A Risk Comparison of Ordinary Least Squares vs Ridge Regression

Paramveer Dhillon ${ }^{1}$, Dean P. Foster ${ }^{2}$, Sham M. Kakade ${ }^{2}$, and Lyle Ungar ${ }^{1}$
${ }^{1}$ Department of Computer Science, University of Pennsylvania
${ }^{2}$ Department of Statistics, Wharton School, University of Pennsylvania

Abstract

We compare the risk of ridge regression to a simple variant of ordinary least squares, in which one simply projects the data onto a finite dimensional subspace (as specified by a Principal Component Analysis) and then performs an ordinary (un-regularized) least squares regression in this subspace. This note shows that the risk of this ordinary least squares method is within a constant factor (namely 4) of the risk of ridge regression.

1 Introduction

Consider the fixed design setting where we have a set of n vectors $\mathcal{X}=\left\{X_{i}\right\}$, and let \mathbf{X} denote the matrix where the $i^{\text {th }}$ row of \mathbf{X} is X_{i}. The observed label vector is $Y \in \mathbb{R}^{n}$. Suppose that:

$$
Y=X \beta+\epsilon
$$

where ϵ is independent noise in each coordinate, with the variance of ϵ_{i} being σ^{2}.
The objective is to learn $\mathbb{E}[Y]=X \beta$. The expected loss of a vector w is estimator is:

$$
L(w)=\frac{1}{n} \mathbb{E}_{\mathbb{Y}}\left[\|Y-X w\|^{2}\right]
$$

Let $\hat{\beta}$ be an estimator of β (constructed with a sample Y). Denoting

$$
\boldsymbol{\Sigma}:=\frac{1}{n} \mathbf{X}^{T} \mathbf{X}
$$

we have that the risk (i.e. expected excess loss) is:

$$
\operatorname{Risk}(\hat{\beta}):=\mathbb{E}_{\hat{\beta}}[L(\hat{\beta})-L(\beta)]=\mathbb{E}_{\hat{\beta}}\|\hat{\beta}-\beta\|_{\Sigma}^{2}
$$

where $\|x\|_{\boldsymbol{\Sigma}}=x^{\top} \boldsymbol{\Sigma} x$ and where the expectation is with respect to the randomness in Y.
We show that a simple variant of ordinary (un-regularized) least squares always compares favorably to ridge regression (as measured by the risk). This observation is based on the following bias variance decomposition:

$$
\begin{equation*}
\operatorname{Risk}(\hat{\beta})=\underbrace{\mathbb{E}\|\hat{\beta}-\bar{\beta}\|_{\Sigma}^{2}}_{\text {Variance }}+\underbrace{\|\bar{\beta}-\beta\|_{\Sigma}^{2}}_{\text {Prediction Bias }} \tag{1.1}
\end{equation*}
$$

where $\bar{\beta}=\mathbb{E}[\hat{\beta}]$.

1.1 The Risk of Ridge Regression

Ridge regression or Tikhonov Regularization Tikhonov, 1963] penalizes the ℓ_{2} norm of a parameter vector w and "shrinks" β towards zero, penalizing large values more. The estimator is:

$$
\hat{\beta}_{\lambda}=\underset{w}{\operatorname{argmin}}\left\{\|Y-\mathbf{X} w\|^{2}+\lambda\|w\|^{2}\right\}
$$

The closed form estimate is then:

$$
\hat{\beta}_{\lambda}=(\boldsymbol{\Sigma}+\lambda \mathbf{I})^{-1}\left(\frac{1}{n} \mathbf{X}^{T} Y\right)
$$

Note that

$$
\hat{\beta}_{0}=\hat{\beta}_{\lambda=0}=\underset{w}{\operatorname{argmin}}\left\{\|Y-\mathbf{X} w\|^{2}\right\}
$$

is the ordinary least squares estimator.
Without loss of generality, rotate \mathbf{X} such that:

$$
\boldsymbol{\Sigma}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)
$$

where λ_{i} 's are ordered in decreasing order.
To see the nature of this shrinkage observe that:

$$
\left[\hat{\beta}_{\lambda}\right]_{j}:=\frac{\lambda_{j}}{\lambda_{j}+\lambda}\left[\hat{\beta}_{0}\right]_{j}
$$

where $\hat{\beta}_{0}$ is the ordinary least squares estimator.
Using the bias-variance decomposition, (Equation 1.1), we have that:
Lemma 1. We have:

$$
\operatorname{Risk}\left(\hat{\beta}_{\lambda}\right)=\frac{\sigma^{2}}{n} \sum_{j}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}\right)^{2}+\sum_{j} \beta_{j}^{2} \frac{\lambda_{j}}{\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2}}
$$

The proof is straightforward and provided in the appendix.

2 Ordinary Least Squares with PCA

Now let us construct a simple estimator based on λ. Note that our rotated coordinate system where $\boldsymbol{\Sigma}$ is equal to $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ corresponds the PCA coordinate system.
Consider the following ordinary least squares estimator on the "top" PCA subspace - it uses the least squares estimate on coordinate j if $\lambda_{j} \geq \lambda$ and 0 otherwise.

$$
\left[\hat{\beta}_{P C A, \lambda}\right]_{j}=\left\{\begin{aligned}
{\left[\hat{\beta}_{0}\right]_{j} } & \text { if } \lambda_{j} \geq \lambda \\
0 & \text { otherwise }
\end{aligned}\right.
$$

The following claim shows this estimator compares favorably to the ridge estimator (for every λ).

Theorem 2.1. (Bounded Risk Inflation) For all $\lambda \geq 0$, we have that:

$$
\operatorname{Risk}\left(\hat{\beta}_{P C A, \lambda}\right) \leq 4 \operatorname{Risk}\left(\hat{\beta}_{\lambda}\right)
$$

Proof. Using the bias variance decomposition of the risk we can write the risk as:

$$
\operatorname{Risk}\left(\hat{\beta}_{P C A, \lambda}\right)=\frac{\sigma^{2}}{n} \sum_{j} \mathbb{1}_{\lambda_{j} \geq \lambda}+\sum_{j: \lambda_{j}<\lambda} \lambda_{j} \beta_{j}^{2}
$$

The first term represents the variance and the second the bias.
The ridge regression risk is given by Lemma 1 . We now show that the $j^{\text {th }}$ term in the expression for the PCA risk is within a factor 4 of the $j^{\text {th }}$ term of the ridge regression risk. First, lets consider the case when $\lambda_{j} \geq \lambda$, then the ratio of $j^{\text {th }}$ terms is:

$$
\frac{\frac{\sigma^{2}}{n}}{\frac{\sigma^{2}}{n}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}\right)^{2}+\beta_{j}^{2} \frac{\lambda_{j}}{\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2}}} \leq \frac{\frac{\sigma^{2}}{n}}{\frac{\sigma^{2}}{n}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}\right)^{2}}=\left(1+\frac{\lambda}{\lambda_{j}}\right)^{2} \leq 4
$$

Similarly, if $\lambda_{j}<\lambda$, the ratio of the $j^{t h}$ terms is:

$$
\frac{\lambda_{j} \beta_{j}^{2}}{\frac{\sigma^{2}}{n}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}\right)^{2}+\beta_{j}^{2} \frac{\lambda_{j}}{\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2}}} \leq \frac{\lambda_{j} \beta_{j}^{2}}{\frac{\lambda_{j} \beta_{j}^{2}}{\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2}}}=\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2} \leq 4
$$

Since, each term is within a factor of 4 the proof is complete.

3 Conclusion

We showed that the risk inflation of a particular ordinary least squares estimator (on the "top" PCA subspace) is within a factor 4 of the ridge estimator.

References

A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4, pages 501-504, 1963.

Appendix

Proof. We analyze the bias-variance decomposition in Equation 1.1. For the variance,

$$
\begin{aligned}
\mathbb{E}_{Y}\left\|\hat{\beta}_{\lambda}-\bar{\beta}_{\lambda}\right\|_{\Sigma}^{2} & =\sum_{j} \lambda_{j} \mathbb{E}_{Y}\left(\left[\hat{\beta}_{\lambda}\right]_{j}-\left[\bar{\beta}_{\lambda}\right]_{j}\right)^{2} \\
& =\sum_{j} \frac{\lambda_{j}}{\left(\lambda_{j}+\lambda\right)^{2}} \frac{1}{n^{2}} \mathbb{E}\left[\sum_{i=1}^{n}\left(Y_{i}-\mathbb{E}\left[Y_{i}\right]\right)\left[X_{i}\right]_{j} \sum_{i^{\prime}=1}^{n}\left(Y_{i}^{\prime}-\mathbb{E}\left[Y_{i}^{\prime}\right]\right)\left[X_{i}^{\prime}\right]_{j}\right] \\
& =\sum_{j} \frac{\lambda_{j}}{\left(\lambda_{j}+\lambda\right)^{2}} \frac{\sigma^{2}}{n} \sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)\left[X_{i}\right]_{j}^{2} \\
& =\sum_{j} \frac{\lambda_{j}}{\left(\lambda_{j}+\lambda\right)^{2}} \frac{\sigma^{2}}{n} \sum_{i=1}^{n}\left[X_{i}\right]_{j}^{2} \\
& =\frac{\sigma^{2}}{n} \sum_{j} \frac{\lambda_{j}^{2}}{\left(\lambda_{j}+\lambda\right)^{2}}
\end{aligned}
$$

Similarly, for the bias,

$$
\begin{aligned}
\left\|\bar{\beta}_{\lambda}-\beta\right\|_{\Sigma}^{2} & =\sum_{j} \lambda_{j}\left(\left[\bar{\beta}_{\lambda}\right]_{j}-[\beta]_{j}\right)^{2} \\
& =\sum_{j} \beta_{j}^{2} \lambda_{j}\left(\frac{\lambda_{j}}{\lambda_{j}+\lambda}-1\right)^{2} \\
& =\sum_{j} \beta_{j}^{2} \frac{\lambda_{j}}{\left(1+\frac{\lambda_{j}}{\lambda}\right)^{2}}
\end{aligned}
$$

which completes the proof.

