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Abstract

A number of regularization methods for discrete inverse problems consist in

considering weighted versions of the usual least square solution. However, these

so-called filter methods are generally restricted to monotonic transformations, e.g.

the Tikhonov regularization or the spectral cut-off. In this paper, we point out that

in several cases, non-monotonic sequences of filters are more efficient. We study a

regularization method that naturally extends the spectral cut-off procedure to non-

monotonic sequences and provide several oracle inequalities, showing the method to

be nearly optimal under mild assumptions. Then, we extend the method to inverse

problems with noisy operator and provide efficiency results in a newly introduced

conditional framework.
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1 Introduction

We are interested in recovering an unobservable signal x0, based on noisy observations
of the image of x0 through a linear operator A. The observation y satisfies the following
relation

y(t) = Ax0(t) + ε(t),

where ε(.) is a random process representing the noise. This problem is studied in [5], [12],
[14] and in many applied fields such as medical imaging in [18] or seismography in [19] for
instance. When the measured signal is only available at a finite number of points t1, ..., tn,
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the operator A must be replaced by a discrete version An : x 7→ (Ax(t1), ..., Ax(tn))
′,

leading to a discrete linear model

y = Anx0 + ε,

with y ∈ R
n. Difficulties in estimating x0 occur when the problem is ill-posed, in the sense

that small perturbations in the observations induce large changes in the solution. This is
caused by an ill-conditioning of the operator An, reflected by a fast decay of its spectral
values bi. In such problems, the least square solution, although having a small bias, is
generally inefficient due to a too large variance. Hence, regularization of the problem is
required to improve the estimation. A large number of regularization methods are based
on considering weighted versions of the least square estimator. The idea is to allocate low
weights λi, or filters, to the least square coefficients that are highly contaminated with
noise, thus reducing the variance, at the cost of increasing the bias at the same time.
The most famous filter-based method is arguably the one due to Tikhonov (see [20]),
where a collection of filters is indirectly obtained via a minimization procedure with ℓ2

penalization. Tikhonov filters are entirely determined by a parameter τ that controls the
balance between the minimization of the ℓ2 norm of the estimator and the residual.

Another well spread filter method that will be given a particular interest in this paper,
is the spectral cut-off discussed in [2], [9] and [11]. One simply considers a truncated
version of the least square solution, where all coefficients corresponding to arbitrarily
small eigenvalues are removed. Thus, spectral cut-off is associated to binary filters λi,
equal to 1 if the corresponding eigenvalue bi exceeds in absolute value a certain threshold
τ , and 0 otherwise.

A common feature of spectral cut-off and Tikhonov regularization is the predetermined
nature of the filters λi, defined in each case as a fixed non-decreasing function f(τ, .) of the
eigenvalues b2i , and where only the parameter τ is allowed to depend on the observations.
However, in many situations, non-monotonic sequences of filters may provide a more
efficient estimation of x0. Actually, optimal values for λi generally depend on both the
noise level, which is determined by the eigenvalue bi, and the component, say xi, of x0 in
the direction associated to bi. A restriction to monotonic collections of filters turns out to
be inefficient in situations where the coefficients xi are uncorrelated to the spectral values
bi of the operator An.

Regularization methods involving more general classes of filters have also been treated
in the literature. In [5], the authors study a general procedure known as unbiased risk esti-

mation, that applies to arbitrary classes of filters, dealing in particular with non-monotonic
collections. However, their general framework concerning the class of estimators requires
in return additional regularity assumptions which we intend to relax in this paper. We
focus on a specific class of projection estimators that extends the spectral cut-off to non-
monotonic collections of filters. Precisely, we consider the collection of unrestricted binary
filters λi ∈ {0, 1}. The computation of the estimator relies on the choice of a proper set of
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coefficients m ⊂ {1, ..., n}, which considerably increases the number of possibilities com-
pared to the spectral cut-off procedure. We show this method to satisfy a non-asymptotic
exact oracle inequality, when the oracle is computed in the class of binary filters. More-
over, we show our estimator to nearly achieve the rate of convergence of the best linear
estimator in the maximal class of filters, i.e. when no restriction is made on λi.

It many actual situations, the operator An is not known precisely and only an approx-
imation of it is available. Regularization of inverse problems with approximate operator
is studied in [6], [8] and [13]. In this paper, we tackle the problem of estimating x0 in
the situation where we observe independently a noisy version b̂i of each eigenvalue bi. We
consider a new framework where the observations b̂i are made once and for all, and are
seen as non-random. We provide a bound on the conditional risk of the estimator, given
the values of b̂i, in the form of a conditional oracle inequality.

The paper is organized as follows. We introduce the problem in Section 2. We define
our estimator in Section 3, and provide two types of oracle inequalities. Section 4 is
devoted to an application of the method to inverse problems with noisy operators. The
proofs of the results are postponed to the Appendix.

2 Problem setting

Let (X , ‖.‖) be a Hilbert space and An : X → R
n (n > 2) a linear operator. We want

to recover an unknown signal x0 ∈ X based on the indirect observations

y = Anx0 + ε, (1)

where ε is a random noise vector. We assume that ε is centered with covariance matrix
σ2I, where I denotes the identity matrix. We endow R

n with the scalar product 〈u, v〉n =
n−1

∑n
i=1 uivi and the associated norm ‖.‖n and we note A∗

n : Rn → X the adjoint of
An. Let Kn be the kernel of An and K⊥

n its orthogonal in X which we assume to be of
dimension n. The surjectivity of An ensures that the observation y provides information
in all directions. If this condition is not met, one may simply reduce the dimension of the
image in order to make An surjective.

The efficiency of the estimator relies first of all on the accuracy of the discrete operator
An and how ”close” it is to the true value A. The convergence of the estimator towards
x0 is subject to the condition that the distance of x0 to the set K⊥

n tends to 0, which
is reflected by a proper asymptotic behavior of the design t1, ..., tn. This aspect is not
discussed here, we consider a framework where we have no control over the design t1, ..., tn
and we focus on the convergence of the estimator towards the projection x†.

Let {bi;φi, ψi}i=1,...,n be a singular system for the linear operator An, that is, Anφi =
biψi and A

∗
nψi = biφi and b

2
1 ≥ ... ≥ b2n > 0 are the ordered non-zero eigenvalues of the

self-adjoint operator A∗
nAn. The φi’s (resp. ψi’s) form an orthonormal system of K⊥

n (resp.

3



R
n).

In this framework, the available information on x0 consists in a noisy version of Anx0.
As a result, estimating the part of x0 lying in Kn is impossible, based only on the ob-
servations. The best approximation of x0 one can get without prior information is the
orthogonal projection of x0 onto K⊥

n . This projection, noted x
†, is called best approximate

solution and is obtained as the image of Anx0 through the generalized Moore-Penrose
inverse operator A†

n = (A∗
nAn)

†A∗
n, where (A

∗
nAn)

† denotes the inverse of A∗
nAn, restricted

to K⊥
n . By construction, the generalized Moore-Penrose inverse A†

n can also be defined as
the operator for which {b−1

i ;ψi, φi}i=1,...,n is a singular system. We refer to [9] for further
details.

Searching for a solution in the subspace K⊥
n allows to reduce the number of regressors

to n. Then, estimating x† can be made using a classical linear regression framework where
the number of regressors is equal to the dimension of the observation. Decomposing the
observation in the singular basis {ψi}i=1,...,n leads to the following model

yi = bixi + εi, i = 1, ..., n,

where we set yi = 〈y, ψi〉n, εi = 〈ε, ψi〉n and xi = 〈x0, φi〉. It now suffices to divide each
term by the known singular value bi to observe the coefficient xi, up to a noise term
ηi := b−1

i εi. Equivalently, this is obtained by applying the Moore-Penrose inverse A†
n

in the model (1). We thus consider the function y† = A†
ny ∈ K⊥

n , defined as the inverse
image of y through An with minimal norm. Identifying y† with the vector of its coefficients
y†i = b−1

i yi in the basis {φi}i=1,...,n, we obtain

y†i = xi + ηi, i = 1, ..., n. (2)

The covariance matrix of the noise η = (η1, ..., ηn)
′ is diagonal in this model, as we have

E(ηiηj) = n−1b−1
i b−1

j σ2 〈ψi, ψj〉n which is null for all i 6= j and equal to σ2
i := σ2b−2

i /n if
i = j. Thus, the model can be interpreted as a linear regression model with heteroscedas-
tic noises, the variances σ2

i being inversely proportional to the eigenvalues b2i . In the case
where ε in the original model (1) is Gaussian with distribution N (0, σ2I), the noises ηi
remain Gaussian in (2).

This representation points out the effect of the decay of the singular values bi on the
noise level, making the problem ill-posed. To control the noise with a too large variance
σ2
i , a solution is to consider weighted versions of y†. For some filter λ = (λ1, ..., λn)

′,
note x̂(λ) ∈ K⊥

n the function defined by 〈x̂(λ), φi〉 = λiy
†
i for i = 1, ..., n. Filter-based

methods aim to cancel out the high frequency noises by allocating low weights to the
components y†i corresponding to small singular values. A widely used example is the
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Tikhonov regularization, with weights of the form λi = (1 + τσ2
i )

−1 for some τ > 0. The
Tikhonov solution can be expressed as the minimizer of the functional

‖y − Anx‖
2 + τ‖x‖2, x ∈ X ,

which makes the method particularly convenient in cases where the SVD of A∗
nAn or the

coefficients y†i are not easily computable. We refer to [3] and [20] for further details.
Another common filter-based method is the truncated singular value decomposition or

spectral cut-off studied in [2], [9] and [11]. An estimator of x0 is obtained as a truncated
version of y†, where all coefficient y†i corresponding to arbitrarily small singular values are
replaced by 0. This approach can be viewed as a principal component analysis, where only
the highly explanatory directions are selected. The spectral cut-off estimator is associated
to filter factors of the form λi = 1{i ≤ k}, where 1{.} denotes the indicator function and
k is a bandwidth to be determined. Data-driven methods for selecting suitable values of
k are discussed in [3], [4], [11], [21] and [22].

A natural way to generalize the spectral cut-off procedure is to enlarge the class of
estimators by considering non-ordered truncated versions of y†, as made in [14], [15] or
[16] (see also Examples 1 and 2 in [5]). This approach reduces to a model selection issue
where each model is identified with a set of indices m ⊂ {1, ..., n}. Precisely, form a given
model, define x̂m ∈ K⊥

n as the orthogonal projection of y† onto Xm := span{φi, i ∈ m},
that is, x̂m satisfies

〈x̂m, φi〉 =

{
y†i if i ∈ m,
0 otherwise.

The objective is to find a model m that makes the expected risk E‖x̂m − x0‖2 small. The
computation of the estimator no longer relies on the choice of one parameter k ∈ {1, ..., n}
as for spectral cut-off, but on the choice of a set of indices m ⊂ {1, ..., n}, which increases
the number of possibilities. In particular, this approach allows non-monotonic collections
of filters that may perform better than decreasing sequences obtained by spectral cut-off.
To see this, write the bias-variance decomposition of the estimator x̂m for a deterministic
model m:

E‖x̂m − x0‖
2 = E‖x0 − x†‖2 +

∑

i/∈m

x2i +
∑

i∈m

σ2
i .

In these settings, it appears that in order to minimize the risk, best is to select indices
i for which the component x2i is larger than the noise level σ2

i . A proper choice of filter
should depend on both the variance σ2

i and the coefficient x2i . Consequently, the resulting
sequence {λi}i=1,...,n has no reason of being a decreasing function of σ2

i if some coefficients
x2i are large enough to compensate for a large variance.
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3 Non-ordered variable selection

3.1 Threshold regularization

The construction of the estimator by non-ordered variable selection reduces to finding
a proper set m. Following the discrepancy principle, an optimal value for m (minimiz-
ing the risk) is obtained by keeping small simultaneously the bias term

∑
i/∈m x

2
i and the

variance term
∑

i∈m σ
2
i in the expression of the risk E‖x̂m − x0‖2. Following the previous

argument, a minimizer of the risk E‖x̂m − x0‖2 is obtained by selecting only the indices
i for which the coefficient x2i is larger than the noise level σ2

i . An optimal model is thus
given by m∗ := {i : x2i ≥ σ2

i }. The coefficients xi being unknown to the practitioner, the
optimal set m∗ can not be computed in practical cases. For this reason it will be referred
to as an oracle.

We shall now provide a model m̂ constructed from the available information, that
mimics the oracle m∗. Fixing a threshold on the coefficients xi being impossible, we
propose to use a threshold on the coefficients y†i . Precisely, consider the set

m̂ =
{
i : y†2i ≥ 4σ2

i µi

}
,

for {µi}i=1,...,n a sequence of positive parameters to be chosen. Obviously, the behavior of
the resulting estimator x̂m̂ relies on the choice of the sequence {µi}i=1,...,n: the larger the
µi’s, the more sparse is x̂m̂. It must be chosen so that the resulting set m̂ contains only the
indices i for which the noise level is small compared to the actual value of xi. Although,
the only knowledge of the observations y†i and the variances σ2

i makes it a difficult task.

There exist general filter-based methods that can be applied to arbitrary classes of
filter estimators. One example is the unbiased risk estimation discussed in [5], which
defines an estimator of x0 via the minimization of an unbiased estimation of the risk,
over an arbitrary set of filters. When restricted to the class of binary filters λi ∈ {0, 1},
unbiased risk estimation reduces to minimizing over M the criterion

m 7→ ‖y† − x̂m‖
2 + 2

∑

i∈m

σ2
i .

The minimum can be shown to be reached for the set m = {i : y†2i ≥ 2σ2
i }, which cor-

responds to taking µi = 1/2 in our method. This choice is shown to be asymptotically
efficient in Proposition 2 in [5], although additional restrictions are made on the λi’s which
we intend to relax here in an asymptotic framework. If these conditions are not met, the
accuracy of the choice µi = 1/2 is not clear. We investigate in the next section a different
choice for µi which turns out to be nearly optimal in a general framework.
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In a general point of view, the estimator x̂m̂ can be obtained via a minimization procedure,
using a BIC-type criterion for heteroscedastic models,

x̂m̂ = argmin
x∈X

{
‖y† − x‖2 + 4

n∑

i=1

σ2
i µi1{〈x, φi〉 6= 0}

}
.

In a certain way, this can be seen as a hard-thresholding version of the estimator considered
in [16], obtained with a ℓ1 penalty. However, expressing the estimator as the solution to a
minimization equation does not ease the computation. The method requires in any case
calculation of the SVD of A∗

nAn and the coefficients y†i , which may be computationally
expensive. On the other hand, the computation of the estimator is simple once the
decomposition of y† in the SVD of A∗

nAn is known, as it suffices to compare each coefficient
y†i to the threshold 4σ2

i µi.

3.2 Oracle inequalities

In the definition of m̂, the choice of the parameters µi is crucial. Too large values of
µi will result in an under-adjustment, keeping too few relevant components y†i to estimate
x0. On the contrary, a small value of µi increases the probability of selecting a component
y†i that is highly affected with noise. Thus, it is essential to find a good balance between
these two types of errors. In the next theorem, we provide a nearly optimal choice for the
parameters µi, under the condition that ε has finite exponential moments.

For i = 1, ..., n, note γi := η2i /σ
2
i = nε2i /σ

2. We make the following assumption.

A1. There exist K, β > 0 such that ∀t > 0, ∀i = 1, ..., n, P(γi > t) ≤ Ke−t/β .

In a Gaussian model, the γi’s have χ2 distribution with one degree of freedom. The
condition A1 holds for any β > 2, taking K =

√
1− 2/β.

Theorem 3.1 Assume that the condition A1 holds. Set µi = max{β log(n2σ2
i ), 0}, the

estimator x̂m̂ satisfies

E‖x̂m̂ − x†‖2 ≤ E‖x̂m∗ − x†‖2 + (K1 logn +K2)
∑

i∈m∗

σ2
i +

K3

n
,

with K1 = 12β, K2 = 2 + β log ‖x†‖2 and K3 = 2Kβ.

Remark 1. This theorem establishes a non-asymptotic oracle inequality with exact
constant. The residual term is similar to that in Corollary 1 in [14]. The fact that the
term ‖x†‖ depends on n is not problematic here as it can in any case be bounded by the
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norm of x0.

Remark 2. The method requires knowledge of the operator An, the variance σ2 and
the constant β in the condition A1. Note however that knowing the constant K is not
necessary to build the estimator.

Remark 3. The set m̂ contains all indices i for which σ2
i ≤ 1/n2, as we have in this

case µi = 0. This suggests that the error caused by wrongfully selecting indices i for
which the variance is smaller than 1/n2 is negligible, regardless of the value of y†i .

Remark 4. In an asymptotic concern, the accuracy of the result stated in Theorem
3.1 relies on the convergence rate of the residual term to zero, compared to the risk of
the oracle. The residual term

∑
i∈m∗ σ2

i is actually the variance term in the bias-variance
decomposition of x̂m∗ , and therefore, it is bounded by the risk of the oracle. As a result,
the estimator x̂m̂ is shown to reach at least the same rate of convergence as the oracle, up
to a logarithmic term, which warrants good adaptivity properties. The logarithmic term
vanishes in the convergence rate if the bias term

∑
i/∈m∗ x2i dominates in the risk of the

x̂m∗ . Precisely, the oracle inequality is asymptotically exact as soon as the residual term
log n

∑
i∈m∗ σ2

i is negligible compared to the bias term
∑

i/∈m∗ x2i . In this case, it follows
from Theorem 3.1 that

E‖x̂m̂ − x†‖2 = (1 + o(1)) E‖x̂m∗ − x†‖2.

Of course, this condition is hard to verify in practice and assuming it is true reduces
to make strong regularity assumptions on the asymptotic behavior of x0 and An. In a
non-asymptotic framework, the theorem warrants that the estimator x̂m̂ is close to the
oracle as soon as the variance term

∑
i∈m∗ σ2

i is small compared to the bias term
∑

i/∈m∗ x2i
in the bias-variance decomposition of the oracle.

The estimator x̂m̂ being built using binary filters λi ∈ {0, 1}, it is natural to measure
its efficiency by comparing its risk to that of the best linear estimator in this class.
Nevertheless, we see in the next corollary that a similar oracle inequality holds if we
consider the oracle in the maximal class of filters, that is, allowing the λi’s to take any
real value.

Corollary 3.2 Assume that the condition A1 holds, the estimator x̂m̂ of Theorem 3.1

satisfies

E‖x̂m̂ − x†‖2 ≤ K4 log n inf
λ∈Rn

E‖x̂(λ)− x†‖2 +
K5

n
,

for some constants K4, K5 independent of n.
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This result is a straightforward consequence of Lemma 5.2 in the Appendix, where it is
shown that the oracle in the class of binary filters λi ∈ {0, 1} achieves the same rate of
convergence up to a factor 2, as the best filter estimator obtained with non-random values
of λ. The class of unrestricted binary filters leads to a simple solution while it induces a
slight loss of efficiency compared to the maximal class.

Interest of oracles lies in the fact that the best estimator in a given class will often
reach the optimal rate of convergence. In many situations, comparing the risk of the
estimator to that of an oracle might be sufficient to deduce optimality results, as well as
adaptivity properties, as discussed in [3]. In the literature of inverse problems, rates of
convergence of oracles are obtained under regularity conditions on the map x0 and the
spectrum of An. These conditions can be gathered into a single assumption, generally
referred to as source condition, relating the behavior of x0 to the regularity of the operator
An (see for instance [2], [9] or [10]). Another point of view widely adopted in the literature
is the minimax approach (see [3]), aiming to determine the behavior the worst possible
value of x0 in a given class of functions. Typically, the condition can be a polynomial
decay of the coefficients xi, which reduces to assuming that x0 lies in the unit ball in a
proper Besov space. For rates of convergence with a minimax approach, we refer to [1],
[7] and [17]. In our framework, rates of convergence for x̂m̂ can be deduced from Theorem
2 in [14], under a polynomial decay of the coefficients xi and the eigenvalues bi.

4 Regularization with unknown operator

In many actual situations, the operator An is not precisely known. In this section, we
consider the framework where the operator An is observed independently from y. This
situation is treated in [6], [8] or [13]. The method discussed in the previous section does
not apply for such problems since it requires complete knowledge of the operator An.
As in [6], we assume that the eigenvectors φi and ψi are known. This seemingly strong
assumption is actually met in many situations, for instance if the problem involves con-
volution or differential operators which can be decomposed in Fourier basis (see also the
examples in [3]). Thus, only the eigenvalues bi are unknown and we assume they are
observed independently of y, with a centered noise ξi with known variance s2 > 0:

b̂i = bi + ξi, i = 1, ..., n.

The method discussed in this paper is different according to whether the eigenvalues are
known exactly or observed with a noise. Thus, we need to assume here that s is positive
and the known operator framework can not be seen as a particular case. Moreover, we
assume the ξi’s are independent and satisfy the two following conditions.
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A2. There exist K ′, β ′ > 0 such that ∀t > 0, ∀i = 1, ..., n, P(ξ2i /s
2 > t) ≤ K ′e−t/β′

.

A3. There exist C, α > 0 such that ∀i = 1, ..., n, min{P(ξi < −αs),P(ξi > αs)} ≥ C.

As discussed previously, the condition A2 means that that the ξi’s have finite exponential
moments. The condition A3 is hardly restrictive, and is fulfilled for instance as soon as
the ξi’s are identically distributed. As we shall see in the sequel, the method requires
knowledge of the constant α (or at least an upper bound for it), but no information on
the constants β ′, K ′ or C is needed to build the estimator.

Knowing the eigenvectors of A∗
nAn allows us to write the model in the form

yi = bixi + εi, i = 1, ..., n.

In our framework where the actual eigenvalues bi are unknown, a natural estimator of
each component xi is obtained by ỹi = b̂−1

i yi, provided that b̂i 6= 0. However, it is clear

that this estimate is not satisfactory if b̂i is far from the true value (consider for instance
the extreme case where b̂i = 0 or if b̂i and bi are of opposite signs). Actually, the naive
estimator b̂−1

i can not be used efficiently to estimate b−1
i because it may have an infinite

variance. In [6], the authors fix a threshold w the estimate can not exceed and consider
an estimator of b−1

i equal to b̂−1
i if |b̂i| > 1/w and null otherwise. As we will see below,

we use the same idea here, although the threshold fixed on the b̂i’s is implicitly part of
the variable selection process.

We can reasonably assume that null values of b̂i do not provide any relevant informa-
tion and can not be used to estimate x0. Thus, to avoid considering trivial situations,
we assume that all b̂i are non-zero. In all generality, the ỹi’s can be viewed as noisy
observations of xi by writing

ỹi = xi + η̃i, i = 1, ..., n,

with ỹi = b̂−1
i 〈y, ψi〉n and η̃i = b̂−1

i (εi − ξixi), where we recall εi = 〈ε, ψi〉n. As in the
previous section, we propose a threshold procedure to filter out the observations ỹi that
are potentially highly contaminated with noise. Here, the noise η̃i is more difficult to deal
with because it depends on the unknown coefficient xi.

Our objective is to find an optimal variable selection criterion conditionally to the b̂i’s.
In order to do so, we consider a framework where the b̂i’s are observed once and for all,
and are treated as non-random. Thus, we define as an oracle, a model m∗

ξ minimizing

the conditional risk Eξ‖x̂m − x†‖2, where Eξ(.) denotes the expectation knowing ξ =
(ξ1, ..., ξn)

′. Following a similar argument as in the previous section, a model minimizing
the conditional risk contains only the indices i for which the coefficient x2i is larger than
the noise level. Hence, we may define m∗

ξ = {i : x2i > Eξ(η̃
2
i )}. A notable difference here

is that the noise η̃i actually depends on the value xi. Let σ̂
2
i = n−1b̂−2

i σ2, we can calculate
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the conditional expectation of η̃2i , given by Eξ(η̃
2
i ) = σ̂2

i + b̂−2
i ξ2i x

2
i . After simplifications,

it appears that the optimal model conditionally to the ξi’s can be expressed in the two
following explicit forms

m∗
ξ =

{
i : 2|b̂i| >

σ2

n|bi|x2i
+ |bi|

}
=

{
i : x2i >

σ2

n(b̂2i − ξ2i )
, |b̂i| >

|bi|

2

}
.

In the first expression, we see that the oracle selects indices i for which the observation
b̂i exceeds a certain value depending on both xi and bi. Interestingly, components ỹi
corresponding to observations b̂i smaller than half the true eigenvalue bi are not selected
in the oracle, regardless of the coefficient xi. Here again, the optimal model m∗

ξ can not
be used in practical cases since it involves the unknown values xi and ξi. We can only try
to mimic the optimal threshold, based on the observations ỹi and b̂i. Consider the set

m̂ξ =
{
i : ỹ2i > 8σ̂2

i νi, |b̂i| > αs
}
,

where {νi}i=1,...,n are parameters to be chosen and α is the constant defined in A3. With

this definition, only the indices for which the observation b̂i is larger than a certain value,
namely αs, are selected. This conveys the idea discussed in [6], that when bi is small com-
pared to the noise level, the observation b̂i is potentially mainly noise. Remark however
that in [6], the lower limit for the observed eigenvalues is s log2(1/s), while in our method,
it is chosen of the same order as the standard deviation s.

Define the set M = {i : |bi| < 2αs}.

Theorem 4.1 Assume that the condition A1 holds. The threshold estimator obtained

with νi = max{β log(n2σ̂2
i ), 0} satisfies,

Eξ‖x̂m̂ξ
− x†‖2 ≤ (K ′

1 logn +K ′
2)Eξ‖x̂m∗

ξ
− x†‖2 +

∑

i∈M

x2i + κ(ξ),

with K ′
1 = max{18β, 4α−2β ′}, K ′

2 = max{9(β log ‖x†‖2 + 1), 1}, and

κ(ξ) =
4Kβ

n
+ 4

∑

i/∈m∗

ξ

ξ2i x
2
i

α2s2
1{ξ2i > s2β ′ log n}.

Moreover, if A2 holds, E(κ(ξ)) = O(n−1 log n).

The main interest of this result lies in the fact that it provides an oracle inequality,
conditionally to the b̂i’s. In particular, the conditional oracle x̂m∗

ξ
is more efficient than

the estimator obtained by minimizing the expected risk m 7→ E‖x̂m − x†‖2, since the

11



optimal set m∗
ξ is allowed to depend on the ξi’s. We see that the estimator x̂m̂ξ

performs
almost as well as the conditional oracle. Indeed, the residual term κ(ξ) is independent
from ξ with high probability, and its expectation is negligible under A2 as pointed out in
the theorem. The non-random term

∑
i∈M x2i is small if the eigenvalues bi are observed

with a good precision, i.e. if the variance s2 is small. Moreover, this term can be shown
to be of the same order as the risk under the condition A3.

Corollary 4.2 If the conditions A1, A2 and A3 hold, the threshold estimator defined in

Theorem 4.1 satisfies

E‖x̂m̂ξ
− x†‖2 ≤ K ′

4 log n E‖x̂m∗

ξ
− x†‖2 +

K ′
5 log n

n
,

for some constants K ′
4 and K ′

5 independent from n and s2.

With a noisy operator, we manage to provide an estimator that achieves the rate of
convergence of the conditional oracle, regardless of the precision of the approximation of
the spectrum of An. Indeed, the constants K

′
4 and K

′
5 in Corollary 4.2 do not involve the

variance s2 of ξ. Actually, the variance only plays a role in the accuracy of the oracle.
The result is non-asymptotic and requires no assumption on s2.

5 Appendix

5.1 Technical lemmas

Lemma 5.1 Assume the condition A1 holds. We have

• E ((η2i − x2i )1{i ∈ m̂}) ≤ 2Kβσ2
i e

−µi/β.

• E ((x2i − η2i )1{i /∈ m̂}) ≤ σ2
i (6µi + 2).

Proof. Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we find that η2i − x2i ≤ 2η2i − y†2i /2. By
definition of m̂, we get

(η2i − x2i )1{i ∈ m̂} ≤ 2σ2
i (γi − µi)1{i ∈ m̂} ≤ 2σ2

i (γi − µi)1{γi ≥ µi},

where we used that X ≤ X1{X ≥ 0}. We finally obtain for all i /∈ m∗,

E
(
(η2i − x2i )1{i ∈ m̂}

)
≤ 2σ2

i

∫ ∞

0

P(γi ≥ t+ µi) dt ≤ 2Kβσ2
i e

−µi/β,

as a consequence of A1. For the second part of the lemma, write x2i − η2i = y†2i − 2ηiy
†
i

which is bounded by 3y†2i /2 + 2η2i , using the inequality 2ab ≤ 2a2 + b2/2. This leads to

E
(
(x2i − η2i )1{i /∈ m̂}

)
≤ σ2

i (6µi + 2).

12



Lemma 5.2

inf
m∈M

E‖x̂m − x†‖2 ≤ 2 inf
λ∈Rn

E‖x̂(λ)− x†‖2.

Proof. The minimal values of the expected risks can be calculated explicitly in the two
classes considered here. Minimizing over Rn the function λ 7→ E‖x̂(λ)−x†‖2, we find that
the optimal value of λi is reached for λ∗i = x2i /(x

2
i + σ2

i ). On the other hand, we know
that m 7→ E‖x̂m − x†‖2 reaches its minimum at m∗ = {i : x2i ≥ σ2

i }, yielding

inf
λ∈Rn

E‖x̂(λ)− x†‖2 =
n∑

i=1

x2iσ
2
i

x2i + σ2
i

and inf
m∈M

E‖x̂m − x†‖2 =
∑

i∈m∗

σ2
i +

∑

i∈m∗

x2i .

By definition, if i ∈ m∗, 2x2i /(x
2
i + σ2

i ) ≥ 1. In the same way, 2σ2
i /(x

2
i + σ2

i ) ≥ 1, for all
i /∈ m∗. We conclude by summing all the terms.

Lemma 5.3 Assume the condition A1 holds. We have, for all i = 1, ..., n,

• Eξ ((η̃
2
i − x2i )1{i ∈ m̂ξ}) ≤ 4Kβ σ̂2

i e
−νi/β +

4ξ2i x
2
i

α2s2
.

• Eξ ((x
2
i − η̃2i )1{i /∈ m̂ξ}) ≤ 9σ̂2

i νi + 8Eξ(η̃
2
i ) + x2i1{|b̂i| ≤ αs}.

Proof. Remark that η̃2i = b̂−2
i (εi − ξixi)

2 ≤ 2b̂−2
i ε2i + 2b̂−2

i ξ2i x
2
i . Using that x2i ≥ ỹ2i /2− η̃2i ,

we deduce

η̃2i − x2i ≤ 4b̂−2
i ε2i + 4b̂−2

i ξ2i x
2
i −

ỹ2i
2
.

Writing m̂ξ = {ỹ2i > 8σ̂2
i νi} ∩ {|b̂i| > αs}, we find

(η̃2i − x2i )1{i ∈ m̂ξ} ≤ 4σ̂2
i (γi − νi)1{γi ≥ νi}+ 4b̂−2

i ξ2i x
2
i1{|b̂i| > αs},

where we recall that γi = nε2i /σ
2. Clearly, b̂−2

i 1{|b̂i| > αs} < α−2s−2 and the result follows
using the condition A1. For the second part of the lemma, remark that the complement of
m̂ξ is {ỹ2i ≤ 8σ̂2

i νi, |b̂i| > αs}∪{|b̂i| ≤ αs}. Using the inequality x2i −η̃
2
i ≤ (1+θ−1)ỹ2i +θη̃

2
i

for θ = 8, we get

(x2i − η̃2i )1{i /∈ m̂ξ} ≤ 9σ̂2
i νi + 8η̃2i + x2i1{|b̂i| ≤ αs}.

Lemma 5.4 If A2 holds, we have

ξ2i ≤ s2β ′ log n+ ξ2i 1{ξ
2
i > s2β ′ log n},

with E (ξ2i 1{ξ
2
i > s2β ′ log n}) = O(n−1 log n).

13



Proof. Write ξ2i ≤ s2β ′ log n 1{ξ2i ≤ s2β ′ log n}+ ξ2i 1{ξ
2
i > s2β ′ logn}. To bound the first

term, we use the crude inequality 1{ξ2i ≤ s2β ′ logn} ≤ 1. For the second term, we have
as a consequence of A2,

E
(
ξ2i 1{ξ

2
i > s2β ′ logn}

)
=

∫ ∞

0

P
(
ξ2i 1{ξ

2
i /s

2 > β ′ logn} > t
)
dt

= s2β ′ log n P(ξ2i /s
2 > β ′ log n) + s2

∫ ∞

β′ logn

P(ξ2i /s
2 > t) dt

≤
K ′β ′s2(1 + log n)

n
.

5.2 Proofs

Proof of Theorem 3.1. Write

‖x̂m̂ − x0‖
2 = ‖x̂m∗ − x0‖

2 +
∑

i/∈m∗

(η2i − x2i )1{i ∈ m̂}+
∑

i∈m∗

(x2i − η2i )1{i /∈ m̂}.

The objective is to bound the terms E((η2i − x2i )1{i ∈ m̂}) and E((x2i − η2i )1{i /∈ m̂}).
First, assume that σ2

i > 1/n2, i.e. µi = β log (n2σ2
i ). By Lemma 5.1, we know that

E
(
(η2i − x2i )1{i ∈ m̂}

)
≤ 2Kβσ2

i e
−µi/β ≤

2Kβ

n2
.

The same bound holds if σ2
i ≤ 1/n2 with µi = 0, as a straight-forward consequence of

Lemma 5.1. On the other hand, note that if i /∈ m̂, then µi = β log(n2σ2
i ). Lemma 5.1

warrants
E
(
(x2i − η2i )1{i /∈ m̂}

)
≤ σ2

i

(
6β log(n2σ2

i ) + 2
)
.

Since i ∈ m∗, log(n2σ2
i ) ≤ 2 logn+ log ‖x†‖2. We conclude by summing all the terms.

Proof of Theorem 4.1. The proof starts as in Theorem 3.1. We have

‖x̂m̂ξ
− x†‖2 = ‖x̂m∗

ξ
− x†‖2 +

∑

i/∈m∗

ξ

(η̃2i − x2i )1{i ∈ m̂ξ}+
∑

i∈m∗

ξ

(x2i − η̃2i )1{i /∈ m̂ξ},

and the objective is to bound the conditional expectation of each term separately. Using
successively Lemma 5.3 and Lemma 5.4, we get

Eξ

(
(η̃2i − x2i )1{i ∈ m̂ξ}

)
≤

4Kβ

n2
+ 4α−2s−2ξ2i x

2
i ≤

4β ′ log n

α2
x2i + κi(ξ),

with

κi(ξ) =
4Kβ

n2
+

4ξ2i x
2
i

α2s2
1{ξ2i > s2β ′ log n}.
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By Lemma 5.4, we know that κ(ξ) =
∑

i/∈m∗

ξ
κi(ξ) is such that

E(κ(ξ)) ≤
4(Kβ + 2α−2K ′β ′‖x†‖2 log n)

n
= O

(
log n

n

)
.

On the other hand, Lemma 5.3 gives, for θ = 8,

Eξ

(
(x2i − η̃2i )1{i /∈ m̂ξ}

)
≤ 9σ̂2

i νi + 8Eξ(η̃
2
i ) + x2i1{|b̂i| ≤ αs}.

For all i ∈ m∗
ξ, we know that |b̂i| ≥ |bi|/2. Thus, if i ∈ m∗

ξ, 1{|b̂i| ≤ αs} ≤ 1{i ∈ M},
where we recall M = {i : |bi| < 2αs}. We know also that, if i ∈ m∗

ξ , then σ̂
2
i ≤ x2i . Thus,

νi = β log(n2σ̂2
i ) ≤ 2β logn + β log ‖x†‖2. Noticing that σ̂2

i ≤ Eξ(η̃
2
i ), we find

Eξ

(
(x2i − η̃2i )1{i /∈ m̂ξ}

)
≤ (18β logn + 9β log ‖x†‖2 + 8)Eξ(η̃

2
i ) + x2i1{i ∈M}.

The result follows by summing all the term, using that the risk of the oracle x̂m̂ξ
is

Eξ‖x̂m∗

ξ
− x†‖2 =

∑

i/∈m∗

ξ

x2i +
∑

i∈m∗

ξ

Eξ(η̃
2
i ).

Proof of Corollary 4.2. It suffices to show that the term
∑

i∈M x2i is of the same order
as the risk of the oracle. Write

E‖x̂m∗

ξ
− x†‖2 ≥

n∑

i=1

x2iP(i /∈ m∗
ξ) ≥

n∑

i=1

x2iP(|b̂i| ≤ |bi|/2).

For all i ∈ M , the probability P(|b̂i| ≤ |bi|/2) is greater than C as a consequence of A3.
We deduce

∑
i∈M x2i ≤ C−1

E‖x̂m∗

ξ
− x†‖2.
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of functions and imbedding theorems. Vol. I. V. H. Winston & Sons, Washington,
D.C., 1978. Translated from the Russian, Scripta Series in Mathematics, Edited by
Mitchell H. Taibleson.

[2] N. Bissantz, T. Hohage, A. Munk, and F. Ruymgaart. Convergence rates of general
regularization methods for statistical inverse problems and applications. SIAM J.

Numer. Anal., 45(6):2610–2636 (electronic), 2007.

[3] L. Cavalier. Nonparametric statistical inverse problems. Inverse Problems,
24(3):034004, 19, 2008.

15



[4] L. Cavalier and G. K. Golubev. Risk hull method and regularization by projections
of ill-posed inverse problems. Ann. Statist., 34(1):1653–1677, 2006.

[5] L. Cavalier, G. K. Golubev, D. Picard, and A. B. Tsybakov. Oracle inequalities for
inverse problems. Ann. Statist., 30(3):843–874, 2000.

[6] Laurent Cavalier and Nicolas W. Hengartner. Adaptive estimation for inverse prob-
lems with noisy operators. Inverse Problems, 21(4):1345–1361, 2005.

[7] David L. Donoho and Iain M. Johnstone. Neo-classical minimax problems, thresh-
olding and adaptive function estimation. Bernoulli, 2(1):39–62, 1996.

[8] Sam Efromovich and Vladimir Koltchinskii. On inverse problems with unknown
operators. IEEE Trans. Inform. Theory, 47(7):2876–2894, 2001.

[9] Heinz W. Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse

problems, volume 375 of Mathematics and its Applications. Kluwer Academic Pub-
lishers Group, Dordrecht, 1996.

[10] Ana K. Fermı́n and C. Ludeña. A statistical view of iterative methods for linear
inverse problems. TEST, 17(2):381–400, 2008.

[11] Per Christian Hansen. The truncated SVD as a method for regularization. BIT,
27(4):534–553, 1987.

[12] Per Christian Hansen and Dianne Prost O’Leary. The use of the L-curve in the
regularization of discrete ill-posed problems. SIAM J. Sci. Comput., 14(6):1487–
1503, 1993.

[13] Marc Hoffmann and Markus Reiss. Nonlinear estimation for linear inverse problems
with error in the operator. Ann. Statist., 36(1):310–336, 2008.

[14] Jean-Michel Loubes. l1 penalty for ill-posed inverse problems. Comm. Statist. Theory

Methods, 37(8-10):1399–1411, 2008.

[15] Jean-Michel Loubes and Carenne Ludeña. Adaptive complexity regularization for
linear inverse problems. Electron. J. Stat., 2:661–677, 2008.

[16] Jean-Michel Loubes and Carenne Ludeña. Penalized estimators for non linear inverse
problems. ESAIM Probab. Stat., 14:173–191, 2010.

[17] Jean-Michel Loubes and Sara van de Geer. Adaptive estimation with soft threshold-
ing penalties. Statist. Neerlandica, 56(4):454–479, 2002.

16



[18] F. Natterer. The mathematics of computerized tomography, volume 32 of Classics
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2001. Reprint of the 1986 original.

[19] John A. Scales and Adam Gersztenkorn. Robust methods in inverse theory. Inverse
Problems, 4(4):1071–1091, 1988.

[20] Andrey N. Tikhonov and Vasiliy Y. Arsenin. Solutions of ill-posed problems. V. H.
Winston & Sons, Washington, D.C.: John Wiley & Sons, New York, 1977. Trans-
lated from the Russian, Preface by translation editor Fritz John, Scripta Series in
Mathematics.

[21] J. M. Varah. On the numerical solution of ill-conditioned linear systems with appli-
cations to ill-posed problems. SIAM J. Numer. Anal., 10:257–267, 1973. Collection
of articles dedicated to the memory of George E. Forsythe.

[22] J. M. Varah. A practical examination of some numerical methods for linear discrete
ill-posed problems. SIAM Rev., 21(1):100–111, 1979.

17


	1 Introduction
	2 Problem setting
	3 Non-ordered variable selection
	3.1 Threshold regularization
	3.2 Oracle inequalities

	4 Regularization with unknown operator
	5 Appendix
	5.1 Technical lemmas
	5.2 Proofs


