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Abstract

When collections of functional data are too large to be exhaustively observed, sur-

vey sampling techniques provide an effective way to estimate global quantities such as

the population mean function. Assuming functional data are collected from a finite

population according to a probabilistic sampling scheme, with the measurements being

discrete in time and noisy, we propose to first smooth the sampled trajectories with

local polynomials and then estimate the mean function with a Horvitz-Thompson esti-

mator. Under mild conditions on the population size, observation times, regularity of

the trajectories, sampling scheme, and smoothing bandwidth, we prove a Central Limit

Theorem in the space of continuous functions. We also establish the uniform consis-

tency of a covariance function estimator and apply the former results to build global

confidence bands for the mean function. The bands attain nominal coverage and are

obtained through Gaussian process simulations conditional on the estimated covariance

function. To select the bandwidth, we propose a cross-validation method that accounts

for the sampling weights. A simulation study assesses the performance of our approach

and highlights the influence of the sampling scheme and bandwidth choice.

Keywords : CLT, functional data, local polynomial smoothing, maximal inequalities, space

of continuous functions, suprema of Gaussian processes, survey sampling, weighted cross-

validation.
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1 Introduction

The recent development of automated sensors has given access to very large collections of

signals sampled at fine time scales. However, exhaustive transmission, storage, and analysis

of such massive functional data may incur very large investments. In this context, when

the goal is to assess a global indicator like the mean temporal signal, survey sampling tech-

niques are appealing solutions as they offer a good trade-off between statistical accuracy

and global cost of the analysis. In particular they are competitive with signal compression

techniques (Chiky and Hébrail, 2008). The previous facts provide some explanation why,

although survey sampling and functional data analysis have been long-established statisti-

cal fields, motivation for studying them jointly only recently emerged in the literature. In

this regard Cardot et al. (2010a) examine the theoretical properties of functional principal

components analysis (FPCA) in the survey sampling framework. Cardot et al. (2010b)

harness FPCA for model-assisted estimation by relating the unobserved principal compo-

nent scores to available auxiliary information. Focusing on sampling schemes, Cardot and

Josserand (2011) estimate the mean electricity consumption curve in a population of about

19,000 customers whose electricity meters were read every 30 minutes during one week.

Assuming exact measurements, they first perform a linear interpolation of the discretized

signals and then consider a functional version of the Horvitz-Thompson estimator. For a

fixed sample size, they show that estimation can be greatly improved by utilizing stratified

sampling over simple random sampling and they extend the Neyman optimal allocation

rule (see e.g. Fuller (2009)) to the functional setup. Note however that the finite-sample

and asymptotic properties of their estimator rely heavily on the assumption of error-free

measurements, which is not always realistic in practice.

The first contribution of the present work is to generalize the framework of Cardot and

Josserand (2011) to noisy functional data. Assuming data are observed with errors that

may be correlated over time, we replace the interpolation step in their procedure by a data

smoothing step based on local polynomials. We extend the previous asymptotic theory by

establishing a functional CLT for the resulting mean function estimator and proving the

uniform consistency of a related covariance estimator.

In relation to mean function estimation, a key statistical task is to build confidence

regions. There exists a vast and still active literature on confidence bands in nonparametric

regression. See e.g. Sun and Loader (1994), Eubank and Speckman (1993), Claeskens and

van Keilegom (2003), Krivobokova et al. (2010), and the references therein. When data

are functional the literature is much less abundant. One possible approach is to obtain

confidence balls for the mean function in a L2-space. Mas (2007) exploits this idea in a

goodness-of-fit test based on the functional sample mean and regularized inverse covariance
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operator. Using adaptive projection estimators, Bunea et al. (2011) build conservative

confidence regions for the mean of a Gaussian process. Another approach consists in deriving

results in a space C of continuous functions equipped with the supremum norm. This

allows to build confidence bands which can be visualized and interpreted as opposed to

L2-confidence balls. It is adopted for example by Faraway (1997) to build bootstrap bands

in a varying-coefficients model, by Cuevas et al. (2006) to derive various bootstrap bands

for functional location parameters, by Degras (2009, 2010) to obtain normal and bootstrap

bands using noisy functional data, and by Cardot and Josserand (2011) in the context

of a finite population. In the latter work, the strategy was to first establish a CLT in the

space C and then derive confidence bands based on a simple but rough approximation to the

supremum of a Gaussian process (Landau and Shepp (1970)). Unfortunately, the associated

bands depend on the data-generating process only through its variance structure and not

its correlation structure, which may cause the empirical coverage to differ from the nominal

level. The second innovation of our paper is to propose confidence bands that are easy to

implement and attain nominal coverage in the survey sampling/finite population setting.

To do so we use Gaussian process simulations as in Cuevas et al. (2006) or Degras (2010).

Our contribution is to provide the theoretical underpinning of the construction method,

thereby guaranteeing that nominal coverage is attained. The theory we derive involves

random entropy numbers, maximal inequalities, and large covariance matrix theory.

Finally, the implementation of the mean function estimator developed in this paper re-

quires to select a bandwidth in the data smoothing step. Objective, data-driven bandwidth

selection methods are desirable for this purpose. As explained by Opsomer and Miller

(2005), bandwidth selection in the survey estimation context poses specific problems (in

particular, the necessity to take the sampling design into account) that make usual cross-

validation or mean square error optimization methods inadequate. In view of the model-

assisted survey estimation of a population total, these authors propose a cross-validation

method that aims at minimizing the variance of the estimator, the bias component being

negligible in their setting. In our functional and design-based framework, the bias is how-

ever no longer negligible. We therefore devise a novel cross-validation criterion based on

weighted least squares, with weights proportional to the sampling weights. For the particu-

lar case of simple random sampling without replacement, this criterion reduces to the cross

validation technique of Rice and Silverman (1991).

The paper is organized as follows. We fix notations and define our estimators in section 2.

In section 3, we introduce our asymptotic framework based on superpopulation models (see

Isaki and Fuller, 1982), establish a CLT for the estimator of the mean trajectory in the

space of continuous functions, and show the uniform consistency of a covariance function
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estimator. After that, we prove that by simulating the limiting Gaussian process conditional

on its estimated covariance, one can build confidence bands that have asymptotically correct

coverage. Simulations are performed in section 4, where different sampling schemes and

bandwidth choices are compared to assess the numerical performance of our methodology.

The paper ends with a short discussion on topics for future research. Proofs are gathered

in an Appendix.

2 Notations and estimators

Consider a finite population UN = {1, . . . , N} of size N and suppose that to each unit

k ∈ UN corresponds a real function Xk on [0, T ], with T < ∞. We assume that each

trajectory Xk belongs to the space of continuous functions C([0, T ]). Our target is the

mean trajectory µN (t), t ∈ [0, T ], defined as follows:

µN (t) =
1

N

∑
k∈U

Xk(t). (1)

We consider a random sample s drawn from UN without replacement according to a

fixed-size sampling design pN (s), where pN (s) is the probability of drawing the sample s.

The size nN of s is nonrandom and we suppose that the first and second order inclusion

probabilities satisfy

• πk := P(k ∈ s) > 0 for all k ∈ UN

• πkl := P(k&l ∈ s) > 0 for all k, l ∈ UN

so that each unit and each pair of units can be drawn with a non null probability from the

population. Note that for simplicity of notation the subscript N has been omitted. Also,

by convention, we write πkk = πk for all k ∈ UN .

Assume that noisy measurements of the sampled curves are available at d = dN fixed

discretization points 0 = t1 < t2 < . . . < td = T. For all unit k ∈ s, we observe

Yjk = Xk(tj) + εjk (2)

where the measurement errors εjk are centered random variables that are independent across

the index k (units) but not necessarily across j (possible temporal dependence). It is also

assumed that the random sample s is independent of the noise εjk and the trajectories

Xk(t), t ∈ [0, T ] are deterministic.

Our goal is to estimate µN as accurately as possible and to build asymptotic confidence

bands, as in Degras (2010) and Cardot and Josserand (2011). For this, we must have a

uniformly consistent estimator of its covariance function.
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2.1 Linear smoothers and the Horvitz-Thompson estimator

For each (potentially observed) unit k ∈ UN , we aim at recovering the curve Xk by

smoothing the corresponding discretized trajectory (Y1k, . . . , Ydk) with a linear smoother

(e.g. spline, kernel, or local polynomial):

X̂k(t) =
d∑
j=1

Wj(t)Yjk. (3)

Note that the reconstruction can only be performed for the observed units k ∈ s.
Here we use local linear smoothers (see e.g. Fan and Gijbels (1997)) because of their

wide popularity, good statistical properties, and mathematical convenience. The weight

functions Wj(t) can be expressed as

Wj(t) =

1
dh {s2(t)− (tj − t)s1(t)}K

(
tj−t
h

)
s2(t)s0(t)− s21(t)

, j = 1, . . . , d, (4)

where K is a kernel function, h > 0 is a bandwidth, and

sl(x) =
1

dh

d∑
j=1

(tj − t)lK
(
tj − t
h

)
, l = 0, 1, 2. (5)

We suppose that the kernel K is nonnegative, has compact support, satisfies K(0) > 0 and

|K(s)−K(t)| ≤ C|s− t| for some finite constant C and for all s, t ∈ [0, T ].

The classical Horvitz-Thompson estimator (see e.g. Fuller (2009)) of the mean curve is

µ̂N (t) =
1

N

∑
k∈s

X̂k(t)

πk

=
1

N

∑
k∈U

X̂k(t)

πk
Ik, (6)

where Ik is the sample membership indicator (Ik = 1 if k ∈ s and Ik = 0 otherwise). It

holds that E(Ik) = πk and E(IkIl) = πkl.

2.2 Covariance estimation

The covariance function of µ̂N can be written as

Cov (µ̂N (s), µ̂N (t)) =
1

N
γN (s, t) (7)

for all s, t ∈ [0, T ], where

γN (s, t) =
1

N

∑
k,l∈U

∆kl
X̃k(s)

πk

X̃l(t)

πl
+

1

N

∑
k∈U

1

πk
E (ε̃k(s)ε̃k(t)) (8)
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with 
X̃k(t) =

∑d
j=1Wj(t)Xk(tj),

ε̃k(t) =
∑d

j=1Wj(t)εkj ,

∆kl = Cov(Ik, Il) = πkl − πkπl.
(9)

A natural estimator of γN (s, t) (see e.g. Fuller (2009)) is given by

γ̂N (s, t) =
1

N

∑
k,l∈U

∆kl

πkl

(
Ik
πk

Il
πl

)
X̂k(s)X̂l(t). (10)

It is unbiased and its uniform mean square consistency is established in Section 3.2.

3 Asymptotic theory

We consider the superpopulation framework introduced by Isaki and Fuller (1982) and

discussed in detail by Fuller (2009). Specifically, we study the behaviour of the estimators

µ̂N and γ̂N as population UN = {1, . . . , N} increases to infinity with N . Recall that the

sample size n, inclusion probabilities πk and πkl, and grid size d all depend on N . In what

follows we use the notations c and C for finite, positive constants whose value may vary

from place to place. The following assumptions are needed for our asymptotic study.

(A1) (Sampling design)
n

N
≥ c, πk ≥ c, πkl ≥ c, and n|πkl − πkπl| ≤ C for all k, l ∈ UN

(k 6= l) and N ≥ 1.

(A2) (Trajectories) |Xk(s) − Xk(t)| ≤ C|s − t|β and |Xk(0)| ≤ C for all k ∈ UN , N ≥ 1,

and s, t ∈ [0, T ], where β > 1
2 is a finite constant.

(A3) (Growth rates) c ≤ d(tj+1 − tj) ≤ C for all 1 ≤ j ≤ d, N ≥ 1, and
d(log logN)

N
→ 0

as N →∞.

(A4) (Measurement errors) The random vectors (εk1, . . . , εkd)
′, k ∈ UN , are i.i.d. and follow

the multivariate normal distribution with mean zero and covariance matrix VN . The

largest eigenvalue of the covariance matrix satisfies ‖VN‖ ≤ C for all N ≥ 1.

Assumption (A1) deals with the properties of the sampling design. It states that the

sample size must be at least a positive fraction of the population size, that the one- and

two-fold inclusion probabilities must be larger than a positive number, and that the two-

fold inclusion probabilities should not be to far from independence. The latter is fulfilled

for example for stratified sampling with sampling without replacement within each stratum

(Robinson and Särndal (1983)). Assumption (A2) imposes Hölder continuity on the trajec-

tories, a mild regularity condition. Assumption (A3) states that the design points have a
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quasi-uniform repartition (this holds in particular for equidistant designs and designs gener-

ated by a regular density function) and that the grid size is essentially negligible compared

to the population size (for example if dN ∝ Nα for some α ∈ (0, 1)). In fact the results of

this paper also hold if dN/N stays bounded away from zero and infinity as N → ∞ (see

Section 5). Finally (A4) imposes joint normality, short range temporal dependence, and

bounded variance for the measurement errors εkj , 1 ≤ j ≤ d. It is trivially satisfied if the

εkj ∼ N(0, σ2j ) are independent with variances Var(εkj) ≤ C. It is also verified if the εkj

arise from a discrete time Gaussian process with short term temporal correlation such as

ARMA or stationary mixing processes. Note that the Gaussian assumption is not central

to our derivations: it can be weakened and replaced by moment conditions on the error

distributions at the expense of much more complicated proofs.

3.1 Limit distribution of the Horvitz-Thompson estimator

Proceeding further, we would now like to derive the asymptotic distribution of our es-

timator µ̂N in order to build asymptotic confidence intervals and bands. Obtaining the

asymptotic normality of estimators in survey sampling is a technical and difficult issue even

for simple quantities such as means or totals of real numbers. Although confidence inter-

vals are commonly used in the survey sampling community, the Central Limit Theorem

(CLT) has only been checked rigorously, as far as we know, for a few sampling designs.

Erdös and Rényi (1959) and Hàjek (1960) proved that the Horvitz-Thompson estimator is

asymptotically Gaussian for simple random sampling without replacement. These results

were extended more recently to stratified sampling (Bickel and Freedman (1994)) and some

particular cases of two-phase sampling designs (Chen and Rao (2007)). Let us assume that

the Horvitz-Thompson estimator satisfies a CLT for real valued quantities.

(A5) (Univariate CLT) For any fixed t ∈ [0, T ], it holds that

µ̂N (t)− µN (t)√
Var
(
µ̂N (t)

)  N(0, 1)

as N →∞, where  stands for convergence in distribution.

We recall here the definition of the weak convergence in C([0, T ]) equipped with the

supremum norm ‖·‖∞ (e.g. van der Vaart and Wellner (2000)). A sequence (ξN ) of random

elements of C([0, T ]) is said to converge weakly to a limit ξ in C([0, T ]) if E(φ(ξN )) →
E(φ(ξ)) as N →∞ for all bounded, uniformly continuous functional φ on (C([0, T ]), ‖ ·‖∞).

To establish the limit distribution of µ̂N in C([0, T ]), we need to assume the existence

of a limit covariance function

γ(s, t) = lim
N→∞

1

N

∑
k,l∈UN

∆kl
Xk(s)

πk

Xl(t)

πl
.
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In the following theorem we state the asymptotic normality of the estimator µ̂N in the

space C([0, T ]) equipped with the sup norm.

Theorem 1. Assume (A1)–(A5) and that
√
Nhβ → 0 and dh/ log d → ∞ as N → ∞.

Then
√
N (µ̂N − µN ) G

in C([0, T ]), where G is a Gaussian process with mean zero and covariance function γ.

Theorem 1 provides a convenient way to infer the local features of µN . It is applied in

Section 3.3 to the construction of simultaneous confidence bands, but it can also be used

for a variety of statistical tests based on supremum norms (see Degras (2010)).

Observe that the conditions on the bandwidth h and design size d are not very con-

straining. Suppose for example that d ∝ Nη and h ∝ N−ν for some η, ν > 0. Then d and h

satisfy the conditions of Theorem 1 as soon as (2β)−1 < ν < η < 1. Thus, for more regular

trajectories, i.e. larger β, the bandwidth h can be chosen with more flexibility.

The proof of Theorem 1 is similar in spirit to that of Theorem 1 in Degras (2010) and

Proposition 3 in Cardot and Josserand (2011). Essentially, it breaks down into: (i) control-

ling uniformly on [0, T ] the bias of µ̂N , (ii) establishing the functional asymptotic normality

of the local linear smoother applied to the sampled curves Xk, and (iii) controlling uni-

formly on [0, T ] (in probability) the local linear smoother applied to the errors εjk. Part

(i) is easily handled with standard results on approximation properties of local polynomial

estimators (see e.g. Tsybakov (2009)). Part (ii) mainly consists in proving an asymptotic

tightness property, which entails the computation of entropy numbers and the use of maxi-

mal inequalities (see van der Vaart and Wellner (2000)). Part (iii) requires first to show the

finite-dimensional convergence of the smoothed error process to zero and then to establish

its tightness with similar arguments as in part (ii).

3.2 Uniform consistency of the covariance estimator

We first note that under (A1)–(A4), by the approximation properties of local linear smoothers,

γN converges uniformly to γ on [0, T ]2 as h→ 0 and N →∞. Hence the consistency of γ̂N

can be stated with respect to γ instead of γN . In alignment with the related Proposition 2

in Cardot and Josserand (2010) and Theorem 3 in Breidt and Opsomer (2000), we need to

make some assumption on the two-fold inclusion probabilities of the sampling design pN :

(A6)

lim
N→∞

max
(k1,k2,k3,k4)∈D4,N

∣∣E{(Ik1Ik2 − πk1k2)(Ik3Ik4 − πk3k4)}
∣∣ = 0

where D4,N is the set of all quadruples (k1, k2, k3, k4) in UN with distinct elements.
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This assumption is discussed in detail in Breidt and Opsomer (2000) and is fulfilled for

example for stratified sampling.

Theorem 2. Assume (A1)–(A4), (A6), and that h → 0 and dh1+α → ∞ for some α > 0

as N →∞. Then

lim
N→∞

E

(
sup

s,t∈[0,T ]2

∣∣γ̂N (s, t)− γ(s, t)
∣∣2) = 0.

Note the additional condition on the bandwidth h in Theorem 2. If we suppose, as in the

remark in Section 3.1, that d ∝ Nη and h ∝ N−ν for some (2β)−1 < ν < η < 1, then

condition dh1+α →∞ as N →∞ is fulfilled with e.g. α = 1− η/2ν.

3.3 Global confidence bands

In this section we build global confidence bands for µN of the form{[
µ̂N (t)± c σ̂N (t)

N1/2

]
, t ∈ [0, T ]

}
, (11)

where c is a suitable number and σ̂N (t) = γ̂N (t, t)1/2. More precisely, given a confidence

level 1− α ∈ (0, 1), we seek c = cα that approximately satisfies

P (|G(t)| ≤ c σ(t), ∀t ∈ [0, T ]) = 1− α, (12)

where G is a Gaussian process with mean zero and covariance function γ, and where σ(t) =

γ(t, t)1/2. Exact bounds for the supremum of Gaussian processes have only been derived

for only a few particular cases (Adler and Taylor, 2007, Chapter 4). Computing accurate

and as explicit as possible bounds in a general setting is a difficult issue and would require

additional strong conditions such as stationarity which have no reason to be fulfilled in our

setting.

In view of Theorems 1-2 and Slutski’s Theorem, the bands defined in (11) with c chosen

as in (12) will have approximate coverage level 1 − α. The following result provides a

simulation-based method to compute c.

Theorem 3. Assume (A1)–(A6) and dh1+α → ∞ for some α > 0 as N → ∞. Let G be

a Gaussian process with mean zero and covariance function γ. Let (ĜN ) be a sequence of

processes such that for each N , conditionally on γ̂N , ĜN is Gaussian with mean zero and

covariance γ̂N defined in (10). Then for all c > 0, as N → ∞, the following convergence

holds in probability:

P
(
|ĜN (t)| ≤ c σ̂N (t), ∀t ∈ [0, T ]

∣∣ γ̂N)→ P (|G(t)| ≤ c σ(t), ∀t ∈ [0, T ]) .
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Theorem 3 is derived by showing the weak convergence of (ĜN ) to G in C([0, T ]), which

stems from Theorem 2 and the Gaussian nature of the processes ĜN . As in the first

two theorems, maximal inequalities are used to obtain the above weak convergence. The

practical importance of Theorem 3 is that it allows to estimate the number c in (12) via

simulation: (with the previous notations), conditionally on γ̂N , one can simulate a large

number of sample paths of the Gaussian process (ĜN/σ̂N ) and compute their supremum

norms. One then obtains a precise approximation to the distribution of ‖ĜN/σ̂N‖∞, and

it suffices to set c as the quantile of order (1− α) of this distribution:

P
(
|ĜN (t)| ≤ c σ̂N (t), ∀t ∈ [0, T ]

∣∣ γ̂N) = 1− α. (13)

Corollary 1. Assume (A1)–(A6). Under the conditions of Theorems 1-2-3, the bands

defined in (11) with the real c = c(γ̂N ) chosen as in (13) have asymptotic coverage level

1− α, i.e.

lim
N→∞

P
(
µN (t) ∈

[
µ̂N (t)± c σ̂N (t)

N1/2

]
, ∀t ∈ [0, T ]

)
= 1− α.

4 A simulation study

In this section, we evaluate the performances of the mean curve estimator as well as the

coverage and the width of the confidence bands for different bandwidth selection criteria

and different levels of noise. The simulations are conducted in the R environment.

4.1 Simulated data and sampling designs

We have generated a population of N = 20000 curves discretized at d = 200 and d = 400

equidistant instants of time in [0, 1]. The curves of the population are generated so that they

have approximately the same distribution as the electricity consumption curves analyzed in

Cardot & Josserand (2011) and each individual curve Xk, for k ∈ U, is simulated as follows

Xk(t) = µ(t) +
3∑
`=1

Z` v`(t), t ∈ [0, 1], (14)

where the mean function µ is drawn in Figure 2 and the random variables Z` are independent

realizations of a centered Gaussian random variable with variance σ2` . The three basis

function v1, v2 and v3 are orthonormal functions which represent the main mode of variation

of the signals, they are represented in Figure 1. Thus, the covariance function of the

population γ(s, t) is simply

γ(s, t) =
3∑
`=1

σ2` v`(s)v`(t). (15)
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Figure 1: Basis functions v1 (solid line), v2 (dashed line) and v3 (dotted line).

To select the samples, we have considered two probabilistic selection procedures, with

fixed sample size, n = 1000,

• Simple random sampling without replacement (SRSWR).

• Stratified sampling with SRSWR in all strata. The population U is divided into a

fixed number of G = 5 strata built by considering the quantiles q0.5, q0.7, q0.85 and q0.95

of the total consumption
∫ 1
0 Xk(t)dt for all units k ∈ U . For example, the first strata

contains all the units k such that
∫ 1
0 Xk(t)dt ≤ q0.5, and thus its size is half of the

population size N. The sample size ng in stratum g is determined by a Neyman-like

allocation, as suggested in Cardot and Josserand (2011), in order to get a Horvitz-

Thompson estimator of the mean trajectory whose variance is as small as possible.

The sizes of the different strata, which are optimal according to this mean variance

criterion, are reported in Table 1.

We suppose we observe, for each unit k in the sample s, the discretized trajectories, at

11



Stratum number 1 2 3 4 5

Stratum size 10000 4000 3000 2000 1000

Allocation 655 132 98 68 47

Table 1: Strata sizes and optimal allocations.

d equispaced points, 0 = t1 < . . . < td = 1,

Yjk = Xk(tj) + δεjk (16)

where the εjk ∼ N(0, γ(tj , tj)) are independent random variables and the parameter δ allows

to control the noise level. As an illustrative example, a sample of n = 10 noisy discretized

curves are plotted in Figure 2.

4.2 Weighted cross-validation for bandwidth selection

Assuming we can access the exact trajectories Xk, k ∈ s, (which is the case in simulations)

we consider the oracle-type estimator

µ̂s =
∑
k∈s

Xk

πk
, (17)

which will be a benchmark in our numerical study. We compare different interpolation and

smoothing strategies for estimating the Xk, k ∈ s:

• Linear interpolation of the Yjk as in Cardot and Josserand (2011).

• Local linear smoothing of the Yjk with bandwidth h as in (3).

The crucial element here is h. To evaluate the interest of smoothing and the performances

of data-driven bandwidth selection criteria, we consider an error measure that compares

the oracle µ̂s to any estimator µ̂ based on the noisy data Yjk, k ∈ s, j = 1, . . . d:

L(µ̂) =

∫ T

0
(µ̂s(t)− µ̂(t))2 dt . (18)

Considering the estimator defined in (6), we denote by horacle the bandwidth h that mini-

mizes (18) and call smooth oracle the corresponding estimator.

When
∑

k∈s π
−1
k = N , as in SRSWR and stratified sampling, it can be easily checked

that µ̂s is the minimum argument of the weighted least squares functional

∑
k∈s

wk

∫ T

0
(Xk(t)− µ(t))2 dt (19)
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Figure 2: A sample of 10 curves for δ = 0.05. The mean profile is plotted in bold line.

with respect to µ ∈ L2([0, T ]), where the weights are wk = (Nπk)
−1. Then, a simple and

natural way to select bandwidth h is to consider the following design-based cross validation

WCV(h) =
∑
k∈s

wk

d∑
j=1

(
Yjk − µ̂−kN (tj)

)2
. (20)

where

µ̂−kN (t) =
∑

`∈s,` 6=k
w̃` X̂`(t),

with new weights w̃`. A heuristic justification for this approach is that, given s, we have

E
[
εjk(Xk(tj)− µ̂−kN (tj))|s

]
= 0 for j = 1, . . . , d and k ∈ s. Thus,

E [WCV(h)|s] =
∑
k∈s

wk

d∑
j=1

{
E
[(
Xk(tj)− µ̂−kN (tj)

)2
|s
]

+ 2E
[
εjk(Xk(tj)− µ̂−kN (tj))|s

]
+ E

[
ε2jk
]}

=
∑
k∈s

wk

d∑
j=1

E
[(
Xk(tj)− µ̂−kN (tj)

)2
|s
]

+ tr(VN )

13



and, up to tr(VN ) which does not depend on h, the minimum value of the expected cross

validation criterion should be attained for estimators which are not too far from µ̂s.

This weighted cross validation criterion is simpler than the cross validation criteria based

on the estimated variance proposed in Opsomer and Miller (2005). Indeed, in our case, the

bias may be non negligible and focusing only on the variance part of the error leads to too

large selected values for the bandwidth. Furthermore, Opsomer and Miller (2005) suggested

to consider weights defined as follows w̃` = w`/(1− wk). For SRSWR, since wk = n−1 one

has w̃k = (n−1)−1, so that the weighted cross validation criterion defined in (20) is exactly

the cross validation criterion introduced by Rice and Silverman (1991) in the independent

case. We denote in the following by hcv the bandwidth value minimizing this criterion.

For stratified sampling, a better approximation which keeps the design-based properties

of the estimator µ̂−kN can be obtained by taking into account the sampling rates in the dif-

ferent strata. We have G strata with sizes Ng, g = 1, . . . , G and we sample ng observations,

with SRSWR, in each stratum g. If unit k comes from strata g, we have wk = Ng(Nng)
−1.

Thus, we take w̃` = (Ng − 1){(N − 1)(ng − 1)}−1 for all the units ` 6= k in stratum g and

just scale the weights for all the units `′ of the sample that do not belong to stratum g,

w̃`′ = N(N − 1)−1w`′ . We denote by hwcv the bandwidth value minimizing (20).

4.3 Estimation errors and confidence bands

We draw 1000 samples in the population of curves and compare the different estimators of

Section 4.2 with the L2 loss criterion

R(µ̂) =

∫ T

0
(µ̂(t)− µ(t))2 dt (21)

for different values of δ and d in (16).

The empirical mean as well as the first, second and third quartiles of the estimation

error R(µ̂) are given in Table 2 for d = 200 and in Table 3 for d = 400. We can first

note that stratified sampling allows to improve much the estimation of the mean curve.

We also remark that, for such large samples, linear interpolation performs nearly as well

as the smooth oracle estimator, especially when the noise level is low (δ ≤ 15%). As far

as bandwidth selection is concerned, we can note that the usual cross validation criterion

hcv is not adapted to unequal probability sampling and does not perform as well as linear

interpolation for stratified sampling by selecting too large values for the bandwidth. On

the other hand, the weighted cross-validation criterion seems to be effective to select good

bandwidth values and produce estimators whose estimation errors are very close to the

oracle and perform better than the other estimators when the noise level is moderate or

high (δ ≥ 20%).
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This is clearer when we look at criterion L(µ̂), defined in (18), which only focus on the

part of the estimation error which is due to the noise. Results are presented in Table 4

for d = 200 and in Table 5 for d = 400. We can also note that there is a significant effect

of the number of discretization points on the accuracy of the smoothed estimators. Our

individual trajectories, which have roughly the same shape as load curves, are actually not

very smooth so that smoothing approaches are only really interesting, compared to linear

interpolation when the number of discretization points d is large enough.

We now examine in Table 6 and Table 7 the empirical coverage and the width of the

confidence bands, which are built as described in Section 3.3. For each sample, we estimate

the covariance function γ̂N and draw 10000 realizations of a centered Gaussian process

with variance function γ̂N in order to obtain a suitable coefficient c with a confidence

level of 1 − α = 0.95 as explained in equation (13). The area of the confidence band

is then
∫ T
0 2c

√
γ̂(t, t) dt. The results highlight now the interest of considering smoothing

strategies combined with the weighted cross validation bandwidth selection criterion (20). It

appears that linear interpolation, which does not intend to get rid of the noise, always gives

larger confidence bands than the smoothed estimators based on hwcv. As before, smoothing

approaches become more interesting as the number of discretization points and the noise

level increase. The empirical coverage of the smoothed estimator is lower than the linear

interpolation estimator but remains slightly higher than the nominal one.

As a conclusion of this simulation study, it appears that smoothing is not a crucial aspect

when the only target is the estimation of the mean, and that bandwidth values should be

chosen by a cross validation criterion that takes the sampling weights into account. When

the goal is also to build confidence bands, smoothing with weighted cross validation criteria

lead to narrower bands compared to interpolation techniques, without deteriorating the

empirical coverage.

5 Concluding remarks

We have studied in this paper the use of survey sampling methods for estimating a pop-

ulation mean temporal signal. This type of approach is extremely effective when data

transmission or storage costs are important, in particular for large networks of distributed

sensors. In view of noisy functional data, we have built a functional estimator by first

smoothing the sampled curves and then setting up a Horvitz-Thompson estimator based on

the smoothed curves. It has been shown that the estimator satisfies a CLT in the space of

continuous functions and that its covariance can be estimated uniformly and consistently.

These results have been exploited to show that by simulating Gaussian processes condi-
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tional on the estimated covariance, one obtains global confidence bands with asymptotic

correct coverage. The problem of bandwidth selection, which is particularly difficult in the

survey sampling context, has been addressed. We have devised a weighted cross-validation

method that aims at mimicking an oracle estimator. This method has displayed very good

performances in our numerical study; however, its rigorous theoretical study of remains to

be done. Our numerical study has also revealed that in comparison to SRSWR, unequal

probability sampling (e.g. stratified sampling) yields far superior performances and that

when the noise level in the data is moderate to high, incorporating a smoothing step in

the estimation procedure greatly enhances the accuracy in comparison to interpolation.

Furthermore, we have seen that even when the noise level is low, smoothing can be highly

beneficial for build global confidence bands. Indeed, smoothing the data leads to estimators

that have higher temporal correlation, which in turn makes the confidence bands narrower

and more stable. Our method for confidence bands is simple and quick to implement. It

gives satisfactory coverage (a little conservative) when the bandwidth is chosen correctly,

e.g. with our weighted cross-validation method. Such confidence bands can find a variety

of applications in statistical testing. They can be used to compare mean functions in dif-

ferent sub-populations, or to test for a parametric shape or for periodicity, among others.

Examples of applications can be found in Degras (2010).

This work also raises some questions which deserve further investigation. A straight-

forward extension could be to relax the normality assumption made on the measurement

errors. It is possible to consider more general error distributions under additional assump-

tions on the moments and much longer proofs. In another direction, it would be worthwhile

to see whether our methodology can be extended to build confidence bands for other func-

tional parameters such as population quantile or covariance functions. Also, as mentioned

earlier, the weighted cross-validation proposed in this work seems a promising candidate for

automatic bandwidth selection. However it is for now only based on heuristic arguments

and its theoretical underpinning should be investigated.

Finally, it is well known that taking account of auxiliary information, which can be

made available for all the units of the population at a low cost, can lead to substantial

improvements with model assisted estimators (Särndal et al. 1992). In a functional context,

an interesting strategy consists in first reducing the dimension through a functional principal

components analysis shaped for the sampling framework (Cardot et. al 2010a) and then

consider semi parametric models relating the principal components scores to the auxiliary

variables (Cardot et al. 2010b). It is still possible to get consistent estimators of the

covariance function of the limit process but further investigations are needed to prove the

functional asymptotic normality and deduce that Gaussian simulations based approaches

still lead to accurate confidence bands.
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Appendix

Throughout the proofs we use the letter C to denote a generic constant whose value may

vary from place to place. This constant does not depend on N nor on the arguments

s, t ∈ [0, T ].

Proof of Theorem 1. We first decompose the difference between the estimator µ̂N (t) and

its target µN (t) as the sum of two stochastic components, one pertaining to the sampling

variability and the other to the measurement errors, and of a deterministic bias component:

µ̂N (t)− µN (t) =
1

N

∑
k∈U

(
Ik
πk
− 1

)
X̃k(t) +

1

N

∑
k∈U

Ik
πk
ε̃k(t) +

1

N

∑
k

(
X̃k(t)−Xk(t)

)
(22)

where X̃k(t) and ε̃k(t) are defined in (9).

Bias term.

To study the bias term N−1
∑

k

(
X̃k(t) − Xk(t)

)
= E(µ̂N (t)) − µN (t) in (22), it suffices

to use classical results on local linear smoothing (e.g. Tsybakov (2009), Proposition 1.13)

together with the Hölder continuity (A2) of the Xk to see that

sup
t∈[0,T ]

∣∣∣∣ 1

N

∑
k

(
X̃k(t)−Xk(t)

) ∣∣∣∣ ≤ 1

N

∑
k

sup
t∈[0,T ]

∣∣∣X̃k(t)−Xk(t)
∣∣∣ ≤ Chβ. (23)

Hence, for the bias to be negligible in the normalized estimator, it is necessary that the

bandwidth satisfy
√
Nhβ → 0 as N →∞.

Error term.

We now turn to the measurement error term in (22), which can be seen as a sequence of

random functions. We first show that this sequence goes pointwise to zero in mean square

(a fortiori in probability) at a rate (Ndh)−1. We then establish its tightness in C([0, T ]),

when premultiplied by
√
N , to prove the uniformity of the convergence over [0, T ].

Writing the vector of local linear weights at point t as follows

W (t) = (W1(t), . . . ,Wd(t))
′
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and using the i.i.d assumption (A4) on the (εk1, . . . , εkd)
′, k ∈ UN , we first obtain that

E

(
1

N

∑
k∈U

Ik
πk
ε̃k(t)

)2

=
1

N2

∑
k∈U

1

πk
E (ε̃k(t))

2

=
1

N2

∑
k∈U

1

πk
W (t)′VNW (t).

Then, considering the facts that mink πk > c by (A2), ‖VN‖ is uniformly bounded in N

by (A4), and exploiting a classical bound on the weights of the local linear smoother (e.g.

Tsybakov (2009), Lemma 1.3), we deduce that

E

(
1

N

∑
k∈U

Ik
πk
ε̃k(t)

)2

≤ N

(minπk)N2
‖W (t)‖2 ‖VN‖

≤ C

Ndh
. (24)

We can now prove the tightness of the sequence of processes (N−1/2
∑

k (Ik/πk) ε̃k). Let

us define the associated pseudo-metric

d2ε (s, t) = E

(
1√
N

∑
k∈U

Ik
πk

(ε̃k(s)− ε̃k(t))

)2

.

We use the following maximal inequality holding for sub-Gaussian processes (van der Vaart

and Wellner (2000), Corollary 2.2.8):

E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1√
N

∑
k∈U

Ik
πk
ε̃k(t)

∣∣∣∣∣
)
≤ E

(∣∣∣∣∣ 1√
N

∑
k∈U

Ik
πk
ε̃k(t0)

∣∣∣∣∣
)

+K

∫ ∞
0

√
logN(x, dε)dx , (25)

where t0 is an arbitrary point in [0, T ] and the covering number N(x, dε) is the minimal

number of dε-balls of radius x > 0 needed to cover [0, T ]. Note the equivalence of working

with packing or covering numbers in maximal inequalities, see ibid p. 98. Also note that

the sub-Gaussian nature of the smoothed error process N−1/2
∑

k∈U (Ik/πk) ε̃k stems from

the i.i.d. multivariate normality of the random vectors (εk1, . . . , εkd)
′ and the boundedness

of the Ik for k ∈ UN .

By the arguments used in (24) and an elementary bound on the increments of the weight

function vector W (see e.g. Lemma 1 in Degras (2010)), one obtains that

d2ε (s, t) =
1

N

∑
k∈U

1

πk
E (ε̃k(s)− ε̃k(t))2

≤ 1

minπk
‖W (s)−W (t)‖2 ‖VN‖

≤ C

dh

(
|s− t|2

h2
∧ 1

)
. (26)
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It follows that the covering numbers satisfyN(x, dε) = 1, if C
dh ≤ x

2,

N(x, dε) ≤
√
C

h
√
dhx

, if C
dh > x2.

Plugging this bound and the pointwise convergence (24) in the maximal inequality (25),

we get after a simple integral calculation (see Eq. (17) in Degras (2010) for details) that

E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1√
N

∑
k∈U

Ik
πk
ε̃k(t)

∣∣∣∣∣
)
≤ C

dh
+ C

√
| log(h)|
dh

. (27)

Thanks to Markov’s inequality, the previous bound guarantees the uniform convergence in

probability of N−1/2
∑

k∈U (Ik/πk)ε̃k to zero, provided that | log(h)|/(dh) → 0 as N → ∞.

The last condition is equivalent to log(d)/(dh) → 0 by the fact that dh → ∞ and by the

properties of the logarithm.

Main term: sampling variability.

Finally, we look at the process N−1
∑

k∈U (Ik/πk − 1) X̃k in (22), which is asymptotically

normal in C([0, T ]) as we shall see. We first establish the finite-dimensional asymptotic

normality of this process normalized by
√
N , after which we will prove its tightness thanks

to a maximal inequality.

Let us start by verifying that the limit covariance function of the process is indeed the

function γ defined in Section 3.1. The finite-sample covariance function expresses as

E

{(
1√
N

∑
k∈U

(
Ik
πk
− 1

)
X̃k(s)

) (
1√
N

∑
l∈U

(
Il
πl
− 1

)
X̃l(t)

)}

=
1

N

∑
k,l∈U

∆kl

πkπl
X̃k(s)X̃l(t)

=
1

N

∑
k,l∈U

∆kl

πkπl
Xk(s)Xl(t) +O

(
hβ
)

= γ(s, t) + o(1) +O
(
hβ
)
. (28)

To derive the previous relation we have used the facts that

max
k,l∈U

sup
s,t∈[0,T ]

∣∣∣X̃k(s)X̃l(t)−Xk(s)Xl(t)
∣∣∣ ≤ Chβ

by (23) and the uniform boundedness of the Xk arising from (A2) and that, by (A1),

1

N

∑
k,l∈U

|∆kl|
πkπl

=
1

N

∑
k 6=l

|∆kl|
πkπl

+
1

N

∑
k

∆kk

π2k

≤ 1

N

N(N − 1)

2

maxk,l(n|∆kl|)
n

+
1

N

∑
k

1− πk
πk

≤ C. (29)
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We now check the finite-dimensional convergence of N−1/2
∑

k∈U (Ik/πk − 1) X̃k to a

centered Gaussian process with covariance γ. In light of the Cramer-Wold theorem, this

convergence is easily shown with characteristic functions and appears as a straightforward

consequence of(A5). It suffices for us to check that the uniform boundedness of the tra-

jectories Xk derived from (A2) is preserved by local linear smoothing, so that the X̃k are

uniformly bounded as well.

It remains to establish the tightness of the previous sequence of processes so as to obtain

its asymptotic normality in C([0, T ]). To that intent we use the maximal inequality of the

Corollary 2.2.5 in van der Vaart and Wellner (2000). With the notations of this result, we

consider the pseudo-metric d2
X̃

(s, t) = E{N−1/2
∑

k∈U (Ik/πk− 1)(X̃k(s)− X̃k(t))}2 and the

function ψ(t) = t2 for the Orlicz norm. We get the following bound for the second moment

of the maximal increment:

E

{
sup

dX̃(s,t)≤δ

∣∣∣∣∣ 1√
N

∑
k∈U

(
Ik
πk
− 1

)(
X̃k(s)− X̃k(t)

)∣∣∣∣}2

≤ C
(∫ η

0
ψ−1(N(x, dX̃))dx+ δψ−1(N2(η, dX̃))

)2
(30)

for any arbitrary constants η, δ > 0. Observe that the maximal inequality (30) is weaker

than (25) where an additional assumption of sub-Gaussianity is made (no log factor in the

integral above). Employing again the arguments of (28), we see that

d2
X̃

(s, t) =
1

N

∑
k,l

∆kl

πkπl

(
X̃k(s)− X̃k(t)

)(
X̃l(s)− X̃l(t)

)
≤ C

N

N(N − 1)

2n
|s− t|2β +

C

N
N |s− t|2β

≤ C|s− t|2β. (31)

It follows that the covering number satisfies N(x, dX̃) ≤ Cx−1/β and that the integral in

(30) is smaller than C
∫ η
0 x
−0.5/βdx = Cη1−0.5/β, which can be made arbitrarily small since

β > 0.5. Once η is fixed, δ can be adjusted to make the other term in the right-handside

of (30) arbitrarily small as well. With Markov’s inequality, we deduce that the sequence

(N−1/2
∑

k∈U (Ik/πk − 1) X̃k)N≥1 is asymptotically dX̃ -equicontinuous in probability (with

the terminology of van der Vaart and Wellner (2000)), which guarantees its tightness in

C([0, T ]). �

Proof of Theorem 2.

Mean square convergence.
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We first decompose the distance between γ̂N (s, t) and its target γN (s, t) as follows:

γ̂N (s, t)− γN (s, t) =
1

N

∑
k,l∈U

∆kl

πkπl

(
IkIl
πkl
− 1

)
X̃k(s)X̃l(t)

+
2

N

∑
k,l∈U

∆kl

πkπl

IkIl
πkl

X̃k(s)ε̃l(t)

+
1

N

∑
k,l∈U

∆kl

πkπl

IkIl
πkl

ε̃k(s)ε̃l(t)

− 1

N

∑
k∈U

1

πk
E
(
ε̃k(s)ε̃k(t)

)
:= A1,N +A2,N +A3,N −A4,N . (32)

To establish the mean square convergence of (γ̂N (s, t)− γN (s, t)) to zero as N →∞, it

is enough to show that E(A2
i,N )→ 0 for i = 1, . . . , 4, by the Cauchy-Schwarz inequality.

Let us start with

E(A2
1,N ) =

1

N2

∑
k,l

∑
k′,l′

∆kl∆k′l′

πkπlπk′πl′

E{(IkIl − πkl)(Ik′Il′ − πk′l′)}
πklπk′l′

X̃k(s)X̃l(t)X̃k′(s)X̃l′(t). (33)

It can be shown that this sum converges to zero by strictly following the proof of the

Theorem 3 in Breidt and Opsomer (2000). The idea of the proof is to partition the set

of indexes in (33) into (i) k = l and k′ = l′, (ii) k = l and k′ 6= l′ or vice-versa, (iii)

k 6= l and k′ 6= l′, and study the related subsums. The convergence to zero is then handled

with assumption (A1) (mostly) in case (i), with (A1)-(A6) in case (iii), and thanks to the

previous results and Cauchy-Schwarz inequality in case (ii). More precisely, it holds that

E(A2
1,N ) ≤

C maxk 6=l n|∆kl|
(minπk)4n

+
C

(minπk)3N

+

(
C(maxk 6=l n|∆kl|)N

(minπk)2(mink 6=l πkl)n

)2

max
(k,l,k′,l′)∈D4,N

∣∣E{(IkIl − πkl)(Ik′Il′ − πk′l′)}∣∣. (34)

For the (slightly simpler) study of E(A2
2,N ), we provide an explicit decomposition:

E(A2
2,N ) =

4

N2

∑
k,l

∑
k′

∆kl∆k′l

πkπk′π
2
l

X̃k(s)X̃k′(t)E
(
ε̃l(s)ε̃l(t)

)
=

4

N2

∑
k∈U

∆2
kk

π5k
X̃k(s)X̃k(t)E

(
ε̃k(s)ε̃k(t)

)
+

4

N2

∑
k 6=k′

∆kk∆kk′

π4kπk′
X̃k(s)X̃k′(t)E(ε̃k(s)ε̃k(t))

+
4

N2

∑
k 6=l

∑
k′:k′ 6=l

∆kl∆k′l

πkπk′π
2
l

X̃k(s)X̃k′(t)E
(
ε̃l(s)ε̃l(t)

)
.

(35)
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Note that the expression of E(A2
2,N ) as a quadruple sum over k, l, k′, l′ ∈ UN reduces to

a triple sum since E(ε̃l(s)ε̃l′(t)) = 0 if l 6= l′ by (A4). With the bound |E(ε̃k(s)ε̃k(t))| =

|W (s)′VNW (t)| ≤ ‖W (s)‖‖VN‖‖W (t)‖ ≤ C/(dh), it follows that

E(A2
2,N ) ≤ CN

N2

‖VN‖
dh

+
CN2

N2

maxk 6=k′ n|∆kk′ |
n

‖VN‖
dh

+
CN3

N2

(maxk 6=l n|∆kl|)2

n2
‖VN‖
dh

=
C

Ndh
. (36)

To study the term E(A2
3,N ), we start with the same partition of the quadruple sum as

the one used with E(A2
1,N ). Here, due to the independence assumption (A4) on the error

vectors, the partition simplifies further into (i) k = l, k′ = l′, k 6= k′, and (ii) k = l = k′ = l′:

E(A2
3,N ) =

1

N2

∑
k 6=k′

∆kk′

πkπk′

IkIk′

πkk′
E(ε̃k(s)ε̃k(t))E(ε̃k′(s)ε̃k′(t))

+
1

N2

∑
k

∆kk

π2k

Ik
πkk

E(ε̃2k(s)ε̃
2
k(t)). (37)

Forgoing the calculations already done before, we focus on the main task which for

this term is to bound the quantity E(ε̃2k(s)ε̃
2
k(t)) (recall that E(ε̃k(s)ε̃k(t)) ≤ C/(dh) as

seen before). We first note that E(ε̃2k(s)ε̃
2
k(t)) ≤

{
E(ε̃4k(s))

}1/2 {E(ε̃4k(t))
}1/2

. Writing ε ∼
N(0,VN ), it holds that E(ε̃4k(t)) = E((W (t)′ε)4) = 3(W (t)′VNW (t))2 by the moment

properties of the normal distribution. Plugging this expression in (37), we find that

E(A2
3,N ) ≤ C

(dh)2
+

C

N(dh)2
. (38)

Finally, note that an expression very similar to the deterministic term A4,N (s, t) has been

studied in (24). One easily concludes that A4,N (s, t) is dominated by (dh)−1 uniformly in

s, t ∈ [0, T ].

Tightness.

To prove the tightness of the sequence (γ̂N − γN )N≥1 in C([0, T ]2), we study separately

each term in the decomposition (32) and we call again to the maximal inequalities of van

der Vaart and Wellner (2000).

For the first term A1,N = A1,N (s, t), we consider the pseudo-metric d defined as the L4-

norm of the increments: d41((s, t), (s
′, t′)) = E|A1,N (s, t) − A1,N (s′, t′)|4. (The need to use

here the L4-norm and not the usual L2-norm is justified hereafter by a dimension argument.)

With (A1)-(A2) and the approximation properties of local linear smoothers, one sees that∣∣∣∣∣∣ 1

N

∑
k,l∈U

∆kl

πkπl

(
IkIl
πkl
− 1

)(
X̃k(s)X̃l(t)− X̃k(s

′)X̃l(t
′)
)∣∣∣∣∣∣ ≤ C

(
|s− s′|β + |t− t′|β

)
.
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Hence d1(s, t)≤C
(
|s− s′|β + |t− t′|β

)
and for all x > 0, the covering number N(x, d1) is no

larger than the size of a two-dimensional square grid of mesh x1/β, i.e. N(x, d1)≤Cx−2/β.

(Compare to the proof of Theorem 1 where, for the main term N−1/2
∑

k(Ik/πk)X̃k, we

have N(x, dX̃) ≤ Cx−1/β because the index set [0, T ] is of dimension 1.) Using Theorem

2.2.4 of van der Vaart and Wellner (2000) with ψ(t) = t4, it follows that for all η, δ > 0,

E

{
sup

d1((s,t),(s′,t′)≤δ
|A1,N (s, t)−A1,N (s′, t′)|4

}
≤ C

(∫ η

0
ψ−1(N(x, d1))dx+ δψ−1(N2(η, d1))

)4

≤ C
(
η1−0.5/β + δη−1/β

)4
.

The upper bound above can be made arbitrarily small by varying η first and δ next since

β > 0.5. Hence, with Markov’s inequality, we deduce that the processes A1,N are tight in

C([0, T ]2).

The bivariate processes (A2,N )N≥1 are sub-Gaussian for the same reasons as the univari-

ate processes N−1/2
∑

k∈U (Ik/πk) ε̃k are in the proof of Theorem 1, namely the indepen-

dence and multivariate normality of the error vectors (εk1, . . . , εkd)
′ and the boundedness of

the sample membership indicators Ik for k ∈ UN . Therefore, although the covering num-

ber N(x, d2) grows to O(x−2/β) in dimension 2, with d2 being the L2-norm on [0, T ]2, this

does not affect significantly the integral upper bound
∫∞
0

√
log(N(x, d2)dx in a maximal

inequality like (25). As a consequence, one obtains the tightness of (A2,N ) in C([0, T ]2).

To study the term A3,N (s, t) in (32), we start with the following bound:

∣∣A3,N (s, t)
∣∣ ≤ 1

N

∑
k,l

|∆kl|
πkπl

IkIl
πkl

ε̃2k(s) + ε̃2l (t)

2

=
1

N

∑
k

(∑
l

|∆kl|
2πl

Il
πkl

)
Ik
πk
ε̃2k(s) +

1

N

∑
l

(∑
k

|∆kl|
2πk

Ik
πkl

)
Il
πl
ε̃2l (t)

≤ C

N

∑
k

ε̃2k(s) +
C

N

∑
l

ε̃2l (t).

The two-dimensional study is thus reduced to an easier one-dimensional problem.

To apply the Corollary 2.2.5 of van der Vaart and Wellner (2000), we consider the

function ψ(t) = tm and the pseudo-metric dm3 (s, t) = E|N−1
∑

k(ε̃
2
k(s) − ε̃2k(t))|m, where

m ≥ 1 is an arbitrary integer. We have that

E

{
sup

s,t∈[0,T ]

∣∣∣∣∣ 1

N

∑
k

(
ε̃2k(s)− ε̃2k(t)

)∣∣∣∣∣
m}
≤ C

(∫ DT

0
(N(x, d3))

1/mdx

)m
(39)

where DT = sups,t∈[0,T ] d3(s, t) is the diameter of [0, T ] for d3. Using the classical inequality,

|
∑n

k=1 ak|
m ≤ nm−1

∑n
k=1 |ak|

m , for m > 1 and arbitrary real number a1, . . . , an, we get,

with the Cauchy-Schwarz inequality and the moment properties of Gaussian random vectors,
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that

dm3 (s, t) ≤ 1

N

∑
k

E
∣∣ε̃2k(s)− ε̃2k(t)∣∣m

≤ 1

N

∑
k

{
E |ε̃k(s)− ε̃k(t)|2m

}1/2 {
E |ε̃k(s) + ε̃k(t)|2m

}1/2

≤ Cm
N

∑
k

‖W (s)−W (t)‖mVN
‖W (s) +W (t)‖mVN

≤ C ′m
(dh)m

(
|s− t|
h
∧ 1

)m
, (40)

where ‖x‖VN
= (x′VNx)1/2 and Cm and C ′m are constants that only depends on m.

We deduce from (40) that the diameter DT is at most of order 1/(dh) and that for all

0 < x ≤ 1/(dh), the covering number N(x, d3) is of order 1/(xdh2). Hence the integral

bound in (39) is of order
∫ 1/(dh)
0 (dh2x)−1/mdx ≤ C(dh2)−1/m(dh)(1−1/m)) = C/(dh)1+1/m.

Therefore, if dh1+α → ∞ for some α > 0, the sequence (N−1
∑

k(ε̃
2
k))N≥1 tends uniformly

to zero in probability which concludes the study of the term (A3,N )N≥1 and the proof. �

Proof of Theorem 3.

We show here the weak convergence of (ĜN ) to G in C([0, T ]) conditionally on γ̂N . This

convergence, together with the uniform convergence of γ̂N to γ presented in Theorem 2, is

stronger than the result of Theorem 3 required to build simultaneous confidence bands.

First, the finite-dimensional convergence of (ĜN ) to G conditionally on γ̂N is a trivial

consequence of Theorem 2.

Second, we show the tightness of (ĜN ) in C([0, T ]) (conditionally on γ̂N ) similarly to

the study of (A3,N ) in the proof of Theorem 2. We start by considering the random pseudo-

metric d̂mγ (s, t) = E[(ĜN (s) − ĜN (t))m | γ̂N ], where m ≥ 1 is an arbitrary integer. By the

moment properties of Gaussian random variables, it holds that

d̂mγ (s, t) = Cm

[
1

N

∑
k,l∈U

∆kl

πkl

IkIl
πkπl

(
X̂k(s)− X̂k(t)

)(
X̂l(s)− X̂l(t)

)]m/2

≤ Cm
[

1

N

∑
k,l∈U

|∆kl|
πkl

IkIl
πkπl

(
X̂k(s)− X̂k(t)

)2]m/2

≤ Cm
[

2

N

∑
k,l∈U

|∆kl|
πkl

IkIl
πkπl

(
X̃k(s)− X̃k(t)

)2
+

2

N

∑
k,l∈U

|∆kl|
πkl

IkIl
πkπl

(ε̃k(s)− ε̃k(t))2
]m/2

≤ Cm
2

[
1

N

∑
k

(
X̃k(s)− X̃k(t)

)2]m/2
+
Cm
2

[
1

N

∑
k

(ε̃k(s)− ε̃k(t))2
]m/2

. (41)
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Clearly, the first sum in the right-handside of (41) is dominated by |s − t|mβ thanks to

(A2) and the approximation properties of local linear smoothers. The second sum can be

viewed as a random quadratic form. Introducing the square root V
1/2
N of VN , we note that

εk = V
1/2
N Zk, with equality in distribution, for k = 1, . . . , N, where the Zk are i.i.d centered

d-dimensional Gaussian vectors with identity covariance matrix.

Thus,

1

N

∑
k

(ε̃k(s)− ε̃k(t))2 = (W (s)−W (t))′
(

1

N

∑
k

εkε
′
k

)
(W (s)−W (t))

≤ ‖W (s)−W (t)‖2
∥∥∥∥∥ 1

N

∑
k

εkε
′
k

∥∥∥∥∥
≤ ‖W (s)−W (t)‖2 ‖VN‖

∥∥∥∥∥ 1

N

∑
k

ZkZ
′
k

∥∥∥∥∥ (42)

Now, the vector norm ‖W (s)−W (t)‖2 has already been studied in (26) and the sequence

(‖VN‖) is bounded by (A4). The remaining matrix norm in (42) is smaller than the largest

eigenvalue, up to a factor N−1, of a d-variate Wishart matrix with N degrees of freedom.

By (A3) it holds that d = o(N/ log logN) and one can apply Theorem 3.1 in Fey et al.

(2008), which states that for any fixed α ≥ 1,

lim
N→∞

− 1

N
logP

(∥∥∥∥∥ 1

N

∑
k

ZkZ
′
k

∥∥∥∥∥ ≥ α
)

=
1

2
(α− 1− logα) . (43)

A immediate consequence of (43) is that
∥∥ 1
N

∑
k ZkZ

′
k

∥∥ remains almost surely bounded as

N →∞. Note that the same result holds if instead of (A3), (d/N) remains bounded away

from zero and infinity, thanks to the pioneer work of Geman (1980) on the norm of random

matrices. Thus, there exists a deterministic constant C ∈ (0,∞) such that

d̂mγ (s, t) ≤ C|s− t|mβ +
C

(dh)m/2

(
|s− t|
h
∧ 1

)m
(44)

for all s, t ∈ [0, T ], with probability tending to 1 as N → ∞. Similarly to the previous

entropy calculations, one can show that there exists a constant C ∈ (0,∞) such that

N(x, d̂γ) ≤ C(x−1/β + (dh3)−1/2x−1) for all x ≤ (dh)−1 with probability tending to 1 as

N →∞. Applying the maximal inequality of van der Vaart and Wellner (2000) (Th. 2.2.4)

to the conditional increments of ĜN , with φ(t) = tm (usual Lm-norm), one finds a covering

integral
∫ 1/(ph)
0 (N(x, d̂γ))1/2dx of the order of (dh)1/(mβ)−1 +(dh3)−1/(2m)(dh)1/m−1. Hence

the covering integral tends to zero in probability, provided that h→ 0 and dh
1+1/(2m)
1−1/(2m) →∞

as N →∞. Obvisouly, the latter condition on h holds for some integer m ≥ 1 if dh1+α →∞
for some real α > 0. Under this condition, the sequence (ĜN ) is tight in C([0, T ]) and

therefore converges to G. �
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Erdös, P. and Rényi, A. (1959). On the central limit theorem for samples from a finite

population. Publ. Math. Inst. Hungar. Acad. Sci., 4, 49-61.

Eubank, R.L. and Speckman P.L. (1993). Confidence Bands in Nonparametric Regression.

J. Amer. Statist. Assoc., 88, 1287-1301.

Faraway, J.T. (1997). Regression analysis for a functional response. Technometrics 39,

254-261.

Fey, A., van der Hofstad, R. and Klok, M. (2008). Large deviations for eigenvalues

of sample covariance matrices, with applications to mobile communication systems.

Adv. in Appl. Probab. 40, 1048-1071.

Fuller, W.A. (2009). Sampling Statistics. John Wiley and Sons.

Geman, S. (1980). A Limit Theorem for the Norm of Random Matrices. Ann. Probab.,

8, 252-261

Hart, J. D. and Wehrly, T. E. (1993). Consistency of cross-validation when the data are

curves. Stoch. Proces. Applic., 45, 351361.

Isaki, C.T. and Fuller, W.A. (1982). Survey design under the regression superpopulation

model. J. Am. Statist. Ass., 77, 89-96.

Krivobokova, T., Kneib, T. and G. Claeskens (2010). Simultaneous confidence bands for

penalized spline estimators. J. Am. Statist. Ass., 105, 852-863.

Landau, H. and Shepp, L.A. (1970), On the supremum of a Gaussian process. Sankhyã,

32, 369-378

Mas A. (2007). Testing for the mean of random curves: a penalization approach. Statistical

Inference for Stochastic Processes, 10, 147-163

Opsomer, J. D. and Miller, C. P. (2005). Selecting the amount of smoothing in nonpara-

metric regression estimation for complex surveys. J. Nonparametric Statistics, 17,

593-611.

Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure

nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B, 53,

233-243.

27

http://arxiv.org/abs/0908.1980


Robinson, P. M. and Särndal, C. E. (1983). Asymptotic properties of the generalized

regression estimator in probability sampling. Sankhya : The Indian Journal of Statis-

tics, 45, 240-248.

Sun, J. and Loader, C.R. (1994). Simultaneous confidence bands for linear regression and

smoothing. Annals of Statistics, 22, 1328-1345.

Särndal, C. E., Swensson, B. and J. Wretman, J. (1992). Model Assisted Survey Sampling.

Springer-Verlag.

Tsybakov, A.B. (2009). Introduction to Nonparametric Estimation. Springer, New York.

van der Vaart, A. D. and Wellner, J. A. (2000). Weak Convergence and Empirical Pro-

cesses. With Applications to Statistics. Springer-Verlag, New York.

Zhang, J. T. and Chen, J. (2007). Statistical inferences for functional data. Annals of

Statistics, 35, 1052-1079.

28



SRSWR Stratified sampling

δ h Mean 1Q Median 3Q Mean 1Q Median 3Q

5% lin 17.65 3.078 8.729 23.50 4.221 1.444 2.791 5.594

hcv 17.65 3.066 8.710 23.51 6.493 3.605 5.356 8.028

hwcv 17.65 3.066 8.710 23.51 4.221 1.448 2.781 5.555

horacle 17.65 3.068 8.725 23.50 4.220 1.446 2.778 5.571

µ̂s 17.60 3.011 8.698 23.36 4.174 1.378 2.758 5.548

10% lin 17.18 3.226 9.019 22.20 4.335 1.535 3.040 5.675

hcv 17.17 3.201 8.975 22.26 6.688 3.699 5.354 8.091

hwcv 17.17 3.201 8.975 22.26 4.342 1.613 3.068 5.637

horacle 17.17 3.209 8.969 22.23 4.330 1.573 3.053 5.627

µ̂s 17.00 3.092 8.780 22.11 4.136 1.359 2.835 5.486

15% lin 18.08 3.616 9.589 23.58 4.263 1.755 3.050 5.614

hcv 18.06 3.633 9.557 23.44 6.473 3.641 5.336 8.064

hwcv 18.06 3.633 9.557 23.44 4.238 1.703 3.041 5.682

horacle 18.06 3.634 9.568 23.43 4.225 1.702 3.012 5.631

µ̂s 17.69 3.282 9.263 22.77 3.812 1.307 2.625 5.131

20% lin 16.98 3.722 9.222 21.31 4.870 2.187 3.755 6.047

hcv 16.91 3.657 9.226 21.28 7.025 4.022 5.878 8.838

hwcv 16.91 3.657 9.226 21.28 4.791 2.110 3.683 6.014

horacle 16.90 3.668 9.221 21.29 4.779 2.110 3.681 6.000

µ̂s 16.27 3.040 8.606 20.71 4.086 1.373 2.964 5.283

25% lin 17.69 3.940 8.989 21.52 5.257 2.625 4.148 6.535

hcv 17.53 3.826 8.755 21.53 6.982 4.287 5.829 8.469

hwcv 17.53 3.826 8.755 21.53 5.017 2.388 3.893 6.331

horacle 17.52 3.806 8.778 21.52 5.007 2.369 3.883 6.269

µ̂s 16.58 2.847 7.870 20.01 4.069 1.457 2.944 5.278

Table 2: Estimation errors according to R(µ̂) for different noise levels and bandwidth val-

ues, with d = 200 time instants. Units are selected by simple random sampling without

replacements (SRSWR) or stratified sampling.
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SRSWR Stratified sampling

δ h Mean 1Q Median 3Q Mean 1Q Median 3Q

5% lin 18.03 3.388 9.243 23.27 4.049 1.446 2.858 5.353

hcv 18.02 3.384 9.257 23.34 6.092 3.244 4.868 7.555

hwcv 18.02 3.384 9.257 23.34 4.047 1.449 2.821 5.398

horacle 18.02 3.387 9.269 23.32 4.043 1.433 2.828 5.388

µ̂s 17.98 3.353 9.199 23.17 4.000 1.388 2.809 5.294

10% lin 16.97 3.084 8.058 21.46 4.294 1.683 3.208 5.797

hcv 16.93 2.979 7.916 21.45 6.207 3.308 5.137 7.800

hwcv 16.93 2.979 7.916 21.45 4.233 1.577 3.123 5.741

horacle 16.93 2.970 7.914 21.44 4.229 1.579 3.118 5.703

µ̂s 16.81 2.876 7.811 21.45 4.099 1.512 3.006 5.608

15% lin 19.03 3.761 10.09 24.80 4.528 1.772 3.367 5.994

hcv 18.87 3.642 9.899 24.54 6.259 3.446 5.327 7.829

hwcv 18.87 3.642 9.899 24.54 4.335 1.630 3.188 5.828

horacle 18.87 3.642 9.888 24.52 4.330 1.612 3.178 5.826

µ̂s 18.61 3.414 9.665 24.24 4.080 1.340 2.918 5.538

20% lin 17.06 3.635 8.545 22.95 4.749 2.128 3.643 6.144

hcv 16.69 3.288 8.060 22.82 6.362 3.489 5.205 8.009

hwcv 16.69 3.288 8.060 22.82 4.353 1.755 3.231 5.675

horacle 16.69 3.267 8.044 22.77 4.347 1.734 3.216 5.694

µ̂s 16.35 2.993 7.860 22.13 3.960 1.333 2.867 5.414

25% lin 18.16 3.885 9.427 22.86 5.254 2.845 4.236 6.572

hcv 17.55 3.303 8.889 22.09 6.452 3.770 5.372 8.114

hwcv 17.55 3.303 8.889 22.09 4.566 2.121 3.486 5.809

horacle 17.55 3.282 8.898 22.09 4.561 2.107 3.477 5.812

µ̂s 17.04 2.750 8.383 21.87 4.043 1.602 3.018 5.306

Table 3: Estimation errors according to R(µ̂) for different noise levels and bandwidth val-

ues, with d = 400 time instants. Units are selected by simple random sampling without

replacements (SRSWR) or stratified sampling.
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SRSWR Stratified sampling

δ h Mean 1Q Median 3Q Mean 1Q Median 3Q

5% lin 0.044 0.041 0.044 0.047 0.049 0.046 0.049 0.053

hcv 0.044 0.041 0.044 0.048 2.520 2.083 2.852 3.032

hwcv 0.044 0.041 0.044 0.048 0.058 0.054 0.058 0.062

horacle 0.044 0.041 0.044 0.047 0.049 0.045 0.049 0.052

10% lin 0.175 0.163 0.175 0.186 0.196 0.181 0.194 0.208

hcv 0.170 0.158 0.170 0.182 2.626 2.162 2.902 3.110

hwcv 0.170 0.158 0.170 0.182 0.202 0.188 0.201 0.216

horacle 0.169 0.156 0.168 0.180 0.188 0.174 0.187 0.200

15% lin 0.396 0.366 0.394 0.424 0.443 0.411 0.440 0.474

hcv 0.368 0.342 0.366 0.394 2.743 2.264 2.972 3.206

hwcv 0.368 0.342 0.366 0.394 0.417 0.388 0.413 0.446

horacle 0.365 0.339 0.364 0.391 0.404 0.378 0.403 0.432

20% lin 0.706 0.654 0.702 0.754 0.784 0.724 0.779 0.837

hcv 0.628 0.58 0.626 0.672 3.002 2.441 3.122 3.417

hwcv 0.628 0.580 0.626 0.672 0.699 0.646 0.698 0.748

horacle 0.622 0.575 0.620 0.667 0.682 0.630 0.679 0.731

25% lin 1.087 1.011 1.080 1.156 1.214 1.134 1.210 1.287

hbcv 0.905 0.837 0.901 0.970 3.155 2.638 3.260 3.602

hwcv 0.905 0.837 0.901 0.970 1.009 0.936 1.004 1.076

horacle 0.898 0.830 0.894 0.962 0.990 0.919 0.988 1.055

Table 4: Estimation errors according to L(µ̂) for different noise levels and bandwidth val-

ues, with d = 200 time instants. Units are selected by simple random sampling without

replacements (SRSWR) or stratified sampling.
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SRSWR Stratified sampling

δ h Mean 1Q Median 3Q Mean 1Q Median 3Q

5% lin 0.044 0.042 0.044 0.047 0.049 0.047 0.049 0.051

hcv 0.040 0.038 0.040 0.042 2.231 1.612 1.917 2.806

hwcv 0.040 0.038 0.040 0.042 0.052 0.049 0.052 0.055

horacle 0.040 0.038 0.040 0.042 0.044 0.041 0.044 0.046

10% lin 0.175 0.166 0.175 0.184 0.196 0.186 0.196 0.205

hcv 0.128 0.120 0.127 0.135 2.258 1.648 1.969 2.844

hwcv 0.128 0.120 0.127 0.135 0.145 0.135 0.144 0.154

horacle 0.127 0.119 0.127 0.134 0.138 0.13 0.137 0.146

15% lin 0.397 0.377 0.397 0.416 0.444 0.420 0.445 0.466

hcv 0.233 0.217 0.232 0.247 2.293 1.682 1.991 2.901

hwcv 0.233 0.217 0.232 0.247 0.257 0.238 0.255 0.272

horacle 0.231 0.215 0.230 0.246 0.250 0.234 0.250 0.266

20% lin 0.708 0.672 0.706 0.744 0.79 0.749 0.791 0.829

hcv 0.351 0.327 0.350 0.374 2.442 1.763 2.152 3.107

hwcv 0.351 0.327 0.350 0.374 0.388 0.359 0.384 0.413

horacle 0.349 0.326 0.348 0.373 0.381 0.355 0.380 0.406

25% lin 1.089 1.030 1.087 1.142 1.219 1.155 1.212 1.280

hcv 0.498 0.462 0.495 0.535 2.591 1.932 2.344 3.254

hwcv 0.498 0.462 0.495 0.535 0.552 0.509 0.549 0.594

horacle 0.497 0.460 0.494 0.533 0.547 0.505 0.545 0.586

Table 5: Estimation errors according to L(µ̂) for different noise levels and bandwidth val-

ues, with d = 400 time instants. Units are selected by simple random sampling without

replacements (SRSWR) or stratified sampling.
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SRSWR Stratified sampling

δ h 1− α̂ Mean 1Q Median 3Q 1− α̂ Mean 1Q Median 3Q

5% lin 97.2 10.91 10.74 10.90 11.07 98.1 5.946 5.868 5.946 6.019

hcv 97.3 10.89 10.73 10.89 11.06 47.5 5.681 5.600 5.680 5.760

hwcv 97.3 10.89 10.73 10.89 11.06 97.5 5.918 5.840 5.913 6.000

horacle 97.2 10.9 10.72 10.90 11.07 98.0 5.941 5.862 5.942 6.018

µ̂s 97.3 10.54 10.36 10.54 10.70 98.2 5.593 5.513 5.596 5.671

10% lin 98.1 11.43 11.25 11.42 11.60 97.1 6.455 6.374 6.458 6.531

hcv 98.0 11.38 11.20 11.37 11.55 50.2 5.903 5.819 5.902 5.980

hwcv 98.0 11.38 11.20 11.37 11.55 96.4 6.358 6.277 6.355 6.433

horacle 98.1 11.39 11.22 11.39 11.56 96.7 6.414 6.335 6.416 6.496

µ̂s 97.7 10.54 10.36 10.53 10.72 97.1 5.597 5.515 5.598 5.671

15% lin 98.0 12.03 11.84 12.03 12.19 98.4 7.024 6.942 7.023 7.104

hcv 97.8 11.88 11.71 11.89 12.04 51.4 6.161 6.066 6.159 6.252

hwcv 97.8 11.88 11.71 11.89 12.04 98.2 6.804 6.720 6.799 6.891

horacle 97.8 11.89 11.71 11.89 12.06 98.4 6.876 6.782 6.878 6.964

µ̂s 97.3 10.56 10.38 10.56 10.72 98.2 5.598 5.519 5.594 5.679

20% lin 98.5 12.61 12.44 12.62 12.80 97.5 7.631 7.537 7.628 7.724

hcv 98.4 12.29 12.12 12.29 12.45 54.0 6.418 6.316 6.410 6.509

hwcv 98.4 12.29 12.12 12.29 12.45 97.0 7.198 7.105 7.195 7.286

horacle 98.3 12.32 12.14 12.31 12.50 97.3 7.306 7.212 7.305 7.393

µ̂s 98.2 10.54 10.38 10.55 10.70 97.0 5.595 5.512 5.597 5.676

25% lin 97.7 13.23 13.06 13.22 13.41 98.3 8.270 8.185 8.269 8.357

hcv 97.2 12.66 12.49 12.65 12.83 64.7 6.704 6.603 6.691 6.790

hwcv 97.2 12.66 12.49 12.65 12.83 97.3 7.563 7.479 7.564 7.645

horacle 97.3 12.70 12.50 12.70 12.87 97.5 7.683 7.575 7.678 7.788

µ̂s 97.0 10.53 10.37 10.52 10.70 97.7 5.589 5.514 5.586 5.663

Table 6: Empirical covering levels 1− α̂ and confidence band areas for different noise levels

and bandwidth values, with d = 200 time instants. Units are selected by simple random

sampling without replacements (SRSWR) or stratified sampling.
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SRSWR Stratified sampling

δ h 1− α̂ Mean 1Q Median 3Q 1− α̂ Mean 1Q Median 3Q

5% lin 97.4 10.97 10.81 10.97 11.15 97.9 6.027 5.948 6.024 6.106

hcv 97.5 10.90 10.73 10.91 11.06 48.4 5.640 5.566 5.634 5.717

hwcv 97.5 10.90 10.73 10.91 11.06 97.6 5.894 5.816 5.889 5.971

horacle 97.4 10.92 10.75 10.92 11.09 97.6 5.964 5.883 5.959 6.040

µ̂s 97.3 10.54 10.38 10.54 10.70 97.8 5.597 5.519 5.591 5.675

10% lin 97.8 11.58 11.41 11.57 11.76 97.8 6.589 6.504 6.590 6.669

hcv 97.6 11.23 11.06 11.22 11.40 49.5 5.788 5.705 5.786 5.864

hwcv 97.6 11.23 11.06 11.22 11.40 97.1 6.173 6.090 6.173 6.254

horacle 97.7 11.25 11.08 11.24 11.41 97.3 6.257 6.180 6.256 6.333

µ̂s 97.5 10.55 10.39 10.54 10.71 97.5 5.592 5.517 5.592 5.668

15% lin 97.4 12.23 12.05 12.23 12.40 98.0 7.218 7.130 7.212 7.307

hcv 96.8 11.50 11.33 11.50 11.67 52.7 5.965 5.880 5.962 6.048

hwcv 96.8 11.50 11.33 11.50 11.67 97.3 6.453 6.366 6.447 6.533

horacle 96.8 11.51 11.34 11.51 11.67 97.7 6.503 6.417 6.497 6.589

µ̂s 96.7 10.55 10.38 10.56 10.72 97.7 5.590 5.510 5.588 5.668

20% lin 98.2 12.90 12.72 12.91 13.08 98.2 7.891 7.805 7.892 7.972

hcv 97.7 11.80 11.63 11.80 11.96 55.1 6.153 6.071 6.154 6.235

hwcv 97.7 11.80 11.63 11.80 11.96 97.4 6.764 6.673 6.759 6.841

horacle 97.7 11.79 11.62 11.79 11.96 97.6 6.785 6.700 6.783 6.868

µ̂s 97.9 10.56 10.39 10.56 10.72 97.5 5.598 5.518 5.598 5.672

25 lin 98.0 13.58 13.40 13.58 13.75 98.3 8.587 8.491 8.588 8.676

hcv 97.5 12.11 11.95 12.10 12.28 58.1 6.344 6.244 6.343 6.437

hwcv 97.5 12.11 11.95 12.10 12.28 97.6 7.088 6.998 7.081 7.172

horacle 97.5 12.12 11.94 12.12 12.29 97.8 7.101 7.011 7.099 7.188

µ̂s 97.4 10.56 10.39 10.55 10.73 97.6 5.592 5.509 5.590 5.668

Table 7: Empirical covering levels 1− α̂ and confidence band areas for different noise levels

and bandwidth values, with d = 400 time instants. Units are selected by simple random

sampling without replacements (SRSWR) or stratified sampling.
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