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Abstract

We compare the risk of ridge regression to a simple variant of ordinary least squares, in which
one simply projects the data onto a finite dimensional subspace (as specified by a Principal
Component Analysis) and then performs an ordinary (un-regularized) least squares regression
in this subspace. This note shows that the risk of this ordinary least squares method is within
a constant factor (namely 4) of the risk of ridge regression.

1 Introduction

Consider the fixed design setting where we have a set of n vectors X = {Xi}, and let X denote the
matrix where the i th row of X is Xi. The observed label vector is Y ∈ R

n. Suppose that:

Y = Xβ + ǫ

where ǫ is independent noise in each coordinate, with the variance of ǫi being σ2.

The objective is to learn E[Y ] = Xβ. The expected loss of a vector w is estimator is:

L(w) =
1

n
EY[‖Y −Xw‖2]

Let β̂ be an estimator of β (constructed with a sample Y ). Denoting

Σ :=
1

n
X

T
X

we have that the risk (i.e. expected excess loss) is:

Risk(β̂) := E
β̂
[L(β̂)− L(β)] = E

β̂
‖β̂ − β‖2

Σ

where ‖x‖Σ = x⊤Σx and where the expectation is with respect to the randomness in Y .

We show that a simple variant of ordinary (un-regularized) least squares always compares favorably
to ridge regression (as measured by the risk). This observation is based on the following bias variance
decomposition:

Risk(β̂) = E‖β̂ − β̄‖2Σ
︸ ︷︷ ︸

Variance

+ ‖β̄ − β‖2Σ
︸ ︷︷ ︸

Prediction Bias

(1.1)

where β̄ = E[β̂].
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1.1 The Risk of Ridge Regression

Ridge regression or Tikhonov Regularization [Tikhonov, 1963] penalizes the ℓ2 norm of a parameter
vector w and “shrinks” β towards zero, penalizing large values more. The estimator is:

β̂λ = argmin
w

{‖Y −Xw‖2 + λ‖w‖2}

The closed form estimate is then:

β̂λ = (Σ+ λI)−1

(
1

n
X

TY

)

Note that
β̂0 = β̂λ=0 = argmin

w
{‖Y −Xw‖2}

is the ordinary least squares estimator.

Without loss of generality, rotate X such that:

Σ = diag(λ1, λ2, . . . , λp)

where λi’s are ordered in decreasing order.

To see the nature of this shrinkage observe that:

[β̂λ]j :=
λj

λj + λ
[β̂0]j

where β̂0 is the ordinary least squares estimator.

Using the bias-variance decomposition, (Equation 1.1), we have that:

Lemma 1. We have:

Risk(β̂λ) =
σ2

n

∑

j

(
λj

λj + λ

)2

+
∑

j

β2
j

λj

(1 +
λj

λ
)2

The proof is straightforward and provided in the appendix.

2 Ordinary Least Squares with PCA

Now let us construct a simple estimator based on λ. Note that our rotated coordinate system where
Σ is equal to diag(λ1, λ2, . . . , λp) corresponds the PCA coordinate system.

Consider the following ordinary least squares estimator on the “top” PCA subspace — it uses the
least squares estimate on coordinate j if λj ≥ λ and 0 otherwise.

[β̂PCA,λ]j =

{

[β̂0]j if λj ≥ λ

0 otherwise

The following claim shows this estimator compares favorably to the ridge estimator (for every λ).
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Theorem 2.1. (Bounded Risk Inflation) For all λ ≥ 0, we have that:

Risk(β̂PCA,λ) ≤ 4 Risk(β̂λ)

Proof. Using the bias variance decomposition of the risk we can write the risk as:

Risk(β̂PCA,λ) =
σ2

n

∑

j

1λj≥λ +
∑

j:λj<λ

λjβ
2
j

The first term represents the variance and the second the bias.

The ridge regression risk is given by Lemma 1. We now show that the jth term in the expression
for the PCA risk is within a factor 4 of the jth term of the ridge regression risk. First, lets consider
the case when λj ≥ λ, then the ratio of jth terms is:

σ2

n

σ2

n

(
λj

λj+λ

)2
+ β2

j
λj

(1+
λj

λ
)2

≤
σ2

n

σ2

n

(
λj

λj+λ

)2 =

(

1 +
λ

λj

)2

≤ 4

Similarly, if λj < λ, the ratio of the jth terms is:

λjβ
2
j

σ2

n

(
λj

λj+λ

)2
+ β2

j
λj

(1+
λj

λ
)2

≤
λjβ

2
j

λjβ
2

j

(1+
λj

λ
)2

=

(

1 +
λj

λ

)2

≤ 4

Since, each term is within a factor of 4 the proof is complete.

3 Conclusion

We showed that the risk inflation of a particular ordinary least squares estimator (on the “top”
PCA subspace) is within a factor 4 of the ridge estimator.
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Appendix

Proof. We analyze the bias-variance decomposition in Equation 1.1. For the variance,

EY ‖β̂λ − β̄λ‖
2
Σ =

∑

j

λjEY ([β̂λ]j − [β̄λ]j)
2

=
∑

j

λj

(λj + λ)2
1

n2
E

[
n∑

i=1

(Yi − E[Yi])[Xi]j

n∑

i′=1

(Y ′
i − E[Y ′

i ])[X
′
i]j

]

=
∑

j

λj

(λj + λ)2
σ2

n

n∑

i=1

V ar(Yi)[Xi]
2
j

=
∑

j

λj

(λj + λ)2
σ2

n

n∑

i=1

[Xi]
2
j

=
σ2

n

∑

j

λ2
j

(λj + λ)2

Similarly, for the bias,

‖β̄λ − β‖2Σ =
∑

j

λj([β̄λ]j − [β]j)
2

=
∑

j

β2
j λj

(
λj

λj + λ
− 1

)2

=
∑

j

β2
j

λj

(1 +
λj

λ
)2

which completes the proof.
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