Paramveer Dhillon¹, Dean P. Foster², Sham M. Kakade², and Lyle Ungar¹

¹Department of Computer Science, University of Pennsylvania ²Department of Statistics, Wharton School, University of Pennsylvania

Abstract

We compare the risk of ridge regression to a simple variant of ordinary least squares, in which one simply projects the data onto a finite dimensional subspace (as specified by a Principal Component Analysis) and then performs an ordinary (un-regularized) least squares regression in this subspace. This note shows that the risk of this ordinary least squares method is within a constant factor (namely 4) of the risk of ridge regression.

1 Introduction

Consider the fixed design setting where we have a set of n vectors $\mathcal{X} = \{X_i\}$, and let **X** denote the matrix where the i^{th} row of **X** is X_i . The observed label vector is $Y \in \mathbb{R}^n$. Suppose that:

$$Y = X\beta + \epsilon$$

where ϵ is independent noise in each coordinate, with the variance of ϵ_i being σ^2 .

The objective is to learn $\mathbb{E}[Y] = X\beta$. The expected loss of a vector w is estimator is:

$$L(w) = \frac{1}{n} \mathbb{E}_{\mathbb{Y}}[\|Y - Xw\|^2]$$

Let $\hat{\beta}$ be an estimator of β (constructed with a sample Y). Denoting

$$\boldsymbol{\Sigma} := \frac{1}{n} \mathbf{X}^T \mathbf{X}$$

we have that the risk (i.e. expected excess loss) is:

$$\operatorname{Risk}(\hat{\beta}) := \mathbb{E}_{\hat{\beta}}[L(\hat{\beta}) - L(\beta)] = \mathbb{E}_{\hat{\beta}} \|\hat{\beta} - \beta\|_{\Sigma}^{2}$$

where $||x||_{\Sigma} = x^{\top} \Sigma x$ and where the expectation is with respect to the randomness in Y.

We show that a simple variant of ordinary (un-regularized) least squares always compares favorably to ridge regression (as measured by the risk). This observation is based on the following bias variance decomposition:

$$\operatorname{Risk}(\hat{\beta}) = \underbrace{\mathbb{E} \|\hat{\beta} - \bar{\beta}\|_{\Sigma}^{2}}_{\operatorname{Variance}} + \underbrace{\|\bar{\beta} - \beta\|_{\Sigma}^{2}}_{\operatorname{Prediction Bias}}$$
(1.1)

where $\bar{\beta} = \mathbb{E}[\hat{\beta}].$

1.1 The Risk of Ridge Regression

Ridge regression or Tikhonov Regularization [Tikhonov, 1963] penalizes the ℓ_2 norm of a parameter vector w and "shrinks" β towards zero, penalizing large values more. The estimator is:

$$\hat{\beta}_{\lambda} = \underset{w}{\operatorname{argmin}} \{ \|Y - \mathbf{X}w\|^2 + \lambda \|w\|^2 \}$$

The closed form estimate is then:

$$\hat{\beta}_{\lambda} = (\mathbf{\Sigma} + \lambda \mathbf{I})^{-1} \left(\frac{1}{n} \mathbf{X}^T Y\right)$$

Note that

$$\hat{\beta}_0 = \hat{\beta}_{\lambda=0} = \underset{w}{\operatorname{argmin}} \{ \|Y - \mathbf{X}w\|^2 \}$$

is the ordinary least squares estimator.

Without loss of generality, rotate \mathbf{X} such that:

$$\Sigma = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_p)$$

where λ_i 's are ordered in decreasing order.

To see the nature of this shrinkage observe that:

$$[\hat{\beta}_{\lambda}]_j := \frac{\lambda_j}{\lambda_j + \lambda} [\hat{\beta}_0]_j$$

where $\hat{\beta}_0$ is the ordinary least squares estimator.

Using the bias-variance decomposition, (Equation 1.1), we have that:

Lemma 1. We have:

$$\operatorname{Risk}(\hat{\beta}_{\lambda}) = \frac{\sigma^2}{n} \sum_{j} \left(\frac{\lambda_j}{\lambda_j + \lambda}\right)^2 + \sum_{j} \beta_j^2 \frac{\lambda_j}{(1 + \frac{\lambda_j}{\lambda})^2}$$

The proof is straightforward and provided in the appendix.

2 Ordinary Least Squares with PCA

Now let us construct a simple estimator based on λ . Note that our rotated coordinate system where Σ is equal to $diag(\lambda_1, \lambda_2, \ldots, \lambda_p)$ corresponds the PCA coordinate system.

Consider the following ordinary least squares estimator on the "top" PCA subspace — it uses the least squares estimate on coordinate j if $\lambda_j \ge \lambda$ and 0 otherwise.

$$[\hat{\beta}_{PCA,\lambda}]_j = \begin{cases} [\hat{\beta}_0]_j & \text{if } \lambda_j \ge \lambda \\ 0 & \text{otherwise} \end{cases}$$

The following claim shows this estimator compares favorably to the ridge estimator (for every λ).

Theorem 2.1. (Bounded Risk Inflation) For all $\lambda \ge 0$, we have that:

$$\operatorname{Risk}(\hat{\beta}_{PCA,\lambda}) \le 4 \operatorname{Risk}(\hat{\beta}_{\lambda})$$

Proof. Using the bias variance decomposition of the risk we can write the risk as:

$$\operatorname{Risk}(\hat{\beta}_{PCA,\lambda}) = \frac{\sigma^2}{n} \sum_{j} \mathbb{1}_{\lambda_j \ge \lambda} + \sum_{j:\lambda_j < \lambda} \lambda_j \beta_j^2$$

The first term represents the variance and the second the bias.

The ridge regression risk is given by Lemma 1. We now show that the j^{th} term in the expression for the PCA risk is within a factor 4 of the j^{th} term of the ridge regression risk. First, lets consider the case when $\lambda_j \geq \lambda$, then the ratio of j^{th} terms is:

$$\frac{\frac{\sigma^2}{n}}{\frac{\sigma^2}{n}\left(\frac{\lambda_j}{\lambda_j+\lambda}\right)^2 + \beta_j^2 \frac{\lambda_j}{(1+\frac{\lambda_j}{\lambda})^2}} \le \frac{\frac{\sigma^2}{n}}{\frac{\sigma^2}{n}\left(\frac{\lambda_j}{\lambda_j+\lambda}\right)^2} = \left(1 + \frac{\lambda}{\lambda_j}\right)^2 \le 4$$

Similarly, if $\lambda_j < \lambda$, the ratio of the j^{th} terms is:

$$\frac{\lambda_j \beta_j^2}{\frac{\sigma^2}{n} \left(\frac{\lambda_j}{\lambda_j + \lambda}\right)^2 + \beta_j^2 \frac{\lambda_j}{(1 + \frac{\lambda_j}{\lambda})^2}} \le \frac{\lambda_j \beta_j^2}{\frac{\lambda_j \beta_j^2}{(1 + \frac{\lambda_j}{\lambda})^2}} = \left(1 + \frac{\lambda_j}{\lambda}\right)^2 \le 4$$

Since, each term is within a factor of 4 the proof is complete.

3 Conclusion

We showed that the risk inflation of a particular ordinary least squares estimator (on the "top" PCA subspace) is within a factor 4 of the ridge estimator.

References

A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4, pages 501–504, 1963.

Appendix

Proof. We analyze the bias-variance decomposition in Equation 1.1. For the variance,

$$\begin{split} \mathbb{E}_{Y} \| \hat{\beta}_{\lambda} - \bar{\beta}_{\lambda} \|_{\Sigma}^{2} &= \sum_{j} \lambda_{j} \mathbb{E}_{Y} ([\hat{\beta}_{\lambda}]_{j} - [\bar{\beta}_{\lambda}]_{j})^{2} \\ &= \sum_{j} \frac{\lambda_{j}}{(\lambda_{j} + \lambda)^{2}} \frac{1}{n^{2}} \mathbb{E} \left[\sum_{i=1}^{n} (Y_{i} - \mathbb{E}[Y_{i}]) [X_{i}]_{j} \sum_{i'=1}^{n} (Y_{i}' - \mathbb{E}[Y_{i}']) [X_{i}']_{j} \right] \\ &= \sum_{j} \frac{\lambda_{j}}{(\lambda_{j} + \lambda)^{2}} \frac{\sigma^{2}}{n} \sum_{i=1}^{n} Var(Y_{i}) [X_{i}]_{j}^{2} \\ &= \sum_{j} \frac{\lambda_{j}}{(\lambda_{j} + \lambda)^{2}} \frac{\sigma^{2}}{n} \sum_{i=1}^{n} [X_{i}]_{j}^{2} \\ &= \frac{\sigma^{2}}{n} \sum_{j} \frac{\lambda_{j}^{2}}{(\lambda_{j} + \lambda)^{2}} \end{split}$$

Similarly, for the bias,

$$\begin{aligned} \|\bar{\beta}_{\lambda} - \beta\|_{\Sigma}^{2} &= \sum_{j} \lambda_{j} ([\bar{\beta}_{\lambda}]_{j} - [\beta]_{j})^{2} \\ &= \sum_{j} \beta_{j}^{2} \lambda_{j} \left(\frac{\lambda_{j}}{\lambda_{j} + \lambda} - 1\right)^{2} \\ &= \sum_{j} \beta_{j}^{2} \frac{\lambda_{j}}{(1 + \frac{\lambda_{j}}{\lambda})^{2}} \end{aligned}$$

which completes the proof.