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Abstract

Diffusion processes are widely used in engineering, fiance, physics and other

fields. Usually continuous time diffusion processes are only observable at dis-

crete time points. For many applications, it is often useful to impute continuous

time bridge samples that follow the diffusion dynamics and connect each pair

of the consecutive observations. The Sequential Monte Carlo (SMC) method is

a useful tool to generate the intermediate paths of the bridge. Often the paths

are generated forward from the starting observation and forced in some ways

to connect with the end observation. In this paper we propose a constrained

SMC algorithm with an effective resampling scheme that is guided by back-

ward pilots carrying the information of the end observation. This resampling
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scheme can be easily combined with any forward SMC sampler. Two synthetic

examples are used to demonstrate the effectiveness of the resampling scheme.

Keywords: Stochastic diffusion equation, Sequential Monte Carlo, Resampling,

Priority score, Backward pilot.
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1 Introduction

Diffusion processes are widely used in engineering, finance, physics and many other

fields. In practice a diffusion process is often only observable at discrete time points.

On the other hand, for most nonlinear and non-Gaussian diffusion processes, statis-

tical inferences can be much more easily carried out with continuous paths. Treating

the problem as a missing data problem, an effective solution for statistical inferences

is to impute the continuous path based on the observations observed at discrete time

points. Due to the Markovian nature of diffusion processes, the imputation prob-

lem becomes one of generating continuous paths of the underlying diffusion process

that connect two fixed end-points (diffusion bridges). In this paper we propose a

constrained sequential Monte Carlo (CSMC) algorithm with resampling guided by

backward pilots for efficient generation of Monte Carlo samples of diffusion bridges.

Let a d-dimensional time-homogeneous diffusion process Vt be the solution of a

stochastic diffusion equation (SDE)

dVt = b(Vt; θ)dt + A(Vt; θ)dWt, (1)

where Wt = (wt,1, · · · , wt,d)
T are d independent Brownian motions. b(Vt; θ) = (b1(Vt; θ),

· · · , bd(Vt; θ))
T are the drift coefficients, A(Vt; θ) = {ai,j(Vt; θ)}d×d are the diffusion

coefficients, and θ is the parameter in the coefficients. The methods developed here

can be easily extended to time-inhomogeneous processes, in which the drift coefficients

and the diffusion coefficients may also depend on the time variable t. In addition, our

methods also apply to jump diffusion processes such as

dVt = b(Vt; θ)dt + A(Vt; θ)dWt + dZt

where Zt is a compound Poisson process, with the sampling distribution slightly

modified to accommodate jumps. An example of the jump process is given in Section

3.2. For clarity, we concentrate on the diffusion process (1).

Without loss of generality, suppose a diffusion process Vt is observed at t = 0

and t = ∆. We are interested in generating bridge samples V
(j)
t , j = 1, · · · ,m, that

connect the two observations V0, V∆ and follow the target distribution π(Vt) = P (Vt |
V0, V∆; θ).
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Beskos et al. (2006) proposed to generate continuous sample paths exactly follow-

ing the conditional distribution P (Vt | V0, V∆; θ) by generating “skeleton” samples of

Brownian (or Bessel) bridges that are accepted/rejected with a certain probability.

This simulation method also provides an unbiased estimate of the transition probabil-

ity density P (V∆ | V0, θ). It is shown that this method works well for many processes,

though it is limited to reducible processes and sometimes the acceptance rate can be

extremely small for certain situations, especially when ∆ is large.

Several simulation methods based on the discrete-time approximation of diffusion

process have been developed (Brandt and Santa-Clara, 2002; Durham and Gallant,

2002; Elerian et al., 2001; Eraker, 2001; Kloeden and Platen, 1992; Pedersen, 1995;

Roberts and Stramer, 2001). In these methods, the time interval [0, ∆] is divided into

M small intervals with equal length δ = ∆/M by the intermediate points ti = iδ,

i = 0, . . . , M . Then the continuous diffusion process Vt is approximated by the

discrete-time process (Vt0 = V0, Vt1 , · · · , VtM−1
, VtM = V∆) following the distribution

P ∗(Vt1 , · · · , VtM−1
| Vt0 = V0, VtM = V∆; θ) ∝

M∏

k=1

P ∗
δ (Vtk | Vtk−1

; θ), (2)

where

P ∗
δ (Vtk | Vtk−1

; θ) ∼ N (
Vtk−1

+ b(Vtk−1
; θ)δ, A(Vtk−1

; θ)AT (Vtk−1
; θ)δ

)
(3)

is the Euler approximation of the transition probability density function Pδ(Vtk |
Vtk−1

; θ). N (
µ, Σ

)
denotes Gaussian distribution with mean µ and covariance Σ,

the subscript δ of the transition density denotes the time interval between tk−1

and tk. In the following, we omit the subscript δ for simplicity. When δ is small,

(Vt0 , Vt1 , · · · , VtM ) can usually approximate Vt well. We use P ∗(·) to denote the ap-

proximated distribution of the discrete-time process (Vt0 , Vt1 , · · · , VtM ). Other higher

order approximation of the true transition probability density, such as the Milstein

approximation or Shoji and Ozaki (1998)’s approximation, can also be used in (3).

Generating Monte Carlo samples from the target distribution (2) can be done

using Markov chain Monte Carlo method (MCMC) through a transition kernel whose

equilibrium distribution is the target distribution (Gilks et al., 1995; Robert and

Casella, 1999). However, for most diffusion processes and for large M (in order to
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achieve approximation accuracy), the mixing rate of MCMC can be very low. To

avoid this problem, Roberts and Stramer (2001) and Elerian et al. (2001) proposed

to update a block of the bridge sample in one MCMC move, with proposal move

developed from a Brownian bridge or an Ornstein-Uhlenbeck bridge, and Beskos

et al. (2008) proposed MCMC moves through solving stochastic partial differential

equations. Another limitation of MCMC is its difficulty in estimating the normalizing

constant of the target distribution, which is P ∗(VtM | Vt0 ; θ) for the target distribution

(2).

In this study, we generate samples that are properly weighted with respect to

the target distribution (2) under the framework of sequential Monte Carlo (SMC).

In SMC, the bridge samples start at the fixed Vt0 , then V
(j)
t1 , V

(j)
t2 , · · · , V

(j)
tM−1

are

generated sequentially until the complete bridge samples (Vt0 , V
(j)
t1 , · · · , V

(j)
tM−1

, VtM )

are obtained. The critical issue here is how to utilize the information provided by the

end observation VtM in generating the intermediate states (Vt1 , · · · , VtM−1
).

The SMC approach for generating diffusion bridges has been proposed and studied

(Pedersen, 1995; Durham and Gallant, 2002; Brandt and Santa-Clara, 2002). Their

approaches have been shown to be effective in some cases but also fail in other cases.

Pedersen (1995) generated the bridge samples through diffusion dynamics without

considering the end constraint given by VtM , thus the generated bridge samples are

often far away from VtM at the end. Durham and Gallant (2002) used linear inter-

polation to force the bridge samples to move toward VtM , but ignoring the diffusion

dynamics. In this paper we propose an effective resampling scheme in SMC. The

resampling is guided by pilots that are generated backward from the end observation

VtM according to the diffusion dynamics. This resampling scheme can be easily com-

bined with other SMC sampling method, including Pedersen (1995)’s sampler and

Durham and Gallant (2002)’s sampler.

The rest of the paper is organized as follows. Section 2 introduces the proposed al-

gorithm, with brief backgrounds on SMC, resampling scheme, the optimal resampling

priority score for the diffusion bridge problem, and the strategy of generating back-

ward pilots to estimate the optimal resampling priority scores. Section 3 presents two

synthetic examples to demonstrate the proposed algorithm. We conclude the article
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in the last section.

2 Constrained SMC guided by backward resam-

pling

In the following, we use a simpler notation vk = Vtk to denote the intermediate states.

The starting point v0 = V0 and the end point vM = V∆ are fixed.

2.1 Importance sampling and SMC

In most cases, directly generating samples from high dimensional, constrained distri-

bution (2) is difficult. Based on the importance sampling principle (Marshall, 1956;

Robert and Casella, 1999; Liu, 2001), we can draw samples v(j) 4= (v0, v
(j)
1 , · · · , v

(j)
M−1, vM),

j = 1, · · · ,m, from a different sampling distribution Q(v | v0, vM ; θ), and the proper

weights of the samples are computed as

w(j) =

∏M
k=1 P ∗(v(j)

k | v(j)
k−1; θ)

Q(v(j) | v0, vM ; θ)
.

When the target distribution P ∗(v | v0, vM ; θ) ∝ ∏M
k=1 P ∗(vk | vk−1; θ) is absolutely

continuous with respect to the sampling distribution Q(v | v0, vM ; θ), and VarQ(w) <

∞,

1

m

m∑
j=1

w(j) =
1

m

m∑
j=1

∏M
k=1 P ∗(v(j)

k | v(j)
k−1; θ)

Q(v(j) | v0, vM ; θ)
(4)

is an unbiased estimator of the transition probability density P ∗(vM = V∆ | v0 =

V0; θ), which is the normalizing constant of
∏M

k=1 P ∗(vk | vk−1; θ). The estimator is

consistent, that is, it converges to P ∗(vM = V∆ | v0 = V0; θ) with probability 1 as

m →∞. In addition, for any function h(v), if VarQ(w h) is also finite, then

EP ∗
(
h(v) | v0, vM ; θ

) '
∑m

j=1 w(j)h(v(j))∑m
j=1 w(j)

(5)

is a consistent estimator of the expectation of h(v) conditional on the given end-

points v0, vM . Note that the conditions for obtaining consistent estimators are based
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on standard importance sampling principles (Robert and Casella, 1999). It also ap-

plies to other target distributions, such as when the underlying process of the target

distribution (2) is a jump diffusion process.

The performance of the importance sampling method depends on the choice of the

sampling distribution Q(v | v0, vM ; θ). When the sampling distribution is “perfect”,

that is

Q(v | v0, vM ; θ) = P ∗(v | v0, vM ; θ),

estimator (4) provides the exact value of P ∗(vM | v0; θ). Although directly gen-

erating samples from P ∗(v | v0, vM ; θ) and calculating the weights is infeasible in

most cases, an efficient sampling distribution Q(v | v0, vM ; θ) should be close to

P ∗(v | v0, vM ; θ). For the purpose of efficiency control, the Chi-square divergence

between P ∗(v | v0, vM ; θ) and Q(v | v0, vM ; θ), defined as
∫

[P ∗(v | v0, vM ; θ)]2

Q(v | v0, vM ; θ)
dv − 1 = VarQ (w) , (6)

is often used as a performance measure of the chosen sampling distribution Q(v |
v0, vM ; θ) (Liu, 2001). Here w = w/P ∗(vM | v0; θ) is the standardized weight. As-

suming the samples generated are independent, the mean square error (MSE) of

estimator (5) can be approximated by (Kong et al., 1994; Liu, 1996)

1

m

[
E2

P ∗(h | v0, vM ; θ) VarQ(w) + VarQ(w h)− 2EP ∗(h | v0, vM ; θ) CovQ(w, w h)
]
. (7)

Although the minimization of the above MSE depends on the function h(v), min-

imizing VarQ(w) (or equivalently E2
P ∗(h | v0, vM ; θ)VarQ(w) ) is a reasonable and

convenient choice in many cases, especially when the expectations of several func-

tions h(·) needs to be evaluated.

Elerian et al. (2001) proposed to use the multivariate normal distribution or the

multivariate student-t distribution as Q(v | v0, vM ; θ). When M is large, it is usu-

ally difficult to directly construct a good sampling distribution close to the target

distribution P ∗(v | v0, vM ; θ) in such a high dimensional space.

In this paper, we draw the samples under the SMC framework, in which the

sampling distribution

Q(v1, · · · , vM−1 | v0, vM ; θ) =
M−1∏

k=1

rk(vk | vk−1; θ)
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is the product of a sequence of conditional distributions. Here vk
4
= (v0, v1, · · · , vk, vM).

At each step k, k = 1, · · · ,M − 1, we generate v
(j)
k from the conditional distribution

rk(vk | v(j)
k−1; θ). More precisely, a straightforward SMC implementation for generating

properly weighted bridge samples v(j) can be done through the following algorithm.

Let m be the Monte Carlo sample size. For each j, j = 1, . . . , m,

1. Let v
(j)
0 = {v0, vM} and w

(j)
0 = 1.

2. For k = 1, · · · ,M − 1,

(a) Draw v
(j)
k from distribution rk(vk | v(j)

k−1; θ). Let v
(j)
k = {v(j)

k−1, vk}.
(b) Compute the corresponding weight of v

(j)
k by

w
(j)
k = w

(j)
k−1

P ∗(v(j)
k | v(j)

k−1; θ)

rk(v
(j)
k | v(j)

k−1; θ)
.

3. Let v
(j)
M = v

(j)
M−1 and w(j) = w

(j)
M−1P

∗(vM | v(j)
M−1; θ).

The advantage of SMC is that we only need to consider the construction of the low

dimensional conditional distributions rk(vk | vk−1; θ), k = 1, · · · ,M − 1.

Pedersen (1995) proposed to use the forward equation

rk(vk | vk−1; θ) = P ∗(vk | vk−1; θ), (8)

so that w
(j)
k ≡ 1 for k = 1, · · · ,M − 1, and w(j) = P ∗(vM | v(j)

M−1; θ). The procedure

is essentially generating the forward path (v1, . . . , vM−1) only, conditioned on the

starting point v0. The path is then forced to connect to the end point vM at the last

step. Because the samples are generated without taking into the account that they

have to end at vM = V∆, many of them will have large ’jump’s between v
(j)
M−1 and the

fixed end vM . The performance of this simple sampling method is not satisfactory in

many cases.

Durham and Gallant (2002) suggested a different sampling distribution

rk(vk | vk−1; θ) ∼ N
(

vk−1 +
vM − vk−1

M − k + 1
,

M − k

M − k + 1
A(vk−1; θ)A

T (vk−1; θ)δ

)
. (9)

This proposal distribution includes a drift term that linearly connects the current

position vk−1 to the targeted end point vM , hence forces vk to move towards vM as
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k increases to M . Stramer and Yan (2006) proved that this sampling distribution is

the “perfect” sampling distribution P ∗(v | v0, vM ; θ) when both the drift coefficient

b(vt; θ) and the diffusion coefficient A(vt; θ) do not depend on vt. However, this

sampling distribution may not be ideal for some applications, especially when the

drift coefficient strongly depends on vt or when the time interval ∆ is large.

For example, consider the Ornstein-Uhlenbeck process

dvt = θvtdt + dwt. (10)

Let θ = 0.2. In Figure 1, we show 100 sample paths (without taking into account the

weight) generated from the true conditional distribution P ∗(v | v0 = 0, vM = 28.3)

and from Durham and Gallant (2002)’s sampling distribution (9), with time interval

∆ = 20 and M = 400 intermediate points. It is clear that the sampling distribution

(9) does not capture the intrinsic feature of the underlying diffusion bridges, although

with a sufficiently large Monte Carlo sample size and proper weighting, the procedure

is valid and can be used for inference. Elerian et al. (2001) documented similar

findings.
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Figure 1: Illustration of samples of diffusion bridges generated from (a) the true conditional
distribution and from (b) Durham and Gallant (2002)’s sampling method for diffusion
process (10) with parameter θ = 0.2. M = 400 intermediate points are used.
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2.2 Resampling and optimal resampling priority score

Resampling (Kong et al., 1994; Liu and Chen, 1998; Liu, 2001) is an important compo-

nent in SMC to improve efficiency. Its main purpose is to duplicate the ’good’ quality

partial samples and remove the ’bad’ quality partial samples during the sequential

build-up of the samples. It provides a way to rejuvenate the samples to improve

efficiency in future steps. In our problem the target distribution P ∗(v | v0, vM ; θ) dic-

tates that the samples of v have to connect two fixed points v0 and vM , hence imposes

a very strong constraint on the sample path. During the sequential build-up, if a par-

tial sample path vk has moved too far away from the end target vM and is unlikely

to become a valid bridge, then it would be wasting computational resources to con-

tinue the build-up to complete the sample, as the complete sample would have very

small weight and a negligible contribution to the weighted average used for statistical

inferences.

Resampling is done as follows. Suppose we have obtained samples {(v(j)
k , w

(j)
k ), j =

1, · · · ,m} at step k, the resampling step creates a new set of samples {(vnew(j∗)
k , w

new(j∗)
k ),

j∗ = 1, · · · ,m} by drawing samples from the current set {v(j)
k , j = 1, · · · ,m} with re-

placement according to priority scores {β(j)
k , j = 1, · · · ,m}, and adjusting the weights

accordingly so that (Liu and Chen, 1998)

E

[
1

m

m∑
j∗=1

w
new(j∗)
k h(v

new(j∗)
k ) | v(j)

k , w
(j)
k , j = 1, · · · ,m

]
=

1

m

m∑
j=1

w
(j)
k h(v

(j)
k )

for any function h(·). The algorithmic steps are as follows:

1. Assign a priority score β
(j)
k > 0 to each sample v

(j)
k . Normalize the priority

scores so that
∑m

j=1 β
(j)
k = m.

2. For j∗ = 1, · · · ,m,

(a) Randomly sample v
new(j∗)
k from the set {v(j)

k , j = 1, · · · ,m} with probabil-

ities proportional to the priority scores {β(j)
k , j = 1, · · · ,m};

(b) If v
new(j∗)
k = v

(j)
k , then set the new weight associated with v

new(j∗)
k to be

w
new(j∗)
k = w

(j)
k /β

(j)
k .
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3. Return the new set of weighted samples {(vnew(j∗)
k , w

new(j∗)
k ), j∗ = 1, · · · ,m)}.

Here the priority scores are normalized to
∑m

j=1 β
(j)
k = m so that the multiplicative

constant in the weights does not change.

The priority scores serves as a measure of how ’good’ a sample is. In the following

we develop the “optimal” priority score for our diffusion bridge problem. Note that

the resampling step is to improve the efficiency of future steps, resampling at step

M −1 is not needed according to Rao-Blackwellization (Liu and Chen, 1998). Hence,

we only develop the “optimal” priority score βk for step k = 1, · · · ,M − 2. As stated

in (6), our goal is to minimize VarQ(w).

Suppose at step k (k ≤ M − 2), we have obtained sample set {(v(j)
k , w

(j)
k ), j =

1, · · · ,m} from sampling distribution Qk(vk) and the corresponding weight

wk =

∏k
s=1 P ∗(vs | vs−1; θ)

Qk(vk)
.

Then after a resampling step with priority scores β
(j)
k , the resampled set can be

considered as being generated from the sampling distribution Qk(vk)βk, with new

weight

wnew
k =

∏k
s=1 P ∗(vs | vs−1; θ)

Qk(vk)βk

.

Suppose the sampling distribution to generate the future dimensions (vk+1, · · · , vM−1)

is
∏M−1

s=k+1 rs(vs | vs−1, vM ; θ). In addition, if we do not consider the effect of future

resampling steps after step k, then we have

VarQ (w) = E

[ ∏M
s=1 P ∗(vs | vs−1; θ)

βkQk(vk)
∏M−1

s=k+1 rs(vs | vs−1, vM ; θ)

]2

− (
P ∗(vM | v0; θ)

)2

=

∫ [∏M
s=1 P ∗(vs | vs−1; θ)

]2

βkQk(vk)
∏M−1

s=k+1 rs(vs | vs−1, vM ; θ)
dv1 · · · dvM−1 −

(
P ∗(vM | v0; θ)

)2

=

∫ [∏k
s=1 P ∗(vs | vs−1; θ)

]2

βkQk(vk)

∫ [∏M
s=k+1 P ∗(vs | vs−1; θ)

]2

∏M−1
s=k+1 rs(vs | vs−1, vM ; θ)

dvk+1 · · · dvM−1 dv1 · · · dvk

− (
P ∗(vM | v0; θ)

)2
.
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Hence, VarQ (w) is minimized when

βkQk(vk) ∝
k∏

s=1

P ∗(vs | vs−1; θ)




∫ [∏M
s=k+1 P ∗(vs | vs−1; θ)

]2

∏M−1
s=k+1 rs(vs | vs−1, vM ; θ)

dvk+1 · · · dvM−1




1/2

.

That is,

βk ∝ wk




∫ [∏M
s=k+1 P ∗(vs | vs−1; θ)

]2

∏M−1
s=k+1 rs(vs | vs−1, vM ; θ)

dvk+1 · · · dvM−1




1/2

. (11)

Especially, when the sampling distribution
∏M−1

s=k+1 rs(vs | vs−1, vM ; θ) to generate the

future dimensions (vk+1, · · · , vM−1) is “perfect”, that is

M−1∏

s=k+1

rs(vs | vs−1, vM ; θ) = P ∗(vk+1, · · · , vM−1 | vk, vM ; θ) =

∏M
s=k+1 P ∗

s (vs | vs−1, vM ; θ)

P ∗(vM | vk; θ)
,

the corresponding “optimal” resampling priority score (11) becomes

βk = wkP (vM | vk; θ).

In this case, the priority score is proportional to the transition probability from the

current position vk to the fixed end point vM , though evaluation of this quantity has

the same difficulty as our original problem.

The optimal sampling distribution of Liu and Chen (1998) provides another inter-

pretation of this resampling priority score. Under our setting, the optimal sampling

distribution at time k would be proportional to

P ∗(vk | vk−1, vM) ∝ P ∗(vk | vk−1; θ)P
∗(vM | vk; θ)

One way to draw sample from this optimal distribution is to use the first term to

sample and the second term as the resampling priority score.

2.3 Resampling guided by backward pilots

A difficulty in obtaining the optimal priority score assignment (11) is that the value

of integration

fk(vk; θ)
4
=

∫ [∏M
s=k+1 P ∗(vs | vs−1; θ)

]2

∏M−1
s=k+1 rs(vs | vs−1, vM ; θ)

dvk+1 · · · dvM−1, k = 1, · · · ,M − 2, (12)
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is unknown. Here we use a separate SMC procedure to generate pilot samples

(uk, uk+1, . . . , uM−1, uM = vM) backward from the fixed point uM and obtain an

estimate of the function.

Specifically, at step k, k = M − 1, · · · , 1, we generate pilots u
(j)
k

4
= (u

(j)
M =

vM , u
(j)
M−1, · · · , u

(j)
k ), j = 1, · · · ,m∗ that are properly weighted by a

(j)
k with respect to

the distribution proportional to

[∏M
s=k+1 P ∗(us | us−1; θ)

]2

∏M−1
s=k+1 rs(us | us−1, uM ; θ)

,

then fk(vk; θ) can be estimated through the weighted pilots {(u(j)
k , a

(j)
k ), j = 1, · · · ,m∗}.

The specific algorithmic steps are as follows

1. For k = M , let a
(j)
M = 1, u

(j)
M = vM , j = 1, · · · ,m∗.

2. For k = M − 1,M − 2, · · · , 1, do, for each j = 1, . . . , m∗,

(a) Generate u
(j)
k from a sampling distribution gk(uk | u(j)

k+1; θ). The choice of

gk(uk | u(j)
k+1; θ) will be discussed in the following Remark 2.

(b) Calculate the corresponding weight of u
(j)
k by

a
(j)
k =





a
(j)
M

[
P ∗(u(j)

M |u(j)
M−1;θ)

]2

gM−1(u
(j)
M−1|u

(j)
M ;θ)

if k = M − 1,

a
(j)
k+1

[
P ∗(u(j)

k+1|u
(j)
k ;θ)

]2

rk+1(u
(j)
k+1|u

(j)
k ,u

(j)
M ;θ)gk(u

(j)
k |u(j)

k+1;θ)
if k ≤ M − 2.

.

(c) If k ≤ M − 2, estimate the function fk(vk; θ) in (12) using {(u(j)
k , a

(j)
k ), j =

1, · · · , m∗}, through any kind of density estimator such as

f̂k(v; θ) =
m∗∑
j=1

Kh(v − u
(j)
k )a

(j)
k

where Kh(·) is a kernel function with bandwidth h; or a histogram estima-

tor, with partition Dk,1

⋃
Dk,2 . . .

⋃
Dk,nk

of the state space of vk and

f̂k(v; θ) =

nk∑

l=1

f̂k,lI(v ∈ Dk,l),

12



where

f̂k,l =
1

m∗ |Dk,l|
m∗∑
j=1

a
(j)
k I(u

(j)
k ∈ Dk,l),

and |Dk,l| is the volume of subspace Dk,l, I(·) is the indicator function.

(d) (Optional) Perform resampling to the backward pilots {(u(j)
k , a

(j)
k ), j =

1, · · · , m∗} with priority score proportional to a
(j)
k if necessary (Liu and

Chen, 1998).

Figure 2 depicts the idea. Two forward (partial) bridge samples (a) and (b) have been

generated up to time k = 100. The backward pilots samples up to k = 100 are shown

and the histogram estimate of fk at k = 100 based on these backward pilot samples

are also shown (vertically) on the right side of the figure. It is seen that path (b) as

a partial sample of the bridge is a better sample because it has higher probability to

connect to the fixed end than path (a).

0 50 100 150 200
0

2

4

6

8

10

12

14

k

v

Backward Pilot
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(a)

(b)

f(v
k
)

Figure 2: Illustration of using the backward pilots to obtain the resampling priority score.

Remarks:
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1. The backward pilots u
(j)
k , j = 1, · · · ,m∗, only need to be generated once from

k = M − 1 to k = 1 before we generate the diffusion bridge samples. The

function fk(·) for all k = 1, · · · , M − 2 are estimated in this process. Hence the

extra computational burden for calculating fk(·) is limited. In addition, this

stage serves as a general guidance for resampling. A very accurate estimation

of the function fk(·) is not necessary because resampling relies more on the

global picture. Accurate details of fk(·) will not improve the resampling perfor-

mance significantly. Hence the number of backward pilots m∗ needed does not

necessarily have to be large.

2. We choose the sampling distribution gk(uk | u(j)
k+1; θ) in step 2(a) to be approx-

imately proportional to P ∗(u(j)
k+1 | uk; θ). If we consider the forward sampling

distribution
∏M−1

s=k+1 rs(us | us−1, uM ; θ) as an approximation of
∏M

s=k+1 P ∗(us |
us−1; θ), then fk(vk; θ) can be approximated by

∫ ∏M
s=k+1 P ∗(vs | vs−1; θ) dvk+1 · · · dvM−1.

Hence, gk(us | uk+1; θ) ∝ P ∗(uk+1 | uk; θ) is a reasonable choice of the sampling

distribution for estimating fk(vk; θ). In the Euler approximation, we have

uk+1 = uk + b(uk; θ)δ + A(uk; θ)εk,

where εk is d-dimensional Gaussian distribution N (0, δ Id), Id is the identity

matrix. To approximate P ∗(u(j)
k+1 | uk; θ), we apply Taylor expansion to b(uk; θ)

at point u
∗(j)
k = u

(j)
k+1 − b(u

(j)
k+1; θ)δ and assume A(uk; θ) is constant A(u

∗(j)
k ; θ);

then we have

u
(j)
k+1 =

(
I + H(u

∗(j)
k ; θ)δ

)
uk + b(u

∗(j)
k ; θ)δ −H(u

∗(j)
k ; θ)u

∗(j)
k δ + A(u

∗(j)
k ; θ)εk,

where H(u; θ) is the Jacobi matrix of the drift coefficient b(u; θ). Hence, to

make gk(uk | u(j)
k+1; θ) approximately proportional to P ∗(uk+1 | uk, θ), we can let

gk(uk | u(j)
k+1; θ) ∼ N

(
µ

(j)
k , Σ

(j)
k

)
, where

µ
(j)
k =

(
Σ
∗(j)
k

)−1 (
u

(j)
k+1 − b(u

∗(j)
k , θ)δ + H(u

∗(j)
k ; θ)u

∗(j)
k δ

)
,

Σ
(j)
k =

(
Σ
∗(j)
k

)−1

A(u
∗(j)
k ; θ)AT (u

∗(j)
k ; θ)

(
Σ
∗(j)
k

)−T

δ,

Σ
∗(j)
k = I + H(u

∗(j)
k ; θ)δ.
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3. When generating the bridge samples v(j), j = 1, · · · ,m, using the algorithm in

Section 2.1, the “optimal” resampling priority scores at step k should be set to

β
(j)
k ∝ w

(j)
k

[
f̂k(v

(j)
k ; θ)

]−1/2

. (13)

4. In general, the backward pilot scheme can be used to estimate any function of

vk in the form of

∫
ζ(vk, vk+1, · · · , vM−1, vM) dvk+1 · · · dvM−1,

including the transition probability (as a function of vk)

P ∗(vM | vk; θ) =

∫ M−1∏

s=k

P ∗(vs+1 | vs; θ) dvk+1 · · · dvM−1.

5. In step 2(c) of the algorithm, although the function f̂k(·) estimated using kernel

estimator often has good properties, it can be computationally expensive to

evaluate when the Monte Carlo sample size m∗ is large. Our experience has

shown that the histogram estimator is sufficient in most cases.

3 Examples

3.1 Example 1

Beskos et al. (2006) considered diffusion process vt characterized by stochastic diffu-

sion equation (SDE)

dvt = sin(vt − θ)dt + dwt, (14)

where sin(vt− θ) is the drift coefficient, θ is the parameter, wt is a Brownian motion.

This diffusion process actually exhibits certain jump phenomena. It is observed that

when vt falls in the interval (θ+2kπ, θ+2(k +1)π), k ∈ Z, the drift function will pull

the process quickly towards θ + π + 2kπ. Figure 3 shows a realization of the process

with parameter θ = π.
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Figure 3: A realization of the process with sine drift coefficients following equation (14),
with θ = π. The vertical lines present observations with time interval ∆ = 30.

3.1.1 Estimation of the transition density with parameter θ = π

We first consider the generation of the diffusion bridges with two fixed end points at

V0 and V30, using M = 400 intermediate time points. To simplify the notation, we

use SMC-0 to denote Durham and Gallant (2002)’s sampler (9) without resampling,

and use SMC-1 to denote Durham and Gallant (2002)’s sampler (9) with resampling

steps according to the “optimal” priority score (13). In SMC-1, we use the histogram

estimator for the function fk with partition
⋃

lDl
4
=

⋃
l[

π
3
l+ θ− π

6
, π

3
l+ θ + π

6
), l ∈ Z,

and m∗ = 300 backward pilots. The resampling step is performed every 20 steps

when generating the bridge samples.

Figure 4 shows 100 samples of the diffusion bridge connecting four consecutive ob-

servations (V0, V30, V60, V90) = (0, 1.49,−5.91,−1.17) using different sampling meth-

ods. The samples under “perfect” sampling (Figure 4(a)) are obtained by first gen-

erating 20,000 samples from SMC-0 then choosing 100 samples among them with

probability proportional to their corresponding final weights w(j). The samples of

SMC-0 (Figure 4(b)) and SMC-1 (Figure 4(c)) are obtained by generating 100 sam-
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ples using the corresponding methods. Here we do not weight the samples, just to

show the properties of the generated samples and the corresponding trial distribu-

tions. Clearly the sampling distribution of SMC-1 is much closer to the “perfect”

sampling distribution and captures the “jump” behavior of the diffusion bridge. It is

also interesting to note that the timing of the jumps occurs almost uniformly within

the time interval. As there is no information other than the two end-points, the

uniformity of the jump timing is quite expected.

As in Durham and Gallant (2002), we use

EQ

[
log

(
1

m

m∑
j=1

w(j)

)
− log P ∗(vM | v0; θ)

]2

as the measurement of the efficiency for different sampling method. In fact, when

v(j), j = 1, · · · ,m, are generated independently, we have

EQ

[
log

(
1

m

m∑
j=1

w(j)

)
− log P ∗(vM | v0; θ)

]2

≈ EQ

[
1
m

∑m
j=1 w(j)

P ∗(vM | v0; θ)
− 1

]2

=
1

m
VarQ

[
w(j)

P ∗(vM | v0; θ)

]
.

Hence, this measurement can be treated as an approximation of measurement (6)

divided by the sample size m. For fair comparison, we adjust the sample size m so

that different sampling methods take about the same computational time.

Fixing parameter θ at π, for each pair of end-points V0 and V30, we repeat the

estimation 100 times independently and calculate

RMSE(V0, V30) =

[
1

100

100∑
i=1

(
log P̂ ∗(i)(V30 | V0, θ = π)− log P (V30 | V0, θ = π)

)2
]1/2

,

as the performance measurement, where P̂ ∗(i)(V30 | V0, θ = π) is the i-th independent

estimate of P ∗(V30 | V0, θ = π). The “true” value of log P (V30 | V0; θ = π) is obtained

by using Beskos et al. (2006)’s exact sampling method with m = 10, 000, 000 Monte

Carlo samples. With roughly equal computational time, we used m = 3, 500 samples

for SMC-0 and m = 1, 000 samples for SMC-1. Note that the sampling distributions of

SMC-0 does not depend on the parameter and the samples can be linearly transformed
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Figure 4: Illustration of bridge samples of the sine drift process generated using different
sampling methods with M = 400 intermediate points between two consecutive observations.
The parameter is θ = π and the observations are (V0, V30, V60, V90) = (0, 1.49,−5.91,−1.17).
(a): The “perfect” sampling distribution; (b): Durham and Gallant (2002)’s sampling
method (SMC-0); (c): Durham and Gallant (2002)’s sampling method with resampling
steps (SMC-1). In SMC-1, the resampling step is performed every 20 steps when generating
the bridge samples. m∗ = 300 backward pilots are generated to estimate the resampling
priority scores.
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to meet different fixed end-points, though the weight calculation depends on θ and

the end-points. Hence the computational time for SMC-0 only involves the time for

evaluating
∏M

k=1 P ∗(v(j)
k | v(j)

k−1; θ = π).

Table 1 reports the rate of RMSE(V0, V30) of SMC-1 over RMSE(V0, V30) of SMC-

0. it is seen that for most of the (V0, V30) pairs when V30 is not too far away from

V0, SMC-1 has better estimation accuracy. However, when |V30 − V0| > 4π, SMC-0

outperforms SMC-1. In this case, the process is required to jump more than two levels

within a short time period ∆ = 30. Simulation shows that such cases happen only

0.1% of the times. Table 2 and Table 3 report RMSE(V0, V30) of SMC-0 and SMC-1,

respectively. It shows that RMSE(V0, V30) of SMC-0 decreases slowly as |V30 − V0|
increases. However, RMSE(V0, V30) of SMC-1 maintains a relative small value when

V0 and V30 are close, but increases fast with the distance between V0 and V30 when

|V30 − V0| > 4π. It seems that when there are several one-directional jumps between

the two end-points in short time interval, the most likely paths are those close to

the straight line between the two end-points. In this case, the sampling distribution

employed by Durham and Gallant (2002) (SMC-0) guides the sampling more forcefully

to reach the far-away target endpoint. On the other hand, the resampling approach

(SMC-1) may require larger MC sample size of the backward pilots to obtain “good”

resampling priority scores, as the backward pilots are generated without considering

the location of v0. The log transition probability estimated by SMC-1 with m = 1, 000

samples is plotted in Figure 5.

Figure 6 shows the sampled diffusion bridges for selected pairs of (V0, V30) using

SMC-1 method. It is seen that the process is stable around 0, 2π, 4π, . . . and is tran-

sient around π, 3π, etc., and exhibits jump behavior once getting into the transition

zone, spending very short time inside the transit zone. Hence, the process tends to

stay in the stable zone if not required to move to another zone (Panel (a)). If the

end point is in the transit zone, then the process tends to stay in the stable zone

as long as it can, then move into the transit zone at the end to meet the ending

requirement (Panels (b), (d) and (f)). Panel (b) also shows that the process is also

able to jumps to a different stable zone and then come back to meet the boundary

requirement at the end. If the starting point and the ending point are both in stable
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V0

RMSESMC-1

(
V0,V30

)

RMSESMC-0

(
V0,V30

) −1.0π −0.8π −0.6π −0.4π −0.2π 0 0.2π 0.4π 0.6π 0.8π 1.0π

V30 = −4.8π 0.48 0.74 0.92 1.20 1.48 1.72 1.66 1.69 2.06 1.91 3.09

V30 = −4.2π 0.59 0.69 0.83 1.16 1.45 1.56 1.52 2.14 1.82 1.81 2.39

V30 = −3.6π 0.47 0.62 0.81 0.96 1.17 1.38 1.27 1.39 1.68 1.39 1.76

V30 = −3.0π 0.39 0.34 0.43 0.45 0.56 0.49 0.59 0.56 0.58 0.47 0.50

V30 = −2.4π 0.34 0.32 0.43 0.51 0.44 0.49 0.59 0.53 0.43 0.65 0.47

V30 = −1.8π 0.46 0.40 0.48 0.45 0.56 0.57 0.53 0.57 0.42 0.42 0.55

V30 = −1.2π 0.35 0.38 0.46 0.50 0.45 0.40 0.50 0.50 0.33 0.45 0.41

V30 = −0.6π 0.32 0.25 0.36 0.42 0.32 0.37 0.30 0.37 0.27 0.26 0.28

V30 = 0.0π 0.32 0.32 0.47 0.41 0.36 0.34 0.37 0.40 0.27 0.30 0.30

V30 = 0.6π 0.61 0.28 0.32 0.33 0.41 0.27 0.34 0.25 0.30 0.29 0.45

V30 = 1.2π 0.40 0.40 0.39 0.43 0.39 0.55 0.55 0.63 0.49 0.52 0.30

V30 = 1.8π 0.45 0.54 0.51 0.55 0.63 0.45 0.55 0.37 0.40 0.38 0.37

V30 = 2.4π 0.49 0.54 0.53 0.49 0.52 0.55 0.49 0.54 0.44 0.41 0.28

V30 = 3.0π 0.61 0.58 0.50 0.41 0.57 0.49 0.45 0.64 0.49 0.40 0.43

V30 = 3.6π 1.54 1.53 1.30 1.34 1.38 1.15 1.41 1.12 0.87 0.56 0.58

V30 = 4.2π 2.01 1.77 1.62 2.04 1.29 1.67 1.03 1.06 0.86 0.71 0.51

V30 = 4.8π 2.66 2.55 1.67 1.83 1.51 1.54 1.60 1.51 0.91 0.55 0.56

Table 1: The ratio of RMSE(V0, V30) between SMC-1 and SMC-0 for

estimating log P (V30 | V0; θ = π) for the diffusion process with sine

drift. The samples sizes (m = 3, 500 for SMC-0 and m = 1, 000 for

SMC-1) are controlled so the two methods take similar computational

time.
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V0

RMSESMC-0

(
V0, V30

) −1.0π −0.8π −0.6π −0.4π −0.2π 0 0.2π 0.4π 0.6π 0.8π 1.0π

V30 = −4.8π 0.27 0.26 0.23 0.25 0.20 0.24 0.22 0.21 0.17 0.19 0.17

V30 = −4.2π 0.23 0.23 0.25 0.19 0.22 0.20 0.19 0.14 0.17 0.19 0.20

V30 = −3.6π 0.32 0.28 0.27 0.26 0.22 0.23 0.22 0.21 0.20 0.23 0.20

V30 = −3.0π 0.40 0.44 0.33 0.30 0.27 0.29 0.24 0.26 0.32 0.29 0.31

V30 = −2.4π 0.33 0.36 0.29 0.26 0.25 0.26 0.21 0.31 0.29 0.25 0.26

V30 = −1.8π 0.41 0.31 0.36 0.30 0.24 0.21 0.23 0.27 0.29 0.31 0.26

V30 = −1.2π 0.47 0.42 0.45 0.42 0.36 0.33 0.31 0.33 0.44 0.34 0.42

V30 = −0.6π 0.47 0.43 0.44 0.38 0.34 0.30 0.37 0.33 0.41 0.42 0.42

V30 = 0.0π 0.35 0.32 0.33 0.30 0.27 0.26 0.27 0.36 0.33 0.39 0.37

V30 = 0.6π 0.35 0.41 0.45 0.32 0.35 0.33 0.28 0.39 0.41 0.38 0.49

V30 = 1.2π 0.40 0.39 0.38 0.35 0.35 0.33 0.43 0.30 0.38 0.39 0.47

V30 = 1.8π 0.27 0.27 0.22 0.26 0.22 0.27 0.27 0.30 0.34 0.35 0.38

V30 = 2.4π 0.26 0.32 0.24 0.26 0.23 0.22 0.26 0.24 0.34 0.38 0.39

V30 = 3.0π 0.25 0.27 0.27 0.29 0.29 0.25 0.32 0.28 0.31 0.44 0.53

V30 = 3.6π 0.26 0.22 0.21 0.24 0.24 0.25 0.21 0.24 0.26 0.34 0.27

V30 = 4.2π 0.20 0.18 0.17 0.17 0.20 0.18 0.26 0.22 0.22 0.24 0.25

V30 = 4.8π 0.18 0.16 0.21 0.19 0.18 0.24 0.20 0.20 0.24 0.26 0.28

Table 2: RMSE(V0, V30) using SMC-0 when estimating log P (V30 |
V0; θ = π) of the diffusion process with sine drift, with sample size

m = 3, 500.
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V0

RMSESMC-1

(
V0, V30

) −1.0π −0.8π −0.6π −0.4π −0.2π 0 0.2π 0.4π 0.6π 0.8π 1.0π

V30 = −4.8π 0.13 0.19 0.21 0.30 0.29 0.42 0.36 0.36 0.35 0.37 0.53

V30 = −4.2π 0.14 0.16 0.21 0.22 0.31 0.31 0.28 0.30 0.30 0.34 0.48

V30 = −3.6π 0.15 0.17 0.22 0.25 0.26 0.32 0.28 0.29 0.33 0.32 0.36

V30 = −3.0π 0.15 0.15 0.14 0.14 0.15 0.14 0.14 0.14 0.19 0.14 0.15

V30 = −2.4π 0.11 0.12 0.12 0.13 0.11 0.13 0.12 0.16 0.12 0.17 0.12

V30 = −1.8π 0.19 0.12 0.17 0.13 0.13 0.12 0.12 0.15 0.12 0.13 0.14

V30 = −1.2π 0.17 0.16 0.21 0.21 0.16 0.13 0.15 0.17 0.14 0.15 0.17

V30 = −0.6π 0.15 0.10 0.16 0.16 0.11 0.11 0.11 0.12 0.11 0.11 0.12

V30 = 0.0π 0.11 0.10 0.15 0.12 0.10 0.09 0.10 0.15 0.09 0.12 0.11

V30 = 0.6π 0.21 0.12 0.14 0.11 0.14 0.09 0.09 0.10 0.12 0.11 0.22

V30 = 1.2π 0.16 0.15 0.15 0.15 0.14 0.18 0.24 0.19 0.18 0.20 0.14

V30 = 1.8π 0.12 0.15 0.11 0.14 0.14 0.12 0.15 0.11 0.14 0.13 0.14

V30 = 2.4π 0.13 0.17 0.13 0.13 0.12 0.12 0.13 0.13 0.15 0.16 0.11

V30 = 3.0π 0.15 0.16 0.14 0.12 0.17 0.13 0.14 0.18 0.15 0.17 0.23

V30 = 3.6π 0.40 0.33 0.27 0.31 0.33 0.29 0.29 0.27 0.23 0.19 0.15

V30 = 4.2π 0.41 0.32 0.28 0.35 0.26 0.30 0.26 0.23 0.19 0.17 0.13

V30 = 4.8π 0.48 0.41 0.35 0.35 0.28 0.36 0.32 0.31 0.22 0.15 0.16

Table 3: RMSE(V0, V30) using SMC-1 when estimating log P (V30 |
V0; θ = π) of the diffusion process with sine drift, with sample size

m = 1, 000.
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Figure 5: This figure shows the log transition probability of the sine drift process estimated
using SMC-1. The sample size is m = 1, 000.

but different zones, then the jump will occur within the time period and the timing

is almost uniform, except at the beginning and the end (Panels (c) and (e)).

3.1.2 Likelihood function estimation

The ability to estimate the transition probability also allows us to estimate the like-

lihood function. Given observations observed at discrete time Vt0 , Vt1 , . . . , Vtn , the

log-likelihood function is

L(θ) =
n∑

i=1

Li(θ) =
n∑

i=1

log P (Vti | Vti−1
; θ).

In the following we investigate the performance of the proposed method for like-

lihood function estimation.

We simulate 100 paths of the process in (14) with θ = π, each with n = 101

observations and time interval ∆ = 30 between two observations. Hence the obser-

vations are observed at t = 0, 30, 60, . . . , 3000. The paths are simulated using Euler
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Figure 6: Illustration of bridge samples of the sine drift process generated by SMC-1 for
θ = π, V0 = 0 and different values of V30. The resampling step is performed every 20 steps
when generating the bridge samples. m∗ = 300 backward pilots are generated to estimate
the resampling priority scores.
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approximation with a very small time step (∆/10, 000). We compare the efficiency of

the exact sampling method proposed by Beskos et al. (2006), SMC-0 and SMC-1.

The measurement of efficiency we use is

RMSE(θ) =

[
1

n

n∑
i=1

(
L̂i(θ)− Li(θ)

)2
]1/2

.

Again, the “true” value of Li(θ) is obtained by using the exact sampling method with

m = 10, 000, 000 Monte Carlo sample size.

We report the average RMSE(θ) of the 100 simulated paths for different methods

in Table 4. For each method, its Monte Carlo sample size m is chosen so that

the methods take approximately the same CPU time. From the table we can see

that SMC-1 performs the best for estimating L(θ) of all θ (the true parameter is at

θ = π). Although the exact sampling method Beskos et al. (2006) produces unbiased

estimators of the transition density hence the likelihood function, its performance is

not satisfactory, due to the high rejection rate in the sampling process.

In Figure 7 we plot the log-likelihood function of θ in [0.76π, 1.24π] with a grid

of every 0.02π, based on one set of observations at t = 0, 30, 60, . . . , 3000. The solid

line is the estimated log-likelihood function using SMC-1 with 1000 samples. For

comparison, the dashed line plots the ”true” log-likelihood function using SMC-0 with

100,000 samples. The diamond (θ̂ = 1.04π) and the circle (θ̂ = 1.06π) shown on the

plot are the MLE using the estimated (SMC-1) and the ‘true’ log-likelihood functions,

respectively. We can see that the estimated log-likelihood function is close to the true

one, but is not smooth at places, due to randomness of the Monte Carlo samples.

However, the MLE is quite close to the “true” one. It is possible to combine the

proposed method with the smooth particle filter (Pitt, 2002) to obtain an improved

estimation of a smooth likelihood function. Further research on this direction is

needed.
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Figure 7: Estimated log-likelihood function using SMC-1 (solid line) and the “true” log-
likelihood function (dashed line), with a grid points of every 0.2π, based on a simulated
sample path observed at t = 0, 30, 60, . . . , 3000 (101 observations). The corresponding MLEs
are shown as the diamond (θ̂ = 1.04) for SMC-1 and the circle (θ̂ = 1.06) under the ‘true’
log-likelihood function.
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RMSE(θ) exact sampling SMC-0 SMC-1

m 80,000 3,500 1,000

θ = 0.0π 1.719 0.519 0.325

θ = 0.2π 1.488 0.497 0.291

θ = 0.4π 1.211 0.433 0.214

θ = 0.6π 0.901 0.397 0.157

θ = 0.8π 0.648 0.347 0.136

θ = 1.0π 0.588 0.331 0.122

θ = 1.2π 0.671 0.356 0.135

θ = 1.4π 0.870 0.399 0.165

θ = 1.6π 1.217 0.452 0.227

θ = 1.8π 1.573 0.507 0.299

time(sec.) 0.490 0.478 0.470

Table 4: RMSE for estimating θ using the estimated log-likelihood

function under different methods, for the diffusion process with

sine drift with 100 simulated sample paths, each observed at t =

0, 30, 60, . . . , 3000 (101 observations) with θ = π. Rows 2 reports the

Monte Carlo sample sizes m used and the last row reports the average

CPU time for estimating the needed log transition density.
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3.2 Example 2

Next we consider the jump diffusion process (Merton, 1976; Cox et al., 1979; Aı̈t-

Sahalia, 2004)

dvt = (α− λκ− σ2

2
)dt + σdwt + dzt, (15)

which is often used for modeling stock prices. Here we set α = 0.08, σ = 0.2,

λ = 5 and zt as a Poisson process with λ being the mean number of arrivals per unit

time. In addition, when an Poisson event occurs, zt produces a jump of size y which

follows a normal distribution with mean µy = 0 and standard deviation σy = 0.1;

κ = E(exp(y)− 1) = 0.005. A realization of this process is plotted in Figure 8.

0 2 4 6 8 10
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−0.4

−0.2

0

0.2
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0.6

0.8

1

t

v t

Figure 8: A realization of the jump diffusion process following equation (15) with parameter
α = 0.08, σ = 0.2, λ = 5, µy = 0, and σy = 0.1.

For a small time interval δ, let

vt+δ =





vt + (α− λκ− σ2

2
)δ + wt+δ − wt + zt+δ − zt if ≤ 1 jumps happen in [t, t + δ),

vt + (α− λκ− σ2

2
)δ + wt+δ − wt if ≥ 2 jumps happen in [t, t + δ).
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When we divide [0, ∆) into M small intervals and let J be the index of the first

small interval that more than 1 jumps happen in [Jδ, (J + 1)δ) (δ = ∆/M), we have

P (J = k) ≤ C1δ
2. Hence

E(v∆ − v∆)2 =
M−1∑

k=0

P (J = k)E
[
(v∆ − v∆)2 | J = k

] ≤ C2δ.

Then the process vt strongly converges to vt at the rate of
√

δ. Here C1 and C2 are

positive constants. Hence, for this process, we can approximate P (vk | vk−1) by

P ∗(vk | vk−1) ∼



N (

vk−1 + (α− λκ− σ2

2
)δ, σ2δ + σ2

y

)
with probability 1− λδ,

N (
vk−1 + (α− λκ− σ2

2
)δ, σ2δ

)
with probability λδ.

(16)

3.2.1 Transition density estimation

In this example, the transition probability density P (V∆ | V0) only depends on time

interval ∆ and the difference V∆ − V0 between the two end-points. We fixed V0 = 0

and considered the effect of different length of time period ∆ = i/36, i = 1, · · · , 9

and different ending point V∆. To accommodate the different length of time period,

we use different number of intermediate time points M for different ∆. Specifically,

we use M = 100 for ∆ = 1/36, M = 200 for ∆ = 2/36, 3/36, 4/36, and M = 400 for

∆ = 5/36 to 9/36.

To capture the jump behavior of the process, we extend Pedersen (1995)’s sampler

as

rk(vk | vk−1) = P ∗(vk | vk−1), (17)

and Durham and Gallant (2002)’s sampler as

rk(vk | vk−1) ∼



N (

vk−1 + vM−vk−1

M−k+1
, M−k

M−k+1
σ2δ + σ2

y

)
with probability 1− λδ,

N (
vk−1 + vM−vk−1

M−k+1
, M−k

M−k+1
σ2δ

)
with probability λδ.

(18)

It can be verified that both the extended Pedersen (1995)’s sampler and the

extended Durham and Gallant (2002)’s sampler satisfy the consistent condition

VarQ(w) < ∞. For this example, our numerical experiment shows that sampler
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(17) outperforms sampler (18) under the same computational time. Hence we use

(17) as benchmark (denoted by SMC-0). For the proposed procedure SMC-1, we use

the same sampling distribution, with the proposed resampling steps. Resampling is

performed every two steps, using the resampling priority score (13), with m∗ = 500

backward pilots. Function fk is estimated by a simple histogram estimator with

partition [0.04l, 0.04(l + 1)), l = 0,±1,±2, · · · .
The sampling distribution for generating the backward pilots is

gk(uk | u(j)
k+1) ∝ P ∗(u(j)

k+1 | uk)

where P ∗ is specified in (16). More specifically it is a mixture Gaussian distribution

of uk as follows

gk(uk | u(j)
k+1) ∼




N (

u
(j)
k+1 − (α− λκ− σ2

2
)δ, σ2δ + σ2

y

)
with probability 1− λδ,

N (
u

(j)
k+1 − (α− λκ− σ2

2
)δ, σ2δ

)
with probability λδ,

For ∆ = 1/12, we plot 100 bridge samples generated by the “perfect” sam-

pling distribution, SMC-0, and SMC-1 in Figure 9 with five consecutive observations

(V0, V∆, V2∆, V3∆, V4∆) = (0,−0.136,−0.25,−0.27,−0.293). It is seen that the sam-

pling distribution under SMC-1 is much closer to the ’perfect’ sampling distribution,

compared to that under SMC-0. Hence SMC-1 is more efficient.

For transition density estimation, we obtained

RMSE(∆, V∆) =

[
1

100

100∑
i=1

(
log P̂ ∗(i)(V∆ | V0 = 0)− log P (V∆ | V0 = 0)

)2
]1/2

,

over 100 independent trials, for various ∆ and different V∆. In this example, the true

value of log P (V∆ | V0 = 0) can be calculated analytically. Estimations obtained by

SMC-0 and SMC-1 are based on m = 5, 000 and m = 2, 000 Monte Carlo samples,

respectively. We plot RMSE(∆, V∆) for ∆ = 1/36, ∆ = 3/36 and ∆ = 9/36 in

Figure 10 (Panel (b),(d),(f)), along with the true value of the transition density

P (V∆ | V0 = 0) (Panel (a),(c),(e)).

Table 5 reports the overall performance measure

RMSE(∆)
4
=

[∫
RMSE2(∆, V∆) P (V∆ | V0 = 0) dV∆

]1/2

,
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Figure 9: Bridge samples generated using different methods for the jump diffusion pro-
cess with observe time interval ∆ = 1/12. The observations are V0 = 0, V1/12 = −0.136,
V2/12 = −0.250, V3/12 = −0.270 and V4/12 = −0.293. (a): The “perfect” sampling distribu-
tion; (b): Extended Pedersen (1995)’s sampling method without resampling (SMC-0); (c):
Extended Pedersen (1995)’s sampling method with resampling steps (SMC-1). In SMC-
1, the resampling step is performed every two steps when generating the bridge samples.
m∗ = 500 backward pilots are generated to estimate the resampling priority scores.
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Figure 10: True transition density P (V∆ | V0 = 0) (Panels (a),(c),(e)) for the jump diffusion
process with observation time intervals ∆ = 1/36, ∆ = 1/12 and ∆ = 1/4, respectively.
Panels (b),(d) and (f) show the corresponding RMSE(∆, V∆) of estimating the transition
densities using SMC-0 with m = 5, 000 samples and SMC-1 with m = 2, 000 samples.
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RMSE(∆) of log-likelihood SMC-0 SMC-1

m 5,000 2,000

∆ = 1/36 0.187 0.129

∆ = 2/36 0.211 0.125

∆ = 3/36 0.193 0.113

∆ = 4/36 0.190 0.105

∆ = 5/36 0.236 0.119

∆ = 6/36 0.226 0.114

∆ = 7/36 0.218 0.111

∆ = 8/36 0.215 0.109

∆ = 9/36 0.211 0.108

time(sec.) 0.209 0.203

Table 5: RMSE(∆) of using SMC-0 and SMC-1 to estimate the log-

transition probability of the jump diffusion process. Row 2 is the Monte

Carlo sample sizes (m) and the last row reports the average CPU time

of each evaluation of the log transition density.

while controlling the CPU time to be roughly the same for different methods. It is

clear that SMC-1 is more efficient.

3.2.2 Estimation of the realized volatility

Another interesting use of diffusion bridge samples is to estimate the realized volatility

(Hull and White, 1987; Barndorff-Nielsen and Shephard, 2002; Zhang et al., 2005)

conditional on the two end-points. In this example, when properly weighted samples

of (v
(j)
0 = V0, v

(j)
1 , . . . .v

(j)
M−1, vM = V∆) are obtained, we can estimate I(∆, V∆) =

E(
∑M

s=1(vs − vs−1)
2 | V0, V∆) by

Î(∆, V∆) =

∑m
j=1 w(j)

∑M
s=1(v

(j)
s − v

(j)
s−1)

2

∑m
j=1 w(j)

. (19)

In fact, there is a better resampling the priority score for this specific inference
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problem. The “optimal” resampling priority score developed in (11) was only designed

to generate the “best” bridge samples and to minimize variance of weight VarQw.

At step k (k ≤ M − 2), when constructing the priority score β
(j)
k for estimating

I(∆, V∆), we consider minimizing the variance of w(j)(
∑M

s=1(v
(j)
s − v

(j)
s−1)

2)1/2 instead

of minimizing the variance of w(j)
∑M

s=1(v
(j)
s − v

(j)
s−1)

2, which is the term VarQ(w h)

(or VarQ(w h) equivalently) in the MSE approximation (7). Again, given the forward

sampling distributions rs(vs | vs−1, vM ; θ), s = k + 1, · · · ,M − 1, without considering

the effect of future resampling after step k, the problem is equivalent to finding β

that minimizes

E

[
w2

M∑
s=1

(vs − vs−1)
2
∣∣∣ V0, V∆

]

= E




( ∏M
s=1 P ∗(vs | vs−1; θ)

βkQk(vk)
∏M−1

s=k+1 rs(vs | vs−1, vM ; θ)

)2 M∑
s=1

(vs − vs−1)
2
∣∣∣ V0, V∆




=

∫ [∏M
s=1 P ∗(vs | vs−1; θ)

]2

βkQk(vk)
∏M−1

s=k+1 rs(vs | vs−1, vM ; θ)

M∑
s=1

(vs − vs−1)
2 dv1 · · · dvM−1

=

∫ [∏k
s=1 P ∗(vs | vs−1; θ)

]2

βkQk(vk)

k∑
s=1

(vs − vs−1)
2

∫ [∏M
s=k+1 P ∗(vs | vs−1; θ)

]2

∏M−1
s=k+1 rs(vs | vs−1, vM ; θ)

dvk+1 · · · dvM−1dv1 · · · dvk

+

∫ [∏k
s=1 P ∗(vs | vs−1; θ)

]2

βkQk(vk)

∫ [∏M
s=k+1 P ∗(vs | vs−1; θ)

]2

∏M−1
s=k+1 rs(vs | vs−1, vM ; θ)

M∑

s=k+1

(vs − vs−1)
2 dvk+1 · · · dvM−1dv1 · · · dvk.

Hence, Var

[
w

√∑M
s=1(vs − vs−1)2

]
is minimized when

βk = wk

[
k∑

s=1

(vs − vs−1)
2

∫ [∏M
s=k+1 P ∗(vs | vs−1; θ)

]2

∏M−1
s=k+1 rs(vs | vs−1, vM ; θ)

dvk+1 · · · dvM−1

+

∫ [∏M
s=k+1 P ∗(vs | vs−1; θ)

]2

∏M−1
s=k+1 rs(vs | vs−1, vM ; θ)

M∑

s=k+1

(vs − vs−1)
2 dvk+1 · · · dvM−1

]1/2

.

The backward pilot scheme described in Section 2.3 can be used to estimate

f̂
(1)
k (vk; θ) '

∫ [∏M
s=k+1 P ∗(vs | vs−1; θ)

]2

∏M−1
s=k+1 rs(vs | vs−1, vM ; θ)

dvk+1 · · · dvM−1,
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and

f̂
(2)
k (vk; θ) '

∫ [∏M
s=k+1 P ∗(vs | vs−1; θ)

]2

∏M−1
s=k+1 rs(vs | vs−1, vM ; θ)

M∑

s=k+1

(vs − vs−1) dvk+1 · · · dvM−1.

Then the priority score is set as

βk ∝ wk

[
k∑

s=1

(vs − vs−1)
2f̂

(1)
k (vk; θ) + f̂

(2)
k (vk; θ)

]1/2

. (20)

We denote SMC using the resampling priority score (20) as SMC-1*, while SMC-1

uses (11) as the resampling priority score. The other settings in SMC-1* are the same

as in SMC-1. For performance comparison, define

RMSEσ(∆, V∆) =

[
1

100

100∑
i=1

(
Î(i)(∆, V∆)− I(∆, V∆)

)2
]1/2

,

over 100 independent estimates as the measurement of estimate accuracy, where the

“true” value of I(∆, V∆) = E(
∑M

s=1(vs − vs−1)
2 | V0, V∆) is obtained by using SMC-0

with m = 500, 000 Monte Carlo samples. RMSEσ(∆, V∆) for ∆ = 1/36, ∆ = 3/36

and ∆ = 9/36 are plotted in Figure 11. Figure 11 also shows the “true” value of

E(
∑M

s=1(vs − vs−1)
2 | V0, V∆). It can be seen that the SMC methods with backward

pilot guided resampling perform well, especially for longer time period ∆ and when

the difference between the two end-points |V∆ − V0| is large.

Table 6 reports the overall performance measurement defined as

RMSEσ(∆) =

[∫
RMSE2

σ(∆, V∆) P (V∆ | V0 = 0) dV∆

]1/2

,

under similar CPU time. It appears that the specifically designed resampling priority

scores indeed improve the performance over the generic resampling priority scores.

4 Conclusions and Discussion

In this paper, we proposed a resampling scheme under SMC framework to generate

samples of diffusion bridge that connect the two observed ends of the underlying

diffusion process. This resampling scheme can be easily combined with many other
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Figure 11: Plots of the “true” values of E(
∑M

s=1(vs−vs−1)2 | V0 = 0, V∆) (Panel (a),(c),(e))
of the jump diffusion process with observation time intervals ∆ = 1/36, ∆ = 1/12 and
∆ = 1/4, respectively. Panels (b),(d) and (f) show the corresponding RMSEσ(∆, V∆) using
SMC-0 with m = 5, 000 samples, SMC-1 with m = 2, 000 samples, and SMC-1* with
m = 2, 000 samples. In SMC-1 and SMC-1* , the resampling step is performed every two
steps when generating the bridge samples. m∗ = 500 backward pilots are generated to
estimate the resampling priority scores. 36



RMSEσ(∆) (×102) SMC-0 SMC-1 SMC-1*

m 5,000 2,000 2,000

∆ = 1/36 0.119 0.106 0.105

∆ = 2/36 0.177 0.135 0.132

∆ = 3/36 0.200 0.165 0.140

∆ = 4/36 0.211 0.163 0.152

∆ = 5/36 0.262 0.186 0.168

∆ = 6/36 0.272 0.196 0.177

∆ = 7/36 0.283 0.203 0.190

∆ = 8/36 0.296 0.212 0.191

∆ = 9/36 0.310 0.225 0.200

time(sec.) 0.209 0.203 0.211

Table 6: RMSEσ(∆) for using different sampling methods to estimate

E(
∑M

s=1(vs − vs−1)
2 | V0, V∆) of the jump diffusion process. Row 2 is

the Monte Carlo sample sizes (m) and the last row reports the average

CPU time of each evaluation.
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sampling methods, including Pedersen (1995)’s sampling method and Durham and

Gallant (2002)’s sampling method. The resampling steps adjust the sampling distri-

bution in the intermediate steps according to priority scores. The priority score of

the resampling is optimized to minimize the Chi-square divergence between the target

distribution and the sampling distribution. Since the analytic values of the “optimal”

priority scores cannot be computed easily, backward pilots are generated to estimate

the values. The computational complexity of computing the “optimal” priority scores

is limited. Two synthetic examples are used to demonstrate the effectiveness of this

resampling scheme.

For different purposes of generating diffusion bridge samples, the “optimal” pri-

ority scores can be different. In cases of parameter estimations, likelihood function

estimates are often expected to be continuous (Pitt, 2002). More research is needed

to apply this resampling scheme to estimating parameters.
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