that can infer the dimension of the subspace automatically

without RJMCMC. Although our initial focus was on data in a Euclidean space, related models can be

developed for non-Euclidean manifold data, as we will explore in ongoing work.
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Appendices

A Proofs

As a reminder in what follows Br,m refers to the set {x ∈ <m : ‖x‖ ≤ r}. For a subset D of densities and

ε > 0, the L1-metric entropy N(ε,D) is defined as the logarithm of the minimum number of ε-sized (or

smaller) L1 subsets needed to cover D.

A.1 Proof of Lemma (3.3)

Proof. Any density f in Dεn can be expressed as
∫
<m Nm(ν,Σ)Q(dν) with Σ = U0Σ0U

′
0 + σ2

0(Im − U0U
′
0),

Q = P ◦ φ−1, φ(x) = U0x, and (k, U0, θ,Σ0, σ, P ) ∈ Hε
n. The assumption on π2 and Hε

n will imply that Σ

has all its eigen-values in [h2
n, A

2].

We also claim that Q(Bc√
2rn,m

) < ε. To see that, note that ‖φ(µ)‖2 = ‖µ‖2 + ‖θ‖2 ≤ 2r2
n when-

ever ‖µ‖ ≤ rn and ‖θ‖ ≤ rn. Hence Brn,k ⊆ φ−1(B√2rn,m
) if ‖θ‖ ≤ rn. Therefore ε > P (Bcrn,k) ≥

P
(
(φ−1(B√2rn,m

))c
)

= P ◦ φ−1
(
Bc√

2rn,m

)
for all (P, θ) ∈ Hε

n. Hence the claim follows.

Therefore

Dεn ⊆ D̃εn = {f =

∫
Nm(ν,Σ)Q(dν) : Q(Bc√

2rn,m
) < ε, λ(Σ) ∈ [h2

n, A
2]},

λ(Σ) denoting the eigen-values of Σ. From Lemma 1 of Wu and Ghosal [32], it follows that N(ε, D̃εn) ≤

C(rn/hn)m and this completes the proof.

A.2 Proof of Lemma (3.4)

The proof is similar in scope to the proof of Lemma 2 in Wu and Ghosal [32]. Throughout the proof, C will

denote constant independent of n.

Proof. Given k, U, θ,σ and µ
n

= µ1, . . . , µn iid P , Xi ∼ Nm
(
φ(µi),Σ

)
, i = 1, . . . , n, independently and are
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independent of P . Hence

Pr
(
P (Bcrn,k) ≥ ε

∣∣k,Xn

)
= E

(
Pr
(
P (Bcrn,k) ≥ ε

∣∣k, µ
n

)∣∣k,Xn

)
.

From [12], given µ
n

and k, for A ⊆ <k, P (A) ∼ Beta
(
wkPk(A) + N(A), wk(1 − Pk) + n − N(A)

)
where

N(A) =
∑n
i=1 I{µi∈A}. Hence using the Markov inequality,

Pr
(
P (Bcrn,k) ≥ ε

∣∣k, µ
n

)
≤
wkPk(Bcrn,k) +N(Bcrn,k)

ε(n+ wk)
.

Therefore

E
(
Pr
(
P (Bcrn,k) ≥ ε

∣∣k,Xn

)
≤
wkPk(Bcrn,k)

ε(n+ wk)
+

1

ε(n+ wk)

n∑
i=1

Pr
(
µi ∈ Bcrn,k

∣∣k,Xn

)
.

Denote the above two terms as T1 and T2. Then EftT1 = T1 −→ 0 as rn → ∞. Under the marginal prior

given k, µ
n

has an exchangable distribution πn(µ
n
|k) on (<k)n (see [12]). Also since Xn are iid given ft, it

follows that

Eft(T2) =
n

ε(n+ wk)
Eft
{
Pr
(
µ1 ∈ Bcrn,k

∣∣k,Xn

)}
.

Now

Pr
(
µ1 ∈ Bcrn,k

∣∣k,Xn

)
≤ Pr

(
µ1 ∈ Bcrn,k,min(σ) > hn

∣∣k,Xn

)
+

Pr(min(σ) ≤ hn
∣∣k,Xn).

The last term above converges to 0 a.s. by the assumption on π2. Hence to complete the proof, it remains

to show that

Eft
{
Pr
(
µ1 ∈ Bcrn,k,min(σ) > hn

∣∣k,Xn

)}
−→ 0 as n→∞.

To compute the probability in above, we denote by π1n(µ1|µ−1, k) the conditional distribution of µ1 given

µ−1 = (µ2, . . . , µn) , and by π−1n(µ−1|k) the marginal distribution of µ−1 under the joint πn. Then

Pr
(
µ1 ∈ Bcrn,k,min(σ) > hn

∣∣k,Xn

)
= A(Xn)/B(Xn)
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where A(Xn) =

∫
min(σ)>hn,‖µ1‖>rn

n∏
i=1

Nm(Xi;φ(µ),Σ)dπ1n(µ1|µ−1, k)dπ−1n(µ−1|k)dπ1(U0, θ|k)dπ2(σ|k)

and B(Xn) =

∫ n∏
i=1

Nm(Xi;φ(µ),Σ)dπ1n(µ1|µ−1, k)dπ−1n(µ−1|k)dπ1(U0, θ|k)dπ2(σ|k).

We use Eft{A(Xn)/B(Xn)} ≤

sup
X1∈Brn/2,m

A(Xn)

B(Xn)

∫
Brn/2,m

ft(x)dx+

∫
Bc
rn/2,m

ft(x)dx. (A.1)

and upper bound the terms in above.

First we upper bound A(Xn) when ‖X1‖ ≤ rn/2. We express Nm(X1;φ(µ1),Σ) as

Nk(U ′0X1;µ1,Σ0)

and note that ‖X1‖ ≤ rn/2, ‖µ1‖ > rn and hn < σj ≤ A ∀j ≤ k implies

Nk(U ′0X1;µ1,Σ0) ≤ Ch−kn exp
−r2

n

8A2
.

Therefore A(Xn) ≤

Ch−kn exp
−r2

n

8A2

∫
(σ−2)

m−k
2 exp

−1

2σ2
(X1 − θ)′(Im − U0U

′
0)(X1 − θ)

n∏
i=2

Nm(Xi;φ(µi),Σ)dπ−1n(µ−1|k)dπ1(U0, θ|k)dπ2(σ|k).

(A.2)

Next we lower bound B(Xn) when X1 ∈ Brn/2,m. The conditional distribution π1n can be expressed as

1
wk+n−1

∑n
i=2 δµi + wk

wk+n−1Pk (see [12]). Hence B(Xn) ≥

wk
wk + n− 1

∫ n∏
i=1

Nm(Xi;φ(µi),Σ)pk(µ1)dµ1dπ−1n(µ−1|k)dπ1(U, θ|k)dπ2(σ|k).
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Now ∫
Nk(U ′0X1;µ1,Σ0)pk(µ1)dµ1 ≥

∫
S

Nk(U ′0X1;µ1,Σ0)pk(µ1)dµ1

where

S = {µ1 :

k∑
l=1

σ2
l (U ′kX1 − µ1)2

l ≤ 1}.

For µ1 ∈ S, Nk
(
U ′0X1;µ1,Σ0) ≥

∏k
1 σ
−1
j e−1/2 and pk(µ1) ≥ δkn with δkn defined in the Lemma. Therefore

∫
S

Nk(U ′0X1;µ1,Σ0)pk(µ1)dµ1 ≥ Cδkn
k∏
1

σ−1
j

∫
S

dµ1 = Cδkn

and hence when ‖X1‖ ≤ rn/2, B(Xn) ≥

Cn−1δkn

∫
(σ−2)

m−k
2 exp

−1

2σ2
(X1 − θ)′(Im − U0U

′
0)(X1 − θ)

n∏
i=2

Nm(Xi;φ(µi),Σ)

dπ−1n(µ−1|k)dπ1(U0, θ|k)dπ2(σ|k).

(A.3)

Combining (A.2) and (A.3), we get

sup
‖X1‖≤rn/2

A(Xn)

B(Xn)
≤ Cnδ−1

kn h
−k
n exp(−r2

n/8A
2).

Plug this in (A.1) to conclude Eft{A(Xn)/B(Xn)} ≤

Cnδ−1
kn h

−k
n exp(−r2

n/8A
2) + Prft(‖X‖ > rn/2) (A.4)

which converges to zero by assumption.

Under assumption B1’ and
∑
r
−2(1+α)m
n < ∞ the sequence in (A.4) has a finite sum which results in

the stronger conclusion. This completes the proof.
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A.3 Proof of Corollary (3.6)

Proof. By Theorem 3.5, to show a.s. strong posterior consistency, we need to get positive sequences rn and

hn which satisfy

n−1(rn/hn)m −→ 0,
∑

r−2(1+α)m
n <∞, and (A.5)

∞∑
n=1

nδ−1
kn h

−k
n exp(−r2

n/8A
2) <∞, (A.6)

and the prior probabilities Pr(‖θ‖ > rn|k) and Pr(min(σ) < hn|k) decay exponentially. Set rn = n1/a and

hn = n−1/b. Then (A.5) is clearly satisfied.

By the choice of pk, k ≥ 1, it is easy to check that δkn ≥ C exp
−r2n
2τ2
k

with C denoting positive constants

independent of n all throughout. Then (A.6) is clearly satisfied because of the assumption τ2
k > 4A2.

Because ‖θ‖a follows a Gamma distribution given k, k ≤ m − 1, the probability Pr(‖θ‖ > rn|k) can be

upper bounded by C exp(−λran) for some λ > 0. This decays exponentially with rn = n1/a.

Lastly it remains to check that Pr(min(σ) < hn|k), decays exponentially. When the coordinates of σ are

all equal, the probability can be upper bounded by C exp(−λh−bn ) for some λ > 0. This decays exponentially

with hn = n−1/b. In case the coordinates are iid, the probability can be upper bounded by Cn exp(−λh−bn )

which also decays exponentially by the choice of hn.

A.4 Proof of Theorem (4.1)

Proof. Simplify f1 as

f1(R, θ) = f1(R̄, θ̄) + ‖R− R̄‖2 + ‖θ − θ̄‖2

= f1(R̄, θ̄) + ‖R− R̄‖2 + ‖Rθ̄‖2 + ‖(I −R)(θ − θ̄)‖2

≥ f1(R̄, θ̄) + ‖R− R̄‖2 + ‖Rθ̄‖2. (A.7)

Equality holds in (A.7) iff θ = (I −R)θ̄. Then

f1(R, θ) = k − Tr{(2R̄− θ̄θ̄′)R}+ C

where k =Rank(R) and C denotes something not depending on R, θ. From the proof of Proposition 11.1[2],

given k one can show that the value of R minimizing f1 above is
∑k
j=1 UjU

′
j and the minimizer is unique iff

32



λk > λk+1. Then

f1(R, θ) = k −
k∑
j=1

λj + C.

Now one needs to find the k minimizing the above risk which is as mentioned. This completes the proof.

A.5 Proof of Theorem (4.2)

Proof. The minimizer w = w̄ is obvious. Then

f2(U, w̄) = ‖U − Ū‖2 + C = k1 − 2TrŪ ′(k1)U(k1) + C,

k1 being the rank of U and C symbolizing any constant not depending on U . For k1 fixed, it is proved in

Theorem 10.2[2] that the minimizer U is as in the theorem. It is unique iff Ū ′(k1)Ū(k1) is invertible. Plug that

U and the risk function becomes, as a function of k1,

f3(k1) = k1 − 2Tr(Ū ′(k1)Ū(k1))
1/2.

We find the value of k1 between 1 and m minimizing f3 and set k = k1 − 1.
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