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1 Introduction

During recent years, there have been a lot of attentions to weak instrumental variables

(IV) models in the literature, since they have been applied to various applications such as

economics and finance.1 An instrumental variable is called to be weak instrumental variable if

it is weakly correlated with the endogenous explanatory variables. As pointed out by Bound,

Jaeger, and Baker (1995), the weak instrument is not a small sample problem. Indeed, they

provided an empirical example of weak instruments with 329,000 observations, while Nelson

and Startz (1990) and Maddala and Jeong (1992) examined the behavior of the two-stage

least squares (TSLS) estimator and showed that the approximation of sampling distributions

of TSLS estimator by normal distributions can be quite poor. Since then there have been a

lot of research focusing on nonstandard approximations to sampling distributions.

To characterize weak instrumentals, Staiger and Stock (1997) considered initially a linear

simultaneous equations model and proposed the so-called local-to-zero parameterization of

the coefficients of the instruments in the reduced form equation. Furthermore, they showed

that, under this local-to-zero framework with the number of instruments fixed, both the

TSLS and limited information maximum likelihood estimators are inconsistent but instead

converge to nonstandard distributions. To echo this finding, Hahn and Kuersteiner (2002)

considered the same type model as in Staiger and Stock (1997) by generalizing Staiger

and Stock’s (1997) specification to a continuum of parametrizations under which degrees of

weakness are classified into three scenarios: (I) the weak case, exactly considered by Staiger

and Stock (1997), (II) the nearly weak case, in which the instruments are stronger than the

case considered by Staiger and Stock (1997), and (III) the nearly non-identified case, in which

the instruments are weaker than the case considered by Staiger and Stock (1997). Further,

Hahn and Kuersteiner (2002) showed that, for both the nearly non-identified and Staiger

and Stock’s (1997) weak cases, the TSLS estimators are inconsistent although they have a

non-normal limiting distribution. However, for the nearly weak case, the TSLS estimator is

consistent and its limiting distribution exists and it is normal, but it does not reflect the type

of finite sample moments usually associated with the TSLS estimator, while it was shown

by Chao and Swanson (2007) that the weak instrument limit of Staiger and Stock (1997)

preserves the exact finite sample moments of TSLS under some regularity conditions.

Although there has been a vast of literature on the weak instrumental variables models

1See, for example, the papers by Angrist and Krueger (1991), Cai and Li (2008), Campbell (2003), Hahn,
Chao and Swanson (2007), Hahn, Hausman and Kuersteiner (2004), Hahn and Kuersteiner (2002), Hall
(1978), Hausman, Stock and Yogo (2005), Li (2006), Mavroeidis (2004), Nason and Smith (2005), Neeley,
Roy and Whiteman (2001), Staiger and Stock (1997), Stock (2002), Stock and Wright (2000), Stock, Wright
and Yogo (2002), Woodford (2003), and Yogo (2004).

1



for cross-sectional data, as mentioned above, little or no attention has been paid to weak

instrumental variables model for longitudinal (panel) data. Longitudinal data models have

become increasingly popular among applied researchers due to their heightened capacity for

capturing the complexity of human behavior as compared to cross-sectional or time-series

data models. Also, more and richer longitudinal data sets have become increasingly available.

Indeed, there is a rich literature on linear and nonlinear longitudinal data models for using

instrumental variable approach.2 For example, Li and Stengos (1996), Li and Ullah (1998),

Baltagi and Li (2002), Cai and Li (2008) considered instrumental variable estimators for

semiparametric dynamic panel data model. The detailed statistical inferences and economic

interpretations on panel estimation of IV models, can be found in the books by Arellano

(2003), Hsiao (2003), and Baltagi (2005).

In this paper, we consider the following parametric model for longitudinal data

yit = β⊤xit + αi + uit, i = 1, . . . , N, t = 1, . . . , T

where xit is a vector of explanatory variables, β is a vector of unknown parameters of interest,

A⊤ denotes the transpose of a matrix or vector A, the error term uit represents the effect

of omitted variables that are peculiar to both individual units and time, and αi represents

the effect of those variables peculiar to the i-th individual in more or less the same fashion

over time. If xit is uncorrelated with uit, the least-squares dummy-variable (LSDV) estimator

(covariance estimator or within-group estimator) of β is consistent whether individual effects

{αi} are fixed or random. But if xit contains some endogenous regressors, strict exogeneity

of regressors no longer holds, so that the LSDV estimator is inconsistent whether individual

effects {αi} are fixed or random. Therefore, to obtain a consistent estimator, it is well

documented that instrumental variables are needed. In this paper, we consider the following

instrumental variables model for longitudinal data

yit = β⊤xit + γ⊤wit + αi + uit, xit = Π⊤zit + Φ⊤wit + vit,

where xit is a vector of endogenous variables, wit is a vector of exogenous variables, zit is a

vector of instrumental variables correlated with xit. Our focus is on the IV estimator and

discussing its asymptotic properties for various scenarios, described as follows.

In various applications, longitudinal data usually have the distinguishing feature that a

large number of individuals are observed over a relatively short period of time. Therefore,

2See, for example, the papers by Baltagi and Li (2002), Cai and Li (2008), Horowitz and Markatou (1996),
Kao (1999), Li and Hsiao (1998), Li and Stengos (1996), and Li and Ullah (1998), Phillips and Moon (1999),
and the references therein.
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the theoretical and empirical analysis from the large N and small T panel data sets have been

the traditional object of study in panel data analysis. However, some of longitudinal data

sets, such as the Penn-World tables and the National Longitudinal Survey, cover different

individuals, industries, and countries over long time periods and have been useful in assessing

and comparing growth characteristics, like real per capita GDP growth. One of the important

features of these data sets is that they sometimes have an appreciable time series dimension T

as well as a large cross-sectional dimension N . Therefore, we need to consider the asymptotic

theory of the resulting estimator for both cases: large N and small T and large N and large

T . We will show surprisedly that the asymptotic theories are different for two cases under

the weak instruments setting.

Our main contributions of this paper are as follows. First, for large N and fixed T ,

similar to Hahn and Kuersteiner (2002), we show that the IV estimator for γ is always

consistent with the same rate of convergence at N1/2 for all three cases of weakness and the

IV estimator of β is only consistent with the rate of convergence at N1/2−α for 0 < α < 1/2

(the nearly weak case, defined in Section 2) and both asymptotic distributions are normal.

However, for α ≥ 1/2 (the weak and nearly non-identified cases), the IV estimator of β is

inconsistent although it has some limiting distribution which is not normal. In particular,

the explicit expression for the bias in the limiting distribution is provided and it is shown

to be proportional to T−1 for α = 1/2 (the weak case), which can be ignored if T is large

(even fixed). These results seem to be novel in the literature. Further, similar to Hahn and

Kuersteiner (2002), we show that the so-called discontinuity still exists for the longitudinal

data. Moreover, similar to Hahn and Kuersteiner (2002) and Chao and Swanson (2007), the

explicit expressions for the asymptotic bias are given. Finally, we show that when both N and

T tend to infinity and the instrument variables are weak for all three cases, the IV estimator

for γ is consistent and asymptotically normal distributed with the rate of convergence at

(NT )1/2, and the IV estimator of β is consistent and asymptotically normally distributed

with the rate of convergence at T 1/2N1/2−α. Therefore, the discontinuity does not exist any

more for both large N and large T .

The rest of the paper is organized as follows. In the next section, we introduce the model,

extend a local-to-zero assumption as in Staiger and Stock (1997) on the coefficients of the

instruments in the first stage equation to a more general setting, and give the IV estimator.

In Section 3, the asymptotic distribution of the IV estimator is given. First, for a fixed T ,

the limiting distributions are established for all three cases with some discussions. Second,

for an infinite T , the asymptotic normality of the IV estimator is presented. In Section 4,

we examine the finite sample properties of the IV estimator by Monte Carlo simulations.
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Appendix contains the proofs of certain lemmas needed in the proofs of the main results in

Section 3 and the proofs of the main theorems.

2 Setups

Our focus in this paper is on the following longitudinal data instrumental variables model

yit = β⊤xit + γ⊤wit + αi + uit, xit = Π⊤zit + Φ⊤wit + vit. (1)

where yit is a scalar dependent variable, xit is a p × 1 vector of endogenous variables, β is

a p × 1 vector of unknown parameters, wit is a k × 1 vector of exogenous variables, γ is a

k × 1 vector of unknown parameters, Π is a q × p matrix of unknown parameters, Φ is a

k × p matrix of unknown parameters, zit is a q × 1 (q ≥ p) vector of instrumental variables

correlated with xit. Here, we assume that wit and zit are uncorrelated with uit and vit

so that wit is a vector of exogenous variables and zit is a vector of instrumental variables.

Finally, we assume that {αi} are independent across individuals if they are random. Denote

by xit = (x1it, x2it, · · · , xpit)
⊤, wit = (w1it, w2it, · · · , wkit)

⊤, zit = (z1it, z2it, · · · , zqit)
⊤, and

vit = (v1it, v2it, · · · , vpit)
⊤.

We reexpress (1) in a matrix form as

Y = Xβ + Wγ + α + U, , X = ZΠ + WΦ + V, (2)

where Y = (y⊤
1 ,y⊤

2 , · · · ,y⊤
N)⊤ and for each 1 ≤ i ≤ N , yi = (yi1, yi2, · · · , yiT )⊤. Here, the

definitions of xi, wi, zi, ui, and vi are similar to that for yi and the definitions of X, Z, W,

U, and V are in the same fashion as that for Y, as well as α = (e⊤α1, e⊤α2, · · · , e⊤αN)⊤ =

(α1, α2, · · · , αN)⊤⊗e with e = (1, 1, · · · , 1)⊤T×1 and ⊗ denoting the Kronecker product. The

presence of {αi} produces a correlation among residuals of the same cross-sectional unit if

they are random, and characterizes the individual effect if they are fixed.

Our main interest is to make statistical inferences on β and γ under weak instruments

setting. Similar to a local-to-zero assumption as in Staiger and Stock (1997) and Hahn and

Kuersteiner (2002) on the coefficients of the instruments in the first stage equation, we make

the following assumptions about Π and Φ.

Assumption 1: Π = K−1
N ×C and Φ = K−1

N ×C1, where C and C1 are fixed q × p matrix

and fixed k × p matrix respectively. The KN is a scalar, and KN → ∞ as N → ∞.

Assumption 2: {(wit, zit)} and {uit} are independent across both individuals and time,

{(wit, zit)} and {vit} are independent across both individuals and time, and {(wit, zit)} are

iid across both individuals and time with the covariance matrix Σ0 =
(

Σww Σwz
Σzw Σzz

)
.
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Assumption 3: We assume that {(uit,vit)} are iid across individuals and time with the

mean zero and the covariance matrix Σ =
(

σuu Σuv
Σvu Σvv

)
.

Assumption 1 generalizes the local-to-zero parameterization of the coefficients of the

instruments in the first-stage regression (2) as in Staiger and Stock (1997). When KN = Nα,

0 < α < 1/2 corresponds to the nearly weak case considered by Hahn and Kuersteiner (2002),

α = 1/2 becomes the weak case considered by Staiger and Stock (1997), and α > 1/2 reduces

to the nearly non-identified case considered by Hahn and Kuersteiner (2002). Therefore,

similar to Hahn and Kuersteiner (2002), in what follows, we consider three cases: the case

that N1/2/KN → 1 is regarded as weak in the sense of Staiger and Stock (1997), the case

that N1/2/KN → ∞ is considered as the nearly weak as in Hahn and Kuersteiner (2002),

and the case that N1/2/KN → 0 is treated as the nearly non-identified defined in Hahn and

Kuersteiner (2002).

To drive the estimator of parameters, we follow the convention to remove {αi}. To this

end, we transform (1) into the following form

yit − ȳi. = β⊤(xit − x̄i.) + γ⊤(wit − w̄i.) + (uit − ūi.),

xit − x̄i. = Π⊤(zit − z̄i.) + Φ⊤(wit − w̄i.) + (vit − v̄i.),

where ȳi. is the average of {yit} over index t; that is ȳi. = T−1∑T
t=1 yit, and the definitions

of x̄i., w̄i., z̄i., ūi., and v̄i. are same as that for ȳi.. Let ỹit = yit − ȳi.. We define x̃it, w̃it, z̃it,

and ṽit in the same fashion as ỹit. Then, (2) becomes

Ỹ = X̃β + W̃γ + Ũ ≡ X̃
∗
θ + Ũ, X̃ = Z̃Π + W̃Φ + Ṽ, (3)

where X̃
∗

= (X̃,W̃) and θ⊤ = (β⊤,γ⊤). Here, the definition of Ỹ is similar to that

for Y and so are ỹi, X̃, x̃i, W̃, w̃i, Z̃, z̃i, Ũ, ũi, Ṽ, and ṽi. In fact, z̃i = Qzi, where

Q = IT −T−1ee⊤, and Id denotes the d×d identify matrix. The presence of {αi} produces a

correlation among residuals of the same cross-sectional unit, although residuals from different

cross-sectional units are independent. However, regardless of whether {αi} are treated as

fixed or random, the individual-specific effects for a given sample can be swept out by the

idempotent transformation matrix Q.

For simplicity of presentation, we provide some additional definitions and notations. If

W is a p × q matrix, Vec(W) denotes a pq × 1 vector formed by stacking the columns

of W under each; that is, if W = (W1,W2, · · · ,Wq), where Wi is a p × 1 vector for

i = 1, · · · , q, then Vec(W) = (W⊤
1 ,W⊤

2 , · · · ,W⊤
q )⊤. In the sequel, the symbols “ ⇒ ”

and “ →p ” denote the convergence in distribution and in probability, respectively. Finally,
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let Pz = Z̃
∗
(
Z̃

∗⊤

Z̃
∗
)−1

Z̃
∗⊤

, which is the orthogonal project matrix generated by Z̃
∗

and

Z̃
∗

= (W̃, Z̃). Therefore, the IV estimator of θ is given by

θ̂ =
(
X̃

∗⊤

PzX̃
∗
)−1

X̃
∗⊤

PzỸ. (4)

For details, see Hsiao (2003).

3 Asymptotic Theory

To derive the asymptotic properties of the resulting estimator, we consider two cases: large

N and small T presented in Subsection 3.1, and large N and large T discussed in Subsection

3.2, since the asymptotic behaviors of the resulting estimator for two cases are different.

To present the asymptotic distribution, we need the following additional notations. Let

Z⊤
u = (Z⊤

wu,Z
⊤
zu), Z⊤

v = (Z⊤
wv,Z

⊤
zv), and (Z⊤

u , (Vec(Zv))
⊤)⊤ ∼ N(0,Σ ⊗ Σ0), where Zwu and

Zzu are k × 1 and q × 1 random vectors, respectively, and Zwv and Zzv are k × p and q × p

random matrices, respectively. Note that the distribution of a random matrix Zv is defined

as the distribution of Vec(Zv). Define H1 = diag{Ip, N
1/2Ik}, H2 = N1/2 diag{K−1

N Ip, Ik},
and H3 = H1. Let Ω = Σzz − ΣzwΣ−1

wwΣwz and ∆ = Σ0

(
C1 I
C 0

)
. Next, we present the

asymptotic results with their proofs relegated to the Appendix.

3.1 Large N and Small T

For simplicity of notation, we define λ = (T − 1)1/2Ω1/2CΣ−1/2
vv , and c(α) to indicate the

degree of weakness as c(α) = 1 for weak case, c(α) = 2 for nearly weak case, and c(α) = 3

for nearly non-identified case. Set,

∆c(α) =
√

T − 1

[
I(c(α) 6= 3)

(
Σ0

(
C1
C

)
0

)
+ I(c(α) 6= 2)

(
Zv√
T − 1

0

)
+ Σ0

(
0 I
0 0

)]
,

where I(A) is the indicator function of event A. Now, the asymptotic distribution of the

estimator θ̂ is stated in Theorem 1, together with its associated corollaries. All technical

proofs in this subsection are given in the Appendix.

Theorem 1: Suppose that Assumptions 1, 2 and 3 hold for a fixed T , as N → ∞, we have,

Hc(α)

[
θ̂ − θ

]
⇒ (∆⊤

c(α)Σ
−1
0 ∆c(α))

−1∆⊤
c(α)Σ

−1
0 Zu,

where Zu is a multivariate normal random vector with mean zero and covariance matrix

σuuΣ0.

6



From Theorem 1, one can obtain easily the consistency and inconsistency of the IV

estimators for β and γ, respectively, stated in Corollary 1 for β̂ and Corollary 2 for γ̂ with

their proofs given in the Appendix. First, define the random vector Z1 = Ω−1/2(Zzu −
ΣzwΣ−1

wwZwu)σ
−1/2
uu and the random matrix Z2 = Ω−1/2(Zzv −ΣzwΣ−1

wwZwv)Σ
−1/2
vv . It is easy

to check that Z12 ∼ N(0, Σρ ⊗ Iq), where Z12 =

(
Z1

Vec(Z2)

)
and Σρ =

(
1 ρ⊤

ρ Ip

)
with ρ =

Σ−1/2
vv Σvuσ

−1/2
uu ; see the proof of Lemma 2 in the Appendix. Also, set C2 = C1 +Σ−1

wwΣwzC.

Corollary 1: Suppose that Assumptions 1, 2 and 3 hold for a fixed T, we have,

Hc(α),11

[
β̂ − β

]
⇒ Λc(α),

where Hc(α),11 is the upper left corner sub-matrix of Hc(α), Λc(α) = σ1/2
uu Σ−1/2

vv

[
A⊤

c(α)Ac(α)

]−1

A⊤
c(α)Z1, and Ac(α) = I(c(α) 6= 3)λ + I(c(α) 6= 2)Z2.

Corollary 2: Under Assumptions 1, 2 and 3, for a fixed T, we have

N1/2 [γ̂ − γ] ⇒ Γc(α),

where Γc(α) = (T − 1)−1/2Σ−1
ww

[
Zwu − I(c(α) 6= 2)ZwvΛc(α)

]
− I(c(α) 6= 3)C2Λc(α).

Remark 1: It follows from Corollary 2 that when T is fixed, the IV estimator for γ is always

consistent with the same convergence rate at N1/2 for all three cases. But the conclusion for

β̂ varies. From Corollary 1, the consistency holds only for the nearly weak case but not for

other two cases. For both weak and nearly non-identified cases, β̂ is inconsistent although

it has a limiting distribution, which is not normal. Therefore, this observation is similar to

that in Hahn and Kuersteiner (2002) and Chao and Swanson (2007) for cross-sectional data.

However, Corollary 3 below shows that for a fixed T , the IV estimators for β and γ are

asymptotically distributed as normal for the nearly weak case.

Corollary 3: Suppose that Assumptions 1, 2 and 3 hold for a fixed T , we have

K−1
N N1/2

[
β̂ − β

]
⇒ N(0,Σβ,1), and N1/2 [γ̂ − γ] ⇒ N(0,Σγ,1),

where Σβ,1 = (T − 1)−1σuu(C
⊤ΩC)−1 and Σγ,1 = (T − 1)−1σuu

[
Σ−1

ww + C2 (C⊤ΩC)−1 C⊤
2

]
.

To get insights about the asymptotic bias terms for the weak and nearly non-identified

cases, next we compute the means of Λ1 and Λ3 for univariate case (p = 1) as in Theorem

7



1, stated in Theorem 2 below. When p = 1, Λ1, Σvv, and ρ become scalar. Then, we use

Λ1, Λ3, Σvv and ρ instead of Λ1, Λ3, Σvv, and ρ.

Theorem 2: If p = 1, then,

E[Λ1] = q ρ (T − 1)−1σ1/2
uu Σ1/2

vv (C⊤ΩC)−1 + o(T−1), and E[Λ3] = σ1/2
uu Σ−1/2

vv ρ,

where Λ1 and Λ3 are defined in Corollary 1.

Remark 2: Note that a result similar to Theorem 2 was obtained by Hahn and Kuersteiner

(2002) and Chao and Swanson (2007) for cross-sectional data. Under some regularity con-

ditions, E(Λ1) and E(Λ3) can be regarded as the asymptotic bias of the IV estimator for

β. Also, we can see from Corollary 3 that the the asymptotic bias in E[Λ1] is proportional

to T−1 and it becomes smaller for larger T although fixed. Finally, we conjecture that the

result in Theorem 2 would be true for p > 1. Of course, it deserves a further investigation

in a future study.

3.2 Large N and Large T

Now we consider the asymptotic normality in the joint limit theory in which both N and

T go to infinity simultaneously. The asymptotic distribution of the estimator θ̂ for both N

and T → ∞ is stated in the following theorem with its proof presented in the Appendix.

Theorem 3: Under Assumptions 1, 2 and 3, for both the nearly weak and weak cases, we

have

T 1/2H1

[
θ̂ − θ

]
⇒ (∆⊤Σ−1

0 ∆)−1∆⊤Σ−1
0 Zu = N(0, Σθ,2), (5)

where Σθ,2 = σuu(∆
⊤Σ−1

0 ∆)−1. Further, for the nearly non-identified case, if KN/
√

N T →
0, as N and T → ∞, then, (5) holds.

It is clear that Theorem 3 gives the asymptotic normality of the IV estimators for β and

γ, respectively, stated in Corollary 4 below.

Corollary 4: Under Assumptions 1, 2 and 3, for both the weak and nearly weak cases, we

have

T 1/2N1/2K−1
N

[
β̂ − β

]
⇒ N(0,Σβ,2), and T 1/2N1/2 [γ̂ − γ] ⇒ N(0,Σγ,2) (6)

where Σβ,2 = σuu(C
⊤ΩC)−1 and Σγ,2 = σuu

[
Σ−1

ww + C2 (C⊤ΩC)−1 C⊤
2

]
. Further, for the

nearly non-identified case, if KN/
√

N T → 0, as N and T → ∞, then, (6) holds.
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The consequences of Corollary 3 are as follows. When both N and T go to infinity

simultaneously, both β̂ and γ̂ are always consistent and asymptotically normally distributed.

The convergence rates are same for γ̂ with a conventional rate at N1/2T 1/2 for all three cases

but the convergence rates are different for β̂ and change with the degree of weakness.

4 Monte Carlo Simulations

In this section we report the results based on Monte Carlo simulations to examine the finite

sample performances of the IV estimators.

We consider the following data generating model:

yit = −9xit + 9wit + αi + uit, xit = −2K−1
N zit + 2K−1

N wit + vit,

where exogenous variable wit is generated from uniform distribution U(2, 8), excluded in-

strument variable zit is generated from uniform distribution U(2, 10), and αi is generated

from normal distribution N(0, 1). Finally, uit ∼ N(0, 1) and vit ∼ N(0, 1) are generated

jointly from a bivariate normal with the correlation coefficient ρ = 0.7. Clearly, uit and vit

are independent of zit and wit. But xit is correlated with uit, since uit and vit are correlated.

For the choice of KN , we consider three cases. For each KN , fixed T and changed T are

considered. The IV estimators for β (β = −9) and γ (γ = 9) are computed and 1000 repli-

cations are performed for each pair of T and N . We compute the absolute bias for both β̂

and γ̂ for each pair of T and N . For each pair of T and N , the 1000 values of absolute bias

for β are plotted in Figures 1(a), 1(c), 2(a), 3(a), 3(c), 4(a), 4(d) in the form of boxplots,

and the 1000 values of absolute bias for γ are plotted in Figures 1(b), 1(d), 2(b), 3(b), 3(d),

4(a), 4(d) in the form of boxplots.

Case I. The weak case: KN = N1/2, or K−1
N N1/2 = 1. First, we fix T as T = 50. We

consider five sample sizes: N = 50, 150, 250, 350, and 450. Therefore, we consider five pairs

of (N, T ): (50, 50), (150, 50), (250, 50), (350, 50), and (450, 50). For each pair of them,

the 1000 values of absolute bias for β̂ are plotted in Figure 1(a) in the form of boxplots, and

the 1000 values of absolute bias for γ̂ are plotted in Figure 1(b) in the form of boxplots.

We can observe that the bias for β̂ keeps almost same even N increases but the bias for γ̂

deceases even N increases. This implies that the IV estimator for β is not consistent and

the IV estimator for γ is consistent.

Secondly, we consider the case that both N and T become larger, which can be regarded

as the case that both N and T go to infinity simultaneously. We consider five pairs of

(N, T ): N = 2T = 40, 80, 120, 160, 200. Boxplots of the 1000 values of the absolute bias
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Figure 1: Simulation results for Case I (KN = N1/2): Top panel: T = 50 and N = 50, 150,
250, 350, and 450. Bottom panel: N = 2 T = 40, 80, 120, 160 and 200. Left panel: Boxplots
of the absolute bias of the IV estimator for β. Right panel: Boxplots of the absolute bias of
the IV estimator for γ.

are displayed in Figure 1(c) for β̂ and in Figure 1(d) for γ̂. We can observe clearly from

Figures 1(c) and 1(d) that both biases β̂ and γ̂ decrease as T increases. This is in the line

with our asymptotic theory.

Finally, we fix a large N as N = 250 and then consider five values for T as 25, 50, 100,

150 and 200. Figure 2 summarizes boxplots of the absolute bias for β̂ in Figure 2(a) and for

γ̂ in Figure 2(b). We can observe particularly from Figure 2(a) that the bias β̂ decreases

as T increases. This observation supports the theory that when T increases, the asymptotic

bias should become smaller.

Case II. The nearly weak case: KN = N0.2, or K−1
N N1/2 = N0.3. The settings are same

as those in Case I. Figure 3 summarizes boxplots of the absolute bias for β̂ and γ̂. We can

observe from Figure 3 that all biases for β̂ and γ̂ decrease as N increases no matter what T is

small or large. Therefore, the IV estimators for β and for γ are always consistent regardless

of small T or large T .
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Figure 2: Simulation results for Case I with N = 250 and T = 25, 50, 100, 150, and 200. (a)
Boxplots of the absolute bias of the IV estimator for β. (b) Boxplots of the absolute bias of
the IV estimator for γ.
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Figure 3: Simulation results for Case II (KN = N0.2). Caption is the same as in Figure 1.
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Figure 4: Simulation results for Case III (KN = N0.7). Caption is the same as in Figure 1.

Case III. The nearly non-identified case: KN = N0.7, or K−1
N N1/2 = N−0.2. The settings

are same as those in Case I. Figure 4 gives boxplots of the absolute bias for β̂ and γ̂. It is

clear from Figures 4(a) and 4(b) [large N and small T ] that the IV estimator for β is not

consistent and the IV estimator for γ is consistent. We can conclude from Figures 4(c) and

4(d) [large N and large T ] that both β̂ and γ̂ are consistent.

Appendix

We use the same notations as introduced in Sections 2 and 3. It follows from (4) that

θ̂ − θ =

[
X̃

∗⊤

Z̃
∗
(
Z̃

∗⊤

Z̃
∗
)−1

Z̃
∗⊤

X̃
∗

]−1

X̃
∗⊤

Z̃
∗
(
Z̃

∗⊤

Z̃
∗
)−1

Z̃
∗⊤

Ũ.

By observing the above form, as T is fixed, to analyze the asymptotic distribution of θ, we

need to consider three components: N−1X̃
∗⊤

Z̃
∗
, N−1Z̃

∗⊤

Z̃
∗
, and N−1/2Z̃

∗⊤

Ũ. To this end,

some preliminary asymptotic results are given in the following two lemmas.

Lemma 1: Suppose that Assumption 2 holds for a fixed T, then N−1Z̃
⊤
Z̃, N−1W̃

⊤
Z̃, and
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N−1W̃
⊤
W̃ converge to (T − 1)Σzz, (T − 1)Σwz, and (T − 1)Σww in probability, respectively.

Proof of Lemma 1: Since {zit} are iid across both individuals and time, so are {z⊤i Qzi}.
By the law of large numbers,

N−1Z̃
⊤
Z̃ = N−1

N∑

i=1

z⊤i Q⊤Qzi →p E(z⊤i Qzi)

= TE(zitz
⊤
it) −

[
E(zitz

⊤
it) + (T − 1)E(zit)E(z⊤it)

]
= (T − 1)Σzz.

Similarly, N−1W̃
⊤
Z̃ →p (T − 1)Σwz and N−1W̃

⊤
W̃ →p (T − 1)Σww. The proof of Lemma

1 is complete. Q.E.D

Lemma 2: Under Assumptions 2 and 3, for a fixed T,

N−1/2(W̃
⊤
Ũ, Z̃

⊤
Ũ,W̃

⊤
Ṽ, Z̃

⊤
Ṽ) ⇒ (T − 1)1/2(Zwu,Zzu,Zwv,Zzv). (A.1)

and Z12 ∼ N(0,Σρ ⊗ Iq).

Proof of Lemma 2: We reexpress the left hand side of (A.1) into a vector form as

Vec
(
N−1/2(W̃

⊤
Ũ, Z̃

⊤
Ũ,W̃

⊤
Ṽ, Z̃

⊤
Ṽ)
)

= N−1/2
N∑

i=1

ξi,

where

ξi =

(
ξi1
ξi2

)
with ξi1 =

(
w⊤

i Qui

z⊤i Qui

)
and ξi2 = Vec

(
w⊤

i Qvi

z⊤i Qvi

)
.

Clearly, it follows from Assumptions 2 and 3 that E[ξi] = 0. Now, we need to calculate the

covariance matrix of ξi. Denote by

Var(ξi) =
(

A1 A2
A3 A4

)
,

where A1 = Var(ξi1), A2 = Cov(ξi1, ξi2) = A⊤
3 and A4 = Var(ξi2). First, we calculate A1.

A1 =
(

B1 B2
B3 B4

)
,

where B1 = Var(w⊤
i Qui), B2 = Cov(w⊤

i Qui, z
⊤
i Qui), B3 = B⊤

2 , and B4 = Var(z⊤i Qui). By

Assumptions 2 and 3,

B4 = Var

[
T∑

t=1

(
zit − T−1

T∑

s=1

zis

)
uit

]
= σuu(T − 1)Σzz.
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Similarly, B1 = σuu(T −1)Σww, and B2 = σuu(T −1)Σwz. Therefore, A1 = (T −1)σuu⊗Σ0,

A4 = (T − 1)Σvv ⊗Σ0, and A2 = (T − 1)Σuv ⊗Σ0. Thus, Var(ξi) = (T − 1)Σ⊗Σ0. Since

{(w⊤
it , z

⊤
it)

⊤} and {(uit,vit)} are iid across both individuals and time, then so are {ξi}. It

follows from the central limit theorem that

N−1/2
N∑

i=1

ξi ⇒




Zwu,T

Zzu,T

Vec

(
Zwv,T

Zzv,T

)




∼ N(0, (T − 1)Σ ⊗ Σ0).

Then,

N−1/2(W̃
⊤
Ũ, Z̃

⊤
Ũ,W̃

⊤
Ṽ, Z̃

⊤
Ṽ) ⇒ (Zwu,T ,Zzu,T ,Zwv,T ,Zzv,T ).

Now we use notations Zwu = (T − 1)−1/2Zwu,T , Zzu = (T − 1)−1/2Zzu,T , Zwv = (T −
1)−1/2Zwv,T , and Zzv = (T −1)−1/2Zzv,T to conclude that (Z⊤

u , (Vec(Zv))
⊤)⊤ ∼ N(0,Σ⊗Σ0).

Therefore, (A.1) holds. Next, we show that (Z⊤
1 , (Vec(Z2))

⊤)⊤ is distributed N(0, Σρ ⊗ Iq).

For this purpose, define A0 = Ω−1/2
(
−ΣzwΣ−1

ww Iq

)
. Then, Z1 = A0Zuσ

−1/2
uu , Z2 =

A0ZvΣ
−1/2
vv , Vec(Z2) = Σ−1/2

vv ⊗A0Vec(Zv), and A0Σ0A
⊤
0 = Iq. Now we calculate the mean

and covariance matrix of Z12. Clearly,

E[Z12] =


 A0E(Zu)σ

−1/2
uu

Σ−1/2
vv ⊗ A0E(Vec(Zv))


 = 0, and Var(Z12) =

(
D1 D2
D3 D4

)
,

where D1 = Var(Z1), D3 = D⊤
2 = Cov(Vec(Z2),Z1), and D4 = Cov(Vec(Z2)). Since

D1 = Cov(A0 Zuσ
−1/2
uu ) = σ−1

uu A0 Var(Zu)A
⊤
0 = σ−1

uu A0 σuu Σ0A
⊤
0 = A0Σ0A

⊤
0 = Iq,

D3 = E((Σ−1/2
vv ⊗ A0Vec(Zv))(A0Zuσ

−1/2
uu )⊤) = (Σ−1/2

vv ⊗ A0)σ
−1/2
uu E((Vec(Zv))Z

⊤
u )A⊤

0

= (Σ−1/2
vv ⊗ A0)σ

−1/2
uu (Σvu ⊗ Σ0)A

⊤
0 = Σ−1/2

vv σ−1/2
uu Σvu ⊗ A0Σ0A

⊤
0

= Σ−1/2
vv σ−1/2

uu Σvu ⊗ Iq = ρ ⊗ Iq,

and

D4 = Σ−1/2
vv ⊗ A0Var(Vec(Zv))(Σ

−1/2
vv ⊗ A0)

⊤ = (Σ−1/2
vv ⊗ A0)(Σvv ⊗ Σ0)Σ

−1/2
vv ⊗ A⊤

0

= Σ−1/2
vv ΣvvΣ

−1/2
vv ⊗ A0Σ0A

⊤
0 = Ip ⊗ Iq,

then, Var(Z12) = Σρ ⊗ Iq. Thus, Z12 is distributed as N(0,Σρ ⊗ Iq). This proves Lemma 2.

Q.E.D

Proof of Theorem 1: By Lemma 1, one has

N−1Z̃
∗⊤

Z̃
∗

=


N−1W̃

⊤
W̃ N−1W̃

⊤
Z̃

N−1Z̃
⊤
W̃ N−1Z̃

⊤
Z̃


 →p (T − 1)Σ0.
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By Assumption 1,

Z̃
∗⊤

X̃
∗

=


K−1

N W̃
⊤
Z̃C + K−1

N W̃
⊤
W̃C1 + W̃

⊤
Ṽ W̃

⊤
W̃

K−1
N Z̃

⊤
Z̃C + K−1

N Z̃
⊤
W̃C1 + Z̃

⊤
Ṽ Z̃

⊤
W̃


 ,

so that

Z̃
∗⊤

X̃
∗
H−1

1 N−1/2 =


K−1

N N−1/2W̃
⊤
Z̃C + K−1

N N−1/2W̃
⊤
W̃C1 + N−1/2W̃

⊤
Ṽ N−1W̃

⊤
W̃

K−1
N N−1/2Z̃

⊤
Z̃C + K−1

N N−1/2Z̃
⊤
W̃C1 + N−1/2Z̃

⊤
Ṽ N−1Z̃

⊤
W̃


 ,

and

Z̃
∗⊤

X̃
∗
H−1

2 N−1/2 =


N−1W̃

⊤
Z̃C + N−1W̃

⊤
W̃C1 + KNN−1W̃

⊤
Ṽ N−1W̃

⊤
W̃

N−1Z̃
⊤
Z̃C + N−1Z̃

⊤
W̃C1 + KNN−1Z̃

⊤
Ṽ N−1Z̃

⊤
W̃


 .

First, we prove the assertion in (a). Since K−1
N N1/2 → 1, as N → ∞, it follows from Lemmas

1 and 2 that

Z̃
∗⊤

X̃
∗
H−1

1 N−1/2 ⇒ (T − 1)1/2∆1,

so that

H1(θ̂ − θ) =
[
(Z̃

∗⊤

X̃
∗
H−1

1 N−1/2)⊤(N−1Z̃
∗⊤

Z̃
∗
)−1(Z̃

∗⊤

X̃
∗
H−1

1 N−1/2)
]−1

(Z̃
∗⊤

X̃
∗
H−1

1 N−1/2)⊤(N−1Z̃
∗⊤

Z̃
∗
)−1(N−1/2Z̃

∗⊤

Ũ)

⇒ (∆⊤
1 Σ−1

0 ∆1)
−1∆⊤

1 Σ−1
0 Zu.

Second, we establish (b). Since K−1
N N1/2 → ∞, as N → ∞, one can show easily from

Lemmas 1 and 2 that

Z̃
∗⊤

X̃
∗
H−1

2 N−1/2 ⇒ (T − 1)1/2∆2,

which implies that

H2(θ̂ − θ) =
[
(Z̃

∗⊤

X̃
∗
H−1

2 N−1/2)⊤(N−1Z̃
∗⊤

Z̃
∗
)−1(Z̃

∗⊤

X̃
∗
H−1

2 N−1/2)
]−1

(Z̃
∗⊤

X̃
∗
H−1

2 N−1/2)⊤(N−1Z̃
∗⊤

Z̃
∗
)−1(N−1/2Z̃

∗⊤

Ũ)

⇒ (∆⊤
2 Σ−1

0 ∆2)
−1∆⊤

2 Σ−1
0 Zu.

Finally, it suffices to show that (c) holds. Since K−1
N N1/2 → 0, as N → ∞, by Lemmas 1

and 2, one has

Z̃
∗⊤

X̃
∗
H−1

1 N−1/2 ⇒ (T − 1)1/2∆2.

Then,

H1(θ̂ − θ) ⇒ (∆⊤
3 Σ−1

0 ∆3)
−1∆⊤

3 Σ−1
0 Zu.
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Theorem 1 is proved. Q.E.D

Proof of Corollaries 1 and 2: First, we prove the conclusion in part (a). It is clear from

Theorem 1(a) that we need to calculate the two diagonal sub-matrices in (∆⊤
1 Σ−1

0 ∆1)
−1.

By the inverse of a partitioned matrix,

Σ−1
0 =

(
Σ−1

ww + Σ−1
wwΣwzΩ

−1ΣzwΣ−1
ww −Σ−1

wwΣwzΩ
−1

−Ω−1ΣzwΣ−1
ww Ω−1

)
,

then ∆⊤
1 Σ−1

0 can be written as

∆⊤
1 Σ−1

0 = (T − 1)1/2
(

G1 G2
Ik 0

)
,

where G1 = C⊤
1 +(T −1)−1/2Z⊤

wvΣ
−1
ww +(T −1)−1/2Z⊤

wvΣ
−1
wwΣwzΩ

−1ΣzwΣ−1
ww−(T −1)−1/2Z⊤

zv

Ω−1ΣzwΣ−1
ww, and G2 = C⊤ + (T − 1)−1/2Z⊤

zvΩ
−1 − (T − 1)−1/2Z⊤

wvΣ
−1
wwΣwzΩ

−1. Thus,

∆⊤
1 Σ−1

0 ∆1 can be expressed as

(T − 1)


 G3 C⊤

1 Σww + C⊤Σzw + (T − 1)−1/2Z⊤
wv

ΣwwC1 + ΣwzC + (T − 1)−1/2Zwv Σww


 ,

where G3 = (T −1)−1/2Z⊤
zvC+(T −1)−1/2C⊤Zzv +(T −1)−1/2Z⊤

wvC1 +(T −1)−1/2C⊤
1 Zwv +

C⊤
1 ΣwzC+C⊤ΣzwC1+C⊤

1 ΣwwC1+C⊤ΣzzC+(T−1)−1Z⊤
wvΣ

−1
wwZwv+(T−1)−1Z⊤

wvΣ
−1
wwΣwz

Ω−1ΣzwΣ−1
wwZwv − (T − 1)−1Z⊤

zvΩ
−1ΣzwΣ−1

wwZwv − (T − 1)−1Z⊤
wvΣ

−1
wwΣwzΩ

−1Zzv + (T −
1)−1Z⊤

zvΩ
−1Zzv. Hence,

(∆⊤
1 Σ−1

0 ∆1)
−1 ≡ (T − 1)−1

(
G4 G5

G⊤
5 G6

)
,

where G4 = (T − 1)Σ−1/2
vv ((λ+Z2)

⊤(λ+Z2))
−1Σ−1/2

vv , G5 = −G4(C
⊤
1 Σww +C⊤Σzw +(T −

1)−1/2Z⊤
wv)Σ

−1
ww, and G6 = Σ−1

ww + Σ−1
ww(ΣwwC1 + ΣwzC + (T − 1)−1/2Zwv) G4(C

⊤
1 Σww +

C⊤Σzw + (T − 1)−1/2Z⊤
wv)Σ

−1
ww. Hence, we have

(∆⊤
1 Σ−1

0 ∆1)
−1∆⊤

1 Σ−1
0 Zu =

(
Λ1
Γ1

)
.

Similarly, we can prove the conclusions in parts (b) and (c). The proof of Corollaries 1 and

2 is finished. Q.E.D

Proof of Corollary 3: It follows from Lemma 2 that Z1 ∼ N(0, Iq). Then, it is easy to

verify from Corollary 1 (b) that K−1
N N1/2(β̂ − β) ⇒ N(0,Σβ,1), where

Σβ,1 = σ1/2
uu Σ−1/2

vv (λ⊤λ)−1λ⊤Iqλ(λ⊤λ)−1Σ−1/2
vv σ1/2

uu = (T − 1)−1σuu(C
⊤ΩC)−1.
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Now, we show that N1/2(γ̂ − γ) ⇒ N(0,Σγ,1). Applying Corollary 2 (b) leads to

(T − 1)1/2Γ2 = Σ−1
wwZwu − (T − 1)1/2 C2 Λ2 ≡ A1 Zu,

where A1 =
(
Σ−1

ww + C2 (C⊤ΩC)−1C⊤ΣzwΣ−1
ww −C2 (C⊤ΩC)−1C⊤

)
. Next, we calculate

the covariance matrix of Γ2. By Lemma 2, Zu ∼ N(0, σuuΣ0), so that

(T − 1)Cov[Γ2] = σuu A1Σ0 A⊤
1 = (T − 1)Σγ,1.

Thus, N1/2 [γ̂ − γ] ⇒ N(0,Σγ,1). Hence, this proves Corollary 3. Q.E.D

In order to prove Theorem 2, the following three lemmas are needed. Note that the

proofs of Lemmas 4 and 5 can be found in Ullah (1974) and Lebedev (1972, pp.268-271),

respectively, and omitted.

Lemma 3: If p = 1, then

E
[{

(λ + Z2)
⊤(λ + Z2)

}−1
(λ + Z2)

⊤

]
= λ⊤E

[{
χ2

q+2(δ)
}−1

]
,

where δ = λ⊤λ/2.

Proof of Lemma 3: It is easy to see from Lemma 2 that λ + Z2 ∼ N(λ, Iq). We re-write

λ ≡ (λ1, . . . , λq)
⊤ and λ+Z2 ≡ (ζ1, . . . , ζq)

⊤. Then, ζi ∼ N(λi, 1) and {ζi} are independent

as well as (λ + Z2)
⊤(λ + Z2) =

∑q
i=1 ζ2

i ∼ χ2
q(δ). Now, by applying Lemma 2 of Appendix

B.1 of Judge and Bock (1978), for each 1 ≤ i ≤ q, we have

E


ζi/

q∑

j=1

ζ2
j


 = λi E


E








q∑

j 6=i

ζ2
j + χ2

3(λ
2
i /2)




−1 ∣∣∣∣∣ ζj, j 6= i








= λi E
[{

χ2
q+2(δ)

}−1
]
.

Then, we prove the lemma. Q.E.D

Lemma 4:

E
[{

χ2
q+2(δ)

}−1
]

= 2−1e−δ Γ(q/2)

Γ(q/2 + 1)
H(q/2; q/2 + 1; δ),

where H(q/2; q/2 + 1; δ) is the hypergeometric function defined as

H(a; b; z) =
∞∑

k=0

(a)k zk(b)k/[k!(b)k],

and (a)k = a(a + 1)...(a + k − 1).
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Lemma 5: If x > 0, and a, c > 0, then as x → ∞

H(a; c; x) =
Γ(c)

Γ(a)
exx−(c−a)




k−1∑

j=0

(c − a)j(1 − a)j

j!
x−j + O(|x|−k)




for any k ≥ 1.

Proof of Theorem 2: From Lemma 2, Z12 is distributed as N(0,Σρ ⊗ Iq). Then, using

the project of Z1 onto Z2 gives Z1 = ρZ2 + Z∗, where Z∗ is distributed as N(0, (1 − ρ2)Iq)

and is independent of Z2. Thus,

E[Λ1] = σ1/2
uu Σ−1/2

vv E
[
E((λ + Z2)

⊤(λ + Z2))
−1(λ + Z2)

⊤(ρZ2 + Z∗) |Z2)
]

= σ1/2
uu Σ−1/2

vv E
[
((λ + Z2)

⊤(λ + Z2))
−1(λ + Z2)

⊤ρZ2

]

= σ1/2
uu Σ−1/2

vv E
[
ρ − ((λ + Z2)

⊤(λ + Z2))
−1(λ + Z2)

⊤ρλ
]
,

which, in conjunction with Lemmas 3 and 4, implies that

E[Λ1] = σ1/2
uu Σ−1/2

vv ρ
[
1 − 2 δ E((χ2

q+2(δ))
−1)

]

= σ1/2
uu Σ−1/2

vv ρ

[
1 − δ e−δ Γ(q/2)

Γ(q/2 + 1)
H(q/2; q/2 + 1; δ)

]

= σ1/2
uu Σ−1/2

vv ρ e−δH(q/2 − 1; q/2; δ).

Thus, it follows easily from Lemma 5 that

E[Λ1] = σ1/2
uu Σ−1/2

vv ρ
q

2
δ−1

[
1 + O(δ−1)

]
= q σ−1/2

uu Σ1/2
vv ρΣβ,1 + O(T−2),

since δ = 2(T − 1)Σ−1/2
vv C⊤ΩCΣ−1/2

vv = O(T ), which concludes that the first conclusion in

the theorem holds. Finally, we establish the second assertion. It is easy to see that

E(Λ3) = σ1/2
uu Σ−1/2

vv E
[
E((Z⊤

2 Z2)
−1Z⊤

2 (Z2ρ + Z∗) |Z2)
]

= σ1/2
uu Σ−1/2

vv E[(Z⊤
2 Z2)

−1Z⊤
2 Z2ρ]

= σ1/2
uu Σ−1/2

vv ρ.

The proof of Theorem 2 is complete. Q.E.D

When T goes to infinite, to analyze the asymptotic distribution of θ, we need to con-

sider the following three components: N−1T−1X̃
∗⊤

Z̃
∗
, N−1T−1Z̃

∗⊤

Z̃
∗
, and N−1/2T−1/2Z̃

∗⊤

Ũ.

Before embarking on the proof of Theorem 4, we need the following two lemmas.

Lemma 6: Under Assumption 2, we have

N−1T−1Z̃
⊤
Z̃ →p Σzz, N−1T−1W̃

⊤
Z̃ →p Σwz, and N−1T−1W̃

⊤
W̃ →p Σww.
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Proof of Lemma 6: Define F1 = N−1T−2(T − 1)
∑N

i=1

∑T
t=1

[
zitz

⊤
it − E(zit)E(z⊤it)

]
and

F2 = N−1T−2∑N
i=1

[
T (T − 1) E(zit)E(z⊤it) −

∑
s 6=t zisz

⊤
it

]
. Then, N−1T−1Z̃

⊤
Z̃ = F1 + F2.

Since {(w⊤
it , z

⊤
it)

⊤} are iid across both individuals and time, so are {zitz
⊤
it − E(zit)E(z⊤it)}.

By the law of large numbers,

N−1T−1
N∑

i=1

T∑

t=1

[
zitz

⊤
it − E(zit)E(z⊤it)

]
→p E(zitz

⊤
it) − E(zit)E(z⊤it) = Σzz,

so that F1 →p Σzz. It is clear that to accomplish the proof of the lemma, it suffices to show

that F2 = op(1). To this end, let F2,j1j2 denote the (j1, j2)th (1 ≤ j1, j2 ≤ q) element of F2.

Then, F2,j1j2 can be re-expressed as

F2,j1j2 = 2 N−1T−2
N∑

i=1

∑

1≤s<t≤T

[−zj1iszj2it + E(zj1it)E(zj2it)] = 2 N−1T−2
NT (T−1)/2∑

m=1

zm,j1j2 ,

where zm,j1j2 = −zj1iszj2it + E(zj1it)E(zj2it) for m = (i − 1)N + (T − 1)(s − 1) + t − s =

1, 2, · · · , NT (T − 1)/2. Clearly, E[zm,j1j2 ] = 0, and {zm,j1j2}
NT (T−1)/2
m=1 are iid with the finite

second moment by Assumption 2. Then, the law of large numbers implies that F2,j1j2 =

op(1). Thus, F2 = op(1), and N−1T−1Z̃
⊤
Z̃ →p Σzz. Similarly, N−1T−1W̃

⊤
Z̃ →p Σwz, and

N−1T−1W̃
⊤
W̃ →p Σww. Therefore, Lemma 6 is proved. Q.E.D

Lemma 7: Under Assumptions 2 and 3, we have

T−1/2N−1/2(W̃
⊤
Ũ, Z̃

⊤
Ũ,W̃

⊤
Ṽ, Z̃

⊤
Ṽ) ⇒ (Zwu,Zzu,Zwv,Zzv).

Proof of Lemma 7: Observe that

N−1/2T−1/2Z̃
⊤
Ũ ≡ N−1/2T−1/2

N∑

i=1

T∑

t=1

[zit − E(zit)]uit + F3,

where

F3 = N−1/2T−1/2
N∑

i=1

T∑

t=1

[
E(zit) − T−1

T∑

s=1

zis

]
uit.

First, we show that F3 = op(1). Clearly, E(F3) = 0, and

Var(F3) = Var

[{
E(zit) − T−1

T∑

s=1

zis

}
uit

]
= σuuVar

(
E(zit) − T−1

T∑

s=1

zis

)

= σuuVar

(
T−1

T∑

s=1

zis

)
= T−1σuuΣzz.
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Clearly, Var(F3) → 0 as T → ∞ so that F3 = op(1), and

N−1/2T−1/2Z̃
⊤
Ũ = N−1/2T−1/2

N∑

i=1

T∑

t=1

[zit − E(zit)]uit + op(1).

Similarly,

N−1/2T−1/2W̃
⊤
Ũ = N−1/2T−1/2

N∑

i=1

T∑

t=1

[wit − E(wit)]uit + op(1),

N−1/2T−1/2W̃
⊤
Ṽ = N−1/2T−1/2

N∑

i=1

T∑

t=1

[wit − E(wit)]v
⊤
it + op(1),

and

N−1/2T−1/2Z̃
⊤
Ṽ = N−1/2T−1/2

N∑

i=1

T∑

t=1

[zit − E(zit)]v
⊤
it + op(1).

Define,

ηi,t =




(wit − E(wit))uit

(zit − E(zit))uit

Vec

(
(wit − E(wit))v

⊤
it

(zit − E(zit))v
⊤
it

)




.

Similar to the proof of Lemma 2, it is easy to show that E(ηi,t) = 0, and the covariance

matrix Cov(ηi,t) = Σ⊗Σ0. Since {(w⊤
it , z

⊤
it)

⊤} and {(uit,vit)} are iid across both individuals

and time, then {ηi,t} are iid across both individuals and time. It follows from the central

limit theorem that

N−1/2T−1/2
N∑

i=1

T∑

t=1

ηi,t ⇒




Zwu
Zzu

Vec
(

Zwv
Zzv

)


 ∼ N(0,Σ ⊗ Σ0).

By applying Slutsky theorem, we have

T−1/2N−1/2(W̃
⊤
Ũ, Z̃

⊤
Ũ,W̃

⊤
Ṽ, Z̃

⊤
Ṽ) ⇒ (Zwu,Zzu,Zwv,Zzv).

Therefore, we conclude the proof of Lemma 7. Q.E.D

Proof of Theorem 3: Recall (4),

θ̂ − θ =

[
X̃

∗⊤

Z̃
∗
(
Z̃

∗⊤

Z̃
∗
)−1

Z̃
∗⊤

X̃
∗

]−1

X̃
∗⊤

Z̃
∗
(
Z̃

∗⊤

Z̃
∗
)−1

Z̃
∗⊤

Ũ.

By Lemma 6,

N−1T−1Z̃
∗⊤

Z̃
∗

= N−1T−1


W̃

⊤
W̃ W̃

⊤
Z̃

Z̃
⊤
W̃ Z̃

⊤
Z̃


 →p Σ0.
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By Assumption 1, one has

Z̃
∗⊤

X̃
∗
H−1

1 =


K−1

N W̃
⊤
Z̃C + K−1

N W̃
⊤
W̃C1 + W̃

⊤
Ṽ N−1/2W̃

⊤
W̃

K−1
N Z̃

⊤
Z̃C + K−1

N Z̃
⊤
W̃C1 + Z̃

⊤
Ṽ N−1/2Z̃

⊤
W̃


 ,

and

Z̃
∗⊤

X̃
∗
H−1

2 = N−1/2


W̃

⊤
Z̃C + W̃

⊤
W̃C1 + KNW̃

⊤
Ṽ W̃

⊤
W̃

Z̃
⊤
Z̃C + Z̃

⊤
W̃C1 + KN Z̃

⊤
Ṽ Z̃

⊤
W̃




First, we consider the weak case. Since K−1
N N1/2 → 1, as N → ∞, it follows from Lemmas

6 and 7 that

Z̃
∗⊤

X̃
∗
H−1

1 N−1/2T−1 ⇒ ∆,

and

T 1/2H1(θ̂ − θ)

=

[(
Z̃

∗⊤

X̃
∗
H−1

1 N−1/2T−1
)⊤ (

N−1T−1Z̃
∗⊤

Z̃
∗
)−1 (

Z̃
∗⊤

X̃
∗
H−1

1 N−1/2T−1
)]−1

×
(
Z̃

∗⊤

X̃
∗
H−1

1 N−1/2T−1
)⊤ (

N−1T−1Z̃
∗⊤

Z̃
∗
)−1 (

N−1/2T−1Z̃
∗⊤

Ũ

)

⇒ (∆⊤Σ−1
0 ∆)−1∆⊤Σ−1

0 Zu.

Second, we focus on the near weak case. Since K−1
N N1/2 → ∞, as N → ∞, by Lemmas 6

and 7, we have

Z̃
∗⊤

X̃
∗
H−1

2 N−1/2T−1 ⇒ ∆,

and

T 1/2H2(θ̂ − θ)

=

[(
Z̃

∗⊤

X̃
∗
H−1

2 N−1/2T−1
)⊤ (

N−1T−1Z̃
∗⊤

Z̃
∗
)−1 (

Z̃
∗⊤

X̃
∗
H−1

2 N−1/2T−1
)]−1

×
(
Z̃

∗⊤

X̃
∗
H−1

1 N−1/2T−1
)⊤ (

N−1T−1Z̃
∗⊤

Z̃
∗
)−1 (

N−1/2T−1Z̃
∗⊤

Ũ

)

⇒ (∆⊤Σ−1
0 ∆)−1∆⊤Σ−1

0 Zu.

The final consideration goes to the nearly non-identified case. Since KN/
√

NT → 0 as N

and T → ∞, an application of Lemma 7 gives

KNN−1T−1W̃
⊤
Ṽ = KNN−1

(
N−1/2T−1/2W̃

⊤
Ṽ

)
N1/2T−1/2 →p 0,

and

KNN−1T−1Z̃
⊤
Ṽ = KNN−1

(
N−1/2T−1/2Z̃

⊤
Ṽ

)
N1/2T−1/2 →p 0.
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Thus, it follows from Lemmas 6 and that

Z̃
∗⊤

X̃
∗
H−1

2 N−1/2T−1 ⇒ ∆,

and

T 1/2H2(θ̂ − θ) ⇒ (∆⊤Σ−1
0 ∆)−1∆⊤Σ−1

0 Zu.

Hence, the proof of Theorem 3 is complete. Q.E.D

Proof of Corollary 4: First, we calculate (∆⊤Σ−1
0 ∆)−1. Since

Σ−1
0 =

(
Σ−1

ww + Σ−1
wwΣwzΩ

−1ΣzwΣ−1
ww −Σ−1

wwΣwzΩ
−1

−Ω−1ΣzwΣ−1
ww Ω−1

)
,

then,

∆⊤Σ−1
0 ∆ =

(
C⊤

1 ΣwzC + C⊤ΣzwC1 + C⊤
1 ΣwwC1 + C⊤ΣzzC C⊤

1 Σww + C⊤Σzw

ΣwwC1 + ΣwzC Σww

)
.

Therefore, by the inverse of a partitioned matrix,

σuu (∆⊤Σ−1
0 ∆)−1 =

(
Σβ,2 −Σβ,2C

⊤
2

−C2Σβ,2 Σγ,2

)
.

Then, Corollary 4 holds from Theorem 3. Q.E.D
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