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1 Introduction

There have been a number of studies for the estimation of optimal hedge ratios using the

futures in empirical finance literature. One classical way is to use the ordinary least squares

(OLS) for the slope parameter in the linear regression of the spot returns on the futures re-

turns. However, if the joint distribution of the spot and futures prices is changing over time,

the classical constant hedge ratio might be inappropriate. Indeed, it is well known in terms

of autoregressive conditional heteroskedastic (ARCH) (Engle, 1982) and generalized ARCH

(GARCH)(Bollerslev, 1986) models that financial time series have conditional heteroskedas-

ticity, i.e., a time-varying second moment. Recently, various bivariate GARCH (BGARCH)

type models have been used to estimate time-varying hedge ratios (Cecchetti, Cummby &

Figlewski, 1988; Baillie & Myers, 1991; Kroner & Sultan, 1993; Bera, Garcia & Roh, 1997;

Lien, Tse & Tsui, 2002; Brook, Henry & Persand, 2002; Miffrre, 2004). Time-varying hedge

ratios are often referred to as the conditional hedge ratio because they are conditioned on

the information set available at the previous time period.

There are some interesting issues that arise from the above studies. First, financial as-

set returns are known to have leverage effects, i.e., negative shocks usually generate higher

volatilities than positive shocks in the next time period. Thus, it is interesting to analyze

whether imposing asymmetries in the covariance structures help to reduce risk of the hedged

portfolio. Second, most of the above studies use the BGARCH model under the conditional

bivariate normality assumption. However, it is well known in the finance literature that con-

ditional normality is not enough to explain unconditional skewness and kurtosis of financial

time-series data. The usefulness of flexible conditional distributions for reducing risk of the

hedged portfolio could be another issue. Third, there have been large controversies among

various studies whether the conditional hedging strategy can outperform the unconditional

(OLS) hedging strategy. The conditional hedge ratio, for example Baillie and Myers (1991),

Park and Switzer (1995), Garcia, Roh, and Leuthold (1995), and Bera, Garcia, and Roh
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(1997) generates a higher variance reduction than a conservative OLS hedge ratio, while

recent studies, for example, Collins (2000) and Lien, Tse and Tsui (2002), found that adapt-

ing a conditional hedging scenario does not provide any advantage for the futures hedge

compared to an OLS hedging scenario. We investigate the situation under which the condi-

tional hedging strategy outperforms the naive hedging strategy by comparing the degree of

fluctuation of the conditional variances.

In this paper, the spot and futures returns series for corn and soybeans are examined

using Engle’s (2002) dynamic conditional correlation (DCC) BGARCH model. For our data,

the DCC specification is chosen against the constant conditional correlation (CCC) specifi-

cation by the constant conditional correlation test proposed by Bera and Kim (2002). Using

the test results we modify these BGARCH models to more flexible ones to estimate the con-

ditional hedge ratios: (i) adapting more flexible bivariate density functions such as bivariate

Student’s t and skewed-t density functions; (ii) considering asymmetric individual condi-

tional variance equations; and (iii) incorporating asymmetries in the conditional correlation

equation for the DCC case. By doing this we can investigate the benefits of considering both

the asymmetric conditional covariance structures and flexible conditional bivariate densities.

Moreover, we analyze empirical linkages between the variability of hedge ratios and hedging

performance to investigate under which cases conditional hedging strategy does not perform

well. The variability of the forecasted hedge ratios, (i.e., standard deviation of the forecasted

hedge ratios), can be estimated using the bootstrap method. For the hedging effectiveness

many studies use variance reduction, i.e., the reduction in the conditional variance of the

portfolio returns relative to the no hedging scheme, as a measure of the hedging effective-

ness. Although variance reduction is a widely used measure for the hedging effectiveness, it

may not represent an appropriate risk when the portfolio return distribution deviates from

a normal distribution. To incorporate such a problem of variance reduction measure we con-

sider tail risk measures, such as the Value at Risk (Jorion, 2000) and the Expected Shortfall
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(Artzner, Delnaen, Eber & Heath, 1999), to evaluate hedging performance in addition to the

variance reduction measure.

It is well known that commodity markets have different structural characteristics such

as seasonality, time-to-maturity and convenience yields which can influence model specifica-

tions (see Sørensen, 2002; Richter & Sørensen, 2002). However, many papers, for example,

Sørensen (2002) and Richter and Sørensen (2002), did not consider the estimation of hedge

ratios but agriculture commodity futures. Our objective is estimating and evaluating condi-

tional hedge ratios, using various BGARCH model specification, in the agriculture commod-

ity market. In particular, we mainly focus on model specification and empirical comparison

of various BGARCH models with different types of conditional variance-covariance speci-

fications and distributions. There are numerous articles which consider various BGARCH

models in the context of the conditional hedge ratio estimation without considering the

structural characteristics of agriculture commodity market. Thus, our model is consistent

with the literature and makes our findings more comparable to previous studies.

In the next section, the model specification and estimation method are presented. The

data used in this study and their descriptive statistics are described in Section 3. The re-

sults from the estimation and examination of the hedging effectiveness of various BGARCH

specifications, along with a conventional OLS hedging scheme, are reported in Section 4.

Finally, Section 5 offers some concluding remarks.

2 Model specification

The unconditional optimal hedge ratio can be derived by maximizing quadratic expected

utility assuming the futures price follows a martingale process. This unconditional optimal

hedge ratio can be estimated using ordinary least squares (OLS) by regressing the spot

returns on the futures returns. In a similar way, the conditional optimal hedge ratio, βt−1,
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at time t can be written as

βt−1 =
−Cov(Rs

t , R
f
t |Ft−1)

Var(Rf
t |Ft−1)

, (1)

where Rs
t = P s

t −P s
t−1 and Rf

t = P f
t −P f

t−1 are the returns of spot and futures prices denoting

the natural logarithms of spot and futures prices at time t as P s
t and P f

t , respectively, and

Ft−1 is the σ-algebra generated by all the available information up to time t − 1. Since

βt−1 is conditioned on the information set, Ft−1, the optimal hedge ratio is time-varying. A

natural and widely used model for estimating (1) is a bivariate GARCH (BGARCH) model.

In general, BGARCH model can be written as

Rt = mt(ζ) + εt (2)

εt|Ft−1 ∼ F (0, Ht), (3)

where Rt = (Rs
t , R

f
t )′, εt = (ε1t, ε2t)

′, mt(·) = (m1t(·),m2t(·))′ denotes a vector-valued condi-

tional mean function, ζ = (ζ1, ζ2)
′ is p×2 conditional mean parameters, F denotes a bivariate

distribution, and Ht is a time-varying 2× 2 positive definite conditional covariance matrix.

We consider two types of BGARCH models. Bollerslev (1990) suggested a simplified version

of Ht in (3) such that the conditional correlation between ε1t and ε2t is constant over time.

Ht for the constant conditional correlation (CCC) model can be written as

Ht =

[
h11,t h12,t

h21,t h22,t

]
=

[ √
h11,t 0

0
√

h22,t

] [
1 ρ12

ρ12 1

] [ √
h11,t 0

0
√

h22,t

]
, (4)

where ρ12 is the constant correlation coefficient. The individual variance h11,t and h22,t are

assumed to follow a standard GARCH process (Bollerslev, 1986), for example,

hii,t = ωi + βihii,t−1 + γiε
2
i,t−1, for i = 1, 2. (5)

If we assume conditional normality, the number of parameters to be estimated is only

7 in a CCC-BGARCH(1,1) model. The positive definiteness of Ht is assured if h11,t > 0

and h22,t > 0. This conditions can be immediately satisfied by usual parameter constraints
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(ωi > 0, γi > 0, βi > 0, and γi + βi < 1) of an individual GARCH(1,1) process. These nice

features lead to wide usages of a CCC-BGARCH model as a tool for estimating time-varying

hedge ratios (see, Park & Switzer, 1995; Lien, Tse & Tsui, 2002). However, the constancy

of the correlation coefficient over the time horizon is a strong assumption and purely an

empirical question. Hence, we adopt Bera and Kim’s (2002) procedure to test the constancy

of the conditional correlation assumption in a BGARCH model. There are two attractive

aspects of their test procedures as compared to other test procedures of the constancy of

conditional correlation (e.g. Tse, 2000): (i) it does not depend on the functional form of

the individual conditional variance equation; and (ii) they suggest a studentized version of

the test statistic when error distributions are not normal. Since we deal with more flexible

BGARCH models in the sense that we extend to an individual asymmetric GARCH model

with more general error distributions, we expect their test statistic to be useful in our case.

Denoting the standardized disturbances uit = εit/
√

hii,t, i = 1, 2, the test statistic is written

by

IMe =

[∑T
t=1(v̂

∗2
1tv̂

∗2
2t − 1− 2ρ̂2)

]2

4T (1 + 4ρ̂2 + ρ̂4)
, (6)

where v∗t = (v∗1t, v
∗
2t)

′ =

(
u1t−ρu2t√

1−ρ2
, u2t−ρu1t√

1−ρ2

)′
, and ρ might be estimated consistently by

ρ̂ =
∑T

t=1 û1tû2t/T . It is well known that using the standard normal conditional error

distribution in the GARCH model is not enough to explain unconditional heavy tail behaviors

of financial time-series data. Since (6) is derived from the conditional normality assumption

of the error distribution the test statistic can be misspecified if the error distribution follows

a non-normal distribution. This leads to an over-rejection of the null hypothesis. In such

cases, Bera and Kim (2002) suggest a studentized version of the test statistic. If we denote

ηt = v̂∗
2

1tv̂
∗2
2t − 1− 2ρ̂2, a studentized version of (6) can be written as

IMs =

[∑T
t=1 ηt

]2

∑T
t=1(ηt − η̄)2

. (7)
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When we reject the null hypothesis, i.e. there is a time-varying conditional correlation,

the CCC-BGARCH model is misspecified. Thus, one has to deal with time-varying condi-

tional correlation models. In such cases, we used the dynamic conditional correlation (DCC)

BGARCH model proposed by Engle (2002). The DCC-BGARCH model can be represented

as

Ht = DtΓtDt, (8)

Dt = diag{h1/2
11,t, h

1/2
22,t}, (9)

hii,t = ωi + βihii,t−1 + γiε
2
i,t−1, i = 1, 2, (10)

Γt = (diag{Qt})−1/2Qt(diag{Qt})−1/2, (11)

Qt = (1− δ1 − δ2)Q̄ + δ1ut−1u
′
t−1 + δ2Qt−1, (12)

where εt denotes a vector of unexpected returns and ui,t = (u1t, u2t) = εi,t/
√

hii,t denotes

a vector of standardized unexpected returns. hii,t can be defined as a standard GARCH

process, and Qt denotes a 2 × 2 symmetric positive definite matrix. Q̄ = E[utu
′
t] is a 2 × 2

unconditional variance matrix of ut. δ1 and δ2 are scalar parameters, and δ1 ≥ 0, δ2 ≥ 0

and δ1 + δ2 < 1 guarantee positive definiteness of the conditional correlation matrix during

the optimization. There are other alternative specifications such as the diagonal vech and

positive definitive variance specifications (Engle & Kroner, 1995). Positive definiteness of the

conditional variance-covariance matrix for the vech model is not assured without imposing

a nonlinear parametric restriction. Moreover, the number of parameters to be estimated is

21 for the vech model. Thus we use the simplified version of the DCC model (Engle (2002)).

Given the bivariate model of the spot and futures prices changes, the time-varying hedge

ratio can be expressed with the variance-covariance estimates from (4) or (8) for the CCC

and DCC models, respectively, as

β̂t−1 =
ĥ12,t

ĥ22,t

=
ĥsf,t

ĥf,t

. (13)
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2.1 Conditional mean specifications

It has been shown by many empirical studies that the spot and futures prices for the same

commodity have very similar behaviors (move up and down together) in the long-run. How-

ever, there could be short-run deviations from the stable long-run relationship due to mispric-

ing of either the spot or futures price, transition costs or market microstructure effects among

others. These leads many studies to incorporate vector error correction models (VECM) to

estimate the optimal hedge ratio (Brooks, Henry, & Persand, 2002; Yang and Awokus, 2003;

Lien & Yang, 2004). In the commodity market, harvest patterns, convenience yields and

storage cost have been considered to explain spot prices behavior (Sørenson, 2002; Moschini

& Myers, 2002). Because of these characteristics of the commodity market, some studies

tried to include such variables in VECM. Moreover, by considering the stochastic interest

rate in the conditional mean equation, Fortenbery and Zapata (1996), and Yang, Bessler,

and Leathan (2001) showed the existence of a cointegrating relationship between the spot

and futures prices. However, we do not consider the above characteristics in the conditional

mean specification. In Section 3, we show that the cointegrating relationships between the

spot and futures prices of corn and soybeans exist without considering such variables for our

data. Hence, we consider a bivariate VECM as

Rt = C +

p∑
i=1

ΓiRt−1 + Πvt−1 + εt, (14)

where vt−1 = (Ps,t−1 − ω0 − ω1Pf,t−1) denotes a cointegrating equation, and

C =

[
Cs

Cf

]
, Γi =

[
Γs

i,s Γs
i,f

Γf
i,s Γf

i,f

]
, Π =

[
Πs

Πf

]
.

When the spot price exceeds the long-run relationship of the spot and futures prices at

time t− k for some k, (i.e., vt−k > 0), Πs and Πf are supposed to have negative and positive

values, respectively, in order to maintain the long-run relationship. In a similar manner,

when the spot price falls below the long-run relationship, (i.e, vt−k < 0), Πs and Πf are

expected to have negative and positive signs, respectively.
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2.2 Asymmetry specifications

It is worthwhile to note that only the magnitude of past return innovations are taken into

consideration to determine the variance and covariance at time t in the CCC and DCC

BGARCH models. However, the positive and negative values of the past return innovations

may affect the present variance and correlation differently in the real world. In order to

incorporate effects of previous positive and negative shocks separately in the conditional

covariance matrix, we use the GJR (Glosten, Jagannathan & Runkle, 1993) specification in

the individual GARCH process (for CCC and DCC) and the conditional correlation equation

(for DCC). The GJR specification of an individual GARCH process can be written as

hii,t = ωi + βihii,t−1 + γiε
2
i,t−1 + τiIt−1ε

2
i,t−1, i = 1, 2, (15)

where It = 1 if εt < 0 and otherwise 0. When τi > 0, previous negative shocks generate

higher volatility than positive shocks. This effect is called the leverage effect. In a similar way,

asymmetric specification of the conditional correlation equation (12) could be represented

by

Qt = (1− δ1 − δ2)Q̄− δ3S̄ + δ1ut−1u
′
t−1 + δ2Qt−1 + δ3st−1s

′
t−1, (16)

where st = I[ut < 0]
⊙

ut and S̄ = E[sts
′
t]. I[·] is the indicating function and

⊙
denotes

the element-by-element multiplication operator. The asymmetry representation of the con-

ditional correlation equation is only possible for the DCC model because the CCC model has

the constant conditional correlation by its construction. We replace Q̄ and S̄ by their em-

pirical counterparts, T−1
∑T

t=1 utu
′
t and T−1

∑T
t=1 sts

′
t, respectively, which make estimation

more simple, as suggested by Engle and Sheppard (2001) and Engle (2002).

2.3 Distribution specifications

Most applications of BGARCH models with the estimation of the optimal hedge ratio are

based on the bivariate normality of conditional distribution. Bollerslev and Wooldridge
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(1992) showed consistency and asymptotic normality of the quasi-maximum likelihood esti-

mator (QMLE) of the GARCH model. Because of these attractive features of QMLE, con-

ditional normality is usually adopted in many applications. However, Engle and González-

Rivera (1991) showed that there is a large efficiency loss of QMLE when the underlying

conditional distribution is non-normal. Thus, the forecasting ability of the GARCH model

based on QMLE might be affected by this efficiency loss. For example, forecasting intervals

could be much wider than the true intervals. In many applications of the GARCH model

it has been found that conditional normality is not enough to explain excess kurtosis in the

financial data. The unconditional distribution of financial returns is often skewed so that the

conditional distribution which can capture skewness is also needed. With the above reasons

we consider two conditional distributions: (i) we assume the underlying disturbance follows

bivariate Student’s t distribution; and (ii) we assume a skewed-t distribution to capture

skewness in addition to high excess kurtosis.

The standardized bivariate Student’s t density can be defined as

g(z|ν) =
Γ((ν + 2)/2)

Γ(ν/2)(π(ν − 2))

[
1 +

z′z
ν − 2

]−(2+ν)/2

, (17)

where Γ is the gamma function and ν denotes the degree of freedom and is restricted to be

larger than 2 to ensure the covariance matrix exists. To incorporate skewness, Bauwens and

Laurent (2005) suggest a multivariate skewed-t density which is based on Fernández and

Steel’s (1998) skewed filter to multivariate Student’s t. A standardized bivariate skewed-t

density is

g(z|ξ, ν) =

(
2√
π

)2
(

2∏
i=1

ξisi

1 + ξ2
i

)
Γ ((ν + 2)/2)

Γ(ν/2)(ν − 2)

(
1 +

κ′κ
ν − 2

)−(2+ν)/2

, (18)

where

κ = (κ1, κ2)
′,

κi = (sizi + mi)ξ
−Ii
i ,
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mi =
Γ((ν − 1)/2)

√
ν − 2√

πΓ((ν/2))

(
ξi − 1

ξi

)
,

s2
i =

(
ξ2
i +

1

ξ2
i

− 1

)
−m2

i ,

Ii =

{
1 if zi ≥ −mi

si−1 if zi < −mi

si
.

mi(ξi, ν) and si(ξi, ν) are the mean and standard deviation of the non-standardized univariate

skewed-t of Fernández and Steel (1998). Note that the sign of ln ξi indicates the direction of

the skewness: when ln ξi > 0 (< 0), the third moment is positive (negative), and density is

skewed to the right (left).

2.4 Model types

For the CCC representation we consider two types of individual GARCH processes: (i) a

symmetric individual GARCH model (a standard GARCH process); and (ii) an asymmet-

ric individual GARCH model (the GJR representation). For DCC case we can also add

asymmetric terms in the conditional correlation equations in addition to (i) and (ii) given

in the CCC model. Thus, two more types of models can be considered for the DCC model:

(iii) asymmetric terms are imposed only to the conditional correlation equations; and (iv)

asymmetric terms are added to all equations (individual GARCH equations and conditional

correlation equations). For convenience we will write (i), (ii), (iii) and (iv) as T1, T2, T3

and T4, respectively, throughout the paper. Since there is one conditional mean and three

distributional specifications we have 6 and 12 models for the CCC and DCC cases, respec-

tively.
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3 Data and descriptive statistics

We investigate the time-series behavior of two daily cash and nearby futures prices for corn,

and soybeans traded on the Chicago Board of Trade (CBT). The nearby futures price series

were constructed as follows. First, we specified the nearby futures contract as the contract

with the nearest active trading delivery month to the day of trading. Prices for the nearby

futures contract are used until the contract reaches the first day of the delivery month or

its expiry date. Then, prices for the next nearby contract are used. The daily cash closing

prices for corn and soybean are No.2 yellow corn cash prices in Chicago and No.1 yellow

soybean cash prices in Chicago, respectively. Datastream provided all data1.

The data cover the period from January 1, 1997, to January 23, 2001, for a total of 1060

observations. Samples are split into two periods. The first period covers from January 1,

1997, to October 31, 2000 (1000 observations) and is used for the in-sample model estimation

to evaluate various models and statistical tests. The second period covers the next 60 days

and is used for the out-of-sample evaluation of the estimated models. The spot and futures

returns, Rs
t and Rf

t , are calculated by P s
t −P s

t−1 and P f
t −P f

t−1, respectively, where P s
t and P f

t

are the logarithms of spot and futures prices at time t. We should note, as we addressed in

Introduction, our main focus is the model specification and empirical comparison of various

types of BGARCH models for conditional hedge ratio estimation and evaluation. Thus,

even though the analyzed data set is limited, this paper can provide informative findings

comparable to previous studies.

We perform the Augmented Dickey-Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) tests with including a constant and linear trend in the regression equation. The

results for these two tests are reported in Table 1. For all prices data, we fail to reject the

null hypothesis of the ADF test while we reject the null hypothesis of the KPSS test. These

1The information from Datastream shows that cash and futures prices are recorded at the end of the
trading day.
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indicate that all price series are non-stationary. However, for the returns series, as expected,

we reject the null hypothesis of the ADF test while we fail to reject the null hypothesis of

the KPSS test. Thus, the returns series are stationary.

[TABLE 1]

The results of Johansen’s cointegration test are presented in Table 2. The Johansen test

statistics, for both the maximum eigenvalue form and the trace form, clearly reject the null

of no cointegrating vector at a 5% level for both the corn and soybean series. However,

those cannot reject the null of one cointegrating vector. These results suggest the existence

of a cointegrating relationship between the spot and futures prices in the corn and soybean

series. These results show there exists a cointegrating relationship between the spot and

futures prices without considering the stochastic interest rate and time-to-maturity effects

in the conditional mean equation.

[TABLE 2]

The summary statistics for the in-sample return data are presented in Table 3. The sample

kurtosis indicate that all returns have excess kurtosis (> 3), and there is also some degree

of skewness in the returns. The futures returns for soybeans exhibit not only high excess

kurtosis but also distinct negative skewness. All the Jarque-Bera statistics are greater than

χ2
2,0.99 = 9.21, and, thus, the null hypothesis of a normality assumption is strongly rejected.

This indicates that all returns series are highly non-normal. The Ljung-Box (LB) test statis-

tics at lags 12 day,Q and Q2, are calculated using the series and its squares, respectively.

Higher values of Q and Q2 indicate that there are first order dependence and second order

nonlinear dependence in the data, respectively. This implies there is a significant presence

of conditional heteroskedasticity.

The reported cointegration test results and descriptive statistics justify the usage of VEC
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and BGARCH models as the conditional mean and conditional variance, respectively. More-

over, highly non-normal behaviors of the spot and futures returns might be well explained

by the conditional student’s t and skewed-t density functions.

[TABLE 3]

4 Empirical results

4.1 Model estimation results

We adapt a two-stages estimation method to lessen the computational burden for the con-

ditional variance-covariance equations. In the first stage, conditional mean equations for

the spot and futures returns are estimated using the VECM. In the second stage, various

BGARCH models are fitted to the estimated residuals from the first stage using the maxi-

mum likelihood estimation method.

Table 4 summarizes the results of the VEC models. The optimal truncation lag p in (14)

is selected based on the Schwartz information criteria for each model.

[TABLE 4]

The estimated VECM coefficients (Π̂s and Π̂f ) are all correctly signed, i.e., negative and

positive for the spot and futures returns equations, respectively. Based on the estimated

residuals, we conduct the Ljung-Box Q, Q2 and normality tests. None of the Q statistics

are significant. This indicates that the VECM takes account of the first order dependence

presence in the data very well. High values of Q2 statistics implies there still remain the

second order dependence in the residuals. Jarque-Bera (JB) test statistics show that the

residuals are highly non-normal. High Q2 and JB test statistics indicate that constructing

non-normal BGARCH models can help to explain behaviors of the underlying residuals series.
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To determine whether the conditional correlation is time-varying, we perform the constancy

of the conditional correlation test proposed by Bera and Kim (2002). Table 5 shows the

results of the tests for the spot and futures residuals of corn and soybean models.

[TABLE 5]

As mentioned before, IMe test statistics seem to over-reject the null hypothesis of the con-

stancy of conditional correlations. This over-rejection might be due to the highly non-normal

characteristics of the estimated residuals from the first stage estimation. Thus, we use the

studentized version of IMe, IMs, with two specifications: the individual conditional variance

functions are symmetric (T1) and asymmetric (T2) GARCH processes. IMs test statistics,

for both T1 and T2, clearly reject the null of the constancy of conditional correlation at a 5%

level. Thus, we adapt the DCC specification of Engle (2002) to estimate BGARCH models

for both corn and soybean series.

The estimates for the corn and soybean models along with the values of log-likelihood

functions and model selection criteria (Akaike information criteria (AIC) and Schwartz in-

formation criteria (SIC)) are reported in Tables 6 and 7, respectively.2 The standard errors,

calculated using a robust covariance matrix formula, are given in parentheses.

[TABLE 6]

[TABLE 7]

For the corn model (Table 6), all τ̂1’s are significant and their signs are positive. These imply

that there are leverage effects for the spot series. For the futures series τ̂2 are significant

and positive except for the case of the conditional normal model. For the conditional nor-

mal models δ̂1’s are significant but δ̂2’s are not. This implies that time-varying conditional

2AIC and SIC are calculated, respectively, by −2loglik + 2(κ/T ) and −2loglik + κ(ln(T )/T ), where κ

denotes dimension of parameter vector, T is sample size, and loglik is log-likelihood value.
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correlations are present but not persistent. When we estimate models under conditional

Student’s t and skewed-t distribution, δ̂2 are high and, moreover, significant. δ̂3’s which rep-

resent asymmetry effects in the conditional correlation equations are not significant except in

the T3-skewed-t model. The estimated distribution parameters are highly significant for the

Student’s t and skewed-t models. The degree of freedom, ν̂ is around 3.2 for both Student’s

t and skewed-t models. ξ̂1 < 1 and ξ̂2 > 1 stand for negative and positive skewness for the

standardized residuals of the spot and futures equations, respectively.

We can consider the difference of log-likelihood values between Student’s t and normal

models, 347.4, 315.5, 351.3 and 332.6, as increments for incorporating excess kurtosis for T1,

T2, T3 and T4 models, respectively. For example, a low value of the estimated degree of

freedom, 3.0429 for T4, also supports that assertion. Gains in the log-likelihood values of

skewed-t from those of Student’s t are 14.8, 23.0, 14.6 and 15.0 for T1, T2, T3 and T4, re-

spectively. These values could be thought of as contributions due to distribution asymmetry.

We could perform the likelihood ratio (LR) test for the null hypothesis ξ1 = ξ2 = 0, such

that the test statistic can be calculated by 2(loglikTj
− loglikTi

) ∼ χ2
2 where i = j = 1, 2, 3, 4,

and i and j denote the Student’s t and skewed-t models, respectively. The LR values are

29.6, 46.0, 29.2 and 30.0 for i = j = 1, 2, 3, 4, respectively, and clearly high enough to reject

the null hypothesis (χ2
2,0.99 = 9.21). Based on the model selection criteria of AIC and SIC,

T2, T4 and T4 are more attractive than other models for normal, Student’s t and skewed-t

models, respectively. Overall, the T4-skewed-t model has the lowest AIC and SIC values.

For the soybean models (Table 7) all τ̂1 and τ̂2 are insignificant. Moreover, all δ̂3 are also

insignificant, indicating the absence of asymmetry effects in the soybean series. This means

that previous positive or negative shocks have the same influence on the volatility of soybean

returns. This contrast with the corn series findings in which the effect of negative shocks

on volatility is larger than positive shocks. On the other hand, almost all γ̂1, γ̂2, β̂1, β̂2, δ̂1

and δ̂2 are very significant. The difference of log-likelihood values between the Student’s t
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and normal models are 380.6, 365.0, 368.8 and 376.8 for T1, T2, T3 and T4, respectively.

Similar to the corn case, these values explain excess kurtosis of the standardized residual

series. The difference of log-likelihood values between the skewed-t and Student’s t models

are 0.8, 0.7, 0.7 and 0.7 for T1, T2, T3 and T4, respectively.

Incorporating skewness does not increase the goodness-of-fit since the LR test statistics

for H0 : ξ1 = ξ2 = 0 ( 1.6, 1.4, 1.4 and 1.4 for T1, T2, T3 and T4, respectively ) are less

than χ2
2,0.99 = 9.21. Overall, the T1-Student’s t model has the lowest AIC and SIC values.

Based on the standardized residuals from each BGARCH model, we conduct the Ljung-

Box Q and Q2. None of the Q and Q2 statistics are significant. This indicates that the

proposed models take account of first and second order dependence presented in the corn

and soybean series very well.

The time-varying hedge ratios of corn and soybeans calculated by (13) are plotted in Fig-

ure 1. We only present the estimated hedge ratios of the best and worst cases in terms of AIC

values for each distribution specification. To conserve space we do not report all the results

but these can be obtained from us on request. In the Figure 1, the unconditional hedge ratio

estimates of 0.858 and 0.851 based on the OLS method, for corn and soybeans, respectively,

are plotted with the horizontal lines. In case of corn, the estimated time-varying hedge ratios

from the conditional normal specifications demonstrate similar movements around the un-

conditional hedge ratios. Unlike cases of the conditional normal specification, the Student’s t

and skewed-t specifications yield that the mean of the estimated conditional hedge ratios are

strictly higher than the unconditional hedge ratios. Especially, for the T4-Student’s t and

T4-skewed-t specifications, the hedge ratios move along with the OLS hedge ratios without

heavy local fluctuations. In the case of soybeans, the estimated conditional hedge ratios

for the Student’s t and skewed-t specifications seem to be very similar, but the estimated

hedge ratios for the conditional Student’s t models are slightly different from those of the

conditional normal model. This difference might be due to the excess kurtosis. Similar to
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the models of conditional Student’s t and skewed-t specifications for corn, the means of the

estimated time-varying hedge ratios for all models are higher than the unconditional hedge

ratio.

[FIGURE 1]

4.2 Hedging performance of BGARCH models

The results of the model estimation for several BGARCH specifications provided us that

there are significant leverage effects (τ̂1 and τ̂2 > 0) in the corn series while the soybean

series do not have such effects. Moreover, AIC and SIC show us that the T4-skewed-t and

T1-Student’s t models are the best for the corn and soybean models, respectively. However,

these distinct characteristics of certain models may not lead to better hedging performance

against other competing models which might have an even lower degree of the goodness-of-

fit. Thus, empirical investigations of the in- and out-of-sample hedging performance of the

estimated BGARCH models are needed.

The most frequently used hedging performance measure is variance reduction. Variance

reduction in the conditional variance of the portfolio returns relative to the no hedging

scenario can be expressed as

V R = 1− V ar(Rp)

V ar(Rs)
, (19)

where V ar(Rp) and V ar(Rs) denote the variances of the hedged and unhedged portfolio,

respectively. The hedged portfolio at time t is represented by

Rp
t = Rs

t − βt−1R
f
t .

However, taking the variance as a risk measure has some drawbacks: (i) the variance

takes care of not only bad events but good events; and (ii) the variance does not represent

the proper scale if the underlying distribution is deviated from normal. Thus, we evaluate
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the hedging performance by Value at Risk (VaR) and Expected Shortfall (ES) along with

variance reduction. VaR is very a popular risk measure such that it is an estimate of how

much a certain portfolio can lose at a given confidence interval and is used by many banks

and financial institutions as a key measure of market risk (Jorion, 2000). VaR is defined as

V aRq(R
p) ≡ − inf

ν
{ν : Pt(R

s ≤ ν) ≥ q} = QRp(q), (20)

where q is a prescribed probability and QRp denotes the quantile function of Rp. VaR gives

only an upper bound on the losses that occur with a given frequency. However, ES is defined

as expectation of all events less than VaRq and can be written by

ES = −1

q

∫ q

0

QRp(p)dp. (21)

ES is known as a coherent risk measure satisfying certain conditions (Artzner, Delnaen,

Eber & Heath, 1999). We use the bootstrap method to forecast the future hedge ratio

and calculate the aforementioned three risk measures for 60 days horizons based on twelve

different types of BGARCH models. For example, the following recursion procedures can

be used for the estimated DCC-T4 model to obtain the bootstrap replicates {ε∗1,b, · · · , ε∗T,b},
b = 1, · · · , B, which has similar behavior to the original εt:

ĥ∗ii,t = ω̂i + β̂iĥ
∗
ii,t−1 + γ̂iε

∗2
i,t−1 + τ̂iIt−1ε

∗2
i,t−1, for i = 1, 2,

Q̂∗
t = (1− δ̂1 − δ̂2)Q̄∗ − δ̂3S̄∗ + δ̂1û

∗
t−1û

′∗
t−1 + δ̂2Q̂

∗
t−1 + δ̂3ŝ

∗
t−1ŝ

′∗
t−1,

ε∗t = Ĥ
∗1/2
t η∗t ,

where (ω̂i, β̂i, γ̂i, τ̂i, δ̂1, δ̂2, δ̂3)
′, i = 1, 2, are the maximum likelihood (ML) estimates under the

presumed conditional distribution such as the Student’s t or skewed-t distribution, the initial

value for H∗
t is given by H∗

1 = Ĥ1, and η∗t are random draws from the empirical distribution,

say, (F̂T ), of the standardized residuals. In the next step, (ω̂i,b, β̂i,b, γ̂i,b, τ̂i,b, δ̂1,b, δ̂2,b, δ̂3,b)
′

are estimated by the ML method using the bootstrap replicates ε∗t,b for t = 1, 2, · · · , T
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and b = 1, 2, · · · , B. Thus, our bootstrap method incorporates the estimation uncertainty.

Bootstrap forecasts for future values of HT+k are obtained by the following recursions:

ĥ∗ii,T+k = ω̂i,b + β̂i,bĥ
∗
ii,T+k−1 + γ̂i,bε

∗2
i,T+k−1 + τ̂i,bIT+k−1ε

∗2
i,T+k−1,

Q̂∗
T+k = (1− δ̂1,b − δ̂2,b)Q̄∗ − δ̂3,bS̄∗ + δ̂1,bû

∗
T+k−1û

′∗
T+k−1

+δ̂2,bQ̂
∗
T+k−1 + δ̂3,bŝ

∗
T+k−1ŝ

′∗
T+k−1,

ε∗T+k = Ĥ
∗1/2
T+kη∗T+k, for i = 1, 2 k = 1, 2, · · · , 60,

where the initial values for ε∗T and Ĥ∗
T are given by εT and ĤT , respectively, and η∗T+k is

random draws from F̂T . As we mentioned before, the DCC-T4 model includes DCC-T1,

-T2 and -T3, and CCC-T1 and -T2 as special cases. Thus, presented bootstrap procedures

are immediately applied to other model types. Since there are B numbers of the hedged

portfolio returns at each time T + k, k = 1, 2, · · · , 60, 60 × B numbers of samples over the

whole forecasting horizons can be used to calculate hedging effectiveness measures. If we

consider an empirical distribution, say, Ĝ(Rp), of the hedged portfolio returns, VaR at 5%

and 1% are calculated by the sample quantiles at q = 0.05 and 0.01, respectively, as

V aRq(R
p) = Q̂Rp(q), (22)

where Q̂Rp denotes sample quantile function of Ĝ(Rp). Since ES is given by the expected

returns lower than a given level, say, R̃ which, of course, depends on the quantile, q. Equation

(21) can be approximated by the Riemann sum

ES ' −
m∑

i=1

ci[Ĝ(ci)− Ĝ(ci−1)], (23)

where ci is a sufficient fine grid of the interval [min{(Rp)}, R̃]. For computational conve-

nience, (23) can be represented with the sample quantile function in a form of the Riemann

sum by

ES ' −
∑
qi≤q̄

Q̂Rp(qi)[qi − qi−1], (24)
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where

q̄ = sup{qj : Q̂Rp(qj) ≤ R̃}.

Tables 8 and 9 summarizes the in- and out-of-sample performance of the hedge ratios de-

rived from the VECM-BGARCH models compared with zero, naive (unit) and OLS hedges,

respectively. For the in-sample hedging performance, variance reduction is used to evaluate

hedging performance. On the other hand, for the out-of-sample hedging performance, vari-

ance reduction as well as VaR and ES of the portfolio returns are used to evaluate hedging

performance. VaR and ES of the portfolio returns can be calculated by (22) and (24) using

B numbers of the variance-covariance matrices at each time T + k, k = 1, 2, · · · , 60.

[TABLE 8]

[TABLE 9]

The bootstrap sample size is set to B = 500. The in-sample results are based on the 1, 000

observations used in the estimation process, while the next 60 observations are used for the

out-of-sample hedging performance.

The results of the in-sample hedging performance are reported in Table 8. For corn,

all the BGARCH specifications produce higher variance reduction than the naive hedging

strategy (β = 1), 0.6049. However, only two BGARCH representations, the T2-normal and

T4-normal, have higher variance reduction than the OLS hedge strategy. Note that the

best model for the corn is the T4-skewed-t model. Variance reduction of the T4-skewed-t,

0.6152, is less than the OLS hedging strategy, 0.6220, by 0.68%. For soybeans, all BGARCH

specifications lead to higher variance reduction than the OLS hedging strategy except for

the T4 cases. Also note that the best model in terms of AIC and SIC for soybeans is the

T1-Student’s t model. The variance reduction of the T1-Student’s t, 0.7607, is relatively

low compared to other BGARCH representations. For both corn and soybeans, the normal
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models outperform Student’s t and skewed-t models in terms of VR on average. It is worth

noting that the best model for corn and soybeans does not lead to better hedging perfor-

mance compared to the OLS hedging strategy in the in-sample period.

Table 9 shows the results for the out-of-sample hedging performance. For corn, three

BGARCH specifications, i.e., the T4-Student’s t, T3-skewed-t and T4-skewed-t, outperform

the OLS hedging strategy. This finding might be reasonable since the three mentioned mod-

els showed high goodness-of-fit in the model estimation stage. However, the difference of

variance reduction between those three and the OLS scheme are relatively small. For each

distributional specification we would say that there are improvements of variance reduction

by considering the leverage effects in the conditional covariance matrix. Note that τ̂1’s and

τ̂2’s are very significant for the corn models. The contribution of asymmetric effects to the im-

provement of hedging performance is also shown empirically by Brooks, Henry and Persand

(2002). They show that asymmetries help to reduce portfolio risk at the shortest forecasting

horizons, and these distinct benefits decrease as the duration of the hedge is increased. Our

results support their findings. However, we find such benefits are relatively small. For exam-

ple, the difference of the average variance reduction percentage between the T4-skewed-t and

the T1-skewed-t is 1.16% (67.21%−66.05%). VaR and ES at 5% also provide similar results

in which those three models have relatively low risk. However, if we consider VaR and ES

at 1%, T1- and T2-normal perform better than the T3- and T4-skewed-t models. This im-

plies that distributions of the portfolio returns are not symmetric ones so that near-extreme

tail risk measures, say VaR and ES at 1%, yield different results from a conservative risk

measure, say, variance. For soybeans no BGARCH specification dominates the OLS hedging

scheme in terms of variance reduction. Variance reduction of the T1-Student’s t which has

the highest SIC among all considered models is not outstanding, i.e., it is ranked as the 4th

lowest value. The contributions of asymmetric effects are negligible for the soybean case.

This can be resulted from insignificance of τ̂1, τ̂2 and δ̂3 in Table 7. VaR and ES at 5% and
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1% show roughly similar patterns to associated variance reductions. This implies estimated

hedged portfolios do not seem to have asymmetric distributions.

Many previous studies compared the performance of the conditional hedge ratios to the

OLS hedge ratio and provided conflicting results from each other. For example, Baillie and

Myers (1991) and Park and Switzer (1995) found that the time-varying hedge ratios com-

puted from BGARCH models showed better out-of-sample performance in terms of variance

reduction than the OLS hedge ratio. On the other hand, Lien, Tse and Tsui (2002) found

that the CCC-BGARCH hedge strategy provided no benefits in variance reduction over the

OLS hedge. So far, there is no definite conclusion concerning the benefits of using BGARCH

models in optimal hedging performance. These compelling questions can be revisited by

examining the variation of the estimated conditional hedge ratio. Simply speaking, if the

conditional hedge ratios are too volatile, the performance of these hedge ratios is likely to

be deteriorated. On the other hand, if the conditional hedge ratios are constant, i.e., the

OLS hedge ratio, they lack flexibility. Thus it can be useful to compare the variance of

the estimated conditional hedge ratio among various conditional and unconditional hedging

models to see the relationship between the hedging performance and the variance of the

estimated time-varying hedge ratio. Since we use the bootstrap method to forecast a future

time-varying variance-covariance matrix, standard deviation of the estimated hedge ratios

at each forecasting time T + k, k = 1, 2, · · · , 60 can be calculated. Figures 2 displays the es-

timated standard deviation of the bootstrapped hedge ratios at T +k for corn and soybeans.

For corn, the standard deviation of the T4-Student’s t and T4-skewed-t are very smooth and

relatively low compared to other specifications. These smooth and low standard deviation of

hedge ratios could make those two models perform well in terms of variance reduction. This

relatively low variability can also be confirmed in Figure 1. In Figure 1, the hedge ratios of

the T4-Student’s t and T4-skewed-t show little local fluctuations compared to other models.

The difference between the T1-normal and T4-skewed-t models is worth mentioning. Even
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though the values of the standard deviations of the T1-normal and T4-skewed-t models are

very similar, the variance reduction of the T4-skewed-t model is much higher than that of

the T1-normal. However, when we compare VaR and ES of T1-normal to T4-skewed-t, we

get the reverse results. These results are due to the high fluctuation of standard deviation of

the T1-normal model. Since the standard deviation of the T4-skewed-t has little variability

after a few periods and, moreover, is higher than that of the T1-normal, the tail behaviors

of such hedge ratios might be highly affected. For soybeans, the T2-normal has the lowest

standard deviation and the highest variance reduction, 0.7109, but it is dominated by the

OLS hedging strategy. In contrast to the corn case, it is hard to detect the differences of the

estimated hedge ratios from Figure 1.

[FIGURE 2]

5 Concluding Remarks

We examined the in-sample and out-of-sample hedging performance of the vector error cor-

rection model with various bivariate GARCH specifications. Specifications of asymmetric

conditional variance equations and leptokurtic and skewed conditional distribution, such as

bivariate skewed-t, help to improve the goodness-of-fit of the model estimation for the corn

series. On the other hand, imposing asymmetric effects to the conditional covariance struc-

tures and the conditional densities provides little benefits for soybeans. If the estimated

coefficients representing leverage effects are significant, then there are improvements of the

out-of-sample hedging performance in terms of variance reduction but such benefits are not

distinct. There are no systematic results that selecting the best model in terms of the model

selection criteria such as AIC and SIC may not lead to the optimal hedging strategy which

minimizes the variance of the portfolio returns. Moreover, when other tail risk measures,

such as Value at Risk or Expected Shortfall, are considered to evaluate hedging performance,
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the results are affected by distributional forms of the portfolio returns.

We estimate standard deviation of the forecasted hedge ratios using the bootstrap method

and show empirically that the out-of-sample hedging performance is highly related with the

variance of the estimated hedge ratios. When hedge ratios are too volatile, i.e., standard

deviation of the estimated hedge ratios are high, corresponding hedging performance mea-

sured by variance reduction, value at risk or expected shortfall become worse. The evidence

suggests that some BGARCH hedging strategies may have modest improvements when their

standard deviations are stable and low enough. However, the improvement is not big enough

to guarantee a BGARCH hedging strategy is superior to OLS hedging strategy. Moreover, if

one considers transactions cost, the benefits of conditional hedging strategy with BGARCH

specifications could be shrunken.

There are a number of issues that require further attention. In particular, imposing a

structure which decreases volatility of the estimated hedge ratios is of an interesting issue. In

a simple formation, one can restrict hedge ratios within a certain interval. For example, this

can be done in an extremely simple way by letting [−2σh, 2σh], where σh is an unconditional

standard deviation of a hedge ratio. Recently, some authors proposed shrinkage estimation

for the covariance matrix (Ledoit & Wolf, 2004a, 2004b). In view of the results in this paper,

it would be very interesting to see if an alternative hedge ratio which shrinks conditional

hedge ratios to an unconditional (OLS) hedge ratio can improve the hedging performance

over BGARCH or OLS hedging schemes. This will be our future study.
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Table 1. Unit-root and Stationarity tests

ADF KPSS ADF KPSS

stat. Lag stat stat Lag stat

Corn P s
t -1.8971 8 2.9270 Rs

t -8.9374 6 0.1034

P f
t -2.0618 7 2.9999 Rf

t -10.1271 5 0.0890

Soybeans P s
t -1.1487 8 3.3763 Rs

t -7.5351 7 0.1174

P f
t -1.1852 13 3.3504 Rf

t -7.8438 9 0.1101

Notes: Rs
t is the log price of the spot and Rf

t is the log price of futures. Similarly, ∆Rs
t is the spot returns and ∆Rf

t is the

futures returns. ADF is the augmented Dicky-Fuller statistic for the hypothesis that the price series have a unit root. KPSS

is the Kwiatkowski-Phillips-Schmidt-Shin statistic for the hypothesis that the price series is stationary. The critical value for

ADF and KPSS are −3.4352 and −2.8636, and 0.7390 and 0.4630 at 1% and 5%, respectively. Lag is the optimal lag truncation

chosen by SIC criteria. For KPSS bartlett kernel is used and the bandwidth is chosen by Newey-West procedures.
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Table 2. Johansen cointegration tests

Corn Soybeans

λMax λTrace λMax λTrace

γ = 0 22.335 25.747 22.836 24.348

γ = 1 3.4116 3.4116 1.5118 1.5118

Cointegrating Equation

ω0 -1.8462 -0.5464

ω1 -1.3252 -1.0829

(0.0549) (0.0269)

Notes: 5% critical values of test statistics for γ = 0 and γ = 1 are λMax = 14.07, 3.76, λTrace = 15.41, 3.76, respectively.

Standard errors are in the parenthesis.
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Table 3. Descriptive statistics

Corn Soybean

Rs
t Rf

t Rs
t Rf

t

Mean -0.0003 -0.0002 -0.0004 -0.0003

Median 0.0000 0.0000 0.0000 0.0000

Maximum 0.0799 0.0866 0.0665 0.0754

Minimum -0.1020 -0.0624 -0.0854 -0.1241

Std.Dev. 0.0162 0.0149 0.0141 0.0143

SK -0.2447 0.6323 -0.2949 -1.0806

KUR 7.0302 7.0887 6.3723 14.271

JB 686.05∗∗ 762.43∗∗ 487.85∗∗ 5482.6∗∗

Q(12) 29.13∗∗ 10.66 14.21 16.55

Q2(12) 138.3∗∗ 90.5∗∗ 131.9∗∗ 95.2∗∗

Notes: Standard errors are given in the parentheses. SK and KUR are coefficient of skewness and kurtosis (E[∆Rt−µ]2/σ and

E[∆Rt − µ]4/σ , respectively, where µ is the mean and σ is the standard deviation). JB test denotes the Jarque and Bera test

for normality defined as T [SK2/6 + (KUR − 3)2/24] which is asymptotically distributed as χ2(2). Q denotes the Ljung-Box

test statistic. * and ** denote statistical significant at the 5% and 1% level, respectively.
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Table 4. Estimation results for the VEC model

Corn Soybean

P s
t P f

t P s
t P f

t

Πs, Πf -0.0098 0.0415** -0.0329* 0.0067
(0.015) (0.014) (0.016) (0.016)

Γs
1,s, Γ

f
1,f -0.1725** 0.0731 -0.0585 -0.0267

(0.053) (0.049) (0.063) (0.064)

Γs
2,s, Γ

f
2,f -0.1738** -0.0777 0.0796* 0.1134**

(0.055) (0.051) (0.039) (0.064)

Γs
3,s, Γ

f
3,f 0.0306 0.0296

(0.055) (0.051)

Γs
4,s, Γ

f
4,f -0.0639 -0.1065**

(0.053) (0.049)

Γs
1,f , Γ

f
1,s 0.2017** -0.0197 0.0633 0.0345

(0.058) (0.054) (0.062) (0.063)

Γs
2,f , Γ

f
2,s 0.1752** 0.0759 - 0.0491 -0.0490

(0.059) (0.055) (0.062) (0.063)

Γs
3,f , Γ

f
3,s -0.0814 -0.0500

(0.059) (0.055)

Γs
4,f , Γ

f
4,s 0.1136* 0.1089*

(0.057) (0.053)
SK -0.3379 0.6211 -0.2676 -1.0218

KUR 6.3954 6.8274 6.2053 13.763
JB 496.91** 671.28** 437.82** 4976.1**

Q(10) 11.063 6.2257 12.269 12.865
Q2(10) 122.22** 65.623** 140.50** 118.24**

Notes: Since we use demeaned series for Rs
t and Rf

t there are no constant terms. Truncation lag p is selected based on SIC for

each model. p are 4 and 2 for corn and soybeans, respectively. Standard errors are given in the parentheses. * and ** denote

statistical significant at the 5% and 1% level, respectively.
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Table 5. Results for the constancy of correlation test

Corn Soybean

T1 T2 T1 T2

IMe 194.19 329.64 211.73 300.38

p-value 0.0000 0.0000 0.0000 0.0000

IMs 4.2631 10.552 5.2441 9.2765

p-value 0.0389 0.0011 0.0220 0.0023

Notes: IMe and IMs are calculated by (6) and (7), respectively. These test statistics follow χ2 with degree of freedom one. T1 and

T2 denote symmetric and asymmetric individual conditional variance specifications of bivariate GARCH models, respectively.
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