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Abstract

Logistic regression has been widely applied in the field of biostatistics for a long

time. It aims to model the conditional success probability of an event of interest

as the logit function of a linear combination of covariates, for the sake of further

interpretation of covariates and prediction of new observation. In some applications,

however, covariates of interest have a natural structure, such as being a matrix, at

the time of being collected. The rows and columns of the covariate matrix would have

different meanings, and they must contain useful information regarding the response.

If we simply stack X as a vector and fit the conventional logistic regression model,

we may discard relevant information and may also suffer the problem of inefficiency

in estimating parameters. Motivated from this reason, we propose in this paper the

matrix variate logistic (MV-logistic) regression model. The most important feature

of our model is that it retains the inherent structure of the covariate matrix. Another

advantage is the parsimony of parameters needed. These features lead to a good

performance of MV-logistic regression in many situations. Simulation studies and a

data example, the EEG data, demonstrate the usefulness of the proposed method.

Keywords and phrases: Asymptotic theory, Logistic regression, Matrix variate

covariates, Regularization, Tensor object.

∗Corresponding author. Email address : hhung@ntu.edu.tw

1

http://arxiv.org/abs/1105.2150v1


1 Introduction

Logistic regression has been widely applied in the field of biostatistics for a long time.

It aims to model the logit transformation of conditional success probability of an event

of interest as a linear combination of covariates. After obtaining the data, maximum

likelihood estimates (MLE) can then be used to construct subsequent statistical analysis

such as prediction and interpretation. We refer the readers to MuCulloch, Searle, and

Neuhaus (2008) for details and further extensions of logistic regression.

In some applications, covariates of interest have a natural matrix structure at the time of

being collected. For example, research interest focuses on predicting the disease status of a

future patient, based on his/her image of certain organ. In this situation, we actually obtain

the data set of the form {(Yi, Xi)}ni=1 which are random copies of (Y,X), where Y is a binary

random variable with value 1 indicating diseased and 0 otherwise, and X is a p×q covariate

matrix representing the corresponding image of the i-th patient. As another example, the

EEG data set which will be analyzed in this article later, concerns the relationship between

the genetic predisposition and alcoholism. In this study, Y = 1 and Y = 0 represent

alcoholic group and control group, respectively, and the covariate X is a 256× 64 matrix,

where its (i, j)-th element X(i,j) is the measurement of voltage value at channel of electrode

i and time point j. To fit logistic regression model, one usually stacks X column by

column as a pq-vector, say vec(X), and subsequent statistical analysis follows without any

difference. However, it does not seem to be wise to ignore the inherent matrix structure

of X . More specifically, the rows and columns of X must contain information regarding Y

and we should incorporate this information into statistical analysis. Another drawback of

stacking X as a long vector is that the number of parameters usually becomes extremely

large in comparison with the sample size. For example, we will have 1 + 64× 256 = 16385

parameters in the EEG data when we fit logistic regression model by using vec(X) directly.

As high dimensionality makes statistical inference procedure instable, it becomes urgent to

seek a more efficient method in dealing with matrix covariate.

Motivated from this observation, when the covariates of interest have a natural matrix

structure, in contrast to the conventional logistic regression model, we propose the matrix
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variate logistic (MV-logistic) regression model

P (Y = 1|X) =
exp(γ + αTXβ)

1 + exp(γ + αTXβ)
, (1)

where α = (α1, · · · , αp)
T and β = (β1, · · · , βq)

T are the coefficients for rows and columns

of X , and γ is the intercept term, which preserves the matrix structure of X . Obviously,

those parameters in model (1) possess their own meanings of interpretations. In the EEG

data, for instance, α is the effect of different time points, and β is the effect of different

channels. By fitting MV-logistic regression model, we are able to extract those column

(row) information contained in X , which are ignored in the conventional logistic regression

model. Note that under model (1), (α, β) can only be identified up to scale, since (c−1α, cβ)

will result in the same model for any constant c. For the sake of identifiability, without loss

of generality, we assume α1 = 1 in the rest of discussion. Denote the rest of parameters

in α to be α∗, i.e., α = (1, α∗T )T , and θ = (γ, α∗, β) be the parameters of interest. We

thus have p + q free parameters contained in θ. One can see that a merit of model (1) is

the parsimony of parameters used. If we fit the conventional logistic regression model for

(Y, vec(X)), we require pq + 1 parameters while it is only p + q in MV-logistic regression

model. Thus, when model (1) is correctly specified, we can expect an efficiency gain in

estimating parameters.

Adoption of model (1) is equivalent to modeling the covariate-specific odds ratio Rij of

X(i,j) (with increment 1) while keeping the rest covariates fixed as

ln(Rij) = αiβj ⇔ Rij = {exp(βj)}αi . (2)

Take EEG data to exemplify again, relation (2) implies that each channel has its own

baseline odds ratio exp(βj). Depending on the time of being measured, the odds ratio is

further modified by taking a power of αi. A value of αi greater than one then indicates the

i-th time point has larger influence in comparison with the baseline time point, i.e., the

first time point (since we set α1 = 1).

Remark 1.1. Although in the population level there is no difference for which αi is set

to be one, it is a crucial step in practical implementation. Intuitively, if the true value of

αi is near zero, setting αi = 1 will magnify a negligible error to an enormous one, which
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leads to unstable, unreliable, or even divergent numerical results. Here we provide an easy

guidance to select the baseline effect. Let ρij be the sample correlation coefficient between

X(i,j) and Y . We then set αi = 1 if i = argmaxk{
∑q

j=1 |ρkj| : k = 1, · · · , p}. The intuition

is that we choose the one as the baseline which is the most likely to be correlated with the

response Y . We find in our numerical studies this simple approach makes the estimation

procedure stable and converges quickly.

Remark 1.2. Standardization of covariates before entering statistical analysis is usually

applied in practice. In logistic regression model, this preprocessing will not affect the final

result except the change of scale of parameter estimates, since the standard deviation of

each covariate can be absorbed into the corresponding parameter. As to the case of MV-

logistic regression model, however, we have pq covariates but only p+q free parameters and,

hence, it is generally impossible to absorb those standard deviations into less parameters. In

summary, standardization of covariates will result in a different model. We will investigate

this issue through EEG data in Section 4.

2 Statistical Inference Procedure

Some notations are defined here for the ease of reference. Remember the parameters of

interest is θ = (γ, α∗, β). Denote the covariate-specific probability P (Yi = 1|Xi) by

πi = π(θ|Xi) =
exp(γ + αTXiβ)

1 + exp(γ + αTXiβ)
. (3)

Let Y = (Y1, · · · , Yn)
T and X(θ) = [ X1(θ), · · · ,Xn(θ) ]T be an n × pq matrix, where

Xi(θ) = (1, βTXT
i Cp, α

TXi)
T with Cp = ∂α/∂α∗ = [0(p−1)×1, Ip−1]

T and ⊗ being the Kro-

necker product. Note that the form of Cp will be changed according to which αi = 1 is

assumed. Let also Π(θ) = (π1, · · · , πn)
T and V (θ) = diag(v1, · · · , vn), where vi = πi(1−πi)

be the conditional variance of Yi given Xi. For any function g, we denote g(i) to be the i-th

derivative of g with respect to its argument.
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2.1 Estimation

The estimation of θ mainly relies on maximum likelihood method. Given the data set

{(Yi, Xi)}ni=1, the log-likelihood function of θ is derived to be

ℓ(θ) =
∑

i

Yi ln(πi) + (1− Yi) ln(1− πi)

=
∑

i

Yi(γ + αTXiβ)− ln(1 + exp(γ + αTXiβ)), (4)

and θ can be estimated by the maximizer of ℓ(θ).

In modern research of biostatistics, however, an important issue is the number of co-

variates could be large in comparison with the sample size. This will make the estimation

procedure unstable, or traditional methodologies may even fail. As mentioned in the pre-

vious section, the number of free parameters in model (1) is p+ q, while it is pq + 1 in the

conventional logistic regression model. The MV-logistic regression then suffers less severity

from the problem of high dimensionality. However, this can not entirely avoid the problem

of instability. As we have seen in the EEG data set the covariate X is a 256 × 64 matrix

(i.e., 320 parameters in MV-logistic regression), while there are only 122 observations (note

also that there are 1+256×64 = 16385 parameters in conventional logistic regression). To

overcome the difficulty of high dimensionality, Le Cessie and Van Houwelingen (1992) pro-

posed the penalized logistic regression method. This motivates us to further consider the

penalized MV-logistic regression. In particular, we attempt to estimate θ by maximizing

the penalized log-likelihood function

ℓλ(θ) = ℓ(θ)− λJ(θ), (5)

where J(·) ≥ 0 is a twice continuously differentiable penalty function of θ, and λ ≥ 0 is the

regularization parameter that controls the amount of shrinkage. With a specific penalty

function J(·), we then propose to estimate θ by

θ̂λ = argmax
θ

ℓλ(θ). (6)

There are many choices of J(·) depending on different research purposes, wherein J(θ) =

‖θ‖2 and J(θ) = ‖α∗‖2 + ‖β‖2 are the most widely applied ones. The main difference
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between these two choices is whether to put the penalty on the intercept term γ or not.

The regularization parameter λ should also be determined in practice. In this article, we

consider to select λ through maximizing the cross-validated classification accuracy. There

are other selection criteria and can be found in Le Cessie and Van Houwelingen (1992).

To obtain θ̂λ, the iterative Newton method can be applied. The gradient of ℓλ(θ) (with

respect to θ) is calculated to be

ℓ
(1)
λ (θ) = ℓ(1)(θ)− λJ (1)(θ), (7)

where ℓ(1)(θ) = X(θ)T{Y −Π(θ)}. Moreover, the Hessian matrix of ℓλ(θ) is derived to be

ℓ
(2)
λ (θ) = −Hλ(θ) +











0 0 0

0 0
∑n

i=1C
T
p Xi(Yi − πi)

0
∑n

i=1X
T
i Cp(Yi − πi) 0











, (8)

where

Hλ(θ) = X(θ)TV (θ)X(θ) + λJ (2)(θ). (9)

As suggested by Green (1984), we will ignore the last term of (8) since its expectation is

zero. Finally, θ̂λ can be obtained through iterating

θ(k+1) = θ(k) +
{

Hλ(θ(k))
}−1

ℓ
(1)
λ (θ(k)), k = 0, 1, 2, · · · , (10)

until there is no significant difference between θ(k+1) and θ(k), and report θ(k+1) as the final

estimate. A zero initial θ(0) is suggested and performs well in our numerical studies.

Remark 2.1. We suggest to use a larger penalty (e.g., 10λ) in the first iteration to obtain

an initial value for the subsequent iterations. It is found in our numerical studies that this

procedure fastens the convergence of iterative Newton method.

2.2 Asymptotic Properties

Consistency and asymptotic normality of θ̂λ can be derived through usual arguments of

MLE. These asymptotic properties will be helpful in making statistical inference about

θ and its related quantities such as π(θ|Xi). The result is summarized in the following

theorem.
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Theorem 2.2. Assume the validity of model (1) and the regularity conditions of likelihood

function. Assume also the information matrix I(θ) = E[Xi(θ)viXi(θ)
T ] is nonsingular.

Then, for any fixed λ, we have

√
n
(

θ̂λ − θ
)

d→ N (0,Σ(θ))

as n goes to infinity, where Σ(θ) = {I(θ)}−1.

Proof. By taking Taylor’s expansion of ℓ
(1)
λ (θ̂λ) around the true θ, we have

0 =
1

n
ℓ
(1)
λ (θ̂λ) =

√
n

n
ℓ
(1)
λ (θ) +

1

n
ℓ
(2)
λ (θ){

√
n(θ̂λ − θ)}+ op(

√
n‖θ̂λ − θ‖). (11)

First observe that by central limit theorem and Slutsky’s theorem we have

√
n

n
ℓ
(1)
λ (θ) =

√
n

n
ℓ(1)(θ) +

√
n

n
λJ (1)(θ)

d→ N(0, I(θ)). (12)

Since E[ 1
n

∑n
i=1X

T
i Cp(Yi − πi)] = 0, by (8) and the law of large number we have

− 1

n
ℓ
(2)
λ (θ) =

1

n
Hλ(θ) + op(1)

p→ I(θ). (13)

The boundedness of ‖−1
n
ℓ
(2)
λ (θ)‖ from (13) and (11)-(12) then imply ‖θ̂λ − θ‖ = Op(n

−1/2).

The proof is now completed by using (11)-(13) and Slutsky’s theorem again.

From Theorem 2.2, θ̂λ is proven to be a consistent estimator of θ. It also enables us to

construct confidence region of θ, provided we have an estimate of Σ(θ). This can be done

by the usual empirical estimator with the unknown θ being replaced by θ̂λ. In particular,

define

Σ̂(θ) =

(

1

n
Hλ(θ)

)−1(
1

n
X(θ)TV (θ)X(θ)

)(

1

n
Hλ(θ)

)−1

. (14)

We propose to estimate the asymptotic covariance matrix Σ(θ) by Σ̂(θ̂λ). For any 0 < a < 1,

an approximated 100(1 − a)% confidence interval of θi, the i-th element of θ, is then

constructed to be
(

θ̂λ,i − za

2

[Σ̂(θ̂λ)]i√
n

, θ̂λ,i + za

2

[Σ̂(θ̂λ)]i√
n

)

, (15)
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where za

2
is the 1 − a

2
quantile of standard normal and [Σ̂(θ̂λ)]i denotes the i-th diagonal

element of Σ̂(θ̂λ). We would also be interested in making statistical inference about the

success probability π(θ|x) for any given p × q matrix x. This quantity can be straight-

forwardly estimated by π(θ̂λ|x). A discrimination rule is then to classify a subject with

matrix covariate x to the “diseased” group if π(θ̂λ|x) > 0.5 and the “non-diseased” group

otherwise. Moreover, by applying delta method and the result of Theorem 2.2, we deduce

that

√
n

{

ln

(

π(θ̂λ|x)
1− π(θ̂λ|x)

)

− ln

(

π(θ|x)
1− π(θ|x)

)

}

d→ N
(

0, σ2
π(θ|x)

)

, (16)

where

σ2
π(θ|x) = x(θ)TΣ(θ)x(θ) (17)

and x(θ) = (1, βTxTCp, α
Tx)T . The asymptotic variance σ2

π(θ|x) can be estimated by

σ̂2
π(θ̂λ|x), where

σ̂2
π(θ|x) = x(θ)T Σ̂(θ)x(θ). (18)

An approximated 100(1− a)% confidence interval of π(θ|x) is then constructed to be





exp(γ̂ + α̂Txβ̂ − za

2

σ̂π(θ̂λ|x)√
n

)

1 + exp(γ̂ + α̂Txβ̂ − za

2

σ̂π(θ̂λ|x)√
n

)
,

exp(γ̂ + α̂Txβ̂ + za

2

σ̂π(θ̂λ|x)√
n

)

1 + exp(γ̂ + α̂Txβ̂ + za

2

σ̂π(θ̂λ|x)√
n

)



 , (19)

which is guaranteed to be a subinterval of [0, 1].

3 Simulation Studies

In this section the proposed method is evaluated through simulation studies under two

different settings. Let the parameters in model (1) be set as α = (1, 0.5,−0.51T
p−2)

T ,

β = (1, 0.5, 1,−1,−1q−4)
T , and γ = 1, where 1a is the a × 1 vector of ones. A common

value of λ = 0.5 is used throughout the simulations. Simulation results are reported with

(p, q) = (10, 12) and 500 replicates.
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3.1 Simulation with tensor structure

In the first simulation study, we evaluate the proposed method under the validity of

model (1). We first generate X such that vec(X) follows a pq-variate normal distribu-

tion with mean zero and covariance matrix Ipq. Conditional on X , Y is generated from

model (1) with the specified θ. We then obtain θ̂λ and related quantities by the proposed

method. The averages of θ̂λ and standard errors from (14) are provided in Table 1 for

n = 150, 300. It can be seen that the biases of θ̂λ is small in comparison with standard

deviations, and decrease as the sample size increases. The standard deviations are also well

estimated by our empirical estimators, the diagonal elements of Σ̂(θ̂λ). These observations

also validates our Theorem 2.2 and the proposed estimators Σ̂(θ̂λ).

To further demonstrate the superiority of matrix-variate logistic regression, we also fit

the conventional penalized logistic regression (Le Cessie and Van Houwelingen, 1992) to

obtain estimate of (γ, η) with η = (β ⊗ α) as if we ignore the matrix structure of X ,

and denote it by (γ̃, η̃). It is then compared with (γ̂, η̂), the estimates obtained from

MV-logistic regression. In each simulation run, we generate another independent data

set under the same setting with the same sample size n, and calculate the classification

accuracies by using η̂T vec(X) and η̃T vec(X) as predictors. Table 2 provides the averages

of similarities η̂T η̃/(‖η̂‖ ‖η̃‖) and the classification accuracies. It is obviously detected that

the MV-logistic regression produces larger similarities and classification accuracies.

3.2 Simulation without tensor structure

An important issue in practice is the validity of MV-logistic regression. When the covariate

of interest X has a natural matrix structure, it is reasonable to apply model (1) for subse-

quent analysis. The parameters involved in the model also have the corresponding physical

meanings. As demonstrated in the previous numerical studies, MV-logistic regression def-

initely outperforms the conventional logistic regression under model (1). Note that one

advantage of MV-logistic regression is the parsimony of parameter used, since the columns

(rows) of X share the same parameter α (β). In practice, however, this assumption could

be violated even when X has a natural matrix structure. For example, one of the columns
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(rows) of X could possess a different effect. Here we will evaluate the performance of MV-

logistic regression through simulations when the underlying distribution model departures

from model (1).

We first generate vec(X) from a 120-variate standard normal distribution. In each

simulation run, we also independently generate a random vector δ from a 120-variate normal

distribution with mean zero and covariance matrix σ2I120. Then, conditional on X , Y is

generated from a Bernoulli distribution with

P (Y = 1|X) =
exp(γ + η∗T vec(X))

1 + exp(γ + η∗T vec(X))
, (20)

where η∗ = η + δ and η = (β ⊗ α). It is obvious that with an extra term δ, η∗ does not

possess a tensor structure and thus model (1) is incorrect. The amount of σ controls the

magnitude of departure of (20) from (1). We then fit conventional logistic regression to

obtain η̃∗. We also fit model (1) to obtain η̂∗. Of course in this situation evaluations of θ̂λ

are meaningless. Instead, we will compare the classification accuracy. That is, both η̃∗ and

η̂∗ are applied to another independently generated data set and the classification accuracies

are calculated. The averages of classification accuracies and standard deviations are placed

in Table 3 for σ = 0.1, 0.3, 0.5 and n = 150.

It is detected that MV-logistic regression still outperforms conventional logistic regres-

sion with moderate size of σ. The classification accuracy of MV-logistic regression decreases

as σ increases, and is roughly the same with the one of conventional logistic regression when

σ = 0.5. Our simulation results indicate that MV-logistic regression has certain robustness

against the violation of model specification, and can be treated as a good “working” model

even if the underlying distribution do not obey model (1).

4 The EEG Data

The EEG data is analyzed in this section to demonstrate the usefulness of MV-logistic

regression. The data consists of 122 subjects, wherein 77 of them belong to the group

of alcoholism (Yi = 1) and the rest 45 subjects are in the control group (Yi = 0). Each

subject completed a total of 120 trials under three different conditions (single stimulus,
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two matched stimuli, and two unmatched stimuli). In each trial, measurements from 64

electrodes placed on subject’s scalp at 256 time points are collected, which resulted in a

256 × 64 covariate matrix. It is interested to distinguish two types of subjects based on

the collected matrix covariates. The data set can be downloaded from the web site of UCI

Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/EEG+Database).

The EEG data was recently analyzed by Li, Kim, and Altman (2010), whose main

purpose focused on dimension reduction. Here we adopt a similar strategy for data prepro-

cessing. In particular, we consider partial data set under the condition of single stimulus

only, and the averaged matrix covariates over different trials of the same subject, denoted

by X∗
i , will be considered in our analysis. Note that with 256 × 64 covariate matrix, we

will have 320 free parameters which still largely excesses the number of sample size 122.

To make the analysis more reliable, before fitting MV-logistic regression, an unsupervised

dimension reduction method, the generalize low rank approximations (GLRAM) of Ye

(2005), is performed to reduce the dimension of X∗
i . GLRAM is an extension of principal

component analysis to matrix object, which aims to find orthogonal bases A ∈ R
p×p0 and

B ∈ R
q×q0 with p0 < p and q0 < q such that X∗

i is well explained by the lower dimen-

sional transformation ATX∗
i B. Hung, Wu, Tu, and Huang (2011) also developed statistical

justification of GLRAM. Detailed analysis procedure is listed below.

1. Apply GLRAM to find A and B under (p0, q0) = (15, 15). Define X̂∗
i = ATX∗

i B.

2. Standardize each element of X̂∗
i to obtain the covariate matrix Xi.

3. Fit MV-logistic regression with {(Yi, Xi)}122i=1. We apply the rule suggested in Re-

mark 1.1 to set α3 = 1 and denote the rest αi’s as α
∗.

To estimate θ, we adopt the penalty function J(θ) = ‖θ‖2. The penalty λ = 24 is chosen

so that the leave-one-out classification accuracy is maximized. The resulting estimates of

α and β are provided in Figure 1. The corresponding 95% confidence intervals constructed

from (15) are also reported. Note that the estimates of α∗ are all smaller than 1, which

indicates a smaller effect in comparison with the third time point. This is expectable

since we set α3 = 1 according to Remark 1.1. As many estimates of αi’s and βj ’s are
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significantly different from zero, channels and measurement times surely play important

roles in distinguishing alcoholic and control groups. Figure 2 (a) provides the estimated

success probability of each subject (by using the rest 121 subjects) as well as the 95%

confidence interval from (19), and Figure 2 (b) gives the estimated density functions of

α̂TXiβ̂ for two types of subjects. An obvious separation of two groups is detected in these

figures which demonstrates the usefulness of our method in classification.

The choice of (p0, q0) = (15, 15) in Step 1 is the same with the data preprocessing step

of Li, Kim, and Altman (2010). By fitting MV-logistic regression, we correctly classify

105 subjects (through leave-one-out classification procedure) under this choice, while the

best result of Li, Kim, and Altman (2010) from dimension folding (a dimension reduction

technique that preserves the matrix structure of covariates) followed by quadratic discrim-

inant analysis gives 97. Though the purpose of Li, Kim, and Altman (2010) is focused on

dimension reduction, it is not our aim here to compare the classification accuracy, but only

want to reveal the usefulness of MV-logistic regression. We think the reasons of a better

performance for MV-logistic regression are twofold. First, we adopt a different data prepro-

cessing technique GLRAM in Step 1, where Li, Kim, and Altman (2010) use a version of

(2D)2PCA (Zhang and Zhou, 2005). Hung, Wu, Tu, and Huang (2011) prove that GLRAM

is asymptotically more efficient than (2D)2PCA in extracting bases and, hence, it is rea-

sonable for GLRAM to produce better result. Second, standardization in Step 2 makes

the EEG data more suitable to fit MV-logistic regression model. Without standardization,

MV-logistic regression cannot produce such a high classification accuracy. This also reflects

that standardization is an important issue before fitting models which preserves the matrix

structure of covariates. We remind the reader again that standardization of covariates will

result in a different MV-logistic regression model.

We also compare our method with the penalized logistic regression of Le Cessie and

Van Houwelingen (1992) under various combinations of (p0, q0), and the leave-one-out clas-

sification accuracies are summarized in Table 4. It is obvious that MV-logistic regression

outperforms conventional logistic regression in every setting, which indicates that the su-

periority of our method does not contribute from any specific choice of (p0, q0). Moreover,

since the same data set is used for two methods, it implies the good performance of MV-
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logistic regression is not due to GLRAM, but the nature of MV-logistic regression. As

mentioned previously, MV-logistic regression preserves the matrix information of X , re-

quires less parameters in model fitting, and an efficiency gain is expected. We can also

detect this fact in Table 4. Obviously, as the number of p0q0 increases, the classifica-

tion accuracy of conventional logistic regression decays rapidly, while those of MV-logistic

regression roughly remain constant.

5 Extension to Multi-Class Response

In this section we briefly illustrate the extension of MV-logistic regression to the case of H

classes with H ≥ 2. Let Y ∗
i ∈ {1, · · · , H} be the random variable indicating which class

the i-th subject belongs to. We can equivalently code Y ∗
i as Yi = (Y1i, · · · , YH−1,i)

T , where

Yhi is the random variable of the i-th subject with value one indicating the subject belongs

to category h, h = 1, · · · , H − 1, and {Yhi = 0, h = 1, · · ·H − 1} means the i-th subject

belongs to category H . Consider the model

ln

{

P (Yi = h|X)

P (Yi = H|X)

}

= γh + αT
hXβh, h = 1, · · ·H − 1, (21)

with αT
h = (1, α∗T

h )T for the sake of identifiability. The parameter of interest is θ =

(θ1, · · · , θH−1) with θh = (γh, α
∗
h, βh). This gives the covariate-specific probability P (Yi =

h|Xi) for h = 1, · · · , H − 1 to be

πhi = πh(θ|Xi) =
exp(γh + αT

hXiβh)

1 +
∑H−1

h=1 exp(γh + αT
hXiβh)

, (22)

and for h = H to be

πHi = πH(θ|Xi) =
1

1 +
∑H−1

h=1 exp(γh + αT
hXiβh)

. (23)

Based on the data {(Xi, Yi)}ni=1, the log-likelihood function of θ is given by

ℓ∗(θ) =

n
∑

i=1

{

H−1
∑

h=1

Yhi(γh + αT
hXiβh)− ln

(

1 +

H−1
∑

h=1

exp(γh + αT
hXiβh)

)}

. (24)

The penalized log likelihood is given by ℓ∗λ(θ) = ℓ∗(θ) − λJ(θ) and we can estimate θ by

θ̂λ = argmaxθ ℓ
∗
λ(θ).

13



To apply the Newton method to estimate θ, we need to calculate the gradient vector

and Hessian matrix of ℓ∗λ(θ). Let Yh = (Yh1, · · · , Yhn)
T , Y∗ = (YT

1 , · · · ,YT
H−1)

T , Πh(θ) =

(πh1, · · · , πhn)
T , and Π∗(θ) = (Π1(θ)

T , · · · ,ΠH−1(θ)
T )T for h = 1, · · · , H − 1. Let also

X∗(θ) = diag(X(θ1), · · · ,X(θH−1)), where X(·) is defined as before. Then, we have

ℓ
∗(1)
λ (θ) = X∗(θ)T{Y∗ −Π∗(θ)} − λJ (1)(θ). (25)

The Hessian matrix (after ignoring the zero expectation term as in (9)) is derived to be

H∗
λ(θ) = X∗(θ)TV ∗(θ)X∗(θ) + λJ (2)(θ), (26)

where V ∗(θ) = [V ij(θ)], V hh = diag(πh1(1−πh1), · · · , πhn(1−πhn)), h = 1, · · · , H−1, and

V hk = V kh = diag(−πh1πk1, · · · ,−πhnπkn), 1 ≤ h 6= k ≤ H − 1. Finally, θ̂λ is obtained by

using (25) and (26) in the iteration equation (10).

By a similar proof of Theorem 2.2, we can also deduce that
√
n(θ̂λ−θ) converges weakly

to a normal distribution with mean zero and covariance matrix Σ∗(θ) = {I∗(θ)}−1, where

I∗(θ) = E[ 1
n
X∗(θ)TV ∗(θ)X∗(θ)]. Moreover, Σ∗(θ) can be estimated by Σ̂∗(θ̂λ), where

Σ̂∗(θ) =

(

1

n
H∗

λ(θ)

)−1(
1

n
X∗(θ)TV ∗(θ)X∗(θ)

)(

1

n
H∗

λ(θ)

)−1

. (27)

Subsequent statistical inference procedures are the same with what we have already estab-

lished in previous sections.

6 Conclusions

Tensor objects are now frequently encountered in many applications, such as face recogni-

tion and image compression. One can also imagine a subject with p covariates measured

on q time points at r different places is naturally stored as an order three tensor. In this

paper we propose the MV-logistic regression model, when the covariates of interest have a

natural matrix structure which is an order two tensor. The implementation and statistical

inference procedure (based on the asymptotic normality of θ̂λ) are also developed. The

usefulness of our method is validated through simulation studies and EEG data set. We

note that in the best case (p0, q0) = (15, 15), through leave-one-out cross validation pro-

cedure, we successfully classify 105 of 122 subjects to the right group. One reason of the

14



superiority for MV-logistic regression comes from the parsimony of parameter used. It is

also found in our limited simulations that MV-logistic regression has certain robustness

against the violation of model specification, and its nice performance is expected in many

situations. Although we focus on matrix covariate in this article, the proposed method can

be extended to tensor objects of higher order.
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Table 1: Averages of θ̂λ (Mean), averages of Σ̂(θ̂λ) (SE), and standard deviations of θ̂λ

(SD) under model (1) for n = 150, 300.

n = 150 n = 300

True Mean SD SE Mean SD SE

γ 1.000 1.149 0.432 0.447 1.084 0.301 0.292

α∗ 0.500 0.547 0.164 0.149 0.521 0.098 0.091

-0.500 -0.550 0.173 0.152 -0.518 0.094 0.092

-0.500 -0.555 0.170 0.149 -0.514 0.096 0.091

-0.500 -0.553 0.169 0.151 -0.521 0.097 0.091

-0.500 -0.552 0.173 0.149 -0.516 0.101 0.092

-0.500 -0.541 0.183 0.151 -0.524 0.103 0.093

-0.500 -0.544 0.173 0.151 -0.514 0.095 0.091

-0.500 -0.549 0.175 0.150 -0.518 0.101 0.091

-0.500 -0.553 0.173 0.150 -0.515 0.097 0.091

-0.500 -0.552 0.171 0.151 -0.518 0.099 0.092

-0.500 -0.549 0.175 0.151 -0.519 0.098 0.092

β 1.000 1.167 0.298 0.292 1.105 0.206 0.202

0.500 0.595 0.260 0.244 0.560 0.169 0.158

1.000 1.165 0.291 0.292 1.114 0.213 0.203

-1.000 -1.157 0.299 0.291 -1.110 0.216 0.203

-1.000 -1.168 0.278 0.293 -1.103 0.207 0.202

-1.000 -1.143 0.290 0.289 -1.097 0.213 0.203

-1.000 -1.141 0.281 0.291 -1.102 0.206 0.203

-1.000 -1.161 0.286 0.293 -1.101 0.206 0.203

-1.000 -1.155 0.276 0.293 -1.108 0.200 0.202

-1.000 -1.148 0.297 0.292 -1.109 0.215 0.203
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Table 2: Average classification accuracies and similarities (standard deviations) under

model (1) for n = 150, 300.

n MV-logistic Logistic

150 Similarity 0.950 (0.021) 0.716 (0.038)

Accuracy 0.864 (0.031) 0.735 (0.039)

300 Similarity 0.981 (0.007) 0.854 (0.037)

Accuracy 0.891 (0.027) 0.802 (0.034)

Table 3: Average classification accuracies (standard deviations) under model (20) for σ =

0.1, 0.3, 0.5 and n = 150.

σ MV-logistic Logistic

0.1 0.855 (0.032) 0.736 (0.037)

0.3 0.792 (0.038) 0.742 (0.037)

0.5 0.730 (0.048) 0.750 (0.039)

Table 4: The leave-one-out classification accuracy of MV-logistic/Logistic regression for

EEG data under different combinations of (p0, q0).

p0

q0 15 30 60 120

15 0.861/0.803 0.844/0.779 0.844/0.689 0.803/0.566

20 0.836/0.795 0.828/0.762 0.853/0.648 0.787/0.549

30 0.844/0.787 0.828/0.754 0.828/0.615 0.812/0.549
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Figure 1: Estimates of α and β (the blue circles) with the corresponding 95% confidence

intervals (the blue vertical lines) for EEG data under (p0, q0) = (15, 15). Since we set

α3 = 1, no estimate is provided for α3 in (a).
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Figure 2: (a) Estimates of π(θ|Xi) (the symbol *) and the corresponding 95% confidence

intervals (horizontal lines) for EEG data. Subjects 1-45 and 46-122 belong to the control

and alcoholic groups, respectively. (b) Smoothing estimates of the density functions of

α̂TXiβ̂ for control and alcoholic groups
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