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Abstract: This paper presents a practical and simple fully nonparametric multivariate smooth-
ing procedure that adapts to the underlying smoothness of the true regression function. Our
estimator is easily computed by successive application of existing base smoothers (without
the need of selecting an optimal smoothing parameter), such as thin-plate spline or kernel
smoothers. The resulting smoother has better out of sample predictive capabilities than the
underlying base smoother, or competing structurally constrained models (GAM) for small
dimension (3 ≤ d ≤ 7) and moderate sample size n ≤ 800. Moreover our estimator is still
useful when d > 10 and to our knowledge, no other adaptive fully nonparametric regression
estimator is available without constrained assumption such as additivity for example. On a
real example, the Boston Housing Data, our method reduces the out of sample prediction
error by 20%. An R package ibr, available at CRAN, implements the proposed multivariate
nonparametric method in R.
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1. Introduction

Regression is a fundamental data analysis tool for uncovering functional relationships between
pairs of observations (Xi, Yi), i = 1, . . . , n. The traditional approach specifies a parametric family
of regression functions to describe the conditional expectation of the response variable Y given the
independent multivariate variables X ∈ R

d, and estimates the free parameters by minimizing the
squared error between the predicted values and the data. An alternative approach is to assume that
the regression function varies smoothly in the independent variable x and then estimate locally the
conditional expectation m(x) = E[Y |X = x]. This results in nonparametric regression estimators.
We refer the interested reader to Eubank [1999], Fan and Gijbels [1996] and Simonoff [1996] for a

more in depth treatment of various classical regression smoothers. The vector of predicted values Ŷi

at the observed covariates Xi from a nonparametric regression is called a regression smoother, or
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/Recursive Bias Estimation 2

simply a smoother, because the predicted values Ŷi are less variable than the original observations
Yi. Operationally, linear smoothers can be written as

m̂ = SY,

where S is a n× n smoothing matrix. Smoothing matrices S (or Sλ) typically depend on a tuning
parameter, which we denote by λ, that governs the tradeoff between the smoothness of the estimate
and the goodness-of-fit of the smoother to the data, by controlling the effective size of the local
neighborhood of the explanatory variable over which the responses are averaged. We parameterize
the smoothing matrix such that large values of λ will produce very smooth curves while small λ will
produce a more wiggly curve that wants to interpolate the data. For example, the tuning parameter
λ is the bandwidth for kernel smoother, the span size for running-mean smoother, and the scalar
that governs the smoothness penalty term for thin plate splines (TPS).

It is well known that given n uniformly distributed points in the unit cube [−1, 1]d, the expected
number of points that are covered by a ball centered at the origin with radius ε < 1, scales as
nεd. This is to say that covariates in high dimensions are typically sparse. This phenomenon is
sometimes called the curse of dimensionality. As a consequence, nonparametric smoothers must av-
erage over larger neighborhoods, which in turn produces more heavily biased smoothers. Optimally
selecting the smoothing parameter does not alleviate this problem. Indeed, when the regression
function m mapping R

d to R belongs to some finite smoothness functional classes (Hölder, Sobolev,
Besov) the optimal mean squared error rate of convergence is n−2ν/(2ν+d) where ν is the smoothing
index [see for example Tsybakov, 2009]. Common wisdom suggest avoiding general nonparamet-
ric smoothing in moderate dimensions (say d > 5) and focus instead on fitting structurally con-
strained regression models, such as additive [Hastie and Tibshirani, 1995, Linton and Nielsen, 1995,
Hengartner and Sperlich, 2005] and projection pursuit models [Friedman and Stuetzle, 1981]. The
popularity of additive models stems in part from the interpretability of the individual estimated
additive components, and from the fact that the estimated regression function converges to the
best additive approximation of the true regression function at the optimal univariate mean squared
error rate of n−2ν/(2ν+1). While additive models do not estimate the true underlying regression
function, one hopes for the approximation error to be small enough so that for moderate sample
sizes, the prediction mean square error of the additive model is less than the prediction error of a
fully nonparametric regression model.

The impact of the curse of dimensionality is lessened for very smooth regression functions. For
regression functions with ν = 2d continuous derivatives, the optimal rate is n−4/5, a value recog-
nized as the optimal mean squared error of estimates for twice differentiable univariate regression
functions. The difficulty is that in practice, the smoothness of the regression function is typically
unknown. Nevertheless, there are large potential gains (in terms of rates of convergence) if one
considers multivariate smoothers that adapt to the smoothness of the regression function. Since the
pioneer work of Lepski [1991], adaptive nonparametric estimation became a major topic in math-
ematical statistics (see for example Gyorfi et al. 2002 or Tsybakov 2009). Adaptive nonparametric
estimator can be achieve either by direct estimation (see Lepski’s method and related papers) or
by aggregation of different procedures [see Yang, 2000]. This paper presents a practical and simple
nonparametric multivariate smoothing procedure that adapts to the underlying smoothness of the
true regression function. Our estimator is easily computed by successive application of existing
smoothers, such as Thin Plate Spline or kernel smoother. Thanks to adaptivity (proven for TPS
smoother), our estimator behaves nicely in small dimension (3 ≤ d ≤ 7) with moderate sample size
n ≤ 800 and remains useful when d > 10.
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Section 2 introduces our procedure and motivates it as repeated corrections to the bias of a
smoother, where at each step, the bias is estimated by smoothing the residuals. We use the Gener-
alized Cross-Validation (GCV) criteria to stop our iterative procedure when the prediction error of
our estimate is nearly minimized. The idea of estimating the bias from residuals to correct a pilot
estimator of a regression function goes back to the concept of twicing introduced by Tukey [1977]
to estimate bias of misspecified multivariate regression models. Numerous authors have shown the
benefits of various bias reduction techniques in nonparametric regression, including He and Huang
[2009], Choi et al. [2000], Choi and Hall [1998], Hengartner et al. [2010], Hirukawa [2010].

The idea of iterative debiasing regression smoothers is already present in Breiman [1999] in the
context of the bagging algorithm. More recently, the interpretation of the L2-boosting algorithm as
an iterative bias correction scheme was alluded to in Ridgeway [2000]’s discussion of Friedman et al.
[2000] paper on the statistical interpretation of boosting. Bühlmann and Yu [2003] present the
statistical properties of the L2-boosted univariate smoothing splines and proposed an additive
procedure to deal with multivariate data. Di Marzio and Taylor [2008] describes the behavior of
univariate kernel smoothers after a single bias-correction iteration.

Section 3 applies the iterative bias reduction procedure to multivariate Thin Plate Spline smoothers.
TPS smoothers have attractive theoretical properties that facilitate our proofs of the adaptation
to the unknown smoothness of our procedure. However, implementation of the TPS is limited by
the need of the sample size to be larger than size of its parametric component. The latter grows
exponentially with the dimension of the covariates d. For practical considerations, we consider, in
Section 4, the iterative bias reduction procedure using kernel smoothers that can be applied more
generally than TPS. We discuss the use of different kernels since the choice of the kernel is important
for the iterative bias reduction procedure.

The simulation results presented in Section 5 show that for moderate dimensions of the covariates
(eg. 3 ≤ d ≤ 7), and sample sizes ranging from n = 50 to n = 800, our iterated smoother has
significantly smaller prediction error than the base smoother with using an “optimal smoothing”
parameter. We end this section with the prediction of the classical Boston housing data set (n = 506
and d = 13). The interested reader can download an R implementation of our procedure with
optimized computations for moderate sample size [Cornillon et al., 2010].

Finally, the proofs are gathered in the Appendix.

2. Iterative bias reduction

This section presents the general iterative bias reduction framework for linear regression smoothers
and shows that the resulting smoother, when combined with GCV, adapts to the underlying smooth-
ness of the regression function. The advantage of our smoother is its simplicity: we only need to
repeatedly smooth residuals using existing multivariate smoothers. The cost of adaptation is an
increase in computational complexity.

2.1. Preliminaries

Suppose that the pairs (Xi, Yi) ∈ R
d × R are related through the regression model

Yi = m(Xi) + εi, i = 1, . . . , n, (1)

where m(·) is an unknown smooth function, and the disturbances εi are independent mean zero and
variance σ2 random variables that are independent of all the covariates (X1, . . . , Xn). It is helpful

imsart-generic ver. 2009/08/13 file: pacnheml.tex date: June 8, 2011



/Recursive Bias Estimation 4

to rewrite Equation (1) in vector form by setting Y = (Y1, . . . , Yn)
′, m = (m(X1), . . . ,m(Xn))

′ and
ε = (ε1, . . . , εn)

′, to get

Y = m+ ε. (2)

Linear smoothers can be written as

m̂ = SλY, (3)

where Sλ is an n× n smoothing matrix and m̂ = (Ŷ1, . . . , Ŷn)
′, denotes the vector of fitted values.

From now on, we denote the smoothing matrix by S. Let I be the n×n identity matrix. The bias of
the linear smoother (3), conditionally on the observed values of the covariates Xn

1 = (X1, . . . , Xn),
is

E[m̂|Xn
1 ]−m = (S − I)m = −E[(I − S)Y |Xn

1 ]. (4)

2.2. Bias reduction of linear smoothers

Expression (4) for the bias suggests that it can be estimated by smoothing the negative residuals
−R = −(Y − m̂) = −(I − S)Y . An alternative approach is to estimate the bias by plugging in
an estimator for the regression function m into the expression (4). The resulting estimators are
different except if we consider using the same smoother for estimating the bias and for estimating
the initial smoother. From now on, we consider using the same smoother. The initial estimator is
given by

m̂1 = SY := S1Y.

Smoothing the residuals

b̂1 := −SR1 = −S(I − S1)Y

estimates the bias. Correcting the initial smoother m̂1 by subtracting b̂1 yields a bias corrected
smoother

m̂2 = S1Y − b̂1

= S1Y + S(I − S1)Y := S2Y.

Since m̂2 is itself a linear smoother, it is possible to correct its bias as well. Repeating the bias
reduction step k − 1 times produces the linear smoother at iteration k:

m̂k = Sk−1Y + S(I − Sk−1)Y := Sk−1Y − b̂k−1 := SkY

The resulting kth iterated bias corrected smoother becomes

m̂k = [I − (I − S)k]Y := SkY. (5)

In the univariate case, smoothers of the form (5) arise from the L2-boosting algorithm when setting
the convergence factor µk of that algorithm to one. Thus we can interpret the L2-boosting algorithm
as an iterative bias reduction procedure. From that interpretation, it follows that the L2-boosting of
projection smoothers, as is the case for polynomial regression, bin smoothers and regression splines,
is ineffective since the estimated bias

b̂ = S(I − S)Y = 0.
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2.3. Predictive smoothers

Our smoothers predict the conditional expectation of responses only at the design points. It is useful
to extend regression smoothers to enable predictions at arbitrary locations x ∈ R

d of the covariates.
Such an extension allows us to assess and compare the quality of various smoothers by how well
the smoother predicts new observations. To this end, write the prediction of the linear smoother S
at an arbitrary location x as

m̂(x) = S(x)′Y,

where S(x) is a vector of size n whose entries are the weights for predicting m(x). The vector S(x)
is readily computed for many of the smoothers used in practice. Next, writing the iterative bias
corrected smoother m̂k as

m̂k = m̂1 − b̂1 + · · · − b̂k−1

= S[I + (I − S) + (I − S)2 + · · ·+ (I − S)k−1]Y

= Sβ̂k,

it follows that we can predict m(x) by

m̂k(x) = S(x)′β̂k. (6)

2.4. Properties of iterative bias corrected smoothers

The squared bias and variance of the kth iterated bias corrected smoother m̂k (5) are

(E[m̂k|X
n
1 ]−m)

2
= m′

(
(I − S)k

)′
(I − S)km

var(m̂k|X
n
1 ) = σ2(I − (I − S)k)

(
(I − (I − S)k)

)′
,

This shows that the qualitative behavior of the sequence of iterative bias corrected smoothers m̂k

can be related to the spectrum of I−S. The next proposition collects the various results for sequence
of iterated bias corrected linear smoothers.

Proposition 1 Suppose that the singular values λj of I − S satisfy

0 ≤ λj ≤ 1 for j = 1, . . . , n. (7)

Then we have that

‖b̂k‖ < ‖b̂k−1‖ and lim
k→∞

b̂k = 0,

lim
k→∞

m̂k = Y and lim
k→∞

E[‖m̂k −m‖2|Xn
1 ] = nσ2.

The assumption that for all j, the singular values 0 ≤ λj ≤ 1 implies that I − S is a contraction,
so that ‖(I − S)Y ‖ < ‖Y ‖. This condition however does not imply that the smoother S is itself
a shrinkage smoother as defined by Buja et al. [1989]. Conversely, not all shrinkage smoothers
satisfy condition (7) of the theorem. In Sections 3 and 4, we give examples of common shrinkage
smoothers for which λj > 1, and show numerically that for these shrinkage smoothers, the iterative
bias correction scheme fails.
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The proposition indicates that the number of iterations of the bias correction scheme is analogous
to smoothing parameters of more classical smoothers: For small numbers of iterations, the smoother
is very smooth, becoming increasingly wiggly as the number of iterations increases, to ultimately
interpolate the data. Smoothers at either extreme (oversmoothing or interpolating the data) may
have large prediction errors, and the presumptions is that along the sequence of bias corrected
smoother smoothers, there will be smoothers that have significantly smaller prediction errors. In
Section 3, we show no only that this fact holds for thin plate smoothing splines, but that there exists
smoothers in that sequence that ”adapts to the unknown smoothness” of the regression function
and achieves the optimal rate of convergence. Since standard thin plate spline smoothers are not
adaptive, this demonstrates the usefulness of iterative bias correction.

2.5. Data-driven selection of the number of steps

The choice of the number of iterations is crucial since each iteration of the bias correction algorithm
reduces the bias and increases the variance. Often a few iterations of the bias correction scheme will
improve upon the pilot smoother. This brings up the important question of how to decide when to
stop the iterative bias correction process.

Viewing the latter question as a model selection problem suggests stopping rules for the number of
iterations based on Akaike Information Criteria (AIC) [Akaike, 1973], modified AIC [Hurvich et al.,
1998], Bayesian Information Criterion (BIC) [Schwarz, 1978], cross-validation, L-fold cross-validation,
Generalized cross validation [Craven and Wahba, 1979], and data splitting [Hengartner et al., 2002].
Each of these data-driven model selection methods estimate an optimum number of iterations k of
the iterative bias correction algorithm by minimizing estimates for the expected squared prediction
error of the smoothers over some pre-specified set Kn = {1, 2, . . . ,Mn} for the number of iterations.

Extensive simulations of the above mentioned model selection criteria, both in the univariate
and the multivariate settings [Cornillon et al., 2008] have shown that GCV

k̂GCV = argmin
k∈K

{
log σ̂k

2 − 2 log

(
1−

trace(Sk)

n

)}

is a good choice, both in terms of computational efficiencies and of producing good final smoothers
and asymptotic results (cf Theorem 2). At each iteration, σ̂k

2 corresponds to the estimated variance
of the current residuals.

Strongly related to the number of iteration is the smoothness of the pilot smoother, since the
smoother the pilot is, the bigger is the number of iteration. This point and the algorithm used to
select the number of iteration are not developed in this paper but are presented in greater detail in
the companion paper related to the R-package. However, one has to be sure that the pilot smoother
oversmooths. We will discuss that point in the simulation part, since it depends on the type of
smoother (thin plate spline, kernel).
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3. Iterative bias reduction of multivariate thin-plate splines smoothers

We study the statistical properties of the iterative bias reduction of multivariate thin-plate spline
smoothers. Given a smoothing parameter λ, the thin-plate smoother of degree ν0 minimizes

min
f

n∑

i=1

(Yi − f(Xi))
2 + λ




∑

i1, . . . , id ≥ 0

i1 + · · · + id ≤ ν0

∫

Rd

∣∣∣∣∣
∂i1+···+id

∂xi1 . . . ∂xiν0

f(x)

∣∣∣∣∣

2

dx


 . (8)

Thin-plate smoothing splines are an attractive class of multivariate smoothers for two reasons:
first, the solution of (8) is numerically tractable [see Gu, 2002], and second, the eigenvalues of the
smoothing matrix are approximatively known [see Utreras, 1988].

3.1. Numerical example

The eigenvalues of the associated smoothing matrix lie between zero and one. In light of proposition
1, the sequence of bias corrected thin-plate spline smoothers, starting from a pilot that oversmooths
the data, will converge to an interpolant of the raw data. As a result, we anticipate that after some
suitable number of bias correction steps, the resulting bias corrected smoother will be a good
estimate for the true underlying regression function. This behavior is confirmed numerically in the
following pedagogical example of a bivariate regression problem: Figure 1 graphs Wendelberger’s
test function [Wendelberger, 1982]

m(x, y) =
3

4
exp

(
−
(9x− 2)2 + (9y − 2)2

4

)
+

3

4
exp

(
−
(9x+ 1)2

49
+

(9y + 1)2

10

)

+
1

2
exp

(
−
(9x− 7)2 + (9y − 3)2

4

)
−

1

5
exp

(
−(9x− 4)2 − (9y − 7)2

)
(9)

that is sampled at 100 locations on the regular grid {0.05, 0.15, . . . , 0.85, 0.95}2. The disturbances
are mean zero Gaussian with variance producing a signal to noise ratio of five.

xfyf

zf

xryr

Z

True Function Data

Fig 1. True regression function m(x1, x2) (9) on the square [0, 1] × [0, 1] used in our numerical examples and a
sample of size 100 with errors and a sample of 100 points
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Figure 2 shows the evolution of the bias corrected smoother, starting from a nearly linear pilot
smoother in panel (a). At iteration k = 500 (or 499 iterative bias reduction steps), the smoother
shown in panel (b) is visually close to the original regression function. Continuing the bias correction
scheme will eventually lead to a smoother that interpolates the raw data. This example shows the
importance of suitably selecting the number of bias correction iterations.
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Fig 2. TPS regression smoothers from 100 noisy observations from (9) (see Figure 1) evaluated on a regular grid on
[0, 1] × [0, 1]. Panel (a) shows the pilot smoother, panel (b) graphs the bias corrected smoother after 500 iterations
and panel (c) graphs the smoother after 50000 iterations of the bias correction scheme.

3.2. Adaptation to smoothness of the regression function

Let Ω be an open bounded subset of R
d and suppose that the unknown regression function m

belongs to the Sobolev space H(ν)(Ω) = H(ν), where ν is an integer such that ν > d/2. Let S
denote the smoothing matrix of a thin-plate spline of order ν0 ≤ ν (in practice we will take the
smallest possible value ν0 = ⌊d/2⌋+1) and fix the smoothing parameter λ0 > 0 to some reasonably
large value. Our next theorem states that there exists a number of iterations k = k(n), depending
on the sample size, for which the resulting estimate m̂k achieves the optimal rate of convergence.
In light of that theorem, we expect that an iterative bias corrected smoother, with the number of
iterations selected by GCV, will achieve the optimal rate of convergence.

Theorem 1 Assume that the design Xi ∈ Ω, i = 1, . . . , n satisfies the following assumption: Define

hmax(n) = sup
x∈Ω

inf
i=1,...,n

|x−Xi|, and hmin(n) = min
i6=j

|Xi −Xj|,

and assume that there exists a constant B > 0 such that

hmax(n)

hmin(n)
≤ B ∀n.

Suppose that the true regression function m ∈ H(ν).

If the initial estimator m̂1 = SY is obtained with S a thin-plate spline of degree ν0, with ⌈d/2⌉ ≤
ν0 < ν and a fixed smoothing parameter λ0 > 0 not depending on the sample size n, then there is
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an optimal number of iterations k(n) such that the resulting smoother m̂k satisfies

E





 1

n

n∑

j=1

(m̂k(Xj)−m(Xj)




2

 = O

(
n−2ν/(2ν+d)

)
,

which is the optimal rate of convergence for m ∈ H(ν).

While adaptation of the L2-boosting algorithm applied to univariate smoothing splines was proven
by Bühlmann and Yu [2003], the application of bias reduction to achieve adaptation to the smooth-
ness of multivariate regression function has not been previously exploited. Rate optimality of the
smoother m̂k is achieved by suitable selection of the number of bias correcting iterations, while the
smoothing parameter λ0 remains unchanged. That is, the effective size of the neighborhoods the
smoother averages over remains constant. Selecting the optimal number of iterations is important
and we prove that result with GCV criterion using Theorem 3.2 of Li [1987].

Theorem 2 Let k̂GCV ∈ Kn = {1, . . . , ⌊nγ⌋}, 1 ≤ γ ≤ (2ν0)/d, denote the index in the sequence
of bias corrected smothers whose associated smoother minimize the generalized cross-validation cri-
teria. Suppose that the noise ε in (1) has finite 4qth absolute moment, where q > γ(2ν/d+ 1), that
is, E[|ε|4q] < ∞. Then as the sample size n grows to infinity,

‖m̂k̂GCV
−m‖2

infk∈Kn ‖m̂k −m‖2
−→ 1, in probability.

The moment condition is satisfied for Gaussian or subgaussian errors.

4. Iterative bias reduction of kernel smoothers

The matrix S of thin plate spline is symmetric and has eigenvalues in (0, 1] [see for example Utreras,
1988]. In particular, the first M0 =

(
ν0+d−1
ν0−1

)
eigenvalues are all equal to one, corresponding to the

parametric component of the smoothing spline. The sample size n needs to be at least M0, and since
from Theorem 1 we want ν0 > d/2, it follows that M0 grows exponentially fast in the number of
covariates d. In particular the dimension of the parametric component of freedom is 5, 28, 165, 1001
for d = 4, 6, 8, 10, respectively, and more generally, M0 grows like 3d/2 × (3/2)d for large d. This
feature limits the practical usefulness of TPS smoothers. For example, the regression model in
Section 5 for the Boston housing data set that has 13 covariates can not be fit with a TPS because
its sample size n = 506 < 27500 ≈ M0.

A possible resolution to this problem is to approximate the TPS smoother with a kernel smoother,
with an appropriate kernel [see Silverman, 1984, Messer, 1991]. In this section, we discuss kernel
based smoothers in general, and we give a necessary and sufficient condition on the kernel that
ensures that the iterative bias correction scheme is well behaved. We supplement our theorems with
numerical examples of both good and bad behavior of our scheme.

4.1. Kernel type smoothers

The matrix S of kernel estimators has entries Sij = K(dh(Xi, Xj))/
∑

k K(dh(Xi, Xj)), where K(.)
is typically a symmetric function in R (e.g., uniform, Epanechnikov, Gaussian), and dh(x, y) is
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/Recursive Bias Estimation 10

a weighted distance between two vectors x, y ∈ R
d. The particular choice of the distance d(·, ·)

determines the shape of the neighborhood. For example, the weighted Euclidean norm

dh(x, y) =

√√√√
d∑

j=1

(xj − yj)2

h2
j

,

where h = (h1, . . . , hd) denotes the bandwidth vector, gives rise to elliptic neighborhoods.

4.2. Spectrum of kernel smoothers

While the smoothing matrix S is not symmetric, it has a real spectrum. Write S = DK, where
K is symmetric matrix with general element Kij = K(dh(Xi, Xj)) and D is diagonal matrix with
elements Dii = 1/

∑
j K(dh(Xi, Xj)). If q is an eigenvector of S associated to the eigenvalue λ, then

Sq = DKq = D1/2
(
D1/2

KD1/2
)
D−1/2q = λq,

and hence (
D1/2

KD1/2
)(

D−1/2q
)
= λ

(
D−1/2q

)
.

Hence the symmetric matrix A = D1/2
KD1/2 has the same spectrum as S. Since S is row-stochastic,

all its eigenvalues are bounded by one. Thus, in light of Theorem 1, we seek conditions on the kernel
K to ensure that its spectrum is non-negative. Necessary and sufficient conditions on the smoothing
kernel K for S to have a non-negative spectrum are given in the following Theorem.

Theorem 3 If the inverse Fourier-Stieltjes transform of a kernel K(·) is a real positive finite
measure, then the spectrum of the Nadaraya-Watson kernel smoother lies between zero and one.

Conversely, suppose that X1, . . . , Xn are an independent n-sample from a density f (with respect
to Lebesgue measure) that is bounded away from zero on a compact set strictly included in the
support of f . If the inverse Fourier-Stieltjes transform of a kernel K(·) is not a positive finite
measure, then with probability approaching one as the sample size n grows to infinity, the maximum
of the spectrum of I − S is larger than one.

Remark 1: The assumption that the inverse Fourier-Stieltjes transform of a kernel K(·) is a real
positive finite measure is equivalent to the kernel K(·) being positive-definite function, that is, for
any finite set of points x1, . . . , xm, the matrix




K(0) K(dh(x1, x2)) K(dh(x1, x3)) . . . K(dh(x1, xm))
K(dh(x2, x1)) K(0) K(dh(x2, x3)) . . . K(dh(x2, xm))

...
...

K(dh(xm, x1)) K(dh(xm, x2)) K(dh(xm, x3)) . . . K(0)




is positive definite. We refer to Schwartz [1993] for a detailed study of positive definite functions.
Remark 2: Di Marzio and Taylor [2008] proved the first part of the theorem in the context of
univariate smoothers. Our proof of the converse shows that for large enough sample sizes, most
configurations from a random design lead to smoothing matrix S with negative singular values.
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/Recursive Bias Estimation 11

Iterative smoothing of the residuals can be computationally burdensome. To derive an alternative,
and computationally more efficient representation of the iterative bias corrected smoother, observe
that

m̂k = [I −D1/2(I −D1/2
KD1/2)kD−1/2]Y

= D1/2[I − (I −A)k]D−1/2Y.

Writing A = D1/2
KD1/2 = PAΛAP

t
A, where PA is the orthonormal matrix of eigenvectors and ΛA

diagonal matrix of their associated eigenvalues, we obtain a computationally efficient representation
for the smoother

m̂k = D1/2PA[I − (I − ΛA)
k]P t

AD
−1/2Y.

Note that the eigenvalue decomposition of A needs only to be computed once, and hence leads to
a fast implementation for calculating the sequence of bias corrected smoothers.

The Gaussian and triangular kernels are positive definite kernels (they are the Fourier transform
of a finite positive measure, [Feller, 1966]). In light of Theorem 3, the iterative bias correction
of Nadaraya-Watson kernel smoothers with these kernels produces a sequence of well behavior
smoother.

The anticipated behavior of iterative bias correction for Gaussian kernel smoothers is confirmed
in our numerical example. Figure 3 shows the progression of the sequence of bias corrected smoothers
starting from a very smooth surface (see panel (a)) that is nearly constant. Fifty iterations (see panel
(b)) produces a fit that is visually similar to the original function. Continued bias corrections then
slowly degrades the fit as the smoother starts to over-fit the data. Continuing the bias correction
scheme will eventually lead to a smoother that interpolates the data. This example hints at the
potential gains that can be realized by suitably selecting the number of bias correction steps.
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Fig 3. Gaussian kernel smoother of m(x1, x2) from n = 100 equidistributed points on [0, 1] × [0, 1], evaluated on a
regular grid with (a) k = 1, (b) 50 and (c) 10000 iterations.

The uniform and the Epanechnikov kernels are not positive definite. Theorem 3 states that
for large enough samples, we expect with high probability that I − S has at least one eigenvalue
larger than one. When this occurs, the sequence of iterative bias corrected smoothers will behave
erratically and eventually diverge. Proposition 2 below strengthens this result by giving an explicit
condition on the configurations of the design points for which the largest singular value of I − S is
always larger than one.
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Proposition 2 Denote by Ni the following set: {Xj : K(dh(Xj , Xi)) > 0}.
If there exists a set Ni which contains (at least) two points Xj , Xk different of Xi such that

dh(Xi, Xj) < 1, dh(Xi, Xk) < 1 and dh(Xj , Xk) > 1, then the smoothing matrix S for the uniform
kernel smoother has at least one negative eigenvalue.

If there exits a set Ni that contains (at least) two points Xj , Xk ifferent of Xi that satisfy

dh(Xj , Xk) > min{dh(Xi, Xj), dh(Xi, Xk)},

then the smoothing matrix S for the Epanechnikov kernel smoother has at least one negative eigen-
value.

The failure of the iterated bias correction scheme using Epanechnikov kernel smoothers is illustrated
in the numerical example shown in Figure 4. As for the Gaussian smoother, the initial smoother
(panel (a)) is nearly constant. After five iterations (panel (b)) some of the features of the function
become visible. Continuing the bias corrections scheme produces an unstable smoother. Panel (c)
shows that after only 25 iterations, the smoother becomes noisy. Nevertheless, when comparing
panel (a) with panel (b), we see that some improvement is possible from a few iterations of the bias
reduction scheme.
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Fig 4. Epanechnikov kernel smoother of m(x1, x2) from n = 100 equidistributed points on [0, 1]× [0, 1], evaluated on
a regular grid with (a) k = 1, (b) 5 and (c) 25 iterations.

5. Simulations and a real example

This section presents the results of a modest simulation study to compare the empirical mean
squared error

MSE =
1

n

n∑

i=1

(m̂(Xi)−m(Xi))
2 (10)

of our procedure to its competitors for two functions, in dimensions d = 3, 5, 7 and sample sizes
n = 50, 100, 200, 500, 800, with a noise to signal ratio of 10%. In order to exploit our theoretical
result, the pilot smoother has to oversmooth otherwise the pilot smoother will have no bias and
our iterative debiasing procedure has no more justification. So starting with a small λ will lead to
zero or a small number of iterations. Oppositely, starting with a big λ will normally lead to a large
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/Recursive Bias Estimation 13

number of iterations. We decide in this section to use the values by default in the ibr R-package. The
thin plate spline is govern by a single parameter λ that weights the contribution of the roughness
penalty. For estimating a d-valued regression function, the parametric component is M0 =

(
ν0+d−1
ν0−1

)

and we choose λ such that the initial degree of freedom of the pilot smoother equals equals 1.5M0.
The implementation for the kernel smoother is different since we could choose a different bandwidth
for each explanatory variables. We choose one bandwidth for each explanatory variable Xi such as
the effective degree of freedom for the one-dimensional smoothing matrix related to Xi has a trace
equal to 1.1 (more degree than a constant but less than a linear model). For such values, the pilot
smoothers always oversmooth.

Our simulations was designed to allow us to investigate three aspects: First, compare the perfor-
mance of the thin plate spline with smoothing parameter selected by GCV with the IBR smoother
using a thin plate spline with a large smoothing parameter. We expect that adaptation of our
method will translate into a better performance of our smoother over the optimal TPS smoother.
Second, to compare the performance between IBR smoother using either TPS and kernel based
smoothers. Since kernel smoothers do not have a parametric component (which may, or may not,
be needed to fit the data), we believe that kernel smoothers use more effectively their degree of
freedom, which translates into better performance. Third, we want to compare the performance of
fully nonparametric smoothers and additive smoothers. While with additive models we estimate an
approximation of the true regression function, it is generally believed that the approximation error
of an additive model is smaller than the estimation error of a fully multivariate smoother even for
dimensions for small sample sizes, e.g. n = 50, 100, and moderate dimensions of the covariates, e.g.
d = 5. The results of our study are summarized in Table 5 and Figure 5.

Figure 5 shows nine panels each containing the boxplots of the MSE from 500 simulations,
on a logarithmic scale on the y-axis. Moving from top to bottom ranges the regression func-
tions from the function of three variables sin(2π(x1x2)

1/2) + cos(2π(x2x3)
1/2), to the function

of five variables sin(2π(x1x2x3)
1/3) + cos(2π(x3x4x5)

1/3) and to the function of seven variables
sin(2π(x1x2x3x4)

1/4) + cos(2π(x4x5x6x7)
1/4). All the covariates are i.i.d. uniforms on the interval

(1, 2). Moving from left to right changes the sample size from n = 50, 200, 800. Within each panel,
the boxplot of MSE is shown, in the order from left to right, of additive models using the function
gam from the R package mgcv , TPS with optimal smoothing parameter using the function Tps
from the R package fields, iterative bias reduction with TPS smoother using the function ibr from
the ibr R package and iterative bias reduction with kernel smoothers, using again the ibr function.
For reasons explained in Section 4, no TPS smoothers can be evaluated for the d = 7, n = 50 panel.

Figure 5 shows that a fully nonparametric smoother is always preferred to an additive smoother,
even for relative small sample sizes and moderate dimensions.
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Fig 5. Boxplot of Mean Squared Error (MSE) of smoothers for the regression functions (from top to bottom) of three
variables sin(2π(x1x2)1/2) + cos(2π(x2x3)1/2), five variables sin(2π(x1x2x3)1/3) + cos(2π(x3x4x5)1/3) and seven
variables sin(2π(x1x2x3x4)1/4) + cos(2π(x4x5x6x7)1/4), and of sample size (from left to right) of n = 50, 200, 800.
Each panel shows the boxplot of the MSE of a GAM smoother, TPS smoother, IBR with TPS smoother and IBR
with kernel smoother.

In extensive simulations, to be reported in a follow-on paper, we observe that this qualitative
conclusion holds over a wide variety of regression functions. Generally, as expected, the TPS with
optimal smoothing parameter has a somewhat worse performance than the TPS IBR smoother.
And finally, the kernel based IBR smoother is slightly better than the TPS based IBR smoother,
especially in higher dimensions.

Table 5 gives further insight into the performance of the various smoothers. Our table presents
the ratio of the median MSE (in 500 simulation runs) of various smoothers to the median MSE of
the kernel based IBR smoother. Since all the entries are larger than one, we conclude that kernel
based IBR consistently outperforms the other smoothing procedures over the range of sample size,
number of covariates and regression functions we considered in our study.
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function n gam tps ibr-tps ibr-k
50 2.59 1.63 1.39 1
100 4.59 1.89 1.58 1

x1x2x3 200 8.38 2.14 1.73 1
500 17.9 2.56 2.08 1
800 27.4 2.82 2.39 1
50 6.72 1.70 1.09 1
100 12.0 1.80 1.19 1

sin(2π(x1x2)
1/2) + cos(2π(x2x3)

1/2) 200 22.3 1.91 1.27 1
500 46.2 1.99 1.45 1
800 67.3 2.04 1.51 1

50 2.16 1.60 1.47 1
100 3.83 1.42 1.39 1

x1x2x3x4x5 200 6.64 1.28 1.24 1
500 13.17 1.24 1.22 1
800 19.44 1.26 1.23 1
50 3.62 1.26 1 1
100 6.32 1.76 1.15 1

sin(2π(x1x2x3)
1/3) + cos(2π(x3x4x5)

1/3) 200 10.0 1.95 1.31 1
500 18.6 2.06 1.38 1
800 26.5 2.18 1.46 1

50 2.05 - - 1
100 3.11 - - 1

x1x2x3x4x5x6x7 200 5.26 3.53 3.17 1
500 9.85 2.46 2.45 1
800 13.8 2.07 2.07 1
50 3.16 - - 1
100 4.38 - - 1

sin(2π(x1x2x3x4)
1/4) + cos(2π(x4x5x6x7)

1/4) 200 6.43 1.78 1.57 1
500 11.1 1.37 1.31 1
800 14.9 1.27 1.22 1

Table 1

Ratio of median MSE over 500 simulations of a smoother and the median MSE over 500 simulations of the kernel
based IBR smoother. The smoothers, from left to right, are Generalized Additive Model (GAM), TPS with

optimally selected smoothing parameter (tps), TPS based IBR (ibr-tps) and kernel based IBR (ibr-k).

The improvement over a GAM model ranges from 100% to 6000%. This reinforces our conclusions
that fully nonparametric regressions are practical for moderately large number of covariates, even
for sample sizes as small as n = 50.

The other notable observation is that the values in the ibr-tps column are always less than those
in the tps column, showing that consistently, the TPS based IBR smoother has better performance
than TPS with optimal smoothing parameter. In our simulation study, the typical improvement is
of 20%.

5.1. Boston housing data

We apply our method on the Boston housing data. This dataset, created by Harrison and Rubinfeld
[1978] has been extensively to showcase the performance and behavior of nonparametric multivariate
smoothers, see for example Breiman and Friedman [1995] and more recently by Di Marzio and Taylor
[2008]. The data contains 13 explanatory variables describing each of 506 census tracts in the Boston
area taken from the 1970 census, together with the median value of owner-occupied homes in $1000’s.
The sample size of the data is n = 506 and the number of explanatory variables d = 13.

We compare our method with the MARS algorithm of Friedman [1991] as implemented in the R
package mda, with projection pursuit regression (function ppr), additive models using the backfit-
ting algorithm of Hastie and Tibshirani [1995] as implemented in the R packagemgcv, and additive
Boosting Bühlmann and Yu [2003] from the R package mboost.
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The predicted mean squared error is estimated by randomly splitting 30 times the data into
training sets (size n = 350) and testing sets (n = 156). We summarize the results of our analysis in
the following table:

Table 2

Predicted mean Squared Error on test observations for Boston housing data.

Method Mean Predicted Squared Error

Multivariate regression 20.09
L2Boost with component-wise spline 9.59
additive model (backfitted with R) 11.77
Projection pursuit (with R) 12.64 (4)
MARS (with R) 10.54
IBR with GCV stopping rule
and multivariate Gaussian kernel with
1.1 initial DDL per variable and 1230 iterations 7.35

Table 2 again supports our claim that the fully multivariate method presented in the paper leads
to a reduction of more than 30% in the prediction mean squared error over competing state-of-
the-art multivariate smoothing methods. A similar comparison for responses on the logarithmic
scale reveals the even larger reduction of 40% in the prediction mean squared error. Since our fully
nonparametric regression smoother has substantially smaller prediction error over additive linear
models and low-order interaction models, we conclude that there exist higher order interactions in
that data that are significant.

6. Conclusion

This paper introduces a fully multivariate regression smoother for estimating the regression function
m(X1, . . . , Xd) obtained by successive bias correction from a very smooth (biased) pilot smoother.
We show that the resulting smoother is adaptive to the underlying smoothness (see theorems 1
and 2). This adaptation to the underlying smoothness partially mitigates the effect from the curse
of dimensionality in many practical examples, and make it practical to use fully nonparametric
smoother in moderate dimensions, even for smaller sample sizes.

As in L2 boosting, the proposed iterative bias correction scheme needs a weak learner as a base
smoother S, but all weak learners are not suitable (see theorem 1). For instance, Epanechnikov
kernel smoothers are not interesting (see Theorem 3). We further note that one does not need to
keep the same smoother throughout the iterative bias correcting scheme. We conjecture that there
are advantages to using weaker smoothers later in the iterative scheme, and shall investigate this
in a forthcoming paper.

Finally, the R package ibr available at CRAN implements the proposed multivariate nonpara-
metric method in R.
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Appendix

Proof of Proposition 1

‖b̂k‖
2 = ‖ − (I − S)k−1SY ‖2

= ‖(I − S)(I − S)k−2SY ‖2 ≤ ‖(I − S)‖2‖b̂k−1‖
2

≤ ‖b̂k−1‖
2,

where the last inequality follows from the assumptions on the spectrum of I − S.

Proof of Theorem 1 Let ν0 < ν and fix the smoothing parameter λ0. Define S = Sν0,λ0
. The

eigen decomposition of S [Utreras, 1988] gives

λ1 = · · · = λM0
= 1 and

αj

1 + λ0j2ν0/d
≤ λj ≤

βj

1 + λ0j2ν0/d
,

where
( M0=
d+ν0−1

ν0−1

)
and αj and βj are two positive constants. We decide to simplify the notation using

λj ≈
1

1 + λ0j2ν0/d
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Let us evaluate the variance of the estimator:

V (m̂k, λ0, ν0) ≈ σ2M0

n
+

σ2

n

n∑

j=M0+1

[(
1− (1 −

1

1 + λ0j2ν0/d
)k
)]2

.

Choose Jn in j = M0, . . . , n, and split the sum in two parts. Then bound the summand of the first
sum by one to get

V (m̂k, λ0, ν0) ≤ σ2M0

n
+ σ2 Jn −Mo

n
+

σ2

n

n∑

j=Jn+1

[(
1− (1−

1

1 + λ0j2ν0/d
)k
)]2

.

As the function 1− (1− u)k ≤ ku for u ∈ [0, 1], we have

V (m̂k, λ0, ν0) ≤ σ2 Jn
n

+ k2
σ2

n

n∑

j=Jn+1

(
1

1 + λ0j2ν0/d

)2

≤ σ2 Jn
n

+ k2
σ2

n

n∑

j=Jn+1

1

λ2
0j

4ν0/d
.

Bounding the sum by the integral and evaluate the latter, one has

V (m̂k, λ0, ν0) ≤ σ2 Jn
n

+ k2
σ2

n

1

λ2(4ν0/d− 1)
J−4ν0/d+1
n .

If we want to balance the two terms of the variance, one has to choose the following number of

iterations Kn = O(J
2ν0/d
n ). For such a choice the variance is of order

V (m̂k, λ0, ν0) = O

(
Jn
n

)
.

Let us evaluate the squared bias of m̂k. Recall first the decomposition of Sν0,λ0
= Pν0ΛP

′
ν0 and

denote by µj,ν0 = [P ′
ν0 ]jm the coordinate of m in the eigen vector space of Sν0,λ0

.

b(m̂k, λ0, ν0) =
1

n

n∑

j=1

(1− λj)
2k µ2

j,ν0

=
1

n

jn∑

j=M0+1

(1− λj)
2k

µ2
j,ν0 +

1

n

n∑

j=jn+1

(1− λj)
2k

µ2
j,ν0

If m belongs to H(ν) it belongs to H(ν0) and we have the following relation by property of H(ν0)

1

n

n∑

j=M0+1

j2ν0/dµ2
j,ν0 ≤ M < ∞. (11)

Using the fact that λj > 0, we have:

b(m̂k, λ0, ν0) ≤
1

n

jn∑

j=M0+1

j−2ν/d
n j2ν/dn µ2

j,ν0 +
1

n

n∑

j=jn+1

j−2ν/dj2ν/dµ2
j,ν0

b(m̂k, λ0, ν0) ≤ j−2ν/d
n

jn∑

j=M0+1

j2ν/dn µ2
j,ν0 + j−2ν/d

n

1

n

n∑

j=jn+1

j2ν/dµ2
j,ν0

imsart-generic ver. 2009/08/13 file: pacnheml.tex date: June 8, 2011



/Recursive Bias Estimation 20

Using the same type of bound as in equation (11) we get

b(m̂k, λ0, ν0) ≤ j−2ν/d
n M ′ + j−2ν/d

n M ′′.

Thus the bias is of order O(j
−2ν/d
n ).

Balancing the squared bias and the variance lead to the choice

Jn = O(n1/(1+2ν/d))

and we obtain the desired optimal rate.

Proof of Theorem 2 We show that conditions (A.1) to (A.7) given by Li [1987], in theorem 3.2 are
satisfied. To make the proof self contained, we recall briefly these conditions: (A.1) limn→∞ supk∈Kn

λ(Sk) <
∞, (A.2) E(ε4m) < ∞, (A.3)

∑
k∈Kn

(nRn(k))
−m → 0,

where Rn(k) = E(‖mn − m̂k,n‖
2)/n, (A.4) : infk∈Kn n−1‖m̂k −m‖2 → 0, in probability.

(A.5) for any sequence {kn ∈ Kn} such that n−1trace(SknS
′
kn
) → 0 we have

{n−1trace(Skn)}
2/{n−1trace(SknS

′
kn
)} → 0, (A.6) supk∈Kn

n−1trace(Sk) ≤ γ1 for some 1 > γ1 >
0,
(A.7) supk∈Kn

{n−1trace(Sk)}2/{n−1trace(SkS
′
k)} ≤ γ2 for some 1 > γ2 > 0.

Conditions (A.1) to (A.4)
The eigen values of Sk (denoted as λ(Sk)) are between 0 and 1 ∀n, thus the condition (A.1) is
fulfilled. To fulfill condition (A.3) we need to calculate

∑
k∈Kn

nRn(k)
−m, where m is an integer

to be found, mn = (m(X1), . . . ,m(Xn))
′ and m̂k,n = SkY . Using Theorem 1 we have that for an

optimal choice of k, Rn(k) = O(nd/(2ν+d)). Let us choose Kn such that its cardinal is of order nγ

(1 ≤ γ ≤ (2ν0)/d), we get the order of an upper bound of
∑

k∈K nRn(k)
−m is nγ− md

2ν+d . To have

(A.3) fulfilled we need that γ − md
2ν+d < 0, that is m > γ(2ν/d + 1). Condition (A.4) is satisfied

because of Theorem 1.

Conditions (A.5) to (A.7) are related the trace of the matrix Sk and of S2
k. Let us recall first

some general remarks

1

n
trace(Sk) =

1

n


M0 +

n∑

j=M0+1

[
1− (1− λj)

k
]



where the eigen values λj are less than 1, bigger than 0 and decreasing. So trace(Sk) and trace(S2
k)

are increasing with k. By proposition 1, limkn→∞

(
1
n trace(Skn)

)
= 1 and the same is true for

trace(S2
kn
) so the choice of the maximal value of kn is important as it will be emphasize in the

proof. The last general remark is the following

(
1

n
traceSk

)2

≤
1

n
traceS2

k ≤
1

n
traceSk ≤ 1.

Thanks to Utreras [1988], we know that

λj ≈
1

1 + λ0jα0
, α0 =

2ν0
d

> 1.
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Let us write

(1− λj)
k =

[
λ0j

α0

1 + λ0jα0

]k
=

(
1 + λ−1

0 j−α0
)−k

So we have

1

n
trace(Sk) ≈

1

n
M0 +

1

n

n∑

j=M0+1

(
1−

[
1 + λ−1

0 j−α0
]−k

)

≈
1

n
M0 +

n∑

j=M0+1

gk(j).

We can write

gk(jn) = 1−
[
1 + λ−1

0 j−α0

n

]−k

= 1− exp [−k ln (1 + λ−1
0 j−α0

n )]

= 1− exp [−kλ−1
0 j−α0

n ].

Let us consider the case where jn tends to infinity. We want to ensure the following condition:
−knj

−α0
n tends to zero. Since kn = nγ consider ε > 0 such that ε < α0 − γ and assume that

jn = O(n(γ+ε)/α0),

then −kλ−1
0 j−α0

n → 0 even when k is at maximum rate of order nγ . Thus when n grows to infinity,
∀j ≥ jn we have the following approximation for gk(j):

gk(j) ≈ kj−α0λ−1
0 . (12)

Order of an upper bound of trace(Sk)/n
∀k ∈ Kn, we have when n grows to infinity:

1

n
trace(Sk) ≈

M0

n
+

1

n

jn∑

j=M0+1

gk(j) +
1

n

n∑

j=jn+1

gk(j)

≤
jn
n

+
1

n

∫ n

jn

gk(j)dj

≤
jn
n

+
kj1−α0

n

n(α0 − 1)
λ−1
0

with the last approximation which follows from equation (12). Using the fact that the maximum
rate for kn is O(nγ) and that (γ, ε) are chosen such that γ + ε < α0 we have that an upper bound

of trace(Sk)/n is of order of n
γ+ε
α0

−1
.

Order of a lower bound of trace(S2
k)/n
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∀k ∈ Kn, we have when n grows to infinity:

1

n
trace(S2

k) ≈
M0

n
+

1

n

jn∑

j=M0+1

g2k(j) +
1

n

n∑

j=jn+1

g2k(j)

≥
M0

n
+

g2k(jn)

n
(jn −M0) +

1

n

∫ n+1

jn+1

g2k(j)dj

≈
M0

n
+

jn −M0

n
g2k(j) +

k2λ−2
0

n

(jn + 1)−2α0+1

2α0 − 1
−

k2λ−2
0

n

(n+ 1)−2α0+1

2α0 − 1

with the last approximation which follows from equation (12). Using one more time equation (12)

we get that a lower bound of 1
n trace(S

2
k) if of order of k

2n
γ+ε
α0

−1−2ε−2γ .

Condition (A.5)
Using the previous calculated order, we get that the order of (trace(Sk)/n)

2(trace(S2
k)/n)

−1 is of

order k−2n
γ+ε
α0

−1+2ε+2γ . Recall that (γ, ε) are chosen such that γ+ε < α0, thus provided that ε < 1
the condition (A.5) of Li’s theorem are fulfilled.

Condition (A.6)
The n eigen values are decreasing. Consider now, jn = nζ with ζ fixed and less than one. We have
that the maximal value of the mean of the trace which occurs at kn = nγ is bounded by

1

n
trace(Sk) ≤

jn
n

+
(n− jn)

n
knj

−α0

n ,

We can easily show that the last quantity is less than a given value smaller than 1. The aim of
setting kn equal to nγ is to ensure that at the border of grid Kn, the smoother is not identity
(ie interpolating). When the smoother is too close to the identity matrix, conditions A.6 and A.7
are not fulfilled anymore. Moreover, being very close to identity is not interesting in a statistical
viewpoint.

Condition (A.7)
We want to analyze

sup
k∈Kn

(
n−1trace(Sk)

)2

n−1trace(S2
k)

Denote by

αj(k) = ln(1− (1− λj)
k),

so we have

1

n
traceSk =

1

n

∑

j

expαj(k)

1

n
traceS2

k =
1

n

∑

j

exp 2αj(k)
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Let us show that the ratio is an increasing sequence in k. Let us evaluate the sign of the derivative
of the ratio. We want to evaluate the sign of
∑

expαj(k)
∑

α′
j(k) expαj(k)

∑
exp 2αj(k)−

∑
expαj(k)

∑
expαj(k)

∑
α′
j(k) exp 2αj(k).

Simplifying and dividing by
∑

expαj(k)
∑

exp 2αj(k) leads to

1
n

∑
α′
j(k) expαj(k)

1
n

∑
expαj(k)

−
1
n

∑
α′
j(k) exp 2αj(k)

1
n

∑
exp 2αj(k)

Rewrite as

∑
α′
j(k)

βj(k)∑
βj(k)

−
∑

α′
j(k)

βj(k)
2

∑
βj(k)2

(13)

The {βj(k)}j is an increasing sequence bounded by one. It is possible to show that 13 is positive
using induction. The maximum of the quantity under consideration grid Kn is obtained at the bor-
der of the grid. Condition (A.7) can be shown to be fulfilled by using upper bound of trace(Sk)/n
and lower bound trace(S2

k)/n.

Proof of Theorem 3 For notational simplicity, we present the proof in the univariate case. Let
X1, . . . , Xn is an i.i.d. sample from a density f that is bounded away from zero on a compact set
strictly included in the support of f . Consider without loss of generality that f(x) ≥ c > 0 for all
|x| < b.

We are interested in the sign of the quadratic form u′Au where the individual entries Aij of
matrix A are equal to

Aij =
Kh(Xi −Xj)√∑

l Kh(Xi −Xl)
√∑

l Kh(Xj −Xl)
.

Recall the definition of the scaled kernel Kh(·) = K(·/h)/h. If v is the vector of coordinate vi =
ui/

√∑
l Kh(Xi −Xl) then we have u′Au = v′Kv, where K is the matrix with individual entries

Kh(Xi − Xj). Thus any conclusion on the quadratic form v′Kv carry on to the quadratic form
u′Au. To show the existence of a negative eigenvalue for K, we seek to construct a vector U =

(U1(X1), . . . , Un(Xn)) for which we can show that the quadratic form

U ′
KU =

n∑

j=1

n∑

k=1

Uj(Xj)Uk(Xk)Kh(Xj −Xk)

converges in probability to a negative quantity as the sample size grows to infinity. We show the
latter by evaluating the expectation of the quadratic form and applying the weak law of large
number. Let ϕ(x) be a real function in L2, define its Fourier transform

ϕ̂(t) =

∫
e−2iπtxϕ(x)dx

and its Fourier inverse by

ϕ̂inv(t) =

∫
e2iπtxϕ(x)dx.
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For kernels K(·) that are real symmetric probability densities, we have

K̂(t) = K̂inv(t).

From Bochner’s theorem, we know that if the kernel K(·) is not positive definite, then there exists
a bounded symmetric set A of positive Lebesgue measure (denoted by |A|), such that

K̂(t) < 0 ∀t ∈ A. (14)

Let ϕ̂(t) ∈ L2 be a real symmetric function supported on A, bounded by B (i.e. |ϕ̂(t)| ≤ B).
Obviously, its inverse Fourier transform

ϕ(x) =

∫ ∞

−∞

e−2πixtϕ̂(t)dt

is integrable and by virtue of Parseval’s identity

‖ϕ‖2 = ‖ϕ̂‖2 ≤ B2|A| < ∞.

Using the following version of Parseval’s identity [see Feller, 1966, p.620]

∫ ∞

−∞

∫ ∞

−∞

ϕ(x)ϕ(y)K(x − y)dxdy =

∫ ∞

−∞

|ϕ̂(t)|2K̂(t)dt,

which when combined with equation (14), leads us to conclude that

∫ ∞

−∞

∫ ∞

−∞

ϕ(x)ϕ(y)K(x − y)dxdy < 0.

Consider the following vector

U =
1

nh




ϕ(X1/h)
f(X1)

I(|X1| < b)
ϕ(X2/h)
f(X2)

I(|X2| < b)
...

ϕ(Xn/h)
f(Xn)

I(|Xn| < b)



.

With this choice, the expected value of the quadratic form is

E[Q] = E




n∑

j,k=1

Uj(Xj)Uk(Xk)Kh(Xj −Xk)




=
1

n

∫ b

−b

1

f(s)h2
ϕ(s/h)2Kh(0)ds

+
n2 − n

n2

∫ b

−b

∫ b

−b

1

h2
ϕ(s/h)ϕ(t/h)Kh(s− t)dsdt

= I1 + I2.
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We bound the first integral

I1 =
Kh(0)

nh2

∫ b

−b

ϕ(s/h)2

f(s)
ds

≤
Kh(0)

nch

∫ b/h

−b/h

ϕ(u)2du

≤
B2|A|K(0)

ch2
n−1.

Observe that for any fixed value h, the latter can be made arbitrarily small by choosing n large
enough. We evaluate the second integral by noting that

I2 =

(
1−

1

n

)
h−2

∫ b

−b

∫ b

−b

ϕ(s/h)ϕ(t/h)Kh(s− t)dsdt

=

(
1−

1

n

)
h−2

∫ b

−b

∫ b

−b

ϕ(s/h)ϕ(t/h)
1

h
K

(
s

h
−

t

h

)
dsdt

=

(
1−

1

n

)
h−1

∫ b/h

−b/h

∫ b/h

−b/h

ϕ(u)ϕ(v)K(u − v)dudv. (15)

By virtue of the dominated convergence theorem, the value of the last integral converges to∫∞

−∞
|ϕ̂(t)|2K̂(t)dt < 0 as h goes to zero. Thus for h small enough, (15) is less than zero, and

it follows that we can make E[Q] < 0 by taking n ≥ n0, for some large n0. Finally, convergence in
probability of the quadratic form to its expectation is guaranteed by the weak law of large numbers
for U -statistics [see Grams and Serfling, 1973, for example]. The conclusion of the theorem follows.

Proof of Proposition 2 To handle multivariate case, let each component hj of the vector h
be larger than the minimum distance between three consecutive points, and denote by dh(Xi, Xj)
the distance between two vectors. For example, if the usual Euclidean distance is used, we have

d2h(Xi, Xj) =

d∑

l=1

(
Xil −Xjl

hl

)2

.

The multivariate kernel evaluated at Xi, Xj can be written as K(dh(Xi, Xj)) where K is univariate.
We are interested in the sign of the quadratic form u′

Ku (see proof of theorem 3). Recall that if
K is semidefinite positive then all its principal minor [see Horn and Johnson, 1985, p.398] are
nonnegative. In particular, we can show that A is not semidefinite positive by producing a 3 × 3
principal minor with negative determinant. To this end, take the principal minor K[3] obtained by
taking the rows and columns (i1, i2, i3). The determinant of K[3] is

det(K[3]) = K(dh(0))
[
K(dh(0))

2 −K(dh(Xi3 , Xi2))
2
]

−K(dh(Xi2 , Xi1))×

[K(dh(0))K(dh(Xi2 , Xi1))−K(dh(Xi3 , Xi2))K(dh(Xi3 , Xi1))]

+K(dh(Xi3 , Xi1))×

[K(dh(Xi2 , Xi1))K(dh(Xi3 , Xi2))−K(dh(0))K(dh(Xi3 , Xi1))] .
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Let us evaluate this quantity for the uniform and Epanechnikov kernels.

Uniform kernel. Choose 3 points in {Xi}ni=1 with index i1, i2, i3 such that

dh(Xi1 , Xi2) < 1, dh(Xi2 , Xi3) < 1, and dh(Xi1 , Xi3) > 1.

With this choice, we readily calculate

det(K[3]) = 0−Kh(0)
[
Kh(0)

2 − 0
]
− 0 < 0.

Since a principal minor of K is negative, we conclude that K and A are not semidefinite positive.

Epanechnikov kernel. Choose 3 points {Xi}ni=1 with index i1, i2, i3, such that dh(Xi1 , Xi3) >
min(dh(Xi1 , Xi2); dh(Xi2 , Xi3)) and set dh(Xi1 , Xi2) = x ≤ 1 and dh(Xi2 , Xi3) = y ≤ 1.

Using triangular inequality, we have

det(K[3]) < 0.75(0.752 −K(y)2)−K(x)(0.75K(x)−K(y)K(min(x, y)))

−K(min(x, y))K(x)K(y) − 0.75K(x+ y)2

The right hand side of this equation is a bivariate function of x and y. Numerical evaluations of that
function show that small x and y leads to negative value of this function, that is the determinant
of K[3] can be negative.
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Fig 6. Contour of an upper bound of det(K[3]) as a function of (x, y).

Thus a principal minor of K is negative, and as a result, K and A are not semidefinite positive.
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