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Abstract

Latent Gaussian models are an extremely popular, flexible class of models. Bayesian inference for
these models is, however, tricky and time consuming. Recently, Rue, Martino and Chopin introduced
the Integrated Nested Laplace Approximation (INLA) method for deterministic fast approximate
inference. In this paper, we outline the INLA approximation and its related R package. We will
discuss the newer components of the r-INLA program as well as some possible extensions.

1 Introduction

As the statistical understanding of applied scientists increases and new techniques deliver larger, more
complicated data sets, applied statisticians are faced with increasingly complex models. Naturally, as the
complexity of these models increase, it becomes harder and harder to perform inference. Appropriately,
a great deal of effort has been expended on constructing numerical methods for performing approximate
Bayesian inference. Undoubtably, the most popular family of approximate inference methods in Bayesian
statistics is the class of Markov Chain Monte Carlo (MCMC) methods. These methods, which exploded
into popularity in the mid 1980s and have remained at the forefront of Bayesian statistics ever since,
with the basic framework being extended to cope with increasingly more complex problems.

The key advantage of MCMC methods is that, in their most vanilla incarnation, they are extremely
simple to program. This simplicity, together with their incredible flexibility, has lead to the proliferation
of these methods. Of course, there are problems: a single site auxiliary Gibbs sampler for spatial logistic
regression is known to fail spectacularly. This is just the tip of the iceberg—for even mildly complicated
models, it can be extremely difficult to construct a MCMC scheme that converges in a reasonable
amount of time.

For large models, and especially spatial models, fast convergence isn’t enough. Even if you could
sample exactly from the posterior, sampling–based methods converge like O(N−1/2), where N is the
number of samples, which suggests that you need 102p samples to get an error of around 10−p. Clearly,
if computing a single sample is even reasonably expensive, this cost will be prohibitive. In the best
case, this means that MCMC schemes for large problems typically take hours or even days to deliver
estimates that are only correct to three or four decimal places. Clearly this is less than ideal!

The only way around this efficiency problem is to consider alternatives to sampling-based methods.
The first step in constructing an efficient approximate inference scheme is to greatly restrict the class
of models that we will consider: it is näıve to expect that an efficient algorithm exists that will solve all
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of the problems that MCMC treats. With this in mind, we restrict our attention to the class of latent
Gaussian models, which we define in three stages as

yi|x ∼ π(yi|xi) (Observation equation)

x|θ ∼ N(µ(θ),Q(θ)−1) (Latent Gaussian field)

θ ∼ π(θ) (Parameter model),

where Q(θ) is the precision matrix (that is, the inverse of the covariance matrix) of the Gaussian
random vector x. In the interest of having a computable model, we will restrict Q to be either sparse or
small enough that computing multiple factorisations is not an issue. These models cover a large chunk
of classical statistical models, including dynamic linear models, stochastic volatility models, generalised
linear (mixed) models, generalised additive (mixed) models, spline smoothing models, disease mapping,
log-Gaussian Cox processes, model-based geostatistics, spatio-temporal models and survival analysis.

The Integrated Nested Laplace Approximation (INLA), builds upon the use of Laplace approxima-
tions, which were originally for approximating posterior distributions by Tierney and Kadane (1986).
The first step in the INLA approximation is to perform a Laplace approximation to the joint posterior

π(θ|y) =
π(θ)π(x,θ)π(y|x)

π(x|θ,y)

∝
π(θ)π(x,θ)π(y|x)

πG(x|θ,y)
, (1)

where πG(x|θ,y) is the Gaussian approximation to π(x|θ,y) that matches the true distribution at the
mode (Rue et al., 2009). The approximate posterior marginals for the non-Gaussian parameters can
then be constructed through numerical integration as long as the dimension of θ is not too large. The
posterior marginals for the latent field π(xi|y) are constructed by computing a Laplace approximation
to π(xi|θ,y) and then integrating out against the approximate joint posterior for θ|y. Full details of
the approximation scheme can be found in Rue et al. (2009).

2 The r-INLA program

The INLA method was designed to be provide fast inference for a large class of practical Bayesian
problems. In order to fulfil this aim, the r-INLA package was created as an R interface to the INLA
program, which is itself written in C. The syntax for the r-INLA package is based on the inbuilt glm
function in R, which highlights the effectiveness of the INLA method as a general solver for generalised
linear (mixed) models. The r-INLA package is available from http://r-inla.org.

They key to the computational efficiency of the r-INLA program is that it is based on GMRFLib, a C

library written by H̊avard Rue for performing efficient computations on Gaussian Markov random fields.
As such, r-INLA is particularly effective when the latent Gaussian field has the Markov property. This
covers the case of spline smoothing (in any dimension), as well as conditional autoregressive models and
some Matérn random fields (Lindgren et al., 2011). Such a latent field is specified through the formula
mechanism in R.

To demonstrate the r-INLA package, let us consider some survival data for myeloid leukaemia cases
in the north-west of England. The model is a Cox proportional hazard model, where the hazard depends
linearly on the age and sex of the patient, smoothly on the white blood count (wbc) and an econometric
covariate (tpi). Furthermore, it is assumed that there is a spatially correlated random effect, which
takes into account which district the patient is in. The following code performs full Bayesian inference
on the appropriate generalised additive mixed model in around seven seconds. The posterior mean
spatial effect is shown in Figure 1
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Figure 1: The posterior mean for the effect of district.

> data(Leuk)

> g = system.file("demodata/Leuk.graph", package = "INLA")

> formula = inla.surv(Leuk$time, Leuk$cens) ~ 1 + age + sex + f(inla.group(wbc),

+ model = "rw1") + f(inla.group(tpi), model = "rw2") + f(district,

+ model = "besag", graph.file = g)

> result = inla(formula, family = "coxph", data = Leuk)

3 New features

Since the original INLA paper, there have been a number of new developments. In this section, we
outline some of the most recent additions to the r-INLA package.

Manipulating the likelihood The original INLA method was limited to observation models where
each observation depended on one element of the latent Gaussian field. While this is commonly the
case, this assumption is violated, for example, when the observed data consists of area averages of the
latent field. In this case,

yi|x ∼ π



yi
∣
∣
∑

j

aijxj



 .

We further assume that the dependence of the data on the latent field is “local” in the sense that most
elements of the “A matrix” are zero. With this assumption, everything stays Markovian and fast infer-
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ence is still possible. This is implemented in the r-INLA program by modifying the control.compute

parameter in the r-INLA function call:

> res = inla(formula, family = "...", data = ..., control.compute = list(A = amat))

Beyond relaxing this restriction to the class of models considered by the r-INLA program, there
are a number of other new methods for building new models. The f() function, which r-INLA uses
to specify random effects, has two new options: replicate and copy. The first option can be used to
simply deal with the case where the likelihood requires independent replicates of the model with the
same hyperparameters. The copy option is useful in situations where the latent field uses the same
random field multiple times, possibly with different scalings.

Finally, r-INLA has been extended to include models where the data comes from different sources. In
this case, different subsets of the data will require different likelihood functions. This can be programmed
in r-INLA by re-writing the data as a matrix where the number of columns are equal to the number of
likelihoods. In the case where there are two likelihoods, each containing n data points, this is achieved
through the command

> Y = matrix(NA, N, 2)

> Y[1:n, 1] = y[1:n]

> Y[1:n + n, 2] = y[(n + 1):(2 * n)]

The r-INLA command is then modified appropriately by setting family = c("model1", "model2").

Survival models A class of models that were not considered in the original INLA paper were Bayesian
survival models. The trick is to see Bayesian survival models as just another set of Latent Gaussian
models. In some situations, this is straightforward, while at other times it requires data augmentation
tricks, which are implemented in the inla.surv() function, demonstrated in Section 2. These methods
are outlined in (Akerkar et al., 2010; Martino et al., 2010), which also discuss ways to deal with different
types of censoring.

Stochastic partial differential equations A new method for constructing computationally efficient
Gaussian random fields by taking advantage of the spatial Markov property was presented in a recent
read paper by Lindgren et al. (2011). The idea is to use the fact that these fields can be represented as
the solution to stochastic partial differential equations (SPDEs) to construct computationally efficient
approximations to them. Beyond building computationally efficient approximations to standard spatial
models, this method also allows for the construction of new classes of random fields with physically
interpretable non-stationary. These models have been implemented in r-INLA . The following chunk of
code fits a Bayesian spline through some noisy data points.

It begins by constructing a mesh on the unit square with vertices at the observation locations
(points)

> bnd = inla.mesh.segment(matrix(c(0, 0, 1, 0, 1, 1, 0, 1), ncol = 2,

+ byrow = TRUE))

> mesh = inla.mesh.create(points, boundary = bnd, refine = list(max.edge = 0.1))

The second step is to construct the SPDE model

> spde = inla.spde.create(mesh, model = "imatern")

where imatern is the intrinsic matern model with ν = 1, i.e. the spline smoothing model. Finally the
formula is constructed and the inference is performed in the standard way:
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> formula = y ~ f(data_points, model = spde) - 1

> r = inla(formula, family = "gaussian", data = list(y = y, data_points = mesh$idx$loc))

4 What the future holds

There are an almost endless number of ways that the INLA method r-INLA program can be extended.
In this section we describe some of the new features that we are currently working on.

Fixing “failures”: global Gaussian approximations The Laplace approximation proceeds by
fitting a Gaussian approximation around the mode of π(x|θ,y), however there are situations in which
this is not the most appropriate approximation. For instance, if the true distribution is bimodal, a
better ‘fit’ would be obtained by constructing a Gaussian approximation that globally approximates the
distribution.

Another situation where these more global approximation would be of use is the following case
of “failure”. Consider the problem of approximating the latent random field for the following logistic
regression model.

> n = 100

> eta = 1 + rnorm(n)

> p = exp(eta)/(1 + exp(eta))

> y = rbinom(n, size = 1, prob = p)

> bad.result = inla(y ~ 1 + f(num, model = "iid"), family = "binomial",

+ Ntrials = rep(1, n), data = list(y = y, num = c(1:100)))

Figure 2 shows the posterior for the precision of the random effect. INLA has clearly missed the correct
precision, which was 1.

So what went wrong? Quite simply there is very little information in the data and hence the model
is very prior sensitive. This sensitivity, combined with the vague prior that r-INLA uses as a default
produced the nonsense results in Figure 2.

Kronecker product models In a number of applications, the precision matrix in the Gaussian
random field can be written as a Kronecker product of two standard covariance matrices. A simple
example of this is the separable space-time model constructed by using spatially correlated innovations
in an AR(1) model:

xt+1 = φxt + ǫt,

where φ is a scalar and ǫ ∼ N(0,Qǫ
−1). In this case, the precision matrix is Q = QAR(1) ⊗Qǫ, where

⊗ is the Kronecker product.
Due to the prevalence of Kronecker product models, it is desirable to add a Kronecker product

mechanism to r-INLA . The general Kronecker product mechanism is currently in progress, but a
number of special cases are already available in the code through the undocumented group feature. For
example, a separable spatiotemporal SPDE model can be constructed using the command

> frm = y ~ f(loc, model = spde, group = time, control.group = list(model = "ar1"))

in which every observation y is assigned a location loc and a time time. At each time, the spatial
points are linked by an SPDE model, while across the time periods, they evolve according to an AR(1)
process.
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Figure 2: The precision for the latent Gaussian field is badly overestimated—the true value is φ = 1.

Extending the SPDE methodology The grouping mechanism described above can be used to
produce separable space-time models, that is models in which the covariance function can be factored
into a purely spatial and a purely temporal component. In some situations, this type of separability is an
unrealistic assumption and a great deal of research has gone into constructing classes of non-separable
spatiotemporal covariance functions. An interesting property of SPDE models is that any model built
with a sensible space-time partial differential operator will lead to a non-separable model. Furthermore,
these models will inherit the good physical properties of the deterministic PDE models, such as causality
and non-reversibility. This guarantees that the non-separability is useful, rather than simply present.

We are currently working to include the stochastic heat equation model

∂

∂t
(τ(s, t)x(s, t)) −∇ · (D(s, t)∇(τ(s, t)x(s, t))) +∇ · (b(s, t)x(s, t)) + κ2(s, t)x(s, t) = W (s, t),

where the noise process W (s, t) is white in time, but correlated and Markovian in space. The challenge
here is not simply placing the model into the r-INLA framework. This model includes temporally
varying anisotropy and temporally varying drift, and therefore, even parameterising this model is an
open problem.

Gamma frailty models: relaxing the Gaussian assumptions The assumption of Gaussian ran-
dom effects is at the very heart of the INLA approximation. However, there are a number of situations
in which this is not a realistic assumption. An example of this comes when incorporating frailty into
Cox proportional hazard models. In these models, the hazard function for individual i is modelled as

h(ti) = h0νi exp(ηi),
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where ηi is a linear model containing covariates and νi is the frailty term, which models unobserved
heterogeneity in the population. Clearly, if we take νi to be log-normal, the resulting model fits firmly in
the standard INLA framework. Unfortunately, log-normal frailties are an uncommon model, typically
the frailty term is taken to be gamma distributed. The question is, therefore, can we incorporate gamma
frailty models into the INLA framework.

The solution to this problem comes in the guise of “importance sampling”–type decomposition:

Gamma = LogNormal
︸ ︷︷ ︸

“Prior”

×
Gamma

LogNormal
︸ ︷︷ ︸

“Correction”

.

With this type of formulation, it is possible to include gamma frailty models into the INLA framework.
This approach is not entirely satisfactory—although we can theoretically do this for any model

suitably close to the log-normal (such as the log-t distribution), it is not particularly flexible. The
aim of this work is to incorporate ideas from Bayesian nonparametrics to construct a class of suitable
non-Gaussian random effects models that can be incorporated into this framework. This will massively
increase the class of models for which INLA is available.

5 Conclusion

This article was finished on 15th May, 2011 and all of the information about INLA is correct at this
time. This statement is necessary—INLA is still a project in active development. By the time you read
this, some of the ‘present’ features will have moved into the ‘past’, and the ‘future’ features will be
edging ever closer to inclusion. In fact, those who are interested can follow the progress of the INLA
project at http://inla.googlecode.com, or by frequently updating the ‘testing’ version of INLA using
the command

> inla.update(testing=TRUE)

This ‘testing’ version of INLA updates frequently and includes experimental interfaces to the newest fea-
tures. This build also has the pleasant feature of matching with the documentation on http://r-inla.org!

The r-INLA project was created to provide an easy to use tool for performing Bayesian inference
on latent Gaussian models. As such, the set of problems that r-INLA can solve is limited to those that
someone has wanted to solve. There are any number of possible extensions not listed in the ‘future’
section that we are not currently considering because no one has asked for them yet. The lesson here is
if you want r-INLA to have a particular feature, observation model or prior model, you need to ask us!

The development of the INLA project is driven entirely by the research interests of the development
team and the requests that we receive from the user community.
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