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Abstract

It is shown the almost sure convergence and asymptotical normality of a generalization of

Kesten’s stochastic approximation algorithm for multidimensional case.

In this generalization, the step increases or decreases if the scalar product of two subsequente

increments of the estimates is positive or negative.

This rule is intended to accelerate the entrance in the ‘stochastic behaviour’ when initial con-

ditions cause the algorithm to behave in a ‘deterministic fashion’ for the starting iterations.

1 Introduction and problem statement

We consider the problem of finding the stationary point x∗ ∈ Rn of a vector field ϕ : Rn → Rn using

the stochastic approximation algorithm

xt = xt−1 − γ(st−1)yt, t = 1, 2, . . . (1)

st = (st−1 + u(−yTt yt−1))
+
, t = 2, 3, . . . (2)

where

• yt = ϕ(xt−1) + ξt, yt ∈ Rn is the tth measure of ϕ perturbated by the random vector ξt ∈ Rn;

• a+ := max{a, 0};

• u is a sigmoid function;

• The random vector x0 ∈ Rn, and the random variables s0 and s1 are initial problem conditions

of the algorithm;
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• xt ∈ Rn is the tth approximation to the stationary point x∗ ∈ Rn of ϕ.

We suppose the following assumptions apply.

Assumptions B1

1. {x0, ξ1, ξ2, . . . , } are mutually independent random vectors where vectors ξi are identically dis-

tributed with mean zero Eξt = 0 and finite covariance matrix Sξ := E ξtξ
T
t . We denote Ft the

σ−algebra made by random vectors {x0, ξ1, ξ2, . . . , ξt} and random variables s0 and s1. Assume

s0, s1 are mutually independent random variables from {x0, ξ1, ξ2, . . .}.

2. There exists positive Ω such that for each open ball I ⊂ B(Ω), P(ξt ∈ I) > 0.

3. E|x0| <∞.

Assumptions B2

1. γ(s) is a monotone decreasing function defined in [0,+∞) so γ(0) will denote the maximum value

of the step.

2.

∫ ∞
0

γ(s)ds =∞.

3.

∫ ∞
0

γ2(s)ds <∞.

Assumptions B3

1. There exists a continuous function V (x) : Rn → R+ such that

(a) V (x∗) = 0;

(b) ∇2V (x) ≤M for each x, M > 0 (the largest eigenvalue of ∇2V (x) is less than M);

(c) ϕ(x)T∇V (x) > 0 for each x 6= x∗;

(d) For each γ∗ < γ(0) and for each z0, the sequence

zt = zt−1 − γ∗ϕ(zt−1)

converges deterministically for the stationary point x∗ and verify that {V (zt), t = 1, 2, . . .}

is a monotonous decreasing sequence.

2. There exists positive R and β0 such that

ϕ(x)T∇V (x) ≥ 1

2
γ(0) · (ϕ(x)TMϕ(x) + tr(SξM)) + β0

for |x−x∗| ≥ R. This condition limits the maximum step γ(0) and guarantees infx 6=x∗ |ϕ(x)| > 0.

Assumptions B4
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Figure 1: Examples of function u.

1. u is a monotone, increasing and bounded function R→ R, for which

u+ = lim
x→+∞

u(x) > 0 e u− = lim
x→−∞

u(x).

2. Denote Eω = E[u(X(ω))] where

X(ω) = inf
|ϕ1|≤ω
|ϕ2|≤ω

[−(ξ1 + ϕ1)T (ξ2 + ϕ2)] .

Define E0 := limω→0+ Eω. Constant E0 must be positive.

Figure 1 shows possible example for function u where cases for known algorithms are included.

Comment 1 Suppose we are observing the process (1), (2) starting in t0 > 1. This new process,

with initial conditions xt0 , st0 , st0+1 and the random sequence ξt0 , ξt0+1, . . . also satisfies conditions.

Lemma 4, for example, makes use of this comment.

Comment 2 If u or the distribution of ξt are continuous, then E0 = E[u(−ξT1 ξ2)]. More, if u is

continuous and verifies u(x) > −u(−x) when x 6= 0, then B4.2 is valid for any distribution of ξt with

non zero variance.

Comment 3 We use the following notation for ϕ and V : ϕ′ denotes a matrix, ∇V a vector and ∇2V

a matrix.

Theorem 1 Suppose Assumptions B1 to B4 are verified. Then, almost surely, lim
t→∞

xt = x∗.

Assumptions for asymptotical normality are all assumptions for almost sure convergence and three

more assumptions: Assumptions B3.3, B3.4 e B4.3.

Assumption B3.3 All eigenvalues of I2−(1/E0)ϕ′(x∗) are negative, where I is the identity matrix.

Assumption B3.4 Assume Taylor decomposition for ϕ,

|ϕ(x)− ϕ′(x∗) (x− x∗)|
|x− x∗|

= O((1), when x→ x∗ . (3)
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Comment 4 From this assumption it follows

sup |ϕ(x)|/|x− x∗| <∞ (4)

because
|ϕ(x)− ϕ′(x∗) (x− x∗)|

|x− x∗|
≥ |ϕ(x)|
|x− x∗|

− |ϕ′(x∗)|

and so

|o(1)| ≥ |ϕ(x)|
|x− x∗|

− |ϕ′(x∗)|

|ϕ(x)|
|x− x∗|

≤ |ϕ′(x∗)| − |o(1)| <∞

Assumption B4.3 Assume the Taylor decomposition for function u, u(x+ ∆x) = u(x) + u′(θ)∆x

for θ between x and x+ ∆x.

Theorem 2 Let xt be defined by (1) and (2) for which almost sure convergence assumptions can be

verified. Besides, one can also verify Assumptions B3.3, B3.4 e B4.3. If γ(s) = 1/s then

√
t(xt − x∗)

d→ N(0, V ) (5)

where
d→ denotes convergence in distribution, and V is a positive definite matrix and unique solution

of the Lyapunov equation (see Theorem 3 in Section 4)(
I

2
− (1/E0)ϕ′(x∗)

)
(−V ) + (−V )

(
I

2
− (1/E0)ϕ′(x∗)

)T
= (1/E0)2Sξ . (6)

Comment 5 The explicit solution of equation (6) is

(−V ) = −
∫ ∞
0

eW ·tSeW
T ·tdt

where W = I
2 − (1/E0)ϕ′(x∗), V is positive definite. Demonstration of this result can be find, for

example, in Theorem 12.3.3 in Lancaster e Tismenetsky [3].

2 Proof of almost sure convergence

Demonstration of the almost sure convergence follows the work for the unidimensional case by Plakhov

e Cruz (2004) [6]

Without loss of generality we suppose x∗ = 0 so ϕ(x∗) = 0.

Lemma 1 For each ε > 0 exists m = m(ε) such that, almost surely, it occurs (i) exists t such that

|xt| < ε, or (ii) exists t such that |xt| < R and st ≤ m. (Remember that R is defined in B3.2)

Proof. Choose ε > 0 and define the stopping time

τ = τ(ε,m) = inf{t : |xt| < ε or (|xt| < R and st ≤ m)}.
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Our aim is to prove that for some m we have P(τ =∞) = 0.

Consider the sequence Et = E[V (xt) I(t < τ)].

We introduce the simplified notation V (xt) = Vt, I(t < τ) = It, ∇V (xt) = ∇t, γ(st) = γt, and

using that It ≤ It−1, we obtain

Et − Et−1 = E[VtIt − Vt−1 It−1] ≤ E[(Vt − Vt−1) It−1]. (7)

Using Taylor expansion

Vt = V (xt−1 − γt−1yt) = Vt−1 − γt−1yTt ∇t−1 +
1

2
γ2t−1y

T
t ∇2Vt−1(x′)yt,

where x′ is a point between xt and xt−1. Replacing yt for ϕt−1 + ξt and, in agreement with B3.1, one

obtains

Vt − Vt−1 ≤ −γt−1ϕTt−1∇t−1 − γt−1ξTt ∇t−1 +
1

2
γ2t−1(ϕTt−1Mϕt−1 + ξTt Mξt). (8)

Using (7) and (8) and observing that each values γt−1, ϕt−1, It−1 is determined by xt−1 and st−1 and

so, mutually independent of ξt (Condition B1.1),

Et − Et−1 ≤

≤ E[−γt−1ϕTt−1∇t−1 − γt−1ξTt ∇t−1 +
1

2
γ2t−1(ϕTt−1Mϕt−1 + ξTt Mξt) It−1] =

= E[−γt−1ϕTt−1∇t−1] + E[−γt−1ξTt ∇t−1] +

E[
1

2
γ2t−1(ϕTt−1Mϕt−1) It−1] +

E[
1

2
γ2t−1 It−1] · E[ξTt Mξt]

then using

• E[−γt−1ξTt ∇t−1] = 0;

• E[ξTt Mξt] ≤ tr(SξM);

we have

Et − Et−1 ≤≤ E[−ϕTt−1∇t−1 +
1

2
γt−1(ϕTt−1Mϕt−1 + tr(SξM)))γt−1 It−1] . (9)

If It−1 = 1, then (i) |xt| ≥ R, or (ii) |xt| ≥ ε and st ≥ m. In case (i), using B3.2, one obtains

− ϕTt−1∇t−1 +
1

2
γt−1(ϕTt−1Mϕt−1 + tr(SξM)) ≤ −β0 . (10)

In case (ii) is valid that γt < γ(m) and define δε := inf{ϕ(x)T∇V (x), for all |x| ≥ ε}. In this context

−ϕTt−1∇t−1 +
1

2
γt−1(ϕTt−1Mϕt−1 + tr(SξM)) ≤

≤ −δε +
1

2
γ(m)(ϕTt−1Mϕt−1 + tr(SξM)) := −β(ε,m) (11)
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We choose m such that β(ε,m) > 0 and denote β = inf{β0, β(ε,m)}. So, in both cases, the expression

between parentesis in right side of (9) is less than −β · γt−1 It−1 and so

Et − Et−1 ≤ −β · E[γt−1 It−1].

Using that st ≤ s0 + tu+ and E It = P(t < τ) one have

Et − Et−1 ≤ −β γ(s0 + tu+) P(t < τ);

by P(j < τ) ≥ P(t < τ) when j < t and, using induction argument,

Et ≤ E1 − βP(t < τ)

t−1∑
j=0

γ(s0 + ju+) .

where Ẽ0 := E(V (x0) I(0 < ν)) <∞ by Assumption B1.4.

Function V is positive for x 6= x∗, so Et ≥ 0, and from here it follows

P(t < τ) <
Ẽ0

β
∑t−1
j=0 γ(s0 + ju+)

.

When t → ∞ and using
∑∞
j=0 γ(s0 + ju+) = ∞ (inferred from Assumption B2.2), one can conclude

that P (τ =∞) = 0.
tu

Lemma 2 For each ε > 0 and m > 0 exists δ positive such that if |x0| < R and s0 ≤ m then

P(exists t, |xt| < ε) ≥ δ .

Proof. We consider function V defined in Assumptions B4. Let

ε̄ = inf{V (x), |x| ≥ ε}, and

R̄ = sup{V (x), |x| ≤ R}

then |x0| ≤ R⇒ V (x0) ≤ R̄ and V (x) < ε̄⇒ |x| < ε.

We will show that V (xt) < ε̄ for some t. Denote Vt := V (xt) and considering the decomposition

Vt = V0
V1
V0

V2
V1
· · · Vt

Vt−1

First define the deterministic process with constant step ρ ≤ γ(0)

zt = zt−1 − ρϕ(zt−1), t = 1, 2, . . .

and by Assumption B3.1, exists V (·) such that {V (zt)} converges monotonically to zero. Using Taylor

expansion

V (zt) = V (zt−1 − ρϕ(zt−1)) =

= V (zt−1)− ρϕ(zt−1)T∇V (zt−1) +

+
ρ2

2
ϕ(zt−1)T∇2V (z′)ϕ(zt−1)

= V (zt−1)− ρ×

(ϕ(zt−1)T∇V (zt−1)− ρ

2
ϕ(zt−1)T∇2V (z′)ϕ(zt−1))

6



for a certain vector z′ between zt and zt−1. Define

U(z, ρ) :=
1

V (z)
×
(
ϕ(z)T∇V (z)− ρ

2
ϕ(z)T∇2V (z′)ϕ(z)

)
where z′ is a point between z and z − ρϕ(z) and, since V (zt) decreases monotonically, then it is

necessary that U(·, ·) > 0. Define

Ū := inf
ε≤|z|≤R
ρ≤γ(0)

U(z, ρ)

where Ū is a positive constant because U(·, ·) > 0 in ε ≤ |z| ≤ R and ρ ≤ γ(0).

Now, we consider Taylor expansion using the original process

V (xt) = V (xt−1 − γ(st−1)ϕ(xt−1)− γ(st−1)ξt))

= V (xt−1 − γ(st−1)ϕ(xt−1))−

−γ(st−1)ξTt ∇V (xt−1 − γ(st−1)ϕ(xt−1)) +
γ(st−1)

2
ξTt ∇V 2(x′′)ξt

and defining ζt := |ξt| we have for the last term

−γ(st−1)ξTt ∇V (xt−1 − γ(st−1)ϕ(xt−1)) +
γ2(st−1)

2
ξTt ∇2V (x′′)ξt ≤

γ(0)ζt|∇V (xt−1 − γ(st−1)ϕ(xt−1))|+ γ2(0)

2
ζ2tM ≤

ζtCξ

with the following justification

1. imposing ζt < 1;

2. given ε ≤ |x| ≤ R then xt−1 and ϕ(xt−1) are vectors from a closed and limited set and γ(st−1) ≤

γ(0), so ∇V (xt−1 − γ(st−1)ϕ(xt−1)) could be bounded.

From definition of function U(·, ·),

V (xt) ≤ V (xt−1)(1− γ(st−1) · U(xt−1, γ(st−1))) + ζt · Cξ

and using 1/V (x) ≤ 1/ε̄, for ε ≤ |x| ≤ R, and that γ(st−1) > γ(m+ (t− 1) · u+),

Vt
Vt−1

= 1− γ(st−1) · Ū + ζt · Cξ/ε̄ ≤

≤ 1− γ(m+ (t− 1)u+) · Ū + ζt · Cξ/ε̄ .

Denoting Gt := 1 − γ(m + (t − 1)u+) · Ū we have Gt < 1. Divergence of the series
∑
t γ(m + t · u+)

implies that the productory
∏t−1
i=1 Gi goes to zero. Using that Gt ≤

√
Gt < 1 one can choose ζt such

that

Gt + ζt · Cξ/ε̄ ≤
√
Gt < 1 (12)

and
Vt
Vt−1

≤
√
Gt
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whenever that ε ≤ |xt−1| ≤ R and |ξt| < ζt < 1. We choose n such that R̄
∏n−1
i=1

√
Gt < ε̄ and suppose

we have |x0| < R, s0 ≤ m and |ξt| < ζt when 1 ≤ t ≤ n − 1. Then, for some t ∈ {1, . . . , n}, |xt| < ε

with probability superior to

δ := P(|ξ1| < ζ1, |ξ2| < ζ2, . . . , |ξn| < ζn),

since from Assumption B1.2 P (ξt ∈ I) > 0, for any I.
tu

From Lemmas 1 and 2 we have for each ε > 0 that exists δ > 0 such that for arbitrary initial

conditions x0, s0, s1

P(for some t, |xt| < ε) > δ.

Then, we can choose a positive integer number n = n(x0, s0, s1) such that

P(for some t ≤ n, |xt| < ε) > δ/2 .

Denote p̄ = sup P(for each t, |xt| ≥ ε), being the supremum over all initial conditions x0, s0, s1. Fix

x0, s0, s1; then

P(for each t, |xt| ≥ ε) =

= P(for each t > n, |xt| ≥ ε
∣∣∣ for each t ≤ n, |xt| ≥ ε) · P(for each t ≤ n, |xt| ≥ ε) ≤

≤ p̄ (1− δ/2). (13)

Taking supremum of the L.S. of (13) over all triple (x0, s0, s1) and denote it by p̄. Then, we obtain

the inequality p̄ ≤ p̄ (1− δ/2) from which p̄ = 0. So, we obtain the following Lemma

Lemma 3 For each ε > 0, almost surely exists t such that |xt| < ε.

Lemma 4 Choose ε > 0 and η > 0. Then, exists ε1 > 0 and δ > 0 such that if |x0| < ε1 then

P(for some t, |xt| < ε and st ≥ η) > δ .

Proof. Starting by xt = x0 −
∑t
i=1 γi−1yi and using Taylor expansion,

V (xt) = V (x0 −
t∑
i=1

γi−1yi) ≤

≤ V (x0) + |∇V (x0)|
t∑
i=1

γi−1|yi| cos(yi,∇V (x0)) + C1|
t∑
i=1

γi−1yi|2 .

To guarantee the increase in step counter st required by this Lemma we consider two conical

symmetrical sections where vectors yt will stay and where we impose a maximum and a minimum
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length for |yt|, yI ≤ |yt| ≤ yII , with yI , yII to be defined. We take x0 as a reference point with

gradient ∇0 := ∇V (x0). As we will see, we are interested in limiting the internal product

yT∇V (x0) = |yt| · |∇0| · cos(yt,∇0)

We choose yodd belongs to the conical section on the opposite side of vector ∇0 and yeven to the conical

section. We choose a value θ for the internal angle of the cone centrered in vector ∇0 with θ belonging

to (0, π/2). In this case cos(yt,∇0) is limited by

− 1 ≤ cos(yt,∇0) ≤ − cos(θ), t odd, (14)

cos(θ) ≤ cos(yt,∇0) ≤ 1, t even . (15)

Using (14) and (15) we have

− yII ≤ |yt| cos(y1,∇0) ≤ −yI cos(θ), odd case, (16)

yI cos(θ) ≤ |yt| cos(y2,∇0) ≤ yII , even case. (17)

It is possible to show V (xt) < ε̄ if we prove

V (x0) < ε̄/3; (18)∣∣∣∣∣
t∑
i=1

γi−1|yi||∇0| cos(yi,∇0)

∣∣∣∣∣ < ε̄/3; (19)

C1|
t∑
i=1

γi−1yi|2 < ε̄/3. (20)

From (18) we can estimate ε1 by Assumption B3.3.

From (20) we conclude

C1|
t∑
i=1

γi−1yi|2 ≤ C1y
2
II

∞∑
i=1

γ2i−1 < ε̄/3 (21)

and from where we can choose yII (by Assumption B2.2 the series is convergent).

Because yt belongs to symmmetrical conical sections,

u(−yTt yt−1) ≤ u(y2I cos(π − θ)) = u(−y2I cos θ), t = 1, 2, . . . , n− 1

therefore

st ≥ (t− 2)u(−y2I cos θ), t = 3, 4, . . . , n . (22)

To satisfy st ≥ η required by this Lemma’s statement, we assume yI ≥ yII/2, and

n− 2 ≥ η

u(−(y2II/4) cos θ)
(23)

obtained from (22).

9



Developing the L.S. of (19) we have by (16) and (17),

−yII
t∑
i=1

(odd)

γi−1 + yI cos(θ)

t∑
i=1

(even)

γi−1 ≤

≤
t∑
i=1

γi|yi| |∇0| cos(yi,∇0) ≤ (24)

≤ −yI cos(θ)

t∑
i=1

(odd)

γi−1 + yII

t∑
i=1

(even)

γi−1 .

Odd sum is bigger than even sum if we start at i = 1. So∣∣∣∣∣
t∑
i=1

γi−1|yi| |∇0| cos(yi,∇0)

∣∣∣∣∣ ≤ yII
t∑
i=1

(odd)

γi−1 − yI cos(θ)

t∑
i=1

(even)

γi−1 (25)

Using (25), Condition (19) is satisfied if

yII

t∑
i=1

(odd)

γi−1 − yI cos(θ)

t∑
i=1

(even)

γi−1 ≤ ε̄/3 (26)

where we can choose yI ≥ yII/2.

For each iteration t the values of ϕ(xt) := ϕt, yI , yII , θ are known. Let

vt :=
(ϕt−1 + ξt)

T∇0

|yt| · |∇0|

and the conditions that define the admissible region for each random vector ξt are

yI ≤ |ϕt−1 + ξt| ≤ yII
π ≤ cos−1(vt) ≤ π − θ, t odd

0 ≤ cos−1(vt) ≤ θ, t even.

(27)

We define δ1 as the smallest probability of the regions defined in each iteration t = 1, . . . , n and define

δ := δn1 . Probability δ1 is positive by Assumption B1.3.
tu

From Lemmas 3 and 4 it follows that for each ε > 0 and η > 0 the probability that for some t,

|xt| < ε and st ≥ η be greater than a positive δ, will depend only on ε and η. Repeating the argument

of Lemma 3 we have

Lemma 5 For each ε > 0 and η > 0, almost surely exists t such that |xt| < ε and st ≥ η.

We define the stopping time τ(ε) = inf{t : |xt| ≥ ε}.

Lemma 6 For each 0 < θ < E0 exists a constant ε0 > 0 and a sequence πn such that limn→∞ πn = 0

and

P(st > s0 + tθ − n for each t < τ(ε0)) > 1− πn.
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Proof. We will show that

P(exists t < τ(ε0) such that st ≤ s0 + tθ − n) ≤ πn → 0 .

From B4.2 it follows that for some ω0 positive exists Eω0
> θ where Eω0

= E[u(X(ω0))] and

X(ω0) = inf
|ϕ1|≤ω0
|ϕ2|≤ω0

[−(ξ1 + ϕ1)T (ξ2 + ϕ2)]. (28)

We choose ε0 such that

sup
|x|<ε0

|ϕ(x)| ≤ ω0

and define the sequence {s̃t} by

s̃0 = s0; s̃t = s̃t−1 + u(X
(ω0)
t ) (29)

where

X
(ω0)
t = inf

|ϕt−1|≤ω0
|ϕt−2|≤ω0

[−(ξt + ϕt−1)T (ξt−1 + ϕt−2)]. (30)

Comparing (29) and (30) with (2), for t < τ(ε0), we obtain

s̃t ≤ st. (31)

From (29) it follows that

s̃t − s0 = tEω0 + Ievent + Ioddt (32)

where

Ievent =

t∑
i=1

(i even)

[u(X
(ω0)
t )− Eω0

], Ioddt =

t∑
i=1

(i odd)

[u(X
(ω0)
t )− Eω0

]

where Ievent and Ioddt are sums of independent and identically distributed random variables with mean

zero and variance linear with t.

Comment 6 Both variables Ievent e Ioddt are asymptotical normal however they are dependent from

each others. We use the following argument to estimate the probability of their sum: X+Y < a implies

X < a/2 or Y < a/2 where X and Y are random variables and a a real constant. Then,

P(X + Y < a) ≤ P(X < a/2) + P(Y < a/2) ' 2P(X < a/2).

So, using that Var Ievent = t · V I1 , we have

P( Ievent + Ioddt < 2a) . 2P( Ievent < a) ≤ 2Φ(
a√

t
√
V I1

). (33)

From the event st ≤ s0 + tθ − n, we know that s̃t ≤ st for t < τ(ε0). It follows

s̃t ≤ s0 + tθ − n⇔

s0 + tEω0
+ Ievent + Ioddt ≤ s0 + tθ − n⇔

Ievent + Ioddt ≤ −t(Eω0 − θ)− n . (34)

11



Comment 7 We will use the following argument, where {Xi, i = 1, . . .} is a sequence of random

variables,

P(exists t < τ such that Xt < a) ≤
τ∑
i=1

P(Xi < a) ≤
∞∑
i=1

P(Xi < a) . (35)

By (33), (34) and (35) it follows

P(exists t < τ(ε0) such that st ≤ s0 + tθ − n) ≤

P(exists t < τ(ε0) such that Ievent + Ioddt ≤ −t(Eω0
− θ)− n) ≤

∞∑
i=1

P( Ieveni + Ioddi ≤ −i(Eω0
− θ)− n) .

2

∞∑
i=1

P(
Ieveni√
iVI
≤ −
√
i
Eω0
− θ√
V I

− n√
iVI

) ≤

2

∞∑
i=1

Φ(−
√
iK1 −

n√
i
K2) := πn

for certain constants K1 > 0 and K2 > 0. Last series is convergent and so πn → 0, then

πn := P(exists t such that Ievent + Ioddt ≤

≤ −n− t(Eω0
− θ))→ 0 when n→∞.

tu

Now, choose θ and ε0 as in Lemma 6, and arbitrarily positive values ε < ε0 and n, and define the

stopping time

ν = ν(n, ε) = inf{t : |xt| ≥ ε or st ≤ s0 − n+ tθ}

and choose ε1 > 0 such that

sup
|x|<ε1

V (x) <
1

2
inf
|x|>ε

V (x).

Lemma 7 Let |x0| < ε1, so

P(ν <∞) ≤ K
∫ ∞
s0−n−1

γ2(s)ds+ πn,

where K is a constant depending on ε.

Proof. Using (8) on Lemma 1,

Vt − Vt−1 ≤ −γt−1ϕTt−1∇Vt−1 − γt−1ξTt ∇Vt−1 + 1/2γ2t−1(ϕTt−1Mϕt−1 + ξTt Mξt)

and let Vt − V0 ≤ I ′t + I ′′t where

I ′t =

∣∣∣∣∣
t∑
i=1

γi−1ϕ
T
i−1∇Vi−1 + γi−1ξ

T
i ∇Vi−1

∣∣∣∣∣
I ′′t = 1/2

t∑
i=1

γ2i−1(ϕTi−1Mϕi−1 + ξTi Mξi).

12



Let δ := (1/2) inf |x|>ε V (x). For |xt| > ε then Vt − V0 > δ, therefore,

I ′t + I ′′t ≥ Vt − V0 > δ,

implying I ′t > δ/2 or I ′′t > δ/2. We wish to estimate P(ν <∞). Denote

P ′ = P(I ′ν I(ν <∞) > δ/2)

P ′′ = P(I ′′ν I(ν <∞) > δ/2)

and using Lemma 6,

P(ν < ε) ≤ πn + P ′ + P ′′. (36)

Using Markov’s inequality (for example, [9, p. 59]), I2(·) = I(·), and I(i−1 < ν <∞) < I(i−1 <

ν),

P ′ ≤ 4

δ2
E[I ′ν

2 I2(ν <∞)] =

=
4

δ2
E

(ν−1∑
i=1

γi−1(ϕTi−1 + ξTi )∇Vi−1)

)2

· I(ν <∞)


=

4

δ2

∞∑
i,j=1

E[γi−1(ϕTi−1 + ξTi )∇Vi−1 I(i− 1 < ν)×

×γj−1(ϕTj−1 + ξTj )∇Vj−1 I(j − 1 < ν)].

Recall that variables γi−1, Vi−1, I(i − 1 < ν) and ξi are mutually independent. We conclude that

terms with i 6= j are zero. So,

P ′ ≤ 4

δ2

∞∑
i=1

E[γ2i−1(ϕTi−1∇Vi−1)2(ξTi ∇Vi−1)2 I(i− 1 < ν)] ≤ K ′E
ν−1∑
i=1

γ2i−1 (37)

where K ′ is a constant that verifies

(4/δ2) · sup
|x|<ε

(ϕTi−1∇Vi−1)2 · sup
|x|<ε

E[ξTi ∇Vi−1]2 < K ′.

Using P(X > δ/2) ≤ E|X|
2/δ ,

P ′′ ≤ 2

δ
(1/2)E[

ν−1∑
i=1

γ2i−1(ϕTi−1Mϕi−1 + ξTi Mξi)] ≤ K ′′
ν−1∑
i=1

γ2i−1 (38)

where K ′′ verifies

(2/δ) sup
|x|<ε

ϕTt−1Mϕi + EξTi Mξi < K ′′

using EξξT := Sξ.

For t < ν, st > s0 + tθ − n, then γt < γ(s0 − n+ tθ), and

E

[
ν−1∑
i=1

γ2i

]
<

∞∑
i=1

γ2(s0 − n+ iθ) ≤ 1

θ

∫ ∞
s0−n−1

γ2(s)ds. (39)

13



Taking K = θ−1(K ′ +K ′′), from (36), (37), (38) and (39) we obtain Lemma 7.
tu

Now, choose positive ε < ε0 and choose n and η such that 1 − πn − K
∫∞
η−n−1 γ

2(s)ds =: δ be

positive. Choose also ε1 = ε1(ε) as defined above. In agreement with Lemmas 5 and 7, almost surely

exists t0 such that |xt0 | < ε1, st0 ≥ η, and the probability for all t ≥ t0, |xt| < ε exceeds δ.

We define the sequence of stopping times τ1 = 1,

τi+1 = inf{τ > τi : |xτ | ≥ ε, and for some τi ≤ t < τ, |xt| < ε1 and st > η}, i = 1, 2, . . . .

We have

P(τi+1 =∞| τi <∞) ≥ δ,

from

P(τi+1 <∞) = P(τi+1 <∞| τi <∞) P(τi <∞) ≤ (1− δ) P(τi <∞).

So, P(τi <∞)→ 0 quando i→∞; implying that almost surely i0 = sup{i : τi <∞} is finite.

In accordance to Lemma 5, almost surely exists t0 ≥ τi0 such that |xt0 | < ε1 and st0 > η; from here

we conclude that |xt| < ε when t > t0. Theorem 1 is proved. �
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3 Proof of the asymptotical normality

The central idea of the proof follows the work of Delyon and Juditsky (1993) [1].

Lemma 8 (Delyon e Juditsky [1]) Let (νt) be a random sequence of real numbers such that νt → 0

almost surely when t→∞. Then exists a deterministic sequence (at) such that

at → 0 and νt/at → 0 almost surely. (40)

In what follows o and O have the standard deterministic meaning however many times they repre-

sent stochastic random variables belonging to Ft σ−algebra of events.

Lemma 9 Let {zi, i = 1, . . .} be a sequence of non-negative random variables verifying zi → 0 almost

surely, and let {|ξi|}, be a sequence of iid random variables with finite variances. Possibly, variables

zi and ξi are dependent. Then
t∑
i=1

zi |ξi| = o(t)

almost surely.

Proof. From Lemma 8 there exists a deterministic sequence {ai} such that zi/ai → 0 almost surely.

Then 0 ≤ zi(ω)/ai < M(ω) for each elementary event ω. Denote ζi := |ξi| − µ where µ := E(|ξ|), so

Eζi = 0 and Varζi <∞.

Let St =
∑t
i=1 aiζi. Then St/t → 0 in probability by Chebychev inequality. Then, by Levy’s

Theorem (for example, [7] p. 211) St/t→ 0 almost surely because {aiζi} is a sequence of independent

random variables. (The same result using Kronecker Lemma [7] because
∑

Var(aiζi/i) <∞.)

Then St = o(t) almost surely and∣∣∣∣∣
t∑
i=1

zi
ai
· ai · |ξi|

∣∣∣∣∣ ≤ M(ω) ·
t∑
i=1

ai · |ξi|

= M(ω) ·
t∑
i=1

(ai · ζi + ai · µ|ξ|) = M(ω) · o(t) = o(t) almost surely.

tu

Recall definition of E0 in Assumption B4.2.

Lemma 10 Let s0 and s1 be random variables which are initial conditions of the process {st}, defined

in (2). Then

γ(st) = 1/st =
1

E0t
(1 + ot), almost surely (41)

where ot is a random variable defined in Ft and for which limt→∞ ot = 0 almost surely.
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Proof. Assumption B4.3 permits the decomposition

u(−yi−1yi) = u(−(ϕi−2 + ξi−1)T (ϕi−1 + ξi)) =

= u(−(ϕi−2 + ξi−1)T (ϕi−1 + ξi)) =

= u(−ϕTi−2ϕi−1 − ϕTi−2ξi − ϕTi−1ξi−1 − ξTi−1ξi) =

= u(−ξTi−1ξi) + u′(θi)×
(
−ϕTi−2ϕi−1 − ϕTi−2ξi − ϕTi−1ξi−1

)
(42)

where θi is a point between−yTi−1yi and−ξTi−1ξi. We also have that function u′ is limited and ϕ(xi)→ 0

from where, by Lemma 9,

t∑
i=1

u′(θi)ϕ
T
i−2ϕi−1 = o(t) (43)

t∑
i=1

u′(θi)ϕ
T
i−2ξi = o(t) (44)

t∑
i=1

u′(θi)ϕ
T
i−1ξi−1 = o(t) . (45)

So, we have

st = s0 + s1 +

t∑
i=1

(u(−yTi−1yi)− u(−ξTi−1ξi)) +

+

t∑
even

u(−ξTi−1ξi) +

t∑
odd

u(−ξTi−1ξi)

= s0 + s1 + ∆Ut + Pt + It.

By (43), (44) and (45)

∆Ut =

t∑
i=1

(u(−yi−1yi)− u(−ξi−1ξi)) = o(t) almost surely .

Each of the sums Pt and It is composed of independent terms of mean E0 and finite variance. By

the law of iterated logarithm

Pt + It = E0t+ o(
√
t log log t) .

Using limt→∞ s0/t = 0 almost surely, also for s1, we have

st = s0 + s1 + E0t+ tot + o(
√
t log log t) = (E0 + ot)t,

almost surely. Then

st = (E0 + ot)t = E0t

(
1

1− ot
E0+ot

)
=

= E0t

(
1

1 + ot

)
.

tu

Demonstration of Theorem 2 We choose x∗ = 0. From last Section, we have shown the almost

surely convergence of xt → 0 and in Lemma 10 we shown the mean beahaviour of st = E0t(
1

1+ot
)

where ot → 0 almost surely.
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By Lemma 8 we can conclude that there exists a sequence (at) of positive non random numbers

such that

at → 0 and |ot|/at → 0, |xt|/at → 0 almost surely . (46)

Comment 8 We provide an explanantion for the above fact. We can make θt := |ot|+ |xt| and then

θt → 0 almost surely. Then exists at → 0, deterministicaly, such that θt/at → 0 almost surely. From

here it follows |ot|/at → 0 and |xt|/bt → 0 almost surely.

We define the stopping times

τR = inf{t : |ot| ≥ R|at|}, σR = inf{t : |xt| ≥ R|at|} (47)

for R > 0 and

ν = min(τR, σR) . (48)

From Lemma 8 and from (46) we conclude that for each ε > 0 we can choose R <∞ such that

P(ν =∞) ≥ 1− ε. (49)

In this way, with a probability so large as we want we have a deterministic bound common to |ot| and

|xt|.

Now, consider the similar process to the algorithm in (1) but with deterministic step γt = 1/(E0t)

applied to the function ϕ(x) = αx (α is the derivative of ϕ in x∗),

zt = zt−1 −
1

E0t
(αzt−1 + ξt), z0 = x0. (50)

Asymptotical properties of this process are known (for example, Nevel’son e Has’minskii [4]). So

ztt
1/2−ε → 0, almost surely , for each ε > 0,

E|zt|2 ≤ K/t, K > 0
√
tzt

d→ N(0, V ). (51)

where V is the matrix defined in (6).

Based on Lemma 15 in the reference Section, Lemma 13 will show that, assimptotically,
√
txt and

√
tzt will have the same limiting distribuition, described in (51). �

Lemma 11 Consider the following recursive formula, where b > 0, a0 are real numbers,

0 ≤ at+1 ≤ (1− b

t
)at + O((t−1), t = 1, 2, . . . . (52)

Then at → 0.
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Proof. Consider the recursive sequence, where ε is a positive real number,

0 ≤ At+1 ≤ (1− b

t
)At + ε/t, t = t0, t0 + 1, . . . .

Then

0 ≤ At+1 ≤ At −
bAt − ε

t
, t = t0, t0 + 1, . . . .

or

0 ≤ bAt+1 − ε ≤ bAt − ε− b
bAt − ε

t
, t = t0, t0 + 1, . . . .

We write Bt = bAt − ε and

Bt+1 = Bt(1− b/t)

so Bt → 0, therefore At → ε/b.

Lemma’s sequence is

0 ≤ at+1 ≤ (1− b

t
)at + O((1)/t, t = 1, 2, . . . .

for which we choose ε > 0 such that o(1) < ε if t ≥ t0 for some t0. We define

At+1 = (1− b

t
)At + ε/t, t = t0, t0 + 1, . . .

and At0 = at0 . Now, we show 0 ≤ at ≤ At using an induction argument. Suppose At − at ≥ 0 for

t ≥ t0. For t+ 1

At+1 − at+1 = (1− b

t
)(At − at) + (ε− o(1))/t

verifying that At+1 − at+1 ≥ 0 using hypothesis. Then 0 ≤ at ≤ At.

With At → ε/b and since we can choose a small enough ε, we conclude that At → 0 and therefore

at → 0.
tu

Lemma 12 Let A be a positive definite matrix and symmetrical, a, b, c and d real vectors. Then

(a+ b+ c+ d)TA(a+ b+ c+ d) ≤ aTAa+

+3(bTAb+ cTAc+ dTAd) +

+aTAb+ bTAa+

+2aTA(c+ d) .

Proof. From

(a− b)TA(a− b) = aTAa+ bTAb− aTAb− bTAa ≥ 0⇔

⇔ aTAb+ bTAa ≤ aTAa+ bTAb

18



we have

(a+ b)TA(a+ b) = aTAa+ bTAb+ aTAb+ bTAa

≤ aTAa+ bTAb+ aTAa+ bTAb

= 2(aTAa+ bTAb) .

In a similar way

(a+ b+ c)TA(a+ b+ c) = aTAa+ bTAb+ cTAc+

(aTAb+ bTAa) + (aTAc+ cTAa) +

(bTAc+ cTAb)

≤ aTAa+ bTAb+ cTAc+

(aTAa+ bTAb) + (aTAa+ cTAc) +

(bTAb+ cTAc)

= 3(aTAa+ bTAb+ cTAc) .

So,

(a+ b+ c+ d)TA(a+ b+ c+ d) = (a+ (b+ c+ d))TA(a+ (b+ c+ d))

= aTAa+ aTA(b+ c+ d) +

(b+ c+ d)TAa+ (b+ c+ d)TA(b+ c+ d)

≤ aTAa+ 3(bTAb+ cTAc+ dTAd) +

aTAb+ bTAa+ 2aTA(c+ d) .

tu

Lemma 13 Let ∆t := xt − zt. Then
√
t∆t

pr→ 0.

Proof. From Lemma 10, γt = 1
st

= 1
E0t

(1 + ot) where ot is a random variable of Ft which converges

to 0 almost surely. Then, from (1), (2) with γt = 1/st,

xt+1 = xt −
1

E0t
(1 + ot)(ϕ(xt) + ξt+1) (53)

and

xt+1 = xt −
1

E0t
ϕ(xt)−

1

E0t
ξt+1 −

ot
E0t

ϕ(xt)−
ot
E0t

ξt+1 .

From Assumption B3.4,

ϕ(x) = (ϕ(x)− ϕ′(0)x) + ϕ′(0)x ,
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so

xt+1 = xt −
1

E0t
ϕ′(0)xt −

1

E0t
ξt+1 −

ot
E0t

ξt+1 −

− 1

E0t
(otϕ(xt) + ϕ(xt)− ϕ′(0)xt) .

Define

vt := ot
ϕ(xt)

|xt|
+
ϕ(xt)− ϕ′(0)xt

|xt|
and for t ≤ ν we have |xt| ≤ Rat and |ot| ≤ Rat

|vt| ≤ Rat sup
x

|ϕ(x)|
|x|

+ sup
|x|≤Rat

|ϕ(xt)− ϕ′(0)xt|
|xt|

≤

≤ RatM + o(1) := ct . (54)

We note that ct → 0 where ct is a positive decreasing sequence and

xt+1 = xt −
1

E0t
ϕ′(0)xt −

1

E0t
ξt+1 −

ot
E0t

ξt+1 −
1

E0t
vt|xt| .

Considering the algorithm for zt

zt+1 = zt −
1

E0t
(ϕ′(0)zt + ξt+1) =

= zt −
1

E0t
ϕ′(0)zt −

1

E0t
ξt+1

and

xt+1 = xt −
1

E0t
ϕ′(0)xt −

1

E0t
ξt+1 −

ot
E0t

ξt+1 −
1

E0t
vt|xt|,

zt+1 = zt −
1

E0t
ϕ′(0)zt −

1

E0t
ξt+1

from where

∆t+1 = ∆t −
1

E0t
ϕ′(0)∆t −

1

E0t
vt|xt| −

ot
E0t

ξt+1 .

We wish to show that
√
t∆t =

√
t(xt − zt)

pr→ 0 and for that porpouse we define Vt := ∆T
t A∆t

where A is a definite positive matrix to be specified.

First we show that E[tVt I(t < ν)]→ 0 and by Theorem 5, p. 24, follows
√
t(xt − zt)

pr→ 0. So,

Vt+1 = ∆T
t+1A∆t+1 =

= (∆t −
1

E0t
ϕ′(0)∆t −

1

E0t
vt|xt| −

ot
E0t

ξt+1)T ·

·A ·

(∆t −
1

E0t
ϕ′(0)∆t −

1

E0t
vt|xt| −

ot
E0t

ξt+1)

or, after transposition,

Vt+1 = ∆T
t+1A∆t+1 =

= (∆T
t −

1

E0t
∆T
t ϕ
′(0)T − 1

E0t
vTt |xt| −

ot
E0t

ξTt+1) ·

·A ·

(∆t −
1

E0t
ϕ′(0)∆t −

1

E0t
vt|xt| −

ot
E0t

ξt+1) .
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To estimate Vt+1 we use Lemma 12 to obtain

Vt+1 ≤ Vt +Bt + Ct +Dt

with Bt, Ct and Dt to be specified and Using I(t+1 < ν) ≤ I(t < ν) we estimate E[(t+1)Vt+1 I(t+1 <

ν)] by

E[(t+ 1)Vt+1 I(t+ 1 < ν)] ≤ E[(t+ 1)Vt I(t < ν)]

+E[(t+ 1)Bt I(t < ν)]

+E[(t+ 1)Ct I(t < ν)]

+E[(t+ 1)Dt I(t < ν)] .

Considering times when t ≤ ν we have |xt| ≤ Rat and |ot| ≤ Rat. For Bt, considering t < ν,

Bt =
3

E2
0t

2

(
∆T
t ϕ
′(0)TAϕ′(0)∆t + |xt|2vTt Avt + o2t ξ

T
t+1Aξt+1

)
≤ 3

E2
0

1

t2
(
K1 · Vt + |vt|2 · |xt|2 · |A|+ o2t |A||ξt+1|2

)
≤ 3

E2
0

1

t2
(
K1 · Vt + c2t ·R2a2t · |A|+R2a2t · |ξt+1|2 · |A|

)
≤ 3

E2
0

1

t2
(
K1 · Vt + o(1) + o(1) · |ξt+1|2

)
where K1 is a positive constant such that

∆T
t ϕ
′(0)TAϕ′(0)∆t ≤ K1∆T

t A∆t = K1Vt.

From

(t+ 1)Bt ≤
3(t+ 1)

E2
0

1

t2
(
K1 · Vt + o(1) + o(1) · |ξt+1|2

)
and using

• 3(t+1)
E2

0

1
t2 ≤

K3

t , for some positive constant K3;

• 3(t+1)
E2

0

1
t2 o(1) = o(t−1);

• E[|ξt+1|2] = tr(Sξ);

we have

E[(t+ 1)Bt I(t ≤ ν)] =
K3

t
Vt + o(t−1) .

Now we expand Ct,

Ct = ∆T
t A
−1

E0t
ϕ′(0)∆t +

−1

E0t
∆T
t ϕ
′(0)A∆t =

=
−1

t
∆T
t (Aϕ′(0)/E0 + ϕ′(0)T /E0A)∆t .
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Aiming and estimate of Ct in a useful way we find a matrix A which verifies Aϕ′(0)/E0+ϕ′(0)T /E0A =

I +A and we use also I +A ≥ (1 + β)A for a real positive constant β. We write, for A = AT ,

Aϕ′(0)/E0 + ϕ′(0)T /E0A = I +A⇔

ϕ′(0)T /E0A+Aϕ′(0)/E0 = I +A⇔

ϕ′(0)T /E0A−
A

2
+Aϕ′(0)/E0 −

A

2
= I ⇔

(ϕ′(0)T /E0 −
I

2
)A+A(ϕ′(0)/E0 −

I

2
) = I

and for use Lyapunov’s result (Theorem 3) we write the last equality as

(
I

2
− ϕ′(0)T /E0)A+A(

I

2
− ϕ′(0)/E0) = −I

where, from Assumption B3.3, I
2 − ϕ

′(0)/E0 is negative definite, therefore solution A exists and is

positive definite. Finalizing,

Ct =
−1

t
∆T
t (Aϕ′(0)/E0 + ϕ′(0)T /E0A)∆t

=
−1

t
∆T
t (A+ I)∆t

≤ −(1 + β)
1

t
Vt

We estimate the last term Dt

Dt =
−1

E0t
(2∆T

t Avt · |xt|+ 2∆T
t Aotξt+1) .

Recall that we are considering t < ν and because we can’t use |∆t| ≤ Vt we follow this

• xt = ∆t + zt from where |xt|2 ≤ |∆t|2 + |zt|2;

• 2|∆t|2 ≤ K2Vt (2 by convenience) for a certain positive constant K2.

Then,

2∆T
t Avt · |xt| ≤ 2|∆t| · |xt| · |A| · ct

≤ (|∆t|2 + |xt|2) · |A| · ct

≤ (2|∆t|2 + |zt|2) · |A| · ct

≤ (K2Vt + |zt|2) · |A| · ct

We considering again the estimation of Dt

Dt ≤
−1

E0t
(2∆T

t Avt · |xt|+ 2∆T
t Aotξt+1) ≤

≤ K2

E0t
· |A| · ct · Vt +

1

E0t
· |A| · ct · |zt|2 −

2

E0t
∆T
t Aotξt+1 .

Taking
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• E[|zt|2] = K4/t, for some constant K4;

Then

E[(t+ 1)Dt] =
K2(t+ 1)

E0t
· |A| · ct · Vt

+
t+ 1

E0t
· |A| · ct ·

K4

t

≤ o(1)Vt + o(t−1)

Now, putting all together, always considering t < ν,

(t+ 1)Vt+1 ≤ (t+ 1)Vt +
K3

t
Vt +

o(t−1)− t+ 1

t
(1 + β)Vt +

o(1)Vt + o(t−1) ≤

≤ Vt(t+ 1
K3

t
− (1 + β)

t+ 1

t
+ o(1)) + o(t−1) ≤

≤ t · Vt(1 +
1

t
+
K3

t2
− (1 + β)

t+ 1

t2
+ o(t−2)) + o(t−1) ≤

≤ tVt(1− (1 + β)
1

t
+ o(t−1)) + o(t−1) ≤

≤ tVt(1− (1 + β + o(1))
1

t
) + o(t−1) ≤

≤ tVt(1− (β/2)
1

t
) + o(t−1) .

It follows that,

E[(t+ 1)Vt+1 I(t+ 1 < ν)] ≤ E[tVt I(t < ν)] + o(t−1)

and by Lemma 12

E[tVt I(t < ν)]→ 0,

then, by Theorem 5,

tVt I(t < ν)
pr→ 0,

or
√
t(xt − zt) I(t < ν)

pr→ 0 ,

or even, by definition of convergence in probability,

∀η > 0 P(|
√
t(xt − zt) I(t < ν)| < η)→ 1 .

The following events are related by

√
t(xt − zt) < η ⇒

√
t(xt − zt) I(t < ν) < η

and by P (
√
t(xt − zt) < η) ≤ P(

√
t(xt − zt) I(t < ν) < η) we have

√
t(xt − zt)

pr→ 0 .

tu
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4 Some standard results

Theorem 3 (A. M. Lyapunov, 1947 (cited in [3], Chap. 13.1)) Let U,W ∈ Cn×n and let W

be positive definite.

(a) If U is stable then the equation

UA+AU∗ = W

as a unique solution A negavtive definite.

(b) If exists a negative definite matrix A satisfying the above equation then A is stable.

Comment 9 Stable is when all eigenvalues are negative. When all eigenvalues are negative then the

matrix is negative definite.

Lemma 14 (Markov Inequality (for example, [9])) Let Z a r.v. and g : R → [0,∞] a non

decreasing function. Then

Eg(Z) ≥ E(g(Z);Z ≥ c) ≥ g(c)P(Z ≥ c)

Theorem 4 (Martingale convergence, [9], Cap. 12) Let M be a martingale for which Mn ∈

L2,∀n. Then M is limitied in L2 iif ∑
E[(Mk −Mk−1)2] <∞

and when this we have

Mn →M∞ almost surely and in L2 .

Theorem 5 ([9], Chap. 13.7) Let (Xn) be a sequence in L1 and X ∈ L1. Then Xn → X in L1, or

similarly E(|Xn −X|)→ 0, iif, the following conditions are verifyed,

1. Xn → X in probability;

2. the sequence (Xn) is uniformly integrable (∀ε > 0∃K : E[|X|; |X| > K] < ε).

Lemma 15 (Slutsky’s Theorem, [7] Sec.8.6) If |Xt − Zt|
pr→ 0 and Xt converges in distribution

then Zt converges in distribuition for the same limit.

Theorem 6 (Kolmogorov Law of Iterated Logarithm [9]) Let X1, X2, . . . be random variables

independent and identically distributed with mean 0 and variance 1. Let Sn := X1 + · · ·+Xn. Then,

almost surely,

lim sup
Sn√

2n log log n
→ +1, lim inf

Sn√
2n log log n

→ −1 .
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