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Asymmetries in Stock Returns:

Statistical Tests and Economic Evaluation

ABSTRACT

In this paper, we provide a model-free test for asymmetric correlations in which stocks move

more often with the market when the market goes down than when it goes up. We also provide

such tests for asymmetric betas and covariances. In addition, we evaluate the economic significance

of incorporating asymmetries into investment decisions. When stocks are sorted by size, book-to-

market and momentum, we find strong evidence of asymmetry for both the size and momentum

portfolios, but no evidence for the book-to-market portfolios. Moreover, the asymmetries can be

of substantial economic importance for an investor with a disappointment aversion preference of

Ang, Bekaert and Liu (2005). If the investors’s felicity function is of the power utility form and if

his coefficient of disappointment aversion is between 0.55 and 0.25, he can achieve over 2% annual

certainty-equivalent gains when he switches from a belief in symmetric stock returns into a belief

in asymmetric ones.



Recently, there have been a number of studies on the asymmetric characteristics of asset returns.

Ball and Kothari (1989), Schwert (1989), Conrad, Gultekin and Kaul (1991), Cho and Engle (2000)

and Bekaert and Wu (2000), among others, document asymmetries in covariances, in volatilities

and in betas of stock returns. Harvey and Siddique (2000) analyze asymmetries in higher moments.

Of particular interest to this paper are the asymmetric correlations of stock returns with the market

indices that are studied by Karolyi and Stulz (1996), Ang and Bekaert (2000), Longin and Solnik

(2001), Ang and Chen (2002), and Bae, Karolyi and Stulz (2003). In particular, Longin and Solnik

(2001) find that international markets have greater correlations with the US market when it is going

down than when it is going up, and Ang and Chen (2002) find such strong asymmetric correlations

between stock portfolios and the US market. The study of asymmetric correlations is important

for two reasons. First, hedging relies crucially on the correlations between the assets hedged and

the financial instruments used. The presence of asymmetric correlations can potentially cause

problems in hedging effectiveness. Second, though standard investment theory advises portfolio

diversification, the value of this advice might be questionable if all stocks tend to fall as the market

falls.

However, assessing asymmetric correlations requires care. Stambaugh (1995), Boyer, Gibson and

Loretan (1999), and Forbs and Rigobon (2002) find that a correlation computed conditional on some

variables being high or low is a biased estimator of the unconditional correlation. Therefore, even if

one obtains from the real data a conditional correlation that is much higher than the unconditional

sample correlation, it is not sufficient to claim the existence of asymmetric correlations. A formal

statistical test must then account for both sample variations and the bias induced by conditioning.

Ang and Chen (2002) seem the first to propose such a test.1 Given a statistical model for the

data, their test compares the sample conditional correlations with those implied by the model. If

there is a large difference, then the observed asymmetric correlations cannot be explained by the

model. However, despite of its novelty, Ang and Chen’s test answers only the question whether the

asymmetry can be explained by a given model.

The first contribution of this paper is to propose a test to answer the question whether the

data are asymmetric at all. The test has three appealing features. First, it is model-free. One

can use it without having to specify a statistical model for the data. In other words, if symmetry

is rejected by our test, then the data cannot be modeled by any symmetry distributions (under
1Their test tends to over-reject based on their normal approximation to its distribution. The problem, however,

disappears completely by using the asymptotic distribution provided in Appendix A of this paper.
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standard regularity conditions). Second, unlike many asymmetry studies that impose the normality

assumption on the data, our test allows for general distributional assumptions, such as the GARCH

process. Third, the test statistic is easy to implement, and its asymptotic distribution follows a

standard chi-square distribution under the null hypothesis of symmetry. Therefore, our proposed

test can be straightforwardly applied elsewhere.

While asymmetric correlations seem obviously important from a management perspective in

hedging risk exposures [see, e.g., Jaeger (2003, p. 216)], betas are closely related to asset pricing

theories, and useful in understanding the riskiness of the associated stocks. Ball and Kothari

(1989), Conrad, Gultekin and Kaul (1991), Cho and Engle (2000) and Bekaert and Wu (2000),

among others, document asymmetries in betas of stock returns, but there are no formal statistical

tests. The second contribution of this paper is to fill the gap by providing a model-free test of

beta symmetry. In addition, we develop such a test for symmetric covariances. This is of interest

because covariances are usually the direct parameter inputs for optimal portfolio choice, while betas

are primarily useful in understanding assets’ systematic risks associated with the market/factors

in general.

Since the presence of statistically significant asymmetry may not necessarily be economically

important (and vice versa), the third contribution of this paper is to provide a Bayesian framework

for modeling asymmetry and for assessing its economic importance from an investment perspective.

A mixture model of normal and Clayton copulas is proposed for the data. We develop algorithms for

drawing samples from both Bayesian posterior and predictive distributions. To assess the economic

value of asymmetry, we consider the portfolio choice problem of an investor who is uncertain about

whether there exists asymmetry in stock returns. In the spirit of Kandel and Stambaugh (1996),

and Pástor and Stambaugh (2000), we ask what utility gains an investor can achieve if he switches

from a belief in symmetric returns into a belief in asymmetric ones. Based on the disappointment

aversion preference of Ang, Bekaert and Liu (2005), we compute the utility gains when the investor’s

felicity function is of the power utility form and when his coefficient of disappointment aversion

is between 0.55 and 0.25. We find that he can achieve over 2% annual certainty-equivalent gains

when he switches from a belief in symmetric stock returns into a belief in asymmetric ones.

The remainder of the paper is organized as follows. Section 1 provides statistical tests for

various symmetries. Section 2 applies the tests to stock portfolios grouped by size, book-to-market

and momentum, respectively, to assess their asymmetries, and introduces the copula model to
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capture the detected asymmetries. Section 3 discusses Bayesian portfolio decisions that incorporate

asymmetries. Section 4 concludes.

1. Symmetry Tests

In this section, we provide three model-free symmetry tests. The first is on symmetry in

correlations, and the other two are on symmetry in betas and covariances, respectively. While their

intuition and asymptotic distributions are discussed in this section, their small sample properties

are studied later because we need the data to calibrate parameters for simulations.

1.1 Testing correlation symmetry

Let {R1t, R2t} be the returns on two portfolios in period t. Following Longin and Solnik (2000)

and Ang and Chen (2002), we consider the exceedance correlation between the two series. A

correlation at an exceedance level c is defined as the correlation between the two variables when

both of them exceed c standard deviations away from their means, respectively,

ρ+(c) = corr(R1t, R2t|R1t > c,R2t > c), (1)

ρ−(c) = corr(R1t, R2t|R1t < −c,R2t < −c), (2)

where, following Ang and Chen (2002) and many others in the asymmetry literature, the returns

are standardized to have zero mean and unit variance so that the mean and variance do not appear

explicitly in the right-hand side of the definition, making easy both the computation and statistical

analysis. The null hypothesis of symmetric correlation is

H0 : ρ+(c) = ρ−(c), for all c ≥ 0. (3)

That is, we are interested in testing whether the correlation between the positive returns of the

two portfolios is the same as that between their negative returns. If the null hypothesis is rejected,

there must exist asymmetric correlations. The alternative hypothesis is

HA : ρ+(c) 6= ρ−(c), for some c ≥ 0. (4)

Longin and Solnik (2000) use extreme value theory to test whether ρ+(c) or ρ−(c) is zero

as c becomes extremely large. In contrast, Ang and Chen (2002) provide a more direct test of

the symmetry hypothesis. For a set of random samples, {R1t, R2t}T
t=1, of size T , the exceedance
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correlations can be estimated by their sample analogues,

ρ̂+(c) = ˆcorr(R1t, R2t|R1t > c,R2t > c), (5)

ρ̂−(c) = ˆcorr(R1t, R2t|R1t < −c,R2t < −c). (6)

That is, ρ̂+(c) and ρ̂−(c) are the standard sample correlations computed based on only those data

that satisfy the tail restrictions. Based on these sample estimates, Ang and Chen (2002) propose

an H statistic for testing correlation symmetry:

H =

[
m∑

i=1

w(ci)(ρ(ci, φ)− ρ̂(ci))2
]1/2

, (7)

where c1, c2, . . ., cm are m chosen exceedance levels, w(ci) is the weight (all weights sum to one),

ρ̂(ci) can be either ρ̂+(ci) or ρ̂−(ci), and ρ(ci, φ) is the population exceedance correlation computed

from a given model with parameter φ. If H is large, this implies that the given model cannot

explain the observed sample exceedance correlations. Hence, Ang and Chen’s (2002) test is useful

in answering whether the empirical exceedance correlations can be explained by a given model.

In contrast, here we are interested in the question whether the data are asymmetric at all. This

requires a model-free test. Intuitively, if the null is true, the following m× 1 difference vector

ρ̂+ − ρ̂− =
[
ρ̂+(c1)− ρ̂−(c1), ..., ρ̂+(cm)− ρ̂−(cm)

]′ (8)

must be close to zero. It can be shown (see Appendix A) that, under the null of symmetry, this

vector after scaled by
√

T has an asymptotic normal distribution with mean zero and a positive

definite variance-covariance matrix Ω for all possible true distributions of the data satisfying some

regularity conditions.

To construct a feasible test statistic, we need to estimate Ω. Let T+
c be the number of obser-

vations in which both R1t and R2t are larger than c simultaneously. Then the sample means and

variances of the two conditional series are easily computed,

µ̂+
1 (c) =

1
T+

c

T∑

t=1

R1t1(R1t > c,R2t > c),

µ̂+
2 (c) =

1
T+

c

T∑

t=1

R2t1(R2t > c,R2t > c),

σ̂+
1 (c)2 =

1
T+

c − 1

T∑

t=1

[R1t − µ̂+
1 (c)]21(R1t > c,R2t > c),

σ̂+
2 (c)2 =

1
T+

c − 1

T∑

t=1

[R2t − µ̂+
2 (c)]21(R1t > c,R2t > c),
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where 1(·) is the indicator function. As a result, we can express the sample conditional correlation

ρ̂+(c) as

ρ̂+(c) =
1

T+
c − 1

T∑

t=1

X̂+
1t(c)X̂

+
2t(c)1(R1t > c, R2t > c), (9)

where

X̂+
1t(c) =

R1t − µ̂+
1 (c)

σ̂+
1 (c)

, X̂+
2t(c) =

R2t − µ̂+
2 (c)

σ̂+
2 (c)

.

Clearly, we can have a similar expression for ρ̂−(c).

Then, under general conditions, a consistent estimator of Ω is given by the following almost

surely positive definite matrix,

Ω̂ =
T−1∑

l=1−T

k(l/p)γ̂l, (10)

where γ̂l is an N ×N matrix with (i, j)-th element

γ̂l(ci, cj) =
1
T

T∑

t=|l|+1

ξ̂t(ci)ξ̂t−|l|(cj), (11)

and

ξ̂t(c) =
T

T+
c

[X̂+
1t(c)X̂

+
2t(c)− ρ̂+(c)]1(R1t > c,R2t > c)

− T

T−c
[X̂−

1t(c)X̂
−
2t(c)− ρ̂−(c)]1(R1t < −c,R2t < −c); (12)

and k(·) is a kernel function that assigns a suitable weight to each lag of order l, and p is the

smoothing parameter or lag truncation order [when k(·) has bounded support]. In this paper, we

will use the Bartlett kernel,

k(z) = (1− |z|)1(|z| < 1), (13)

which is popular and used by Newey and West (1994) and others. With these preparations, we are

ready to define a statistic for testing the null hypothesis as

Jρ = T (ρ̂+ − ρ̂−)′Ω̂−1(ρ̂+ − ρ̂−). (14)

Based on our earlier discussions, Jρ summarizes the deviations from the null at various values of

the c’s.

However, the value of p has to be provided to compute the test statistic. There are two ways

for choosing p. The first is to take p as a nonstochastic known number, especially in the case where
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one wants to impose some lag structure on the data. Another choice is to allow it be determined

by the data with either Andrews’ (1991) or Newey and West’s (1994) procedure. Let Ĵρ be the

same Jρ statistic except using p̂, the data-driven p.

The following theorem provides the theoretical basis for making statistical inference based on

Jρ and Ĵρ:

Theorem 1: Under the null hypothesis H0 and under certain regularity conditions given in

Appendix A,

Jρ →d χ2
m, (15)

and

Ĵρ →d χ2
m, (16)

as the sample size T approaches infinity.

Theorem 1 (proofs of all theorems are given in Appendix A) says that the correlation symmetry

test has a simple asymptotic chi-square distribution with degrees of freedom m. So, the P-value of

the test is straightforward to compute, making its applications easy to carry out.

As can be seen from the regularity conditions given in the proof, the test is completely model-

free. It is also robust to volatility clustering which is a well-known stylized fact for many financial

time series. We have also explicitly justified the use of a data-driven bandwidth, say p̂, and show

that p̂ has no impact on the asymptotic distribution of the test provided that p̂ converges to p at a

sufficiently fast rate. For simplicity, we will use p = 3 in what follows because the time-consuming

data-driven bandwidth does not make much difference in our simulation experiments. In addition,

since the kernel estimator has a known small sample bias, we will, following Den Haan and Levin

(1997, p. 310), replace T/T+
c of equation (12) by (T − T+

c )/T+
c and do the same for the T/T−c

term, to make the test to have better finite sample properties. It should also be noted that the

asymptotic theory does not provide any guidance for the choice of the exceedance levels except that

they are required to be distinct numbers. Intuitively, more levels or larger ones are likely to increase

power, but they may lead to imprecise estimation of Ω to yield poor small sample properties. For

this reason, like Ang and Chen (2002), we focus on using C = {0} and C = {0, 0.5, 1, 1.5} which

seem to have reasonable finite sample performance as shown in our simulations later.

Econometrically, our test is similar to constructing a Wald test in Hansen’s (1982) generalized

method of moments framework (GMM). However, unlike the standard GMM, the sample moments
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are conditional ones and hence stronger regulation conditions are needed to ensure the convergence

of the sample analogues to their suitable asymptotic limits. In particular, we need to impose

Assumption A.1: For the prespecified exceedance levels c = (c1, c2, ..., cm)′ ∈ Rm, the variance-

covariance matrix Ω, with (i, j)-th element Ωij ≡
∑∞

l=−∞cov[ξt(ci), ξt−l(cj)], is finite and nonsin-

gular, where

ξt(c) =
X+

1t(c)X
+
2t(c)− ρ+(c)

Pr(R1t > c,R2t > c)
− X−

1t(c)X
−
2t(c)− ρ−(c)

Pr(R1t < −c,R2t < −c)
,

with X+
jt(c) = [Rjt − E(Rjt|R1t > c, R2t > c)]/[var(Rjt|R1t > c, R2t > c)]1/2 and X−

jt(c) = [Rjt −
E(Rjt|R1t < −c,R2t < −c)]/[var(Rjt|R1t < −c,R2t < −c)]1/2.

This assumption prevents degeneracy of our test statistics. A necessary but not sufficient

condition is, for any of the chosen level c, Pr(R1t > c, R2t > c) and Pr(R1t < −c,R2t < −c) must

be bounded away from zero. This should be obviously true empirically as one has to be able to

estimate these conditional probabilities based on the data. In this paper, we consider the use of a

finite number of the exceedance levels only, which yields the simple χ2 distribution of the tests, but

makes the finite sample properties depend on the choice of the levels. One way to overcome this

problem is to use all possible numbers. However, the resulted distribution will then be too complex

to compute in many applications, we will hence leave its studies elsewhere.

1.2 Testing beta and covariance asymmetries

As mentioned earlier, betas are useful for understanding the riskiness of the associated stocks,

and hence it is of interest to test their symmetry. To do so, we first define betas conditional on

the market’s up- and down-moves. Analogous to the conditional correlations, we can define the

conditional betas at any exceedance level c as

β+(c) =
cov(R1t, R2t|R1t > c, R2t > c)

var(R2t|R1t > c,R2t > c)
=

σ+
1 (c)

σ+
2 (c)

ρ+(c), (17)

β−(c) =
cov(R1t, R2t|R1t < −c,R2t < −c)

var(R2t|R1t < −c,R2t < −c)
=

σ−1 (c)
σ−2 (c)

ρ−(c), (18)

where

σ+
1 (c)2 = var(R1t|R1t > c,R2t > c), (19)

σ+
2 (c)2 = var(R2t|R1t > c,R2t > c), (20)

and σ−1 (c) and σ−2 (c) are defined similarly. In particular, when c = 0, β+(c) and β−(c) are the

upside and downside betas defined by Ang and Chen (2002). Clearly, even if c 6= 0, they can still
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be interpreted as the upside and downside betas except that they are now examined at a non-zero

exceedance level. If we interpret R2t as the return on the market, then σ+
1 (c)/σ+

2 (c) is the ratio

of upside asset standard deviation (asset risk) to the upside market standard deviation (market

risk), and so the upside beta is the product of this ratio and the conditional correlation between

the asset and the market. Because the ratio can be different in upside and downside markets, the

betas can be asymmetric even if there are no asymmetries in correlations. Hence, our earlier test

for symmetry in correlations cannot be used for testing symmetry in betas.

To obtain a test for symmetry in betas, we, similar to the correlation case, evaluate the sample

differences of the upside and downside betas,

√
T (β̂+ − β̂−) =

√
T

[
β̂+(c1)− β̂−(c1), ..., β̂+(cm)− β̂−(cm)

]′
, (21)

where c1, c2, . . ., cm are a set of m chosen exceedance levels. Now, the symmetry hypothesis of

interest is

H0 : β+(c) = β−(c), for all c ≥ 0. (22)

Under the null and some regularity conditions, similar to the earlier correlation case, we can show

that
√

T (β̂+ − β̂−) has an asymptotic normal distribution with mean zero and a positive definite

variance-covariance matrix Ψ which can be consistently estimated by

Ψ̂ =
T−1∑

l=1−T

k(l/p)ĝl, (23)

where k(·) is the kernel function as in (13), p is the bandwidth, and ĝl is an m ×m matrix with

(i, j)-th element

ĝl(ci, cj) =
1
T

T∑

t=|l|+1

η̂t(ci)η̂t−|l|(cj), (24)

where

η̂t(c) =
T

T+
c

[
σ̂+

1 (c)
σ̂+

2 (c)
X̂+

1t(c)X̂
+
2t(c)− β̂+(c)

]
1(R1t > c, R2t > c)

− T

T−c

[
σ̂−1 (c)
σ̂−2 (c)

X̂−
1t(c)X̂

−
2t(c)− β̂−(c)

]
1(R1t < −c)1(R2t < −c). (25)

Then the test for beta symmetry can be constructed as

Jβ = T (β̂+ − β̂−)′Ψ̂−1(β̂+ − β̂−), (26)

where the bandwidth p is assumed as a fixed constant. Similar to the correlation case, we denote

Ĵβ as the same statistic except using a stochastic value of p estimated from the data.
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Because of its importance in portfolio selections, consider now how to test symmetry in covari-

ances,

H0 : σ+
12(c) = σ−12(c), for all c ≥ 0, (27)

where

σ+
12(c) = cov(R1t, R2t|R1t > c, R2t > c) = σ+

1 (c)σ+
2 (c)ρ+(c), (28)

σ−12(c) = cov(R1t, R2t|R1t < −c,R2t < −c) = σ−1 (c)σ−2 (c)ρ−(c). (29)

Similar to the beta symmetry test, we can construct a test for covariance symmetry as

Jσ12 = T (σ̂+
12 − σ̂−12)

′Φ̂−1(σ̂+
12 − σ̂−12), (30)

where

σ̂+
12 − σ̂−12 =

[
σ̂+

12(c1)− σ̂−12(c1), ..., σ̂+
12(cm)− σ̂−12(cm)

]′
, (31)

Φ̂ =
T−1∑

l=1−T

k(l/p)ĥl, (32)

and k(·) is the kernel function as in (13), ĥl is an m×m matrix with (i, j)-th element

ĥl(ci, cj) =
1
T

T∑

t=|l|+1

φ̂t(ci)φ̂t−|l|(cj), (33)

where

φ̂t(c) =
T

T+
c

[
σ̂+

1 (c)σ̂+
2 (c)X̂+

1t(c)X̂
+
2t(c)− σ̂+

12(c)
]
1(R1t > c, R2t > c)

− T

T−c

[
σ̂−1 (c)σ̂−2 (c)X̂−

1t(c)X̂
−
2t(c)− σ̂−12(c)

]
1(R1t < −c)1(R2t < −c). (34)

The bandwidth p has an analogous meaning as before, and Ĵσ12 is defined in the same way as Ĵβ.

For the asymptotic distributions of the above two symmetry tests, we have

Theorem 2: Under the null hypotheses, equations (22) and (27), and under certain regularity

conditions,

Jβ →d χ2
m, (35)

and

Jσ12 →d χ2
m, (36)

respectively, as the sample size goes to infinity. Moreover, both Ĵβ and Ĵσ12 have the same asymp-

totic χ2
m distributions.
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Again, the tests are model-free. It is unnecessary to choose a parametric model to fit the

data to answer the question whether or not betas or covariances are symmetric. Once the null is

rejected, the data cannot be modeled by using any regular symmetric distributions, and so we can

legitimately claim that there are asymmetric betas or covariances.

2. Is There Asymmetry?

In this section, we apply first the proposed tests to examine the asymmetries of stock portfolios

grouped by size, book-to-market and momentum, respectively, then explore the use of Clayton

copula to capture the asymmetries, and finally provide a simulations study on the size and power

of the proposed tests.

2.1 The data

While the tests can be easily carried out for any data set, we focus here on three of them. The

first is monthly returns on the ten size portfolios of the Center for Research in Security Prices

(CRSP), and the monthly market returns taken here as the returns on the value-weighted market

index based on stocks in NYSE/AMEX/NASDAQ also available from the CRSP. Following Ang

and Chen (2002), all risky returns below are in excess of the riskfree rate which is approximated

by the one-month Treasury bill rate available from French’s homepage.2 The other two data sets

are book-to-market and momentum decile portfolios that are getting increasingly popular recently.

The former is again available from French’s web and the latter is from Liu, Warner and Zhang

(2005) who provide an interesting study on some of the economic forces. The sample period is from

January 1965 to December 1999 (420 observations) for all of the three data sets.

2.2 Statistical tests

Panel A of Table 1 provides the results for testing correlation symmetry for the size portfolios.

The assets are in the first column. They range from the smallest (size 1) to the largest (size 10).

The second column reports the P-values (in percentage points) of the correlation symmetry test,

Jρ, based on the singleton exceedance level c = 0. It is seen that the P-values are less than 5%

for the first four portfolios, and are greater than 5% for the rest. The fourth column reports the

P-values of the same test but with a set of four exceedance levels, 0, 0.5, 1 and 1.5. The results are
2We are grateful to Ken French for making it available at www.mba.tuck.dartmouth.edu/pages/faculty/ken.french.
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consistent with the singleton exceedance level case, and the rejections are often stronger because of

the smaller P-values.3 Overall, we find statistically significant evidence of asymmetry for the first

four smallest size portfolios, but no such evidence for the rest.

It is interesting to observe, from columns 5 through 8, that the sample differences in the con-

ditional correlations, ρ̂+ − ρ̂−, are all negative at all four exceedance levels. This means that the

sample downside correlations are greater than the upside ones. For example, ρ̂−(0)− ρ̂+(0) for size

2 is as large as 44%! However, this does not mean that there is necessarily a genuine difference

in the population parameters, because there are always differences in the sample estimates simply

due to sample variations. Nevertheless, the correlation symmetry test confirms that the correlation

between size 2 and the market is indeed asymmetric. However, despite the seeming large differences

for sizes 5 and beyond, the test does not reject the symmetry hypothesis for them.

There are, in addition, two notable facts. First, the P-values tend to get greater as the firm size

increases. This means that large firms tend to have symmetric up- and down-movements with the

market. Second, the test statistic appears positively related to skewness. For example, size 1 has

the smallest P-values and, at the same time, has the largest skewness. An intuitive explanation is

that smaller firms usually drop more than others when the market goes down. Hence, their greater

positively skewed returns are simply a reward for their higher downside risk.

For beta asymmetry, Panel B of Table 1 provides the results. Column 4 shows that the symmetry

hypothesis is rejected for sizes 1 to 4 portfolios under the set of four exceedance levels. However, the

beta symmetry test based on the singleton exceedance level rejects fewer. Overall, it is interesting

that, as likely to happen, an asset that is rejected by the correlation symmetry test is also rejected

by the beta symmetry test.

Consider now asymmetry in covariances. Panel C of Table 1 reports the results that reject

symmetry for sizes 2 to 4 at the usual 5% level, but do so for size 1 only at a significance level

of 6.11%. In comparison with sizes 2 to 4, since size 1 has in general the greatest differences in

down- and up-correlations, it is of interest to know why it does not show the greatest covariance

asymmetry, especially given the fact that, if the up- and down-variances were equal for both size

1 and the market, the correlation and covariance asymmetries must be equivalent to each other.

However, the up- and down-variances are different here as can easily be seen in the singleton
3Theoretically, there is no reason for preferring one choice to the other. Simulations later also show that both

perform almost equally well although the singleton choice has slightly higher power.
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exceedance case in which, based on (28) and (29), we have

σ+
12 = σ+

1 σ+
2 ρ+ = 0.835× 0.604× ρ+ = 0.504ρ+,

σ−12 = σ−1 σ−2 ρ− = 0.625× 0.762× ρ− = 0.476ρ−.

Since ρ+ < ρ−, the larger up-side standard deviation of size 1, σ+
1 , helps to inflate σ+

12 substantially

to narrow its difference with σ−12, and hence the P-value here is larger than that of the correlation

symmetry test. Because such inflation is relatively greater for size 1 than for sizes 2 to 4, the P-value

associated with size 1 is also larger than those associated with the latter. Intuitively, small firms are

riskier and more sensitive to the market’s down turn as evidenced by the asymmetric correlation.

But they may still be fairly valued by investors to have relatively symmetric covariances. Indeed,

while the size premium is decreasing since the 1980s, the asymmetric correlation is persistent over

time based on diagnostic results not reported.

For interest of comparison, we also conduct asymmetry studies on the book-to-market and

momentum portfolios. First, Table 2 shows that there is no evidence of asymmetry for the book-

to-market portfolios. Economically, a high BE/ME firm has high market leverage relative to book

leverage, resulting the so-called distress effect. While high BE/ME portfolios have negative values

of sample measures of asymmetries, they are far smaller in absolute value than those of the size

portfolio case, explaining why there are no statistical rejections of the symmetry hypothesis here.

Intuitively, the market risk may not be of primary concern when a firm is in distress, and hence

its returns are fairly symmetric relative to the market because they are primarily driven by other

risks. Secondly, Table 3 provides the results on the momentum portfolios. Because current losers

(winners) are more likely to be future losers (winners), one may expect that the losers (winners) go

down (up) more often with the market when the market is down. Surprisingly, however, there is no

correlation asymmetry whatsoever. Therefore, it must be the case that when they are down, the

losers must be down more in magnitude than when they are up. The opposite must also be true for

the winners. Interestingly, though, there are apparent beta and covariance asymmetries, especially

among the the top two winner portfolios. Econometrically, these are driven by the up- and down-

variances of the associated assets like the size portfolio case but in the opposite direction. For

example, in the case of top winners under the singleton exceedance, σ+
1 /σ+

2 and σ−1 /σ−2 , are 0.912

and 1.055, exacerbating the correlation difference substantially to yield an asymmetric beta statistic.

Economically, Schwert (2003) and references therein find that the momentum premium remains an

asset pricing anomaly that cannot be explained by the market. An asymmetric covariance is clearly
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consistent with these studies because a symmetric covariance risk might be explained by the market

factor model while an asymmetric covariance risk certainly cannot.

2.3 Diagnostics and modeling

In the previous subsection, we find evidence of asymmetries with the strongest one shown

between the market and size 1. In this subsection, we explore the intuition of this strongest

asymmetric correlation, and illustrate why it cannot be modeled by a normal distribution, but can

be captured by a mixture Clayton copula to be introduced below.

The top-left graph of Figure 1 is an ‘empirical’ contour plot of the standardized monthly returns

on the market and size 1 portfolios. Visually, it is apparent, along the 45 degree line, that there

are more observations near the lower portion than near the upper one. This clearly suggests

asymmetry. In contrast, a theoretical contour plot based on the normal distribution (with the

same sample unconditional correlation) shows a much even distribution. This is expected. Because

the normal distribution is symmetric, down- and up-side comovements between the two assets must

be the same. What we learn here is that a simple plot of the data reveals the shortcomings of the

normal distribution in modeling asymmetric comovements.

While the plots are informative, they are not precise. To formally quantify the deviations from

symmetry, we, following Hu (2004), use a contingency table approach. We divide the range of

returns into K = 6 cells that balances the tradeoff of having enough observations in each cell versus

enough number of cells for testing contingent dependence. Let Ai,j ’s be the numbers of observed

frequencies in cell (i, j)′s, which are reported in the upper-left panel of Table 4. The asymmetry

shows up quantitatively in terms of these frequencies. For instance, the lower-left corner, cell (6, 1),

has a value of 40, while the upper-right corner, cell (1, 6), has a value of 21, telling us that out of

420 observations, there are almost twice many occurrences of both asset returns in their respective

lowest percentile as those in their top percentile.

Let Bi,j ’s be the numbers of predicted frequencies in cell (i, j)′s based on data from the normal

distribution, computed as the product of the exact probabilities of the data falling into the cells

and the sample size.4 The upper-right panel of Table 4 provides the results. Both the lower-left

and upper-right cells have identical values because of the symmetry of the normal distribution. In

comparison, there are large differences across the cells in the actual data as shown by Ai,j ’s. Are

4Under normality, these probabilities can be evaluated by using the formulas provided by Ang and Chen (2002).
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the differences due to chance? The Pearson chi-squared test of the joint equality of the Ai,j ’s and

Bi,j ’s has a P-value of 4.13%. This suggests statistically that the normal distribution is not capable

of describing the asymmetry of the data, a result consistent with the symmetry tests.

What distribution might capture the asymmetry? One of the simplest asymmetric distributions

is the Clayton copula. Conceptually, a copula is a multivariate distribution that combines two (or

more) almost arbitrarily given marginal distributions into a single joint distribution, to which

Nelsen (1999) provides an excellent introduction. Longin and Solnik (2001) seems the first major

application of the copula approach in finance. Patton (2004) shows that Clayton copulas, among

others, do capture the asymmetries of many financial time series.

The copula idea is appealing in empirical studies. A multivariate distribution is usually specified

to fit the data, but it often fails to capture some salient features of the univariate time series, i.e.,

the marginal distributions may not provide good descriptions for the individual data series. The

copula solves exactly this problem. One can model the univariate series first, and then use a copula

to assemble the univariate distributions into a coherent multivariate one. For example, let Φ be the

standard univariate normal distribution function and Φ−1 be its inverse. If two data series are well

modeled individually by univariate normal distributions, we can assemble them into a multivariate

distribution with correlation ρ ∈ [−1, 1] by using a copula,

Cnor(u, v; ρ) = Φρ(Φ−1(u), Φ−1(v)), (37)

where Φρ is the standard bivariate distribution function with correlation ρ. Since Cnor(u, v; ρ)

produces a bivariate normal distribution with normal marginals, it is referred to the normal copula.

A bivariate Clayton copula is defined as

Cclay(u, v; τ) =
(
u−τ + v−τ − 1

)− 1
τ , (38)

where τ > 0 is the parameter. For any given inverse marginal distributions of u and v, such as

Φ−1(u) and Φ−1(v), the Clayton copula can be used to generate a bivariate distribution.

Since the normal distribution, though does not capture the asymmetry of the data, is widely

used in both theoretical and empirical studies, it might be extreme to rule it out completely. So, we

in what follows use a mixture model that mixes the normal with a Clayton copula. In the bivariate

case, the density function is

fmix(u, v; ρ, τ, κ) = κfnor(u, v; ρ) + (1− κ)fclay(u, v; τ), (39)
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where κ is the mixture parameter, fnor is the density of the normal copula, and fclay is the density

of the Clayton copula. The latter two densities are easily obtained as the partial derivatives of

Cnor(u, v; ρ) and Cclay(u, v; τ) with respect to u and v (see Appendix B). It is clear that the mixture

model nests the normal distribution as a special case. Since the GARCH(1,1) process is a well-

known parsimonious model for stock returns, we will in the rest of the paper use it exclusively to

model the univariate distributions of the asset returns. Then, their joint distribution is determined

by (39), the mixture Clayton model.

The maximum likelihood (ML) method is the standard approach for estimating the model.

Rather than maximizing the ML function directly, we use the EM algorithm5 of Redner and Walker

(1984) to ensure fast convergence of the numerical solution to the optimum of the objective function.

Panle A of Table 5 reports the estimation results for the bivariate series of the market and size 1

portfolios. The first case is to use a bivariate normal distribution to fit the data. The estimated

correlation is 0.609 with a standard error of 0.037. However, the log likelihood value is 95.538,

implying that the associated likelihood ratio test (LRT) of this model versus the mixture one has

a P-value of virtually 0%. So the normal distribution is rejected soundly by the data. Similarly,

the pure Clayton copula model is rejected too because the LRT has an almost zero P-value. Both

rejections are also confirmed by the estimation result on κ. The ML estimate of κ is 0.275 with a

standard error of 0.089, which is significantly different from either one or zero. The τ parameter,

interestingly, is not much different in both the pure Clayton and mixture copula models. It is

also interesting to observe that the correlation in the mixture model is greater than that in the

normality case, suggesting at least in this example that removing asymmetric data increases the

correlation of the rest of sample.

For interest of comparison, we also estimate the model by using the Bayesian approach. Details

of this approach are provided in Appendix B. Panel B of Table 5 reports the results. Both the

point estimates of the parameters and their standard errors are very similar between the ML and

Bayesian approaches. Although the Bayesian approach only confirms the ML estimates here, it is a

more flexible method. Later when we model all assets simultaneously in high dimensions, the ML

is not feasible due to difficulties in numerical maximization. But the Bayesian approach can still

be used to obtain both parameter estimates and the predictive density of the data.

To see how well both the pure Clayton and the mixture models explain the asymmetry, the lower
5See McLachlan and Krishnan (1996) for an introduction and extensive applications of the EM algorithm.

15



part of Figure 1 plots the theoretical contour graphs based on the two models, respectively, in the

same way as we did for the normal. Now the graphs resemble much more the asymmetric pattern of

the real data than the normality case. To assess further quantitatively, the two panels of the lower

part of Table 4 provides the frequencies that are well approximated by using 100,000 simulated data

sets from the two models, respectively. Clearly, the pure Clayton model is more asymmetric and

has a P-value of 96.16% in matching the observed frequencies. Interestingly though, the mixture

model can also explain well the observed frequencies with a P-value of 30.25%. In addition, it

is a much better model than the pure Clayton in explaining the overall features of the data, as

suggested by the earlier LRT result.

2.4 Size and power

As the mixture model seems to explain well the data, it serves as a good distribution to draw

data from in order to assess the power of the proposed symmetry tests. For size of the tests, the data

can be drawn straightforwardly from the normal distribution which is the standard benchmark.6

While any of the ten size portfolios can be used in conjunction with the market to calibrate the

parameters, we would like to choose a more sensible one, though the results are largely similar.

In the earlier modeling case, we have used size 1 for illustration because it is the most difficult

to model. Now, size 5 is the first one that the tests fail to reject its symmetry, and hence it is

of interest to use it to calibrate the parameters to see whether the tests have reasonable power in

simulations. Hence, all parameters below (in this subsection) are calibrated by using the market

and size 5 returns unless otherwise specified explicitly.

The nominal size of the tests is set at 5% based on their asymptotic distributions. Columns 2 to

5 of Table 6 report the empirical size of Ang and Chen test (based on the asymptotic distribution

in Appendix A) and the proposed correlation, beta and covariance symmetry tests. With varying

sample sizes and exceedance levels, it is seen that the rejection rates do not change much. While

some of them are close to 1%, by and large, the results are not much different from 5%, and all of

the tests seem fairly reliable under the null.

To assess power, κ is allowed to be less than 100%. The lower it is, the more it deviates from

normality to have more asymmetry. When the data is not much different from normality with

κ = 75%, it is seen that the rejection rates are very low when T = 240, and are mostly under 50%
6The bootstrap method is difficult to apply here for power studies, though it can be used to examine the size to

obtain similar results (not reported here).
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even when T = 840. Unlike the real data case, more exceedance levels do not necessarily yield

more rejections, which seems due to relatively fewer samples available in the higher exceedance

levels. However, the power increases dramatically when κ decreases to 50%, corresponding roughly

to the calibrated posterior mean of 51.4% (in the mixture model for the pair of size 5 and the

market).7 For example, when T = 420, the four tests have rejection rates of 86%, 90%, 86% and

49%, respectively, at the singleton exceedance level. Although not reported, the power is much

greater when κ = 25%. For example, when κ = 25% and T = 420, the rejection rates are 95%,

99%, 99% and 57% in the singleton case. Notice that Ang and Chen test imposes normality, it

should in general have greater power than the other tests. What we found interesting here is

that, within the class of the mixture Clayton copula distributions, the power of all of the tests is

comparable. In summary, all the tests have good power against the null when κ = 50% or lower,

but not so when κ = 75% or greater.

Since the tests are based on the conditional correlations, etc., it is of interest to know their

population counterparts under the alternative. Put it differently, we want to ask what degrees of

asymmetry in correlation, beta and covariance a given κ can generate. Because analytical formulas

are unavailable, we estimate them by drawing data from the calibrated model with the varying

specification of κ. As the sample size or the number of draws increases, the estimates should

converge to the true parameters. Table 7 provides the results. In comparison with the real data

case, there are two nice patterns. First, all the estimated population asymmetry measures are

negative. Second, except some lesser degree in covariance, their magnitudes resemble well the

real data estimates when κ = 50% and 25% (corresponding closely to the κ’s for sizes 5 and 1),

respectively. Both of the results suggest that κ is indeed the key parameter of the copula model

that drives asymmetries in correlation, beta and covariance.

3. Asset Allocation Perspective

Statistical tests of Section 2 show evidence of asymmetric correlations, betas and covariances.

The question we ask in this section is how important these asymmetries are from an investor’s

portfolio decision point of view.

Consider an investment universe consisting of cash plus n risky assets. Let Rt denote an n-
7The posterior mean of κ for other nine pairs are 24.3%, 27.5%, 40.2%, 38.8%, 52.7%, 68.2%, 77.4%, 84.0% and

75.2%, respectively.
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vector with i-th element ri,t the return on the i-th risky asset at time t in excess of the return, Rf,t,

on a riskless asset, then the excess return of a portfolio with weight wi on the i-th risky asset is

Rp,t =
∑n

i=1 wiri,t. Under the standard expected utility framework, the investor chooses portfolio

weights w = (w1, . . . , wn)′ to maximize the expected utility,

max
w

E [U(W )], (40)

where W is the next period wealth

Wt+1 = 1 + Rf,t+1 +
n∑

i=1

wiri,t+1, (41)

with the initial wealth set to be equal to one. The popular choices for U(W ) are the quadratic and

CRRA utility functions, but the former utility does not capture the impact of higher moments and

the latter one is still a locally mean-variance preference.

Following Ang, Bekaert and Liu (2005) who build their insights on Gul (1991), we use the disap-

pointment aversion (DA) preference in our assessment of the economic importance of asymmetries.

The utility µW is implicitly defined by the following equation,

U(µW ) =
1
K

(∫ µW

−∞
U(W )dF (W ) + A

∫ ∞

µW

U(W )dF (W )
)

, (42)

where U(·) is the felicity function chosen here as the power utility form, i.e., U(W ) = W (1−γ)/(1−γ);

A is the coefficient of disappointment aversion; F (·) is the cumulative distribution of wealth; µW

is the certainty equivalent wealth (the certain level of wealth that generates the same utility as the

portfolio allocation determining W) and K is a non-random scalar given by

K = Pr(W ≤ µW ) + APr(W > µW ). (43)

It is seen that µW also serves as the reference point in both determining K and the bracketed term

in equation (42).8 This reference point is irrelevant only when A = 1 and in this case the DA

preference reduces to the power utility. Since A is usually set to be less than 1, the outcomes below

the reference point are weighted more heavily than those above it. For example, if A is equal to

0.5, the outcomes below µW is weighted twice as important as the others. Intuitively, asymmetries

make down-side moves of a portfolio more likely, and so they should be more important to DA

investors. Hence, the DA preference is of particular usefulness in analyzing asymmetries.9

8The subscript W in µW is purely a notation referring to the certainty equivalent wealth and should not be

confused with the W elsewhere in which it is the terminal wealth and is a random variable.
9Although beyond the scope of this paper, the kinked utility function, used by Benartzi and Thaler (1995) and

Aı̈t-Sahalia and Brandt (2001), seems another important class of preference for analyzing asymmetries.

18



The DA preference is usually implemented based on a point estimator of the model parameters

for asset return dynamics since the true parameters are unknown in practice. This plug-in approach

ignores the estimation risk as the parameter estimates are subject to random sampling errors.

Another desirable feature of our approach below is that we use a Bayesian decision framework to

compute the utility that accounts for the estimation risk.10 Let R denote the data available at time

T . In the Bayesian framework, all information, sample variation and parameter uncertainty, about

future stock returns is summarized by p(RT+1|R), the predictive density of the returns conditional

on the available data. When the data are normally distributed, the predictive density is analytically

available from Zellner (1971) and more generally from Pástor and Stambaugh (2000). However,

when the data are nonnormal, such as t-distributed, it can be determined only numerically as

shown by Tu and Zhou (2004). In the present case of a mixture copula model with asymmetries,

the predictive density is more complex. We relegate the details of its computation to Appendix B.

Under the DA preference, the Bayesian investor’s optimization problem is

max
w

U(µW ), (44)

where the certainty equivalent wealth is defined by (42) and W is defined by (41). The first-order

condition is
∫

WT+1≤µW

(W−γ
T+1ri,T+1)p(RT+1|R)dRT+1 + A

∫

WT+1>µW

(W−γ
T+1ri,T+1)p(RT+1|R)dRT+1 = 0, (45)

for i = 1, 2, · · · , n, where WT+1 = 1 + Rf,T+1 +
∑n

i=1 wiri,T+1 is the predictive wealth at T + 1

when time T wealth WT is set to $1. In contrast with the classic framework of Ang, Bekaert

and Liu (2005), the equation is identical except that we use the predictive distribution of the

wealth, whereas they use an assumed true distribution.11 Hence, other than the technical difficulty

of determining p(RT+1|R), the optimization problem can be solved by using their approach with

simple modifications to accommodate multiple assets.12

We are now ready to assess the economic value in portfolio choices when one switches from a

belief in symmetric returns to a belief in asymmetric ones. Under the belief in symmetric returns,

we assume that the investor obtains his optimal portfolio wNor under the benchmark normal data-

generating process by solving the earlier optimization problem. Under the belief in asymmetric
10See Kan and Zhou (2006) and references therein for recent studies on estimation risk.
11The Bayesian posterior mean estimates of the parameters may be used in the same way as the point estimates in

the classic framework to evaluate the utility gains. The resulted allocation is, however, riskier than using Bayesian

predictive density because risky assets are riskier now with estimation risk.
12An appendix on the details for this and equation (46) later is available upon request.
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returns, we assume that the investor obtains wAsy based on the true data-generating process,

the n-dimensional mixture Clayton copula, in solving the same problem. Let µNor
W and µAsy

W be

the associated certainty-equivalent wealth levels, respectively. Because they also serve as different

reference points in the utilities, their difference does not readily capture the utility gain of switching

from the symmetric belief to the asymmetric one. To truly capture the gain, we fix µNor
W as the

reference point and ask how much certainty equivalent return, CE, the investor is willing to give

up to maintain the same benchmark level of µNor
W when he switches from wNor to wAsy. Formally,

taking the mixture Clayton copula as the true data-generating process, we solve CE in the following

problem,

U(µNor
W ) =

1
K

(∫

W ∗
T+1<µNor

W

(W ∗
T+1)

(1−γ)

1− γ
p(RAsy

T+1|R)dRAsy
T+1

+A

∫

W ∗
T+1>µNor

W

(W ∗
T+1)

(1−γ)

1− γ
p(RAsy

T+1|R)dRAsy
T+1

)
, (46)

where

W ∗
T+1 = 1 + Rf,T+1 +

n∑

i=1

wAsy
i rAsy

i,T+1 − CE

is the terminal wealth at T +1 generated by the optimal portfolio wAsy after deducting an amount

of CE, and p(RAsy
T+1|R) is the predictive density of the returns under the mixture copula model.

CE can be interpreted as the “perceived” certainty-equivalent gain to the investor who switches

his belief from symmetric returns into asymmetric ones. The idea of the CE approach can be

traced back at least to Kandel and Stambaugh (1996). The issue is how big this value can be.

Imagine that there exists such an investor who does not know how to incorporate asymmetry into

his investment decision. If the gain is over 2% annually, he would be willing to pay a fund manager

a 1% fee (reasonably high in the fund industry) to manage the money for him to yield a 1% extra

gain. So, not surprisingly, values over a couple of percentage points per year are usually deemed as

economically significant.

In our applications, there are jointly ten monthly excess returns on the size portfolios as well as

monthly excess returns on the market, and so the dimensionality is n = 11. Table 8 provides the

utility gains. When the disappointment aversion A = 0.55, the annual gains increase from 1.49%

to 3.13% as the curvature parameter γ varies from 2 to 8. The monotone relation seems due to the

fact that as the investor becomes more risk-averse, the loss aversion becomes more important. As a

result, the gains from symmetry to asymmetry are greater. When A goes down, the disappointment

is valued more by the investor, and hence the gains increase. For example, when A = 0.25, the
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asymmetry matters substantially more than before,13 and the gain is as high as 8.44% when γ = 2.

It has an even more impressive value of 10.67% when γ = 8. Overall, the gains reported in Table

8 are clearly economically important. Although not reported in the table, as A goes up, the gains

become smaller. When A = 0.85 or higher, most of the gains are under 1%. Hence, our results

do not claim asymmetry makes a big difference to all investors, though it does matter to investors

with suitable disappointment aversion parameters.

Related to utility gains, there are two interesting questions on the optimal portfolio weights.

First, to what extent asymmetries affect these portfolio weights. To address this question, we hold

all other calibrated parameters constant while allowing κ to vary from 75% to 50% and to 25%.

Recall that κ summarizes all three asymmetries, and so these values of κ reflect some asymmetry,

more asymmetry and severe asymmetry, respectively. We find that, other things being equal,

the more the asymmetry, the less the holdings of the asymmetric assets. This is apparent with

the portfolio allocation on size 1. Consider, for example, the case when A = 0.55 and γ = 2.

The allocations are 20.8%, 15.7% and 9.2%, respectively, for the three varying κ values. Similar

patterns are also found with alternative asset universes that contain fewer size portfolios (results

are available upon request). The finding makes obvious economic sense. As asymmetry increases,

the risk of loss increases too. To reduce the risk, the holdings of the risky assets must be reduced.

The second question is how beliefs of asymmetry and symmetry affect the allocations. We find

results similar to the above but for a different reason. The holding on size 1, for example, reduces

from 21.8% to 20.4% when switching beliefs from symmetry to asymmetry and when A = 0.55. The

reduction becomes much greater, from 19.5% to 3.6%, when A = 0.25. The reason for the reduced

holding is that size 1 appears less risky to those who believe symmetries because higher moments

reflecting asymmetries are not incorporated into their objective function. In contrast, with belief

of asymmetry, the higher moments matter and hence size 1 becomes riskier. To minimize the risk,

its holding must be reduced. For those investors who are more disappointment averse, the holding

is reduced even greater, as in the A = 0.25 case. In summary, an increase in asymmetries make an

otherwise identical portfolio riskier and hence the allocation to risky assets should be reduced. A

belief that accounts for asymmetries versus one that does not can lead to the same results.

13Because of the non-participation result of Ang, Bekaert and Liu (2005), the investor will not invest in the stock

market if A is small enough under either of the data-generating processes. In this case, there will be no utility gains.

21



4. Conclusion

Recently there are many studies on asymmetric characteristics of asset returns in both domestic

and international markets. Of particular interest are asymmetric correlations in which stock returns

tend to have higher correlations with the market when it goes down than when it goes up. Ang and

Chen (2002) seem the first to provide a novel test for the null hypothesis of symmetric correlations,

but their test is model dependent that tests the joint hypothesis of both symmetry and validity

of a given model so that a rejection of symmetry may be solely due to a rejection of the model.

In this paper, we address the question whether the data are symmetric at all by proposing a test

that is completely model-free. A rejection of the symmetry hypothesis by our test tells us that

any symmetric model (under some standard regularity conditions) cannot explain the data. In

addition, our test has a simple asymptotic chi-square distribution and can be adapted easily for

testing beta and covariance symmetries.

Applying our tests to the CRSP ten size portfolios, we find that asymmetric correlations, betas

and covariances are significant only for the first four smallest size portfolios, despite the fact that

sample estimates all indicate asymmetries. We also apply our tests to both book-to-market and

momentum decile portfolios. While there is no evidence of asymmetry for the book-to-market port-

folios, we do find that the top two winner portfolios have strong asymmetric betas and covariances.

Besides addressing the statistical significance of asymmetries, we propose a Bayesian framework,

that accounts for both parameter and model uncertainties, to model them as well as to assess their

economic value. We find that incorporating assets’ asymmetric characteristics can add substantial

economic value in portfolio decisions. Finally, the methodology proposed in this paper seems useful

not only in testing asymmetric correlations, betas, and covariances, but also in studying almost

any asymmetric properties of the data.
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Appendix A: Proofs

Proof of Theorem 1: In the proof below, we first spell out clearly what the regularity conditions

are in addition to Assumption A.1 stated earlier, and then provide the rigorous proof. Throughout

this proof, we use C to denote a generic bounded constant that may differ from place to place.

Assumption A.2: (i) The return series of the two portfolio returns, {R1t, R2t}, is a bivariate

fourth order stationary process with E(|R1t|4ν + E|R2t|4ν) ≤ C for some ν > 1; (ii) {R1t, R2t} is

an α-mixing process with α-mixing coefficient satisfying
∑∞

j=−∞ j2α(j)
ν

ν−1 < ∞.

Assumption A.3: The kernel function k : R→ [−1, 1] is symmetric about zero and is continuous

at all points expect a finite number of them on R, with k(0) = 1 and
∫∞
−∞ |k(z)|dz < ∞.

Assumption A.4: The bandwidth p = p(T ) →∞, p/T → 0 as the sample size T →∞.

Assumption A.5: (i) For some b > 1, |k(z)| ≤ C|z|−b as z →∞; (ii) |k(z1)−k(z2)| ≤ C|z1−z2|
for any z1, z2 in R.

Assumption A.6: p̂ is a data-dependent bandwidth such that p̂/p = 1 + OP (p1+b/T κ(1+b)) for

any 0 < κ < 1
2 and some nonstochastic bandwidth p satisfying p = p(T ) →∞, p/T κ → 0.

Assumption A.2 allows for the existence of volatility clustering, which is a well-known stylized

fact for most financial time series. The mixing condition is commonly used for a nonlinear time

series analysis, as is the case with our test because we only consider the cross-correlation in the tail

distributions of the returns {R1t, R2t}. This condition characterizes temporal dependence in return

series and rules out long memory processes. However, it is well-known that returns of portfolios

have weak serial correlations. Therefore, the mixing condition is quite reasonable in the present

context.

Assumptions A.3 and A.4 are standard conditions on the kernel function k(·) and bandwidth

p. These conditions are sufficient when we use nonstochastic bandwidths. Assumptions A.5 im-

poses some extra conditions on the kernel function, which is needed when we use data-dependent

bandwidth p̂. Many commonly used kernels, such as the Bartlett, Parzen, and quadratic-spectral

kernels are included. However, Assumption A.5 rules out the truncated and Daniell kernels. For

various kernels, see, e.g., Priestely (1981, p. 442) for a detailed discussion. Assumption A.6 imposes

a rate condition on the data-driven bandwidth p̂, which ensures that using p̂ rather than p has no

impact on the limit distribution of our test statistic. Commonly used data-driven bandwidths are
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Andrews’ (1991) parametric plug-in method or Newey and West’s (1994) nonparametric plug-in

method. Note that the condition on p in Assumption A.6 is more restrictive than Assumption A.4,

but it still allows for optimal bandwidths for most commonly used kernels. All of these ensure that

our test is completely model-free. Right prior to the proof, we re-state Theorem 1 in the following

technically clearer way.

Theorem 1: Suppose Assumptions A.1–A.4 hold. Then, under H0, we have (i)

Jρ = (ρ̂+ − ρ̂−)′Ω̂−1(ρ̂+ − ρ̂−) →d χ2
m (A1)

as T →∞; and (ii), if, in addition, Assumptions A.5 and A.6 hold, Ĵρ − Jρ →p 0, and

Ĵρ →d χ2
m. (A2)

Proof: (i) We first use the Cramer-Wold device to show
√

T (ρ̂+ − ρ̂−) →d N(0,Ω). Put ξ̂t =

Σm
j=1λj ξ̂t(cj) and ξt = Σm

j=1λjξt(cj), where ξ̂t(c) and ξt(c) are defined in (12) and Assumption

A.1 respectively, and λ = (λ1, ..., λm)′ is an m × 1 vector such that λ′λ = 1. We then have

λ′(ρ̂+ − ρ̂−) = Σm
j=1λj [ρ̂+(cj)− ρ̂−(cj)] = T−1ΣT

t=1ξ̂t. By tedious but straightforward algebra, this

reduces to λ′(ρ̂+ − ρ̂−) = T−1ΣT
t=1ξt +oP (T−1/2). In other words, the replacement of the sample

means, sample variances, and sample proportions with their population counterparts have no impact

on the asymptotic distribution of
√

Tλ′(ρ̂+ − ρ̂−).

Given Assumption A.2, {R1t, R2t} is an α-mixing process, as is ξt, which is an instantaneous

function of (R1t, R2t). Under H0 : ρ+(c) = ρ−(c) for all c, we have E(ξt) = 0 because E[ξt(cj)] = 0.

In addition, given Assumptions A.1 and A.2, we have

V = lim
T→∞

var

[
T−1/2

T∑

t=1

ξt

]
=

∞∑

j=−∞
cov(ξt, ξt−j)

=
m∑

i=1

m∑

j=1

λiλj

∞∑

l=−∞
cov[ξt(ci), ξt−l(cj)]

=
m∑

i=1

m∑

j=1

λiλjΩij

= λ′Ωλ. (A3)

Note that 0 < V < ∞ for all λ such that λ′λ = 1, because Ω is positive definite. Thus, using the

central limit theorem for mixing processes [e.g., White 1984, Theorem 5.19], we have

√
T (ρ̂+ − ρ̂−)/

√
V →d N(0, 1). (A4)

27



It follows from the Cramer-Wold device that
√

T (ρ̂+ − ρ̂−) →d N(0, Ω), and hence

T (ρ̂+ − ρ̂−)′Ω−1(ρ̂+ − ρ̂−) →d χ2
m. (A5)

Next, we show Ω̂ →p Ω. Write Ω̂ − Ω = [Ω̂ − EΩ̂] + [EΩ̂ − Ω]. By Andrews (1991, Lemma

1), Assumption A.2 implies that Assumption A of Andrews (1991) hold. It follows from Andrews

[1991, Proposition 1(a)] that var(Ω̂) = E[(Ω̂ − EΩ̂)(Ω̂ − EΩ̂)′] = O(p/T ). Therefore we have

Ω̂−Ω = OP (p1/2/T 1/2) by Chebyshev’s inequality. In addition, because Assumption A.2(ii) implies

Σ∞j=−∞Ω(j) ≤ C, and because of Assumption A.4 and dominated convergence, we have

EΩ̂− Ω = ΣT−1
j=1−T [(1− |j|/T )k(j/p)− 1]Ω(j) + Σ|j|>T Ω(j) → 0 (A6)

as T →∞. Consequently, Ω̂ →p Ω. By Slutsky’s theorem, we then obtain

J = T (ρ̂+ − ρ̂−)′Ω̂−1(ρ̂+ − ρ̂−) →d χ2
m. (A7)

(ii) Let Ω̂∗ and Ω̂ be the kernel estimators for Ω using the bandwidth p̂ and p respectively. It

suffices to show Ω̂∗ − Ω̂ →p 0 and then we can apply Slutsky theorem. By the definition of Ω̂, we

have for the (i, j)-th element,

Ω̂∗ij − Ω̂ij =
T−1∑

l=1−T

[k(l/p̂)− k(l/p)] γ̂l(ci, cj)

=
∑

|l|≤q

[k(l/p̂)− k(l/p)] γ̂l(ci, cj) +
∑

q<|l|<T

[k(l/p̂)− k(l/p)] γ̂l(ci, cj)

= Â1(i, j) + Â2(i, j), say, (A8)

where q = T κ for κ as in Assumption A.6.

We now consider the first term Â1. Using Assumption A.5(ii) and the triangle inequality, we

have

|Â1(i, j)| ≤
∑

|l|≤q

C|(l/p̂)− (l/p)| · |γ̂l(ci, cj)|

≤ C|p̂−1 − p−1|q
∑

|l|≤q

|γ̂l(ci, cj)− γl(ci, cj)|+ C|p̂−1 − p−1|q
∑

|l|≤q

|γl(ci, cj)|

= |p̂−1 − p−1|OP (q/T 1/2 + q)

= O(q|p̂−1 − p−1|), (A9)
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where we have made use of the facts that Σ∞l=−∞|γl(ci, cj)| ≤ C and sup0<l<T E[γ̂l(ci, cj) −
γl(ci, cj)]2 = O(T−1), which follows by Hanan [1970, equation (3.3), p. 209] and Assumption A.2

(recall that this assumption ensures that the fourth order cumulant condition holds).

For the second term Â2(i, j), using Assumption A.5(i), we have

|Â2(i, j)| ≤
∑

q<|l|<T

C(|l/p̂|−b + |l/p|−b)|γ̂l(ci, cj)|

≤ C(p̂b + pb)q1−bq−1
∑

q<|l|<T

(l/q)−b|γ̂l(ci, cj)− γl(ci, cj)|

+C(p̂b + pb)q−b
∑

q<|l|<T

|γl(ci, cj)|

= C(p̂b + pb)q−b[OP (q/T 1/2) + oP (1)], (A10)

where again we have used the facts that Σ∞l=−∞|γl(ci, cj)| ≤ C and sup0<l<T E[γ̂l(ci, cj)−γl(ci, cj)]2 =

O(T−1).

Combining (A1)–(A3), q = o(T 1/2) and p̂/p = 1 + OP (p1+b/q1+b) as implied by Assumption

A.6, we have Ω̂∗ − Ω̂ = oP (1). Q.E.D.

Proof of Theorem 2: The proof is similar to that of Theorem 1 and is hence omitted. Q.E.D.

Derivation for the Asymptotic Distribution of Ang and Chen Test:

Consider a matrix expression for their test,

H2 =
m∑

i=1

w(ci)(ρ(ci, φ)− ρ̂(ci))2 = (ρ̂− ρ)′W (ρ̂− ρ), (A11)

where W is a diagonal matrix formed by the weights, and ρ̂ and ρ are defined accordingly. Let

V be the asymptotic covariance matrix of ρ̂ as computed for our tests. Then, asymptotically,

Z = V −1/2(ρ̂ − ρ) ∼ N(0, I). Let λ be a diagonal matrix of the eigenvalues of the matrix U =

V 1/2WV 1/2 = CλC, where C is an orthogonal matrix. Then, asymptotically,

H2 = (ρ̂− ρ)′W (ρ̂− ρ) = Z ′UZ =
m∑

i=1

λiχ
2
i , (A12)

where χ2
1, . . . , χ

2
m are independent chi-squared random variables with degrees of freedom 1. Based on

the above, the asymptotic distribution of H2, and hence H, can be easily determined by simulating

chi-squared random variables of the right-hand side. Q.E.D.
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Appendix B: Bayesian Inference in the Mixture Copula Model

The data-generating process for each asset is the standard GARCH(1,1) process: ri,t = µi + εit

with εit normally distributed with time-varying variance σ2
it = ai+biσ

2
it−1+ciε

2
it−1. Let uit = Φ(xit)

with xit = (ri,t − µi)/σit. Then, the joint distribution of the u’s is given by an n-dimensional form

of equation (39) with

fnor(u1t, u2t, . . . , unt; Σ) =
1

|Σ| 12
exp

(
−1

2
ζT
t (Σ−1 − In)ζt

)
, (A13)

fclay(u1t, u2t, . . . , unt; τ) =

[
n∏

i=1

(1 + (i− 1)τ)

] (
n∑

i=1

u−τ
it − n + 1

)− 1
τ
−n (

n∏

i=1

uit

)−τ−1

, (A14)

where ζt = (Φ−1(u1t), . . . ,Φ−1(unt))′, Σ is the correlation coefficient matrix and In is the identity

matrix of order n.

In the Bayesian framework, τ is viewed as a random variable. We model it discretely by

assuming that it takes values from set Sτ = {0.1, 0.2, 0.3, 0.4, . . . , 9.9, 10}. The diffuse prior on τ

can be written as

p0(τ) =
1
|Sτ | , (A15)

where |Sτ | = 100, the number of elements in set Sτ . Then, we can use an almost diffuse prior for

the model parameters,

p0(κ, τ, Σ) ∝ p0(κ)p0(τ)p0(Σ), (A16)

where

p0(κ) ∼ Beta(1, 1), p0(Σ) ∼ W (νΣ, In) , (A17)

and νΣ = 14 is the prior degrees of freedom in the Wishart distribution.

To make Markov chain Monte Carlo (MCMC) posterior draws, we augment the data with

independent and identically distributed (iid) samples {wt}T
t=1 from Binormial (1, κ). Note that

both the prior and the likelihood function conditional on the augmented data can be factored

into two independent components on Σ and τ , it is hence feasible to draw a sample from the joint

posterior distribution of w and θ = {κ, τ,Σ}. Ignoring w, the θ should be a sample from its marginal

posterior. Starting with a κ from p0(κ) ∼ Beta(1, 1) and iid {wt}T
t=1 from Binormial (1, κ), the

following steps implement the idea:

1. Divide the data UT = {u1, u2, . . . , uT }, where ut = (u1t, u2t, . . . , unt), t = 1, 2, . . . , T , into two

groups, unor or uclay according to whether wt = 1 or 0;
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2. Let Tnor denote the number of observations in unor. Then,

Σ−1 | unor ∝ W

(
Tnor + νΣ,

(
In + TnorΣ̂nor

)−1
)

, (A18)

where Σ̂nor = 1
Tnor

∑T
t=1(x

t)′ × xt1(ut ∈ unor) and xt = (x1t, x2t, . . . , xnt);

3. Draw τ from the posterior,

p(τ |uclay) ∝ p0(τ)
∏

ut∈uclay

fclay(u1t, u2t, . . . , unt; τ); (A19)

4. Draw κ from Beta (Tnor + 1, Tclay + 1), where Tclay denote the number of observations in uclay

and Tclay = T − Tnor;

5. Draw wt from Binormial (1, κt) for t = 1, 2, . . . , T , where

κt =
κfnor(u1t, u2t, . . . , unt; Σ)

κfnor(u1t, u2t, . . . , unt; Σ) + (1− κ)fclay(u1t, u2t, . . . , unt; τ)
;

6. Repeat steps 1)− 5).

Let M be the number of total iterations in the above loop. Disregarding the first L ones for the

burning period, the remaining Q = M − L draws will be the posterior draws. Now, for each such

draw of the parameters, say, Σq, κq and τ q, we obtain uT+1 from the mixture copula. This way

provides us Q draws from the predicative distribution. The following steps implement the idea:

1. Draw unor = {unor
i }n

i=1 from the normal copula with correlation coefficient matrix Σq;

2. Draw uclay = {uclay
i }n

i=1 from the Clayton copula with parameter τ q;

3. Generate a draw from the mixture copula with mixture parameter κq as follows:

(a) Simulate a uniform random variant, d ∼ U(0, 1);

(b) Set umix
i = unor

i 1(d < κq)+uclay
i 1(d > κq), i = 1, . . . , n, then umix = (umix

1 , umix
2 , . . . , umix

n )

is one draw from the mixture copula with parameter, (Σq, κq, τ q), which is also a draw

from the predicative distribution of p(uT+1|UT ).

Based on above Q draws from the predicative distribution of p(uT+1|UT ), we can have a sample

of size Q from the predicative distribution of p(RT+1|R).
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Table 1: Correlation, beta and covariance symmetry tests: size portfolios

Panels A through C of the table reports, respectively, the results of the correlation, beta and covariance symmetry
tests between the market excess return and the excess return on one of the CRSP ten size portfolios. The data are
monthly from January, 1965 to December, 1999 (T = 420 observations). Two sets of exceedance levels are used to
compute the tests. The first is the singleton of C = {0} and the second is C = {0, 0.5, 1, 1.5}. The P-values of
the tests are in percentage points. Columns underneath c = 0, 0.5, etc, are the differences in sample conditional
correlations at the corresponding exceedance level c.

Portfolio C={0} C={0, 0.5, 1, 1.5} Skewness Kurtosis

P-value c = 0 P-value c1 = 0 c2 = 0.5 c3 = 1.0 c4 = 1.5

Panel A: Correlation

Size 1 0.34 -0.523 0.00 -0.523 -0.387 -0.298 -0.426 0.87 7.12
Size 2 0.79 -0.440 0.06 -0.440 -0.349 -0.327 -0.147 0.25 5.89
Size 3 0.95 -0.425 0.02 -0.425 -0.402 -0.223 -0.424 0.01 5.99
Size 4 1.72 -0.409 0.00 -0.409 -0.335 -0.182 -0.389 -0.03 6.60
Size 5 5.18 -0.337 7.17 -0.337 -0.372 -0.445 -0.420 -0.31 6.43
Size 6 8.98 -0.279 30.85 -0.279 -0.365 -0.373 -0.368 -0.35 6.18
Size 7 20.56 -0.209 62.53 -0.209 -0.285 -0.312 -0.258 -0.53 6.42
Size 8 38.20 -0.145 77.09 -0.145 -0.198 -0.333 -0.711 -0.58 6.13
Size 9 61.85 -0.083 92.88 -0.083 -0.158 -0.200 -0.491 -0.59 6.28
Size 10 96.63 -0.006 100.00 -0.006 -0.014 -0.018 -0.051 -0.37 5.22

Panel B: Beta

Size 1 13.09 -0.282 1.12 -0.282 0.032 0.446 0.749 0.87 7.12
Size 2 10.02 -0.287 3.65 -0.287 -0.093 0.124 0.919 0.25 5.89
Size 3 4.26 -0.344 0.20 -0.344 -0.264 0.240 0.188 0.01 5.99
Size 4 7.51 -0.315 0.05 -0.315 -0.176 0.332 0.419 -0.03 6.60
Size 5 10.05 -0.292 27.85 -0.292 -0.330 -0.380 0.180 -0.31 6.43
Size 6 12.97 -0.257 48.97 -0.257 -0.345 -0.282 0.061 -0.35 6.18
Size 7 16.12 -0.238 55.40 -0.238 -0.334 -0.288 0.216 -0.53 6.42
Size 8 29.42 -0.178 59.49 -0.178 -0.230 -0.349 -0.725 -0.58 6.13
Size 9 46.96 -0.123 87.40 -0.123 -0.191 -0.262 -0.517 -0.59 6.28
Size 10 66.84 0.063 95.38 0.063 0.065 0.076 0.147 -0.37 5.22

Panel C: Covariance

Size 1 6.87 -0.241 6.11 -0.241 -0.192 -0.140 -0.338 0.87 7.12
Size 2 4.24 -0.271 12.81 -0.271 -0.271 -0.320 -0.367 0.25 5.89
Size 3 3.67 -0.285 9.26 -0.285 -0.319 -0.312 -0.566 0.01 5.99
Size 4 4.98 -0.280 4.90 -0.280 -0.283 -0.254 -0.590 -0.03 6.60
Size 5 5.35 -0.281 25.75 -0.281 -0.334 -0.406 -0.696 -0.31 6.43
Size 6 6.19 -0.260 27.43 -0.260 -0.341 -0.369 -0.611 -0.35 6.18
Size 7 6.33 -0.266 25.05 -0.266 -0.324 -0.384 -0.606 -0.53 6.42
Size 8 8.47 -0.247 42.87 -0.247 -0.301 -0.454 -0.836 -0.58 6.13
Size 9 12.44 -0.220 50.06 -0.220 -0.295 -0.405 -0.754 -0.59 6.28
Size 10 23.17 -0.154 69.27 -0.154 -0.211 -0.253 -0.432 -0.37 5.22



Table 2: Correlation, beta and covariance symmetry tests: book-to-market portfolios

Panels A through C of the table reports, respectively, the results of the correlation, beta and covariance symmetry
tests between the market excess return and the excess return on one of the book-to-market (BE/ME) decile portfolios.
The data are monthly from January, 1965 to December, 1999 (T = 420 observations). Two sets of exceedance levels
are used to compute the tests. The first is the singleton of C = {0} and the second is C = {0, 0.5, 1, 1.5}. The
P-values of the tests are in percentage points. Columns underneath c = 0, 0.5, etc, are the differences in sample
conditional correlations at the corresponding exceedance level c.

Portfolio C={0} C={0, 0.5, 1, 1.5} Skewness Kurtosis

P-value c = 0 P-value c1 = 0 c2 = 0.5 c3 = 1.0 c4 = 1.5

Panel A: Correlation

BE/ME 1 78.16 -0.041 97.86 -0.041 -0.055 -0.111 -0.274 -0.15 4.48
BE/ME 2 78.27 -0.043 99.81 -0.043 -0.085 -0.140 -0.119 -0.42 5.04
BE/ME 3 69.96 -0.062 93.62 -0.062 -0.056 -0.063 -0.129 -0.57 5.72
BE/ME 4 54.25 -0.099 62.44 -0.099 -0.091 -0.193 -0.637 -0.40 5.24
BE/ME 5 47.43 -0.119 64.00 -0.119 -0.191 -0.135 -0.437 -0.45 6.27
BE/ME 6 63.49 -0.082 91.04 -0.082 -0.116 -0.214 -0.641 -0.44 5.96
BE/ME 7 58.94 -0.083 74.42 -0.083 -0.077 -0.080 -0.363 0.08 5.21
BE/ME 8 37.11 -0.149 42.11 -0.149 -0.162 -0.249 -0.647 -0.03 5.52
BE/ME 9 27.41 -0.175 27.79 -0.175 -0.189 -0.062 -0.239 -0.14 5.30
BE/ME 10 23.94 -0.205 9.89 -0.205 -0.165 -0.264 -0.168 0.09 6.93

Panel B: Beta

BE/ME 1 54.53 0.087 95.97 0.087 0.095 0.084 -0.012 -0.15 4.48
BE/ME 2 94.16 -0.011 84.98 -0.011 -0.080 -0.202 -0.017 -0.42 5.04
BE/ME 3 63.47 -0.076 99.01 -0.076 -0.125 -0.199 -0.278 -0.57 5.72
BE/ME 4 71.76 -0.059 89.57 -0.059 -0.068 -0.188 -0.599 -0.40 5.24
BE/ME 5 64.39 -0.080 89.67 -0.080 -0.133 -0.124 -0.367 -0.45 6.27
BE/ME 6 76.67 -0.052 96.63 -0.052 -0.070 -0.166 -0.527 -0.44 5.96
BE/ME 7 55.51 0.094 95.90 0.094 0.203 0.372 0.348 0.08 5.21
BE/ME 8 89.93 -0.021 43.17 -0.021 0.097 0.121 -0.228 -0.03 5.52
BE/ME 9 67.50 -0.067 34.98 -0.067 -0.032 0.432 0.672 -0.14 5.30
BE/ME 10 76.97 -0.054 60.74 -0.054 0.048 0.067 1.098 0.09 6.93

Panel C: Covariance

BE/ME 1 26.15 -0.130 83.54 -0.130 -0.177 -0.215 -0.338 -0.15 4.48
BE/ME 2 18.04 -0.172 67.27 -0.172 -0.253 -0.348 -0.442 -0.42 5.04
BE/ME 3 13.99 -0.204 59.47 -0.204 -0.280 -0.381 -0.648 -0.57 5.72
BE/ME 4 17.21 -0.184 69.68 -0.184 -0.227 -0.389 -0.725 -0.40 5.24
BE/ME 5 17.75 -0.198 42.00 -0.198 -0.269 -0.330 -0.732 -0.45 6.27
BE/ME 6 21.59 -0.179 76.91 -0.179 -0.234 -0.391 -0.836 -0.44 5.96
BE/ME 7 35.74 -0.112 66.02 -0.112 -0.118 -0.084 -0.221 0.08 5.21
BE/ME 8 21.12 -0.161 49.23 -0.161 -0.173 -0.220 -0.492 -0.03 5.52
BE/ME 9 16.28 -0.180 47.89 -0.180 -0.197 -0.207 -0.404 -0.14 5.30
BE/ME 10 19.36 -0.181 19.20 -0.181 -0.153 -0.185 -0.428 0.09 6.93



Table 3: Correlation, beta and covariance symmetry tests: momentum portfolios

Panels A through C of the table reports, respectively, the results of the correlation, beta and covariance symmetry
tests between the market excess return and the excess return on one of the momentum decile portfolios. The data
are monthly from January, 1965 to December, 1999 (T = 420 observations). Two sets of exceedance levels are used
to compute the tests. The first is the singleton of C = {0} and the second is C = {0, 0.5, 1, 1.5}. The P-values
of the tests are in percentage points. Columns underneath c = 0, 0.5, etc, are the differences in sample conditional
correlations at the corresponding exceedance level c.

Portfolio C={0} C={0, 0.5, 1, 1.5} Skewness Kurtosis

P-value c = 0 P-value c1 = 0 c2 = 0.5 c3 = 1.0 c4 = 1.5

Panel A: Correlation

L 23.73 -0.169 58.75 -0.169 -0.222 -0.312 -0.567 0.21 5.52
2 29.44 -0.150 60.97 -0.150 -0.186 -0.240 -0.467 -0.00 5.91
3 31.83 -0.153 82.97 -0.153 -0.236 -0.269 -0.540 -0.15 6.19
4 34.81 -0.152 86.48 -0.152 -0.242 -0.266 -0.539 -0.29 6.47
5 36.20 -0.150 86.21 -0.150 -0.246 -0.286 -0.557 -0.45 6.91
6 37.83 -0.149 82.87 -0.149 -0.239 -0.302 -0.631 -0.66 6.89
7 37.64 -0.148 80.58 -0.148 -0.237 -0.306 -0.638 -0.81 6.89
8 35.25 -0.154 67.02 -0.154 -0.214 -0.320 -0.692 -0.90 6.98
9 21.01 -0.196 30.85 -0.196 -0.219 -0.280 -0.681 -0.89 6.31
W 8.35 -0.258 14.85 -0.258 -0.273 -0.282 -1.084 -0.73 5.21

Panel B: Beta

L 77.21 0.044 98.98 0.044 0.043 0.027 -0.237 0.21 5.52
2 99.71 -0.001 98.61 -0.001 0.021 0.042 -0.150 -0.00 5.91
3 79.03 -0.044 99.21 -0.044 -0.084 -0.071 -0.256 -0.15 6.19
4 59.66 -0.092 95.55 -0.092 -0.132 -0.141 -0.329 -0.29 6.47
5 40.16 -0.148 79.09 -0.148 -0.210 -0.204 -0.446 -0.45 6.91
6 23.17 -0.215 45.13 -0.215 -0.291 -0.350 -0.671 -0.66 6.89
7 13.47 -0.267 26.87 -0.267 -0.363 -0.453 -0.756 -0.81 6.89
8 7.68 -0.312 8.99 -0.312 -0.406 -0.519 -0.861 -0.90 6.98
9 3.03 -0.356 1.12 -0.356 -0.410 -0.491 -0.841 -0.89 6.31
W 1.99 -0.357 3.15 -0.357 -0.418 -0.427 -1.080 -0.73 5.21

Panel C: Covariance

L 26.50 -0.129 79.84 -0.129 -0.160 -0.224 -0.474 0.21 5.52
2 17.58 -0.164 60.54 -0.164 -0.191 -0.229 -0.440 -0.00 5.91
3 14.65 -0.189 61.94 -0.189 -0.242 -0.275 -0.522 -0.15 6.19
4 14.49 -0.204 61.09 -0.204 -0.279 -0.312 -0.593 -0.29 6.47
5 11.81 -0.227 53.76 -0.227 -0.306 -0.382 -0.667 -0.45 6.91
6 8.64 -0.257 44.67 -0.257 -0.343 -0.452 -0.742 -0.66 6.89
7 6.60 -0.278 37.94 -0.278 -0.381 -0.517 -0.799 -0.81 6.89
8 5.05 -0.297 31.18 -0.297 -0.385 -0.535 -0.827 -0.90 6.98
9 3.10 -0.308 16.80 -0.308 -0.371 -0.521 -0.794 -0.89 6.31
W 2.33 -0.296 14.04 -0.296 -0.342 -0.459 -0.857 -0.73 5.21



Figure 1: Contour plots of the data
The figure reports four contour graphs. The first, on the top-left side, is the ‘empirical’ contour graph of
the observed standardized excess returns on the market and the smallest size portfolio, and those on the
top-right, bottom-left and bottom-right are the theoretical contour graphs based on a fitted normal, Clayton
and mixture copula models, respectively.



Table 4: Goodness of fit

Dividing the range of returns into six cells, the table reports the frequencies of the real data (excess returns on the

market and size 1 portfolios) and those frequencies implied by the three fitted models: the normal distribution,

the Clayton copula and the mixture Clayton copula. The P-values underneath the frequencies are from the Pearson

chi-squared test of the null of no differences between the given model implied frequencies and the observed ones.

Panel A: Observed frequencies Panel B: Normal Copula

2 1 9 18 19 21 0.82 2.92 5.91 10.25 17.14 32.98

6 7 9 14 17 17 2.92 7.21 10.97 14.43 17.33 17.14

4 14 17 8 11 16 5.91 10.97 13.61 14.83 14.43 10.25

4 9 16 14 16 11 10.25 14.43 14.83 13.61 10.97 5.91

14 22 15 11 5 3 17.14 17.33 14.43 10.97 7.21 2.92

40 17 4 5 2 2 32.98 17.14 10.25 5.91 2.92 0.82

P-value=4.13 (%)

Panel C: Clayton Copula Panel D: Mixture Copula

1.28 4.81 9.02 14.26 18.17 22.46 1.06 4.09 7.16 11.06 17.80 28.83

1.77 6.74 11.57 14.70 16.95 18.27 1.69 5.75 10.41 15.67 19.07 17.41

3.46 9.82 13.40 14.47 14.90 13.95 2.73 9.34 14.18 16.66 15.59 11.50

6.47 14.32 15.16 13.62 11.27 9.16 6.18 15.29 16.79 14.38 10.20 7.16

14.34 20.19 14.31 9.52 6.72 4.91 15.00 20.90 15.27 9.21 5.73 3.90

42.68 14.13 6.53 3.44 1.99 1.24 43.34 14.64 6.19 3.02 1.61 1.20

P-value=96.16 (%) P-value=30.25 (%)



Table 5: Model estimation and comparison

The table reports both the maximum likelihood (ML) and Bayesian estimates of the parameters in three fitted
models for the excess returns on the market and size 1 portfolios: the normal distribution, the Clayton copula and
the mixture Clayton copula. The first two models are nested in the third whose density is

fmix(u, v; ρ, τ, κ) = κfnor(u, v; ρ) + (1− κ)fclay(u, v; τ).

The table also reports the log of likelihood values at the ML estimates and the P-values of the likelihood ratio test
(LRT) of the first two models against the last one, respectively.

Panel A: Classical framework

Normal Clayton Mixture

est. std est. std est. std

ρ 0.609 0.037 0.855 0.022
τ 1.344 0.175 1.266 0.171
κ 0.275 0.089

likelihood 95.538 111.666 183.947
(log)

LRT 0.000 0.000

Panel B: Bayesian framework

Normal Clayton Mixture

est. std est. std est. std

ρ 0.606 0.031 0.921 0.097
τ 1.349 0.118 1.351 0.203
κ 0.243 0.113



Table 6: Size and power

The table reports the size and power of Ang and Chen’s test, the correlation, beta and covariance symmetry tests,

denoted by AC, Corr, Beta and Cov, respectively. The nominal size of the tests is set at 5% based on their asymptotic

distributions. The results are based on 10,000 simulations drawn from the mixture copula model

fmix(u, v; ρ, τ, κ) = κfnor(u, v; ρ) + (1− κ)fclay(u, v; τ),

where model parameters except κ are calibrated using excess returns on the market and size 5 portfolios. Under

the null of no asymmetry, κ = 100% and the data-generating process is the normal distribution. κ = 75% and 25%

represent two different degrees of asymmetries.

C κ = 100% κ = 75% κ = 50%

AC Corr Beta Cov AC Corr Beta Cov AC Corr Beta Cov

T=240

{0} 2.80 2.46 6.41 4.93 16.00 22.03 26.70 9.37 49.30 68.03 66.24 27.73

{0, 0.5} 2.80 2.69 6.17 3.29 11.30 18.55 23.62 5.96 31.30 60.71 60.33 18.74

{0, 0.5, 1} 4.10 2.07 4.70 2.08 9.80 14.75 19.39 3.79 24.50 53.78 54.53 12.95

{0, 0.5, 1, 1.5} 7.30 1.47 3.41 1.54 12.80 11.23 15.48 2.33 21.40 46.39 48.19 9.24

T=420

{0} 2.50 2.02 5.09 4.59 30.60 37.12 39.27 15.12 86.00 89.94 86.76 48.61

{0, 0.5} 3.40 2.03 5.25 3.31 24.50 31.12 34.75 9.96 74.60 85.96 83.21 37.36

{0, 0.5, 1} 3.40 1.40 4.18 2.15 20.40 26.36 30.60 6.99 60.10 82.28 79.61 30.02

{0, 0.5, 1, 1.5} 4.20 1.00 2.74 1.46 20.30 20.47 24.92 4.64 53.10 76.70 74.84 23.52

T=600

{0} 3.20 1.88 4.69 4.21 43.90 47.69 48.74 19.36 95.90 97.22 95.05 63.21

{0, 0.5} 3.70 1.85 5.00 2.94 32.00 40.89 44.02 12.77 90.30 95.54 92.99 51.53

{0, 0.5, 1} 3.50 1.36 3.85 1.99 23.20 35.61 39.67 9.63 73.20 94.03 91.56 45.23

{0, 0.5, 1, 1.5} 4.20 0.88 2.69 1.27 20.80 28.97 33.34 6.76 62.80 91.44 88.71 36.69

T=840

{0} 2.50 1.33 4.92 4.29 54.50 61.90 59.73 25.37 99.20 99.50 98.74 77.52

{0, 0.5} 2.50 1.46 4.98 2.74 41.00 54.77 55.08 17.58 96.50 99.14 98.04 67.27

{0, 0.5, 1} 2.70 0.83 3.76 2.02 28.20 49.14 50.99 13.79 85.50 98.71 97.39 61.80

{0, 0.5, 1, 1.5} 3.60 0.57 2.83 1.31 22.20 42.14 44.40 9.94 74.70 97.86 96.20 53.90



Table 7: Implied asymmetry measures of the calibrated model

The table reports the estimated values of the implied parameters, ρ+, ρ−, and ρ+ − ρ−, β+, β−, and β+ − β− and

σ+
12, σ−12, and σ+

12 − σ−12 at different exceedance levels for T = 240 and 840, respectively, which are based on 10,000

data sets drawn from the calibrated mixture copula model of Table 6.

C κ = 75% κ = 50% κ = 25%

Correlation ρ+ ρ− ρ+ − ρ− ρ+ ρ− ρ+ − ρ− ρ+ ρ− ρ+ − ρ−

T=240

{0} 0.542 0.678 -0.136 0.455 0.729 -0.274 0.369 0.780 -0.411

{0.5} 0.460 0.617 -0.157 0.366 0.684 -0.318 0.268 0.748 -0.480

{1} 0.388 0.541 -0.153 0.309 0.619 -0.311 0.219 0.690 -0.471

{1.5} 0.296 0.436 -0.140 0.234 0.521 -0.286 0.153 0.588 -0.435

T=840

{0} 0.536 0.681 -0.145 0.441 0.732 -0.291 0.347 0.783 -0.437

{0.5} 0.455 0.621 -0.167 0.348 0.688 -0.340 0.234 0.753 -0.518

{1} 0.398 0.550 -0.153 0.305 0.628 -0.323 0.193 0.699 -0.507

{1.5} 0.344 0.466 -0.122 0.279 0.546 -0.266 0.190 0.614 -0.424

Beta β+ β− β+ − β− β+ β− β+ − β− β+ β− β+ − β−

T=240

{0} 0.549 0.687 -0.138 0.462 0.738 -0.277 0.375 0.790 -0.415

{0.5} 0.474 0.633 -0.159 0.378 0.702 -0.324 0.277 0.768 -0.491

{1} 0.415 0.572 -0.157 0.331 0.654 -0.323 0.237 0.728 -0.491

{1.5} 0.348 0.495 -0.147 0.274 0.583 -0.309 0.188 0.654 -0.466

T=840

{0} 0.541 0.688 -0.146 0.446 0.740 -0.294 0.350 0.792 -0.441

{0.5} 0.465 0.635 -0.170 0.356 0.704 -0.348 0.240 0.770 -0.530

{1} 0.417 0.575 -0.158 0.321 0.657 -0.336 0.203 0.731 -0.527

{1.5} 0.379 0.507 -0.129 0.309 0.594 -0.285 0.214 0.667 -0.454

Covariance σ+
12 σ−12 σ+

12 − σ−12 σ+
12 σ−12 σ+

12 − σ−12 σ+
12 σ−12 σ+

12 − σ−12

T=240

{0} 0.208 0.257 -0.049 0.175 0.273 -0.098 0.142 0.289 -0.147

{0.5} 0.142 0.186 -0.044 0.113 0.202 -0.089 0.082 0.216 -0.134

{1} 0.102 0.136 -0.034 0.080 0.150 -0.069 0.056 0.160 -0.105

{1.5} 0.075 0.099 -0.024 0.059 0.111 -0.051 0.040 0.117 -0.077

T=840

{0} 0.205 0.259 -0.054 0.168 0.277 -0.109 0.132 0.294 -0.162

{0.5} 0.140 0.189 -0.049 0.106 0.206 -0.099 0.071 0.222 -0.151

{1} 0.103 0.139 -0.036 0.078 0.154 -0.076 0.049 0.167 -0.118

{1.5} 0.081 0.104 -0.023 0.065 0.117 -0.051 0.045 0.126 -0.081



Table 8: Utility gains

The table reports the utility gains (measured as certainty equivalent returns in percentage points and annualized) of

switching from a belief in symmetric stock returns into a belief in asymmetric ones, where the beliefs are modeled

by using the normal and mixture copula distributions, respectively, for making investment decisions. The investment

opportunity set consists of the ten CRSP size portfolios, the market portfolio and a risk-free asset. The investor is

assumed to have a disappointment aversion preference of Ang, Bekaert and Liu (2005) with power felicity function.

A is the coefficient of disappointment aversion and γ is the curvature parameter.

A γ

2 4 6 8

0.55 1.49 2.05 2.59 3.13

0.45 3.28 3.82 5.03 5.63

0.35 5.49 6.11 6.66 7.21

0.25 8.44 9.16 9.87 10.67


