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We study a new class of semiparametric instrumental variables models with the
structural function represented by a partially varying coefficient functional form. Under
this representation, the models are linear in the endogenous/exogenous components
with unknown constant or functional coefficients. As a result, the ill-posed inverse
problem in a general nonparametric model with continuous endogenous variables does
not exist under this setting. Efficient procedures are proposed to estimate both the
constant and functional coefficients. Precisely, a three-step estimation procedure is
proposed to estimate the constant parameters and the functional coefficients, we use
the partial residuals and implement a nonparametric two-step estimation procedure.
We establish the asymptotic properties for both estimators, including consistency and
asymptotic normality. More importantly, it is also demonstrated that the constant
parameters estimators are efficient, e.g.,

√
n-consistent, and the functional coefficient

estimators are oracle. A consistent estimation of the asymptotic covariance for both
estimators is also provided. Finally, the high practical power of the resulting estimators
is illustrated via both a Monte Carlo simulation study and an application to returns
to education.
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1 Introduction

Originated from supply and demand, measurement-in-error, and other problems in eco-

nomics, structural models provide a useful framework for investigating causal relationships

between two or more variables. A standard method to correctly account for the endo-

geneity represented in these problems is instrumental variables (IV) models. It is well

known, however, that parametric IV models may be misspecified, and estimators obtained

from misspecified models are often inconsistent. To deal with this issue, some nonparamet-

ric/semiparametric IV models has been proposed. For example, nonparametric IV models

was first introduced by Newey and Powell (2003) to relax the strict limits imposed under

parametric structural equations. Since then, nonparametric IV models have motivated many

theoretical and methodological researches, and been found in many empirical applications1.

Similar to standard nonparametric regression models, nonparametric IV models can permit

more flexibility in the structure to exploit possible hidden patterns in the data. But when the

number of covariates is large, they encounter the same “curse of dimensionality” problem.

To circumvent these difficulties, partial linear models proposed by Robinson (1988) and

Andrews (1994) are brought into the IV settings. However, modifications have to be made

to address the endogeneity in IV models. Previous work on semiparametric IV models in-

clude Pakes and Olley (1995), Park (2003), and Ai and Chen (2003), among others. For

example, Pakes and Olley (1995) considered a semiparametric IV model with endogenous

variables exhibited only in the parametric part. They proposed a generalized method of

moment (GMM) type of method to estimate both the constant parameters and unknown

functions and provided the consistency and asymptotic normality for both estimators. Fur-

ther, Park (2003) extended the work to incorporate endogenous variables in both parametric

and nonparametric parts, given that there exist two sets of instrumental variables satisfy-

ing an orthogonality condition, and then he obtained the similar asymptotic properties as

in the previous model. Finally, Ai and Chen (2003) studied a more general semiparametric

model with conditional moment restriction involving endogeneity and they mainly considered

the efficient estimation and the
√
n asymptotic normality result for the finite dimensional

parameters but did not provide asymptotic distribution for the nonparametric components

1The recent developments include, for example, Newey, Powell and Vella (1999), Darolles, Florens, and
Renault (2000), Ai and Chen (2003), Blundell and Powell (2003), Newey and Powell (2003), Carroll, Ruppert,
Tosteson, Crainiceanu and Karagas (2004), Xiong (2004), Das (2005), Hall and Horowitz (2005), and Cai,
Das, Xiong and Wu (2006).
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because the exact leading bias term in series estimation is unknown. While we use the kernel

method and derive the asymptotic normal distribution of our semiparametric estimator.

Having both “curse of dimensionality” and “ill-posed inverse” problems in mind and

motivated by a real problem that investigates the empirical relationship between wages and

education, we study a new class of the partially varying coefficient IV models, which are

linear in the endogenous/exogenous components with either unknown functional coefficients

of the predetermined variables or constant coefficients. On one hand, the partial linear

structure reduces the dimension of the unknown functionals without losing the flexibility

of the nonparametric functional form. On the other hand, it linearizes the nonparametric

function in the endogenous components, so that the functional coefficients only depend on

exogenous variables and the “ill-posed inverse” problem does not exhibit.

This paper has several contributions, described as follows. A fairly easy and yet efficient

estimation procedure is proposed to estimate both the constant parameters and the coefficient

functionals. The consistency and asymptotic normality for both constant and nonparametric

parameter estimators are established. More importantly, it is shown that the estimator

of constant parameters achieves the optimal parametric convergence rate at
√
n and the

estimator of functional coefficient is “oracle” in the sense that it has the same asymptotic

property as if the constant parameters were known. Therefore, a partially varying coefficient

IV model provides a handy tool for practitioners and applied researchers to handle real life

data with endogeneity.

Our motivation on this research is from the following real problem. The interest is to

investigate the empirical relationship between wages and education, using a random sample of

young Australian female workers from the 1985 wave of the Australian Longitudinal Survey.

It is well documented in the labor economics literature that the endogeneity of education in

a wage model is due to unobservable heterogeneity in schooling choices; see, e.g., the review

paper by Card (2001). In the same paper, he also suggested that if a wage model assumes the

additive separability of education and experience, the returns to education is understated at

higher levels of education because the marginal return to education is plausibly increasing in

work experience. Observing our data, we also think a wage might be related other discrete

variables like marital status, government employed, union status, and Australian-born that

are more suitable for a parametric form. All these features suggest that a partially varying
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coefficient IV model would be a right target for this data set. The detailed analysis of this

empirical example is reported in Section 5.

The rest of this paper is organized as follows. Section 2 presents the partially varying co-

efficient model and discusses its identification. Section 3 describes the three stage local linear

regression estimators including an efficient estimate of constant parameters and functional

coefficients in the model. The consistency and asymptotic normality of both estimators

are given in Section 4, together with the consistent estimators of the asymptotic covariance

matrices. Section 5 includes a simulation example and an application with real data to in-

vestigate the finite sample performance of our proposed estimation procedures. The proofs

of our results are given in Section 6 with technical details relegated to the Appendix.

2 The Model

A partially varying coefficient IV model assumes the following form:

Y = g(X, Z1) + ε = g1(Z11)
TZ12 + g2(Z11)

TX1 + βT
1Z13 + βT

2X2 + ε, (1)

where Y is an observable scalar random variable, X = (XT
1 ,X

T
2 )

T is a vector of endogenous

variables including l-dimension vector X1 and p-dimension vector X2, Z1 = (ZT11,Z
T
12,Z

T
13)

T

is a vector of exogenous variables, consisting of k-dimension vector Z11, d-dimension vector

Z12 with its first element being one, and m-dimension vector Z13, Z = (ZT1 ,Z
T
2 )

T is a d1-

dimension vector with Z2 being a vector of q-dimension instrumental variables and d1 =

k + d+m+ q, and E(ε |Z) = 0. The structural function g(·, ·) includes varying coefficients

g1(·) = (g1(·), . . . , gd(·))T and g2(·) = (gd+1(·), . . . , gd+l(·))T , and constant coefficients β1 =

(β1, . . . , βm)
T and β2 = (βm+1, . . . , βm+p)

T . Like the model studied by Park (2003), the

endogenous variables are allowed in both parametric and nonparametric parts. Note that if

there is not any endogenous variable at all, model (1) becomes the partially varying coefficient

regression model studied by Zhang, Lee and Song (2002) and Ahmad, Leelahanon and Li

(2005) and it reduces to the model in Cai, Das, Xiong and Wu (hereafter, CDXW, 2006) if

there is not a parametric part. Further, if X is a discrete endogenous variable, then model

(1) covers the model studied by Das (2005) as a special case. Therefore, model (1) is a very

general model.

Taking expectation on both sides of the structural equation (1), conditioning on Z , we
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obtain the following reduced form for Y :

E(Y |Z) = g1(Z11)
TZ12 + g2(Z11)

Tπ1(Z) + βT
1Z13 + βT

2π2(Z) (2)

with πj = πj(Z) = E(Xj|Z), π1(Z) = E(X1|Z) = (π1(Z), . . . , πl(Z))T , and π2(Z) =

E(X2|Z) = (πl+1(Z), . . . , πl+p(Z))T . To simplify notation, define

Π1(Z) =
(
Z12

π1(Z)

)
, Π2(Z) =

(
Z13

π2(Z)

)
, Θg(z11) =

(
g1(z11)
g2(z11)

)
, Θp =

(
β1

β2

)
,

and Θ(z11) =
(
Θg(z11)
Θp

)
, where Θg(z11) is a (d + l)-dimension vector of functional coeffi-

cients and Θp is a (m+ p)-dimension vector of constant coefficients, then, (2) becomes

E(Y |Z) = ΠT
1 Θg(z11) +Π

T
2 Θp = Π

T
∗ Θ(Z11) (3)

with Π∗ =
(
Π1

Π2

)
.

Now we turn to the issue of identification. By the uniqueness of conditional expecta-

tions, {πj(Z)} in (2) are identified up to an additive constant. Thus, they are treated as

identified components in the following discussion. It is easy to see from (3) that Θ(Z11) =

Ω0(z11)
−1 E[Π∗ Y |Z11 = z11], where Ω0(z11) = E

{
Π∗ Π

T
∗ |Z11 = z11

}
. This implies that

parametersΘp are identified and coefficient functionsΘg (z11) are identified up to an additive

constant if Ω0(z11) is positive definite for any z11.

From equation (3), Θ can be estimated by a local linear regression of Y on Z if Π∗ would

be known. However, {πj(Z), j = 1, 2 } are unknown functions in practice. Therefore, this

leads to estimating πj first by a regression of Xj on Z . The next step is to estimate Θ by

a regression of Y on Z and the estimated values π̂j obtained from the first step. Note that

while Θp is a global parameter, the estimation of Θp only involves the local data points in

a neighborhood of Z11. An efficient estimation of the constant coefficients requires using all

data points. An easy way here is to use the average method to obtain an efficient estimator

for Θp which is shown to be
√
n-consistent although other alternative approaches might be

applicable.

To estimate the functional coefficients Θg(·), let β̂1,n and β̂2,n denote any
√
n-consistent

estimates of parameters β1 and β2 in (2). Define the estimated part residual as Ŷ ∗ =

Y − β̂T

1,n Z13 − β̂
T

2,nX2. Then, model (1) is approximated by

Ŷ ∗ ≈ g1(Z11)
TZ12 + g2(Z11)

TX1 + ε,
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which becomes a nonparametric functional coefficient IV model studied by CDXW (2006).

Now, the nonparametric estimate of the nonparametric part Θg(·) can be obtained by ap-

plying the two-step nonparametric method proposed in CDXW (2006). It is shown that

this nonparametric estimator is “oracle” in the sense that the asymptotic properties of this

nonparametric estimator are not affected by knowing β1 and β2 or not. All details about

estimation procedures and their properties are presented in Section 3.

3 Estimation Procedures

With the observed data {(Yi,Xi,Z i)}, we propose the following procedures to obtain an effi-

cient estimator forΘp and to estimate the functional coefficientsΘg(·) nonparametrically. In

what follows, we apply a local linear fitting to estimate functionals although other smoothing

methods such as the Nadaraya-Watson kernel method and spline methods are applicable. A

local linear fitting is favored due to its attractive properties, such as high statistical efficiency

in an asymptotic minimax sense, design adaptation, and automatic boundary effect correc-

tions. The detailed description of this approach can be found in the book by Fan and Gijbels

(1996) and its basic idea is illustrated next. Note that although a general local polynomial

technique is applicable here, the local linear fitting might be enough for many applications

according to Fan and Gijbels (1996) and the theory developed for the local linear estima-

tor holds for the local polynomial estimator with some minor modifications. Therefore, for

simplicity, the main focus here is only on the local linear estimation. To apply the local

linear estimation procedure, it assumes commonly that all coefficient functions g1(·) and

g2(·), and the regression functions π1(·) and π2(·) have a continuous second derivative. This

assumption is made throughout the paper.

3.1 Efficient Estimation of Constant Coefficients

The first stage is to obtain the fitted value π̂j, j = 1, 2 by a nonparametric regression of X

on Z . To this end, a combination of the local linear fitting and jack-knife technique is used.

The local linear estimate of πj(Z i) is denoted by π̂j,−i(Z i) which is âj, the minimizer of the

following locally weighted least squares

∑

k 6=i

{Xkj − aj − bTj (Zk −Z i)}2 Kh1
(Zk −Z i), 1 ≤ j ≤ l + p,
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where Kh1
(·) = K (·/h1) /h

d1

1 , K(·) is a kernel function on <d1 , and h1 = h1n > 0 is the

bandwidth at the first step, satisfying h1 → 0 and nhd1

1 →∞ as n →∞. One advantage of

using jack-knife technique is that the fitted value π̂j,−i(Z i) is independent of Xi. This can

simplify the theoretical proofs although the asymptotic results are valid without using it.

At the second stage, we derive the estimation for constant coefficients β1 and β2. Since

they are constant parameters, for simplicity, we apply the local constant (Nadaraya-Watson)

estimation at this stage. By the continuity of {gj(Z11)}, for Z11 in a neighborhood of

z11, gj(Z11) is approximated by gj(z11); that is, gj(Z11) ≈ gj(z11). Define, for any 1 ≤
i ≤ n, Πi1 = Π1(Z i), Πi2 = Π2(Z i), Π∗,i =

(
Πi1

Πi2

)
, Π̄ = (Π∗,1, . . . ,Π∗,n)

T , and Y =

(Y1, . . . , Yn)
T , then, E(Y|Z1, · · · ,Zn) ≈ Π̄Θ(z11). Since πj(Z i) in Π̄ is unobservable, we

replace it by its fitted value π̂j,−i(Z i) obtained from the previous step. A local constant

estimator of Θ̂ at each sample point Z i can be obtained by minimizing the following locally

weighted least squares

n∑

s6=i

[
Ys − Π̂1,−sΘg(Zi11)− Π̂2,−sΘp(Zi11)

]2
Lh2

(Zs11 − Zi11), (4)

where Π̂1,−s is similar to Πs1 with πj(Zs) replaced by π̂j,−s(Zs), Lh2
(·) = L (·/h2) /h

k
2, L(·)

is a kernel function on <k, and h2 = h2n > 0 is the bandwidth at the second step, satisfying

h2 → 0 and nhk2 →∞ as n →∞.

Let ̂̄Π be Π̄ with πj(Z i) replaced by π̂j,−i(Z i), and define W(z11) = diag{Lh2
(Z111 −

z11), · · · , Lh2
(Zn11 − z11)} and Wi =W(Zi11). It is not hard to verify that the minimizers

of (4) are given by

Θ̂ (Zi11) =
(
̂̄
Π

T
Wi

̂̄
Π

)−1 ̂̄
Π

T
WiY. (5)

Hence the estimator of the constant coefficient at the sample point Zi11 is given by

Θ̂p (Zi11) = e
T Θ̂ (Zi11)

where e = (0 I(m+p) )
T is a (d+ l +m+ p)× (m+ p) matrix. Now the problem arises for

Θ̂p (Zi11) is that this approach only uses data points in a local neighborhood of Zi11 so that

it might not be efficient since the constant coefficients Θp are indeed global parameters. To

overcome this problem, finally, the third step is to use the average method to estimate Θp

as follows

Θ̂p =
1

n

n∑

i=1

Θ̂p (Zi11) =
1

n

n∑

i=1

eT
(
̂̄
Π

T
Wi

̂̄
Π

)−1 ̂̄
Π

T
WiY (6)
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although other alternative methods might be applicable. Note that the programming in-

volved in the above three stage estimation is relatively simple and can be modified with few

efforts from the existing programs for a linear IV model with a weight.

3.2 Nonparametric Estimation of Functional Coefficients

Next, we present an estimator of the functional coefficients at any point z11 if any
√
n

consistent estimator Θ̂p is given. It follows from (2) that

E(Y − βT
1Z13 − βT

2X2|Z) = g1(Z11)
TZ12 + g2(Z11)

Tπ1(Z). (7)

Then, the right hand side of equation (7) has the functional coefficient form as in CDXW

(2006) so that the estimation method proposed by CDXW (2006) can be applied to (7) with

some minor changes. Since {gj(·)} have a continuous second derivative at any point z11,

for Z11 in a neighborhood of z11, an application of the Taylor expansion gives gj(Z11) ≈
gj(z11) + (Z11 − z11)

Tg′j(z11), where g
′
j(·) is the first partial derivative of gj(·). Let ⊗ be the

Kronecker product and define

Π =



ΠT

11 ΠT
11 ⊗ (Z111 − z11)

T

...
...

ΠT
n1 ΠT

n1 ⊗ (Zn11 − z11)
T


 .

Then, (7) can be approximated by E(Ỹ|Z1, · · · ,Zn) ≈ ΠΘ̃, where the partial residuals

Ỹ = ( Ỹ1, · · · , Ỹn )T , Ỹi = Yi − βT
1 Zi13 − βT

2 Xi2, and Θ̃ = Θ̃ (z11) =
(
Θg(z11)
Θ′g(z11)

)
with Θ′g(·)

being the first partial derivative of Θg(·). Since β1, β2, and π1 are unknown, they are

replaced by their fitted values obtained from previous steps. The local linear estimation of

Θ̃ is the minimizer of the following locally weighted least squares

n∑

i=1


 ̂̃Y i −

d∑

j=1

{
gj(z11) + (Zi11 − z11)

Tg′j(z11)
}
Zj, i12

−
d+l∑

j=d+1

{
gj(z11) + (Zi11 − z11)

Tg′j(z11)
}
π̂j,−i(Z i)




2

Mh3
(Zi11 − z11), (8)

where
̂̃
Y i = Yi − β̂

T

1 Zi13 − β̂
T

2 Xi2 is the estimated partial residual, Mh3
(·) = M (·/h3) /h3,

M(·) is a kernel function on <k, and h3 = h3n > 0 is the bandwidth satisfying h3 → 0 and

nhk3 →∞ as n→∞.
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Let Π̂ be defined as same as Π with πj(Z i) replaced by π̂j,−i(Z i), then it is not hard to

show that the minimizers of (8) are given by

̂̃
Θ =

(
Π̂

T
W̃ Π̂

)−1

Π̂
T
W̃

̂̃
Y,

where W̃ = diag{Mh3
(Z111 − z11), · · · , Mh3

(Zn11 − z11)} and
̂̃
Y = (

̂̃
Y1, . . . ,

̂̃
Y n)

T . In partic-

ular, the local linear estimates of the coefficient functions are given by

ĝj(z11) = e
T
j

̂̃
Θ, 1 ≤ j ≤ d+ l,

where ej is a (d+ l)(k+1) vector with the j-th element being 1 and the remaining elements

zero.

4 Distribution Theory

4.1 Assumptions and Notation

In this section, we derive the consistency and asymptotic normality of the constant and

functional coefficients estimators proposed above. First, introduce some notations. For

simplicity, arguments are sometimes dropped. Let f11(·) be the probability density function

of Z11, ξ = X − E(X |Z), and η = Y − E(Y |Z). Also, set σ2
η(Z) = E(η2|Z), Σξ(Z) =

E(ξξT |Z), and Σηξ(Z) = E(η ξ|Z) To characterize the asymptotic variance of estimators

Θ̂p of constant coefficients, define

Σp = E
{
eT Ω−1

0 (Ωη +Ωξ − 2Ωηξ)Ω
−1
0 e

}
, (9)

where Ωπ(Z) ≡ Π∗(Z) Π∗(Z)T , Ωη = Ωπ σ
2
η(Z), Θ∗ =

(
g2

β2

)
, Ωξ = ΩπΘ

T
∗ ΣξΘ∗, and

Ωη ξ = ΩπΣ
T
ηξΘ∗. Further, to present the asymptotic variance of estimator Θ̂g of functional

coefficients, define µ2(M) =
∫
uuT M(u) du and ν0(M) =

∫
M2(u) du. Let Σξ,11 be the

first block of Σξ, Σηξ,1 denote the first part of Σηξ, and Ωπ,11(Z) present the first block of

Ωπ(Z). Further, denote Ω̃0(z11) = E {Ωπ,11(Z) |Z11 = z11},

Ω̃η = E
{
Ωπ,11(Z)σ2

η(Z)|Z11 = z11

}
ν0(M),

Ω̃ξ = E
{
Ωπ,11(Z)ΘT

g (z11)Σξ,11Θg(z11)|Z11 = z11

}
ν0(M),

and

Ω̃η ξ = E{Ωπ,11(Z)Σηξ,1Θg(z11)|Z11 = z11} ν0(M).
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Finally, set Σg(z11) = f−1
11 (z11) Ω̃

−1

0 (z11) Ω̃1(z11) Ω̃
−1

0 (z11), where Ω̃1(z11) = Ω̃η+ Ω̃ξ−2 Ω̃ηξ.

The following conditions are collected together for our asymptotic theory.

Assumptions:

1. The kernels K(·), L(·), and M(·) are symmetric and bounded second order kernel

functions with bounded support. Further, K(·) and L(·) satisfy a Lipschitz condition

of degree one.

2. The density function f(·) of Z is bounded and uniformly continuous and there exists

a compact set D such that infz∈D f11(z) > 0.

3. Functions {g′′j (·)}, σ2
η(·), Σξ(·), and Σηξ(·) are continuous, where g′′j (·) is the second

partial derivative of gj(·). Further, {π′′j (·)} are bounded and uniformly continuous and

satisfy the Lipschitz condition where π′′j (·) is the second partial derivative of πj(·).

4. Observations {(Xi, Yi,Z i)}ni=1 are independent and identically distributed, the fourth

moment of ξ and η exists.

5. Ω0(z1) is positive definite.

6. E |Xj|γ <∞ for some γ > 2.

7. nhd1α1

1 / log h1 → ∞ with α1 > γ/(γ − 2), h1 → 0, nhk α2

2 / log h2 → ∞ with α2 >

γ/(γ − 2), h2 → 0, nhk3 →∞, and h3 → 0.

8. h1 = o(h2) and h2 = o(h3).

Remark 1: (Discussion of Conditions) Assumptions 1-8 are similar to those for varying

coefficient IV models in CDXW (2006) and they are fairly standard. Since an additional

step is needed to estimate the constant coefficientΘp, assumptions are needed on three kernel

functions and three bandwidths, respectively. The Lipschitz condition on kernels K(·) and
L(·) is a technical assumption to simplify the theoretical proofs but it might not be necessary.

Under this condition, the uniform convergence is achieved at both the first and second steps.

Note that Assumption 5 is also the sufficient condition for the model identification as in

Section 2. Assumption 8 suggests that the first two steps should be under-smoothed given

that Assumption 7 is satisfied so that the biases from the earlier stages are negligible at
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the later stages. Also note that similar conditions are imposed for the two-stage method for

ordinary regression models for cross-sectional and time series data; see Cai (2002a, 2002b).

4.2 Asymptotic Properties

We now present the consistency and asymptotic normality for Θ̂p, the estimator of constant

coefficients.

Theorem 1 . Under Assumptions 1-8, one has

Θ̂p −Θp − biasp = op(h
2
2) +Op(n

−1/2),

where

biasp =
h2

2

2
eTE

{
Ω−1

0 Ωπ(Z)

((
tr
[
µ2(L)

{
2 g′j(Z11) f

′
11(Z11)

T/f11(Z11) + g′′j (Z11)
}] )

(d+l)×1

0(m+p)×1

)}
.

Theorem 2 . Under Assumptions 1-8, if nh4
2 = O(1), we have

√
n
[
Θ̂p −Θp − biasp

]
→ N(0,Σp).

Particularly, if nh4
2 = o(1), then,

√
n
[
Θ̂p −Θp

]
→ N(0,Σp).

Remark 2: As seen in Theorems 1 and 2, the bias of our final estimators for constant

coefficients is of the order of h2
2, while the variance is of the order of 1/n. When nh4

2 → 0,

the estimators achieve 1/
√
n, the optimal rate for parametric models. Since the local constant

estimation is used in the first step, the bias comes from the first and second derivatives of

the functional coefficients gj(·) due to the approximation errors. The approximation error of

πj(·) from the first step is negligible because of Assumption 8. Due to the average in (6), the

variance of Θ̂p reduces to the order of 1/n but not depend on h2. Asymptotically, the effect

of the first step bandwidth on the variance does not carry over to the second step. Note that,

like Σg (the asymptotic variance of Θ̂g; see Theorem 4 later), Σp (the asymptotic variance

of Θ̂p) also includes three components: the variance of reduced form measurement error, the

variance of the structural equation measurement error, and the covariance between them.
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Next, it is shown that Θ̂g, the estimators for the functional coefficients share the same

asymptotic properties as the estimators in the nonparametric varying coefficient IV models

discussed in CDXW (2006). In other words, the estimators perform asymptotically as well

as if the constant coefficients were known. This is referred as an efficient or oracle estimator.

Theorem 3 . Under Assumptions 1-8, then,

Θ̂g −Θg − biasg(z11) = op (h
2
3) +Op

{
(nhk3)

−1/2
}
,

where

biasg(z11) =
h2

3

2

(
tr
{
µ2(M)g′′j (z11)

})
(d+l)×1

.

Theorem 4 . Under Assumptions 1-8, if nhk+4
3 = O(1), then,

√
nhk3

[
Θ̂g(z11)−Θg(z11)− biasg(z11)

]
−→ N(0, Σg(z11)).

Remark 3: Theorems 3 and 4 demonstrate that the asymptotic properties of our final

estimators for functional coefficients in the partially varying coefficient IV model are the

same as those for the estimators in the nonparametric varying coefficient IV model discussed

in CDXW (2006). Because of Assumption 8, the biases from previous steps are negligible

comparing to the final stage bias at the order of h2
3. Similar to the aforementioned discussion,

the effect of the earlier stage bandwidths on variance asymptotically does not carry over to

the final stage. In fact, asymptotically, the only difference between Θ̂g and the estimator for

the nonparametric varying coefficient IV model in CDXW (2006) relies on the extra term

which is shown to be negligible due to the faster convergence rate of Θ̂p (see Appendix for

details). Therefore, the final estimator Θ̂g is optimal in the sense that it performs as if those

constant coefficients were known.

Remark 4: (Bandwidth Selection) Intuitively, constant coefficients are global parameters

so that a large bandwidth is preferred. On the other hand, a small bandwidth is desirable

for functional coefficients to reduce bias. To reconcile this contradiction, we first employ

a small bandwidth to reduce the bias and then take the average of all local estimates. In

such a way, the variance of the constant coefficient estimators is stabilized although a small

11



bias is preserved. Besides, by observing Theorems 1 and 2, we notice that the variance

term does not involve h2. Therefore, the first and second step bandwidths should be chosen

as small as possible as long as they satisfy Assumptions 7 and 8. An ad hoc bandwidth

selection method discussed in CDXW (2006) for functional coefficient IV model is applicable

here for the partially varying coefficient IV model; see CDXW (2006) for details. Finally,

remark that there appears to be no any result available in the literature for a data-driven

bandwidth selection with optimal properties. It is still an open question for future work,

but it is beyond the scope of the present paper to give a more precise result. Nevertheless,

the procedure suggested above is a useful one for practitioners and found to be practicable

in our own empirical examples in Section 5.

4.3 Covariance Matrix Estimation

Large sample confidence intervals are useful for inference. Next, we consider a consistent

estimation of the asymptotic covariance matrix for the construction of confidence intervals.

For Θ̂p (the estimator of constant coefficients), a universal confidence interval is desirable.

In view of (9), a direct estimate of Σp can be constructed. By Lemma 2 in Section 6, it

follows that at each data point Zs11,

1

n
̂̄
Π

T
Ws

̂̄
Π =

1

n

∑

i

Ω̂π,−iLh2
(Zi11 − Zs11) = f11(Zs11)Ω0(Zs11) + op (1),

with

Ω̂π,−i =


 Π̂1,−iΠ̂

T

1,−i Π̂1,−iΠ̂
T

2,−i

Π̂2,−iΠ̂
T

1,−i Π̂2,−iΠ̂
T

2,−i


 .

Also, observe that

f̂11(Zs11) =
1

n

∑

i

Lh2
(Zi11 − Zs11)

is a consistent estimate of f11(Zs11). Thus, Ω0(Zs11) can be estimated consistently by

Ω̂0(Zs11) =
1

n

∑

i

Ω̂π,−i Lh2
(Zi11 − Zs11) / f̂11(Zs11).

Similarly, a consistent estimate of other components in (9) can be obtained by

Ω̂η(Zs11) =
1

n

∑

i

Ω̂π,−i η̂
2
iLh2

(Zi11 − Zs11) / f̂11(Zs11),

Ω̂ξ(Zs11) =
1

n

∑

i

Ω̂π,−i Θ̂
T

∗ ξ̂iξ̂
T

i Θ̂∗ Lh2
(Zi11 − Zs11) / f̂11(Zs11),
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and

Ω̂η ξ(Zs11) =
1

n

∑

i

Ω̂π,−i η̂i ξ̂
T

i Θ̂∗ Lh2
(Zi11 − Zs11) / f̂11(Zs11),

with η̂i = Yi − Π̂1,−iΘ̂g(Zi11)− Π̂2,−iΘ̂p and ξ̂i = Xi − π̂−i. Finally, Σp is estimated by

Σ̂p =
1

n

∑

s

eT
{
Ω̂0(Zs11)

}−1 {
Ω̂η(Zs11) + Ω̂ξ(Zs11)− 2 Ω̂η ξ(Zs11)

}{
Ω̂0(Zs11)

}−1
e.

The asymptotic covariance matrix of Θ̂g can be estimated by using the same expressions

in CDXW (2006) with some minor changes of the error terms accordingly. Both covariance

matrix estimators is examined by empirical examples in Section 5. Indeed, it is easy to show

that the aforementioned estimators are consistent.

5 Empirical Examples

To illustrate the estimation procedure and investigate the finite sample performance of the

proposed estimators, we consider one simulated example and revisit the random sample of

young Australian female workers introduced in Section 1. We use the Epanechnikov kernel

K(u) = 0.75 (1 − u2) I(|u| ≤ 1) and its product form as the multivariate kernel and choose

the bandwidths based on the ad hoc approach as described in Remark 4 in Section 4.2. For

the simulated example, the finite sample performances of the our estimator are evaluated in

terms of the mean absolute deviation error (MADE) defined by

Ej =
1

n0

n0∑

k=1

|ĝj(zk)− gj(zk)|

for gj(·), where zk, k = 1, · · · , n0 are the regular grid points.

5.1 A Real Example

First, we apply the proposed model and its estimation procedures to the random sample of

young Australian female workers from the 1985 wave of the Australian Longitudinal Survey

data. It is the same data that was studied by CDXW (2006). Although the actually fitted

model is the same, the main focus of that paper was the functional coefficient part. Discussion

of the constant parameter estimators, including their efficiency and asymptotic properties,

was out of that paper’s scope. Following we will pay special attention to those topics.

It is well known in the labor economics literature that, due to unobservable heterogeneity

in schooling choices, education is an endogenous variable in the wage model, see, e.g., the

13



review paper by Card (2001). Economists have also noted that the positive marginal returns

to education vary with the level of schooling, see, e.g., Schulz (1997) for details. Further,

if the work experience is also an attribute valued by employers, then, for any given level of

education, wages should be increasing in experience. Card (2001) has suggested that if a

wage model assumes the additive separability of education and experience, then returns to

education could be understated if returns to experience is itself increasing in education.

The above features of the wage problem makes varying coefficient IV model a natural fit

to the data. However, by observing the data, we also found four discrete exogenous variables

have significant impact on the wage values. To incorporate those variables into the model,

we consider the partially varying coefficient IV model proposed in this paper

Y = ZT3 β + g1(Z1) + g2(Z1)X + ε, (10)

and E(X|Z1, Z2) = π1(Z1, Z2), where Y is the natural logarithm of the hourly wage,

Z3 includes binary indicators for marital status, government employed, union status, and

Australian-born, Z1 is a measure of work experience measured in years, X is the measure

of (endogenous) education (“Schooling”), and Z2 is an index of labor market attitudes that

used as an instrumental variable. g1(·) and g2(·) are unknown coefficient functions. Here we

follow Das, Newey and Vella (2003) to use the labor market attitude index as the instru-

mental variable. In that paper, they conducted a statistical test and rejected the possibility

of endogeneity of the attitude index. The sample consists of 1996 observations.

The estimation results are summarized in Table 1 for the constant coefficients, and Figure

Table 1: Estimates of the Constant Coefficients in Structural Equation (10)

Variables
Marital Government Union Australian
Status Employed Status Born

Estimated Values 0.1523 0.6129 0.0734 -0.0825

Standard Errors 0.0300 0.0199 0.0190 0.0309

1 for the functional coefficient of schooling. The bandwidths used for estimating the reduced

form are h11 = 1.5 for Z1 and h12 = 0.6 for Z2 in the first stage, h2 = 4 in the second stage

for constant coefficients, and h3 = 5 in the third stage for functional coefficients.

Table 1 presents the estimates of constant coefficients β with associated standard er-

rors. It can be seen that the estimates of standard errors are in line with the asymptotic
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properties established in Section 4.3. Based on that, it is clear that all coefficient estimates

are significantly different from 0 at a 5% significance level based on a simple t-test. The

interpretation is that individuals who are married, government employed, in trade union, or

not born in Australian tend to have a higher wage. Married females are more mature and

potentially have more experience, which is one of the attributes valued by employers. The

officials in government generally get a better compensation. Union workers earn a higher

wage. Aliens’ average salary is higher than the natives. Considering Australia is one of the

biggest immigrant country in the world, many immigrants come here to pursuit a higher

education and get better jobs after they graduate. We also noticed among all these features,

marital status and government employment have a bigger impact on wages.

Figure 1 plots the three-step local linear estimate of the functional coefficient g2(·) cor-
recting for endogeneity (smooth solid line) with 95% pointwise confidence intervals (dotted

lines) with the bias ignored, and the ordinary local linear estimate without correcting for

endogeneity (dashed line). There are several notable points about this figure. First, while

the profile without correcting for endogeneity is almost constant, the profile correcting for

endogeneity is positive and nonlinear for all values of experience in our sample. As in our

simulated example (see next), this figure illustrates both the practicability of our estimators

and the importance of correcting for endogeneity. Secondly, notice that the derivative of

g2(·) changes over its range, being negative at both low and high levels of experience but

positive in the middle range. This suggests that while the marginal returns to education

are positive, these returns are themselves declining in experience for both low and high level

workers. Our results also show that the partially varying coefficient model captures the

unknown nonlinear effect of education on wages discussed in Card (2001) and illustrates the

practicability of the standard error estimators leading to the plotted 95 percent confidence

intervals. Finally, by comparing our result with the model without parametric part (see

Xiong (2004)), although the shape of ĝ2(·) is similar, ĝ2(·) from (10) is flatter in the middle

range yet steeper at the higher end of experience span because some of the variations are

dragged out by the additional parametric part in (10).

In summary, a partially varying coefficient model provides a very simple yet powerful

modeling framework for the wage-education relationship. In addition to the extremely prac-

ticable functional coefficient specification, it also allows to incorporate more information in

a parametric form without affecting the convergence rate on either parametric or nonpara-
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metric part. Our results also illustrate the three stage estimation procedure and covariance

matrix estimation for inference purpose.

5.2 A Simulated Example

Next, we use the simulated data to illustrate our model and its estimation procedures. The

data are generated through the following model

Y = g1(Z1) + g2(Z1)Z2 + g3(Z1)X1 + β1 Z3 + β2 X2 + ε,

where the coefficient functions gj(·), 1 ≤ j ≤ 3, are given by

g1(z) = 2 cos(z) + 0.8268, g2(z) = −(2 + 0.2 z) exp
{
−(0.5 z − 1.5)2

}
,

and g3(z) = sin(z). The constant coefficients are β1 = 1 and β2 = −1. The exogenous

variable Z1 and instrumental variable Z4 are independently generated from uniform distri-

bution (2, 8), and exogenous variables Z2 and Z3 are independently generated from normal

distribution N(0, 1). The endogenous variables X1 and X2 are generated by

X1 = 3 sin(2Z4) + ξ1, and X2 = 3 cos(2Z4) + ξ2.

The error distributions ε, ξ1, and ξ2 are generated jointly from a multivariate normal distri-

bution as 

ε
ξ1
ξ2


 ∼ N


0,




1 0.7 0.7
0.7 1 0
0.7 0 1





 .

Clearly, ε is independent of Z1 and Z2 so that E(ε |Z1, Z2) = 0 and E(ε) = 0. However,

E(ε |X) 6= 0 since ε and ξ are correlated. To verify our asymptotic theory, we generate the

sample with three different sample sizes: n = 100, 250, and 500. For each sample size, we

replicate the design 500 times. We first report the mean and standard deviation of constant

coefficient estimators among 500 replications for each sample size. For functional coefficient

estimators, the MADE is computed for each function and each sample size, respectively.

Table 2 displays the estimation of β for the three-stage estimation corresponding to the

estimator (6) with correcting for endogeneity, and for the standard local estimation corre-

sponding to procedures proposed by Zhang et al. (2002) for ordinary semi-varying coefficient

models without correcting for endogeneity. Both estimators give a similar asymptotically

unbiased estimation for β̂1 because there is no endogeneity involved in this parameter. As
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Table 2: The Mean and Standard Deviation of the Constant Coefficients Estimates
in the Simulated Example

Sample Size Statistics
Three-Stage Estimation Standard Estimation

β̂1 β̂2 β̂1 β̂2

100
Mean 0.9944 -0.9556 0.9900 -0.8843

Std. Dev.a 0.0492 0.0571 0.1315 0.0599

250
Mean 0.9997 -0.9859 1.0002 -0.8747

Std. Dev. 0.0342 0.0326 0.0911 0.0336

500
Mean 1.0000 -0.9989 0.9999 -0.8714

Std. Dev. 0.0292 0.0159 0.0443 0.0197

aStandard deviation of 500 replications.

the sample size increases, both of them converge. However, a totally different phenomenon

exhibits for β̂2 (the estimator of constant coefficient in front of the endogenous variable X2).

Although both methods have similar standard deviations, a large bias is resulted from the

standard local linear estimation. On the other hand, the three-stage estimator is asymptot-

ically unbiased.

Figure 2 depicts boxplots of the 500 MADE values of the functional coefficient estimators

using both three-stage local linear method in Figure 2(a) and ordinary local linear method

without the adjustment for endogeneity in Figure 2(b), respectively. From Figure 2(a), we

find that, for functional coefficients g1(·), g2(·) and g3(·), all MADE values of the three-stage

local linear estimator converge toward zero. But this is not true for ordinary local linear

method presented in Figure 2(b). Clearly, g2(·) is the only functional coefficient with the

MADE value convergent toward zero because it is a coefficient of the exogenous variable

Z2. Note that g1(·) is not directly involved in endogeneity, but the previous step bias of β̂2

(the estimator of constant coefficient in front of the endogenous variable X2), is carried over

to the third stage and resides in g1(·). The MADE value of g1(·) basically converges to a

positive constant. Therefore, the estimate of g1(·) is biased. This is different from functional

coefficient IV model of CDXW (2006) in which g1(·) is not biased. Finally, the estimate of

g3(·) is also biased because of ignoring endogeneity.

Next, a typical example with the sample size n = 500 is chosen to present the proposed

constant and functional coefficient estimators, as well as associated covariance estimators.

The typical sample is chosen based on its MADE value equal to the median of the 500

MADE values. Table 3 lists the estimated values of β and their corresponding estimated
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Table 3: A Sample Estimation of
the Constant Coefficients in the
Simulated Example

Parameters β̂1 β̂2

Estimated Value 0.9825 -0.9718

Est. Std. Dev.a 0.0964 0.0453

aEstimated Standard Deviation

standard deviation. The theoretical values of them are 0.0447 and 0.0213, respectively.

Our estimated values are a little bit over the them, which is sort expected because of the

additional variation introduced by the over smooth at the first and second stage. But they

are still on the ballpark. This shows the feasibility of our proposed estimator for both the

constant coefficients and corresponding covariance structures.

Finally, Figure 3(a), (b), and (c) show the functions g1(·), g2(·), and g3(·) (solid lines),

their three-stage local linear estimators (dashed lines) with the corresponding 95% pointwise

confidence intervals (dotted lines), and the ordinary local linear estimators that do not adjust

for endogeneity (dashed-dotted lines). From Figure 3(a), we find that our estimator of g1(·)
is slightly better than the estimator without correcting endogeneity. Although estimation of

g1(·) does not involve endogenous variable, as explained above, it carries the bias of β̂2, which

is the coefficient of the endogenous variable X2. From Figure 3(b), one can observe that both

estimators fit closely to the true function g2(·) since it does not involve endogeneity. From

Figure 3(c), one can see a big difference between two estimators. The ordinary estimator

is always over-estimated by ignoring the correlation between endogenous variables X1 and

X2, and the random error ε. However, our proposed estimator fits this function well. Also

note that the true function always stays within the 95% pointwise confidence intervals of our

proposed estimator. That indicates that the finite sample performance of both the functional

estimators and the estimators for their asymptotic variances is fairly good.

6 Proofs of Theorems

Throughout this section and the Appendix, we use the same notation as used in previous

sections and we denote by C a generic constant, which may take different values at different

appearances. Note that some proofs of Theorems 1-4 are similar to those in CDXW (2006)
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so that they are presented here briefly. To prove Theorems 1-4, the following lemmas are

needed but their detailed proofs are given in the Appendix. First, the following lemma, due

to Mack and Silverman (1982), is stated here without proof.

Lemma 1 . Let (X1, Y1), · · · , (Xn, Yn) be i.i.d random vectors, where the Yi’s are scalar

random variables. Assume further that E|y|s < ∞ and supx
∫ |y|sf(x, y)dy < ∞, where f

denotes the joint density of (X,Y ). Let K be a bounded positive function with a bounded

support and satisfying a Lipschitz condition. Then,

sup
x∈D

∣∣∣∣∣
1

n

n∑

i=1

[Kh(Xi − x)Yi − E {Kh(Xi − x)Yi}]
∣∣∣∣∣ = Op



(
log(1/h)

nhdx

)1/2

 ,

provided that n2ε−1 hdx →∞ for some ε < 1− s−1 and dx is the dimension of X.

As a consequence of Lemma 1, the following results are obtained.

Lemma 2 . Under Assumptions 1-5, uniformly in z11, then,

1

n
̂̄
Π

T
W

̂̄
Π = f11(z11)Ω0(z11) + op(1) and

1

n
Π̂

T
W̃ Π̂ = f11(z11)H3 Ω̃0(z11)H3 + op(1),

where H3 = diag {1, ... , 1, h3, ... , h3} is a (d+ l)(k+1)× (d+ l)(k+1) matrix with the first

(d+ l) diagonal elements being 1’s and the rest diagonal elements h3’s.

Now, we embark on establishing Theorems 1 and 2. First, Θ̂p −Θp is decomposed into

three terms as follows:

Θ̂p −Θp ≡ P+Q+R, (11)

where with G = (E(Y1|Z1), . . . , E(Yn|Zn))
T ,

P =
1

n

n∑

i= 1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 1

n
̂̄
Π

T
Wi {Y−G} ,

Q =
1

n

n∑

i=1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 1

n
̂̄
Π

T
Wi

{
G− Π̄Θ(Zi11)

}
,

and

R =
1

n

n∑

i= 1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 1

n
̂̄
Π

T
Wi(Π̄− ̂̄

Π)Θ(Zi11).

Next, it is shown that R and P contribute to the first and second step variances respectively

with the convergence rate 1/n instead of 1/(nhm2 ) in CDXW (2006) for nonparametric esti-

mators, and that Q consists of the bias. First, consider P, the first term on the right hand

side of (11), which can be decomposed into two terms as follows:

P ≡ P1 +P2,
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where

P1 =
1

n

n∑

i=1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 1

n

n∑

s= 1

Π∗,s Lh2
(Zs11 − Zi11) ηs,

and

P2 =
1

n

n∑

i= 1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 1

n

n∑

s=1

(
Π̂1,−s −Πs1

Π̂2,−s −Πs2

)
Lh2

(Zs11 − Zi11) ηs.

It is shown that P1 contributes to the second step variance from η but P2 is a higher order

term comparing to P1, which are summarized in the following lemma with its proof given in

the Appendix.

Lemma 3 . Under Assumptions 1-6, then,

n Var(P1) = e
T E

(
Ω−1

0 ΩηΩ
−1
0

)
e+ o(1) and P2 = op (1/

√
n).

Next, consider the term Q, the second term of (11). Here, the same decomposition as

for P is employed. Define

Q ≡ Q1 +Q2,

where

Q1 =
1

n

n∑

i= 1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 1

n
Π̄

T
Wi

{
G− Π̄Θ(Zi11)

}

and

Q2 =
1

n

n∑

i= 1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 1

n
(̂̄Π− Π̄)TWi

{
G− Π̄Θ(Zi11)

}
.

Similar to Lemma 3, the following lemma is for Q.

Lemma 4 . Under Assumptions 1-8, then,

Q1 = biasp + op (h
2
2), and Q2 = op (h

2
2).

Finally, it is shown that R, the third term on the right hand side of (11), contributes to

the bias and variance from the first step. Similar to the decompositions for P and Q, R can

be split as

R ≡ R1 +R2,
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where

R1 =
1

n

n∑

i= 1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 1

n
Π̄

T
Wi(Π̄− ̂̄

Π)Θ(Zi11),

and

R2 =
1

n

n∑

i=1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 1

n
(̂̄Π− Π̄)TWi(Π̄− ̂̄

Π)Θ(Zi11).

Further, R1 is split into bias and variance parts as

R1 ≡ RB
1 +RV

1 ,

where

RB
1 = − 1

n

n∑

i= 1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 1

n

∑

1≤s6=t≤n

Π∗,s Lh2
(Zs11 − Zi11)W h1

0 (Z t −Zs)

×

1
2
(Z t −Zs)

T





l∑

j=1

gd+j(Zi11)π
′′
j (Zs) +

p∑

k=1

βm+k π
′′
l+k(Zs)



 (Z t −Zs) + op(h

2
1)




and

RV
1 =

−1
n2

n∑

i= 1

eT
(
1

n
̂̄
Π

T
Wi

̂̄
Π

)−1 ∑

1≤s6=t≤n

Π∗,s Lh2
(Zs11 − Zi11)W h1

0 (Z t −Zs)Θ∗(Zi11)
Tξt.

Similar to Q, it is shown in the following lemma that both RB
1 and R2 are a higher order

and RV
1 contributes to the asymptotic variance.

Lemma 5 . Under Assumptions 1-8, then,

RB
1 = Op(h

2
1) = op(h

2
2), nVar(RV

1 )→ eTE
(
Ω−1

0 ΩξΩ
−1
0

)
e, and R2 = op(h

2
2) + op

(
n−1/2

)
.

We now proceed with the proofs of Theorems 1 and 2.

Proof of Theorem 1: Since E(P1) = 0 and E(RV
1 ) = 0, it follows from Lemmas 3 and 5

that

P1 = Op (1/
√
n), and RV

1 = Op (1/
√
n),

which, in conjunction with (11), the decompositions of P, Q and R, and Lemmas 2 - 5,

implies that

Θ̂p −Θp = P1 +P2 +Q1 +Q2 +R1 +R2

= Op (1/
√
n) + op (1/

√
n) + biasp + op (h

2
2) + op (h

2
2) +Op (1/

√
n) + op (1/

√
n)

= Op (1/
√
n) + biasp + op (h

2
2). (12)
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This proves the theorem.

Proof of Theorem 2: By (12) and Lemmas 2 - 5, one has

√
n
[
Θ̂p −Θp − biasp + op(h

2
2)
]
=
√
n
{
P1 +R

V
1

}
+ op (1).

To establish the theorem, it suffices to show that the right hand side is asymptotically

normally distributed. To this end, by the definitions of P1 and RV
1 and Lemma 2, one has

1

n
̂̄
Π

T
Wi

̂̄
Π = Ω−1

0 (Zi11) + op(1).

Applying Lemma 1 to the sum of s in P1 and to the sum of s and t in RV
1 , and combining

these with the above equation, one has

√
n
{
P1 +R

V
1

}

=
1√
n

[
n∑

i=1

{
eTΩ−1

0 (Zi11)Π∗,iηi + op(1)
}
−

n∑

i=1

{
eTΩ−1

0 (Zi11)Π∗,iΘ∗(Zi11)
Tξi + op(1)

}]

=
1√
n

n∑

i=1

[
eTΩ−1

0 (Zi11)Π∗,i
{
ηi −Θ∗(Zi11)T ξi

}]
+ op(1).

By the central limit theorem, one can easily establish the asymptotical normality of the right

hand side of the above equation, omitted.

Proofs of Theorems 3 and 4: First, observe that

ĝj(z11)− gj(z11) ≡ eTj H3

(
n−1 Π̂

T
W̃ Π̂

)−1 {
P̃+ Q̃+ R̃+ ã

}
, (13)

where G̃ = (ΠT
11Θ̃(Z111), · · · ,ΠT

n1Θ̃(Zn11))
T , Q̃ = 1

n
Π̂

T
W̃ (G̃ −ΠΘ̃), R̃ = 1

n
Π̂

T
W̃ (Π −

Π̂) Θ̃, P̃ = 1
n
Π̂

T
W̃

{
Y−T2Θp − G̃

}
= 1

n
Π̂

T
W̃ {Y−G}, ã = 1

n
Π̂

T
W̃

{
T2 (Θp − Θ̂p)

}
,

and T2 =
(
Z113 . . . Zn13

X12 . . . Xn2

)T
. We now show that the proofs of Theorems 3 and 4 can be

established by following those for Theorems 2 and 3 in CDXW (2006). To this end, we

compare (13) with the corresponding expression in CDXW (2006) and find that the only

difference is the additional term ã. It is shown in the Appendix that ã is asymptotically

negligible; that is

eTj H3

(
n−1 Π̂

T
W̃ Π̂

)−1

ã = op (h
2
3) + op

(
(nhk3)

−1/2
)
. (14)

Therefore, the estimator of the functional coefficients of partially varying coefficient IV mod-

els has the same asymptotic properties as in the functional coefficient IV models in CDXW

(2006). Hence, the proofs of Theorems 3 and 4 are the same as those for Theorems 2 and 3

in CDXW (2006). The detailed proofs are referred to CDXW (2006) and omitted.
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Appendix

Proof of Lemma 2: Observe that

1

n
̂̄Π
T
W ̂̄Π = n−1 Π̄

T
WΠ̄+ n−1 Π̄

T
W ( ̂̄Π− Π̄) + n−1 ( ̂̄Π− Π̄)TWΠ̄

+n−1 ( ̂̄Π− Π̄)TW ( ̂̄Π− Π̄)

≡ I1 + I2 + I3 + I4.

We first look at

I1 =
1

n

∑

i

Lh2
(Zi11 − z11)Π∗, iΠT

∗, i.

By Lemma 1, uniformly in z11,

I1 = f11(z11)Ω0(z11) + op(1).

Next, we consider

I1 =
1

n

∑

i

Lh2
(Zi11 − z11)Π∗, i

(
Π̂∗, i −Π∗, i

)T
.

Applying Lemma 1 to elements of Π̂∗, i and the sum i, we have

I2 =
1

n

∑

i

Lh2
(Zi11 − z11)Π∗, i 1T op (1)

= op (1)
{
E
(
Π∗1

T |Z11 = z11
)
+ op (1)

}
= op(1),

where 1 is a vector of 1’s with the same dimension asΠ∗, i. Similarly, it can be shown that I3 = op(1)
and I4 = op(1). This proves the lemma.

Proof of Lemma 3: By Lemma 2, one has

P1 =
1

n

n∑

i= 1

eT [f11(Zi11)Ω0(Zi11) + op(1)]
−1 1

n

n∑

s= 1

Π∗,s Lh2
(Zs11 − Zi11) ηs

=
1

n2

n∑

s=1

n∑

i= 1

eT [f11(Zi11)Ω0(Zi11) + op(1)]
−1Π∗,s Lh2

(Zs11 − Zi11) ηs.

An application of Lemma 1 to the sum of i gives

P1 =
1

n

n∑

s= 1

{
eTΩ−1

0 (Zs11)Π∗,s ηs + op(1)
}
.

Then,

n Var(P1) =
1

n

n∑

s= 1

E
[
eTΩ−1

0 (Zs11)Π∗,s E(η2
s |Zs)Π

T
∗,sΩ

−1
0 (Zs11)e+ op (1)

]

= eT E
[
Ω−1

0 (Z11)Ωπ(Z) σ2
η(Z)Ω−1

0 (Z11) + op (1)
]
e

= eT E
{
Ω−1

0 ΩηΩ
−1
0

}
e+ o (1)

23



Thus, the first part of this lemma is proved. To show the second part, by Lemma 1 and 2, we have

P2 =
1

n

n∑

i=1

eT [f11(Zi11)Ω0(Zi11) + op(1)]
−1 1

n

n∑

s= 1

1 Lh2
(Zs11 − Zi11) ηs op (1)

=
1

n

n∑

s= 1

{
eTΩ−1

0 (Zs11)1 ηs + op(1)
}
op (1).

Similar to the calculation for P1, we have

nE(P2P
T
2 ) = e

T E
{
Ω−1

0 11
TΩ−1

0 σ2
η

}
e o(1) = o (1).

Thus P2 = op (1/
√
n).

Proof of Lemma 4: By Lemma 2, one has

Q1

=
1

n2

n∑

s=1

n∑

i= 1

eT {f11(Zi11)Ω0(Zi11) + op(1)}−1 Ωπ(Zs)Lh2
(Zs11 − Zi11)

×




(Zs11 − Zi11)T g′1(Zi11) + 1
2(Zs11 − Zi11)T g′′1(Zi11)(Zs11 − Zi11)

...
(Zs11 − Zi11)T g′d+l(Zi11) + 1

2(Zs11 − Zi11)T g′′d+l(Zi11)(Zi11)(Zs11 − Zi11)
0(m+p)×1


+ op(h

2
2).

Similar to P1, by applying Lemma 1 to sum of i, we obtain

Q1 =
h2

2

2n

n∑

s= 1

eT {Ω0(Zs11) + op(1)}−1 Ωπ(Zs)

×




tr
[
µ2(L)

{
2 g′1 f

′
11
T /f11 + g′′1

}]

...
tr
[
µ2(L)

{
2 g′d+l f

′
11
T /f11 + g′′d+l

}]

0(m+p)×1




+ op(h
2
2)

=
h2

2

2
eT E




Ω−1

0 Ωπ(Z)




tr
[
µ2(L)

{
2 g′1 f

′
11
T /f11 + g′′1

}]

...
tr
[
µ2(L)

{
2 g′d+l f

′
11
T /f11 + g′′d+l

}]

0(m+p)×1








+ op (h
2
2).

This proves the first part of the lemma. Similar to Lemma A3 in CDXW (2006), one can show
easily that Q2 = op (h

2
2). Therefore, this lemma is established.

Proof of Lemma 5: By Lemma 2 again,

RB
1

= − 1

n

n∑

i= 1

eT [f11(Zi11)Ω0(Zi11) + op(1)]
−1 1

n

n∑

s=1

∑

t6=s

Π∗,sLh2
(Zs11 − Zi11)W h1

0 (Zt −Zs)

×

1
2
(Zt −Zs)

T





l∑

j=1

gd+j(Zi11)π
′′
j (Zs) +

p∑

k=1

βm+kπ
′′
l+k(Zs)



 (Zt −Zs) + op(h

2
1)



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= −h
2
1

2

1

n

n∑

i=1

eT [f11(Zi11)E {Ω0(Z)|Zi11} + op(1)]
−1

× 1

n

n∑

s=1

∑

t6=s

Π∗,s Lh2
(Zs11 − Zi11)

1

(n− 1)f(Zs)
Kh1

(Zt −Zs)

×

(Zt −Zs)

T





l∑

j=1

gd+j(Zi11)π
′′
j (Zs) +

p∑

k=1

βm+kπ
′′
l+k(Zs)



 (Zt −Zs) + op(h

2
1)


 .

By applying Lemma 1,

RB
1 = − h2

1

2

1

n

n∑

i=1

eT [f11(Zi11)E {Ω0(Z)|Zi11} + op(1)]
−1 1

n

n∑

s= 1

Π∗,s Lh2
(Zs11 − Zi11)

×



l∑

j=1

gd+j(Zi11)tr
{
µ2(K)π′′j

}
+

p∑

k=1

βm+ktr
{
µ2(K)π′′l+k

}

+ op (h

2
1)

= − h2
1

2

1

n

n∑

s= 1

eTE−1 {Ω0(Z)|Zs11} Π∗,sΘT
∗




tr {µ2(K)π′′1}
...

tr
{
µ2(K)π′′l+p

}


+ op (h

2
1)

= Op (h
2
1) = op (h

2
2).

This proves the first assertion of the lemma. Next, we prove the second result of the lemma. By
Lemma 2 again,

RV
1 = − 1

n

n∑

i= 1

eT [f11(Zi11)Ω0(Zi11) + op(1)]
−1

1

n

n∑

s= 1

∑

t6=s

Π∗,s Lh2
(Zs11 − Zi11)

1

(n− 1) f(Zs)
Kh1

(Zt −Zs)Θ∗(Zi11)
T ξt

= − 1

n

n∑

s=1

∑

t6=s

eT [Ω0(Zs11) + op(1)]
−1 Π∗,s

1

(n− 1) f(Zs)
Kh1

(Zt −Zs)Θ∗(Zs11)
T ξt

= − 1

n

n∑

s=1

eT [E {Ω0(Z)|Zs11}+ op(1)]
−1 Π∗,sΘ∗(Zi11)

T ξs.

Thus,

n Var(RV
1 ) =

1

n

n∑

t= 1

E
{
eT [E {Ω0(Z)|Zt11}+ op(1)]

−1 Ωπ(Zt)Θ
T
∗ ΣξΘ∗

× [E {Ω0(Z)|Zt11}+ op(1)]
−1 e

}

= eT E
[
E−1 {Ω0(Z)|Z11} Ωπ(Z)ΘT

∗ ΣξΘ∗ E
−1 {Ω0(Z)|Z11}+ op (1)

]
e

= eT E
{
Ω−1

0 Ωξ(Z)Ω−1
0

}
e+ o (1).

Finally, the proof of the third conclusion is similar to that for Lemma A3 in CDXW (2006), omitted.
Therefore, this proves the lemma.

Proof of (14): Similar to previous lemmas, ã is split as

ã ≡ ã1 + ã2,
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where ã1 = 1
nΠ

TW̃
{
T2 (Θp − Θ̂p)

}
and ã2 = 1

n

{
Π̂−Π

}T
W̃
{
T2 (Θp − Θ̂p)

}
. First, investigate

ã1. To this end, is further decomposed as follows

H−1
3 ã1

=
1

n

n∑

i=1

(
Πi1

Πi1 ⊗ (Zi11 − z11)/h3

)
Mh3

(Zi11 − z11) (ZTi131+XT
i21)

{
Op (h

2
2) +Op (1/

√
n)
}

≡ ãB1 + ãV1 ,

where

ãB1 =
1

n

n∑

i=1

(
Πi1

Πi1 ⊗ (Zi11 − z11)/h3

)
Mh3

(Zi11 − z11) (ZTi131+XT
i21)Op (h

2
2),

and

ãV1 =
1

n

n∑

i=1

(
Πi1

Πi1 ⊗ (Zi11 − z11)/h3

)
Mh3

(Zi11 − z11) (ZTi131+XT
i21)Op (1/

√
n).

Next, evaluate ãB1 (s), the s-th element of ãB1 . For 1 ≤ s ≤ (d+ l),

E
{
ãB1 (s)

}2
=

(
1

n
E
[
π2
s1(Z1)M

2
h3
(Z111 − z11)(ZT1131+XT

121)
2
]

+E [πs1(Z1)πs1(Z2)Mh3
(Z111 − z11)Mh3

(Z211 − z11)
×(ZT1131+XT

121)(Z
T
2131+X

T
221)

])
O (h4

2)

= [O {1/(nh3)}+O (1)] O (h4
2) = O (h4

2).

Similarly, for (d+ l + 1) ≤ s ≤ (d+ l)× (m+ 1), E
{
ãB1 (s)

}2
= O (h4

2) and ã
B
1 = Op(h

2
2). For the

same reason, it can be shown that ãV1 = Op(1/
√
n). Therefore, by Lemma 2,

eTj H3

(
n−1 Π̂

T
W̃ Π̂

)−1
ã = eTj

{
f11(z11) Ω̃0(z11) + op (1)

}−1 {
ãB1 + ãV1

}

= Op (h
2
2) +Op (1/

√
n) = op (h

2
3) + op

(
1/
√
nhk3

)
.

This completes the proof of (14).

References

Ahmad, I., S. Leelahanon and Q. Li (2005), Efficient estimation of a semiparametric par-
tially linear varying coefficient Model. Annals of Statistics 33, 258-283.

Ai, C. and X. Chen (2003), Efficient estimation of models with conditional moment restric-
tions containing unknown functions. Econometrica 71, 1795-1843.

Andrews, D.W.K. (1994), Asymptotics for semiparametric econometric models via stochas-
tic equicontinuity. Econometrica 62, 43-72.

Blundell, R. and J. Powell (2003), Endogeneity in nonparametric and semiparametric regres-
sion models. In Advances in Economics and Econometrics: Theory and Applications,
Eighth World Congress, Vol. II (M. Dewatripont, L.P. Hansen and S.J. Turnovsky,
eds.), Cambridge: Cambridge University Press.

26



Cai, Z. (2002a), Two-step likelihood estimation procedure for varying-coefficient models.
Journal of Multivariate Analysis 81, 189-209.

Cai, Z. (2002b), A two-stage approach to additive time series models. Statistica Neerlandica
56, 415-433.

Cai, Z., M. Das, H. Xiong and X. Wu (2006), Functional coefficient instrumental variables
models. Journal of Econometrics 133, 207-241.

Card, D. (2001), Estimating the return to schooling: Progress on some persistent econo-
metric problems. Econometrica 69, 1127-1160.

Carroll, R.J., D. Ruppert, T. Tosteson, C. Crainiceanu and M. Karagas (2004), Instru-
mental variables and nonparametric regression. Journal of the American Statistical
Association 99, 736-750.

Darolles, S., J.-P. Florens and E. Renault (2000), Non-parametric instrumental regression.
Mimeo, GREMAQ, University of Toulouse.

Das, M. (2005), Instrumental variables estimators for nonparametric models with discrete
endogenous regressors. Journal of Econometrics 124, 335-361.

Das, M, W. Newey and F. Vella (2003), Nonparametric estimation of sample selection
models. The Review of Economic Studies 70, 33-58.

Fan, J. and I. Gijbels (1996), Local Polynomial Modelling and Its Applications, London:
Chapman and Hall.

Hall, P. and J.L. Horowitz (2005), Nonparametric methods for inference in the presence of
instrumental variables. Annals of Statistics 33, 2904-2929.

Mack, Y.P. and B.W. Silverman (1982), Weak and strong uniform consistency of kernel
regression estimates. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
61, 405-415.

Newey, W.K. and J.L. Powell (2003), Nonparametric instrumental variables estimation.
Econometrica 71, 1565-1578.

Newey, W.K., J.L. Powell and F. Vella (1999), Nonparametric estimation of triangular
simultaneous equations models. Econometrica 67, 565-603.

Pakes, A. and S. Olley (1995), A limit theorem for a smooth class of semiparametric esti-
mators. Journal of Econometrics 65, 295-332.

Park, S. (2003), Semiparametric instrumental variables estimation. Journal of Economet-
rics 112, 381-399.

Robinson, P.M. (1988), Root-n consistent semiparametric regression. Econometrica 56,
931-954.

27



Schultz, T.P. (1997), Human Capital, Schooling and Health, IUSSP, XXIII, General Popu-
lation Conference, Yale University.

Xiong, H. (2004), Some nonparametric and semiparametric instrumental variables models
for economic data. Ph.D. Dissertation, Department of Mathematics and Statistics,
University of North Carolina at Charlotte.

Zhang, W., S.-Y. Lee and X. Song (2002), Local polynomial fitting in semivarying coefficient
model. Journal of Multivariate Analysis 82, 166-188.

28



Nonparametric Estimation of g_2(.)
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Figure 1: The Estimate of Functional Coefficient for Schooling in Structural Equation (10)
The figure corresponds to the functional coefficient g2(·), graphing the three-stage local linear
estimate (solid line) with point-wise 95% confidence intervals (dotted lines), and the ordinary
nonparametric estimate (dashed line).
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(a) Boxplot of MADE Values (Three-stage Local Linear Method)
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(b) Boxplot of MADE Values (Ordinary Local Linear Method)

<----  n = 100  ----> <----  n = 250  ----> <----  n = 500  ---->

< g1 > < g2 > < g3 > < g1 > < g2 > < g3 > < g1 > < g2 > < g3 >

Figure 2: Simulation Results for the Simulated Example
Figures (a) and (b) give the boxplots of the 500 MADE values in the estimation of g1(z),
g2(z), and g3(z), respectively.
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(a) Nonparametric Estimation of g_1(.)
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(b) Nonparametric Estimation of g_2(.)
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(c) Nonparametric Estimation of g_3(.)
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Figure 3: Simulation Results for the Simulated Example
Displayed in (a), (b), and (c) are the true coefficient functions (in solid line), the three-
stage local linear estimators (dashed line) with the corresponding 95% point-wise confidence
intervals (dotted lines), and the ordinary nonparametric estimator (dashed-dotted line).
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