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1 Introduction

The spatial autoregressive model with a spatial autoregressive disturbance allows rich spatial de-

pendence and has attracted a lot of attentions in theoretical and empirical spatial data analysis.

Recently, spatial econometric models that deal with spatial dependence across economic units in

cross-sectional and/or panel data have been applied to a wide range of empirical investigations,

for examples, Case (1991), Kelejian and Robinson (1992), Case, Rosen and Hines (1993), Holtz-

Eakin (1994), Aten (1996), Goodchild, Anselin, Appelbaum and Harthorn (2000), Kim, Phipps

and Anselin (2003), Azomahou, Diebolt and Mishra (2009), and Arbia, Battisti and Vaio (2010)

among others. Along with this fast growing interests many studies also developed various testing

procedures for spatial dependence, for examples, Anselin (1988b), Anselin, Bera, Florax and Yoon

(1996), Anselin and Kelejian (1997), Saavedra (2003) and Yang (2009) among others. Except for a

few studies such as Saavedra (2003) most testing procedures are constructed based on the normal-

ity assumption of the disturbance term. However, in many situations, the normality assumption of

the error term is highly likely to be violated. This deviation from the universal normality assump-

tion could yield incorrect asymptotic inferences for the spatial dependence.

Spatial dependence can arise from many different sources. The two most frequently cited

sources are spatial error autocorrelation and spatial lag dependence. Diagnostic tests for spatial

dependence are needed to detect the source of spatial dependence, which has motivated a large

amount of research on the spatial dependence tests. Moran (1950) proposes a seminal test, Moran’s

I-test, for spatial autocorrelation in the regression model. However, the test does not provide an in-

dication of the nature of the spatial process that causes spatial autocorrelation, particularly, whether

the spatial dependence is due to the autoregressive error process or omitted spatially lagged depen-

dent variables. Burridge (1980) extends Moran’s I-test based on the Lagrange multiplier (LM)

principle to test the spatial error autocorrelation in the absence of spatially lagged dependent vari-
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able. Anselin (1988b) proposes a LM test for the spatial error autocorrelation in the presence of the

spatially lagged dependent variable. However, the test involves a nonlinear optimization or the ap-

plication of a numerical search technique. Kelejian and Prucha (1999) find that the computational

complexities of Anselin’s LM test could be overwhelmed if the spatial weights are not symmet-

ric, even if the sample size is only moderate. Anselin, Bera, Florax and Yoon (1996) propose a

modified score test for the spatial error autocorrelation in the presence of local misspecification to

the parameter corresponding to the spatial lag dependence. Comparing to Ansenlin’s LM test, the

latter only requires the ordinary least squares (OLS) residuals under the null hypothesis and has

little computational burden (Bera and Bilias, 2001). However, one potential problem of the above

tests is that the underlying probability density may not be correctly specified, i.e., there may exist

the distributional misspecification problem.

In this paper, we propose a robust score test for spatial dependence which is robust to both

the local and distributional misspecifications. Local parametric misspecification arises when some

nuisance parameters deviate locally from the true values. Distributional misspecification occurs

when the underlying data generating process (DGP) is not correctly specified. When nuisance pa-

rameters are locally deviated from the true values, i.e., the alternative hypothesis is not correctly

specified, the score statistic has a non-zero drift term in general (Davidson and Mackinnon, 1987;

Saikkonen, 1989). Thus the score test statistic follows the non-central χ2 distribution asymptot-

ically, and therefore, it rejects the null hypothesis too often. Bera and Yoon (1993) propose a

modified score test robust to local misspecification. They also show that it is asymptotically equiv-

alent to Neyman’s C(α) test under the local deviation from the true non-null model. On the other

hand, when the underlying probability distribution is misspecified, some standard results are not

valid any more. For example, the information matrix (IM) equality is invalid under distributional

misspecification. Making inference without paying attention to the distributional misspecification

can cause size distortion of the test statistics asymptotically. White (1982) suggests a modified
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LM test by adjusting the variance of the score function. This test is based on the restricted quasi-

maximum likelihood (QML) estimator, and therefore, it is robust to distributional misspecification.

Bera, Bilias and Yoon (2007) propose a score test that is not only robust to local misspecification

but also to distributional misspecification in the sprit of White (1982) and Bera and Yoon (1993). In

the spatial econometrics literature, although the asymptotic properties of QML estimator has been

extensively studied by Lee (2004), the corresponding robust score (LM) test which takes care of

distributional misspecification or both local and distributional misspecifications has not been stud-

ied yet. There are some studies that suggest some other types of robust tests. However, their test

statistics are based on other different estimation methods and, moreover, they do not consider lo-

cal misspecification [Anselin (1990), Kelejian and Robinson (1992), Anselin and Kelejian (1997),

Kelejian and Robinson (1998) and Anselin and Moreno (2003)].

We present general score tests for spatial lag dependence and spatial error autocorrelation,

which are shown to be robust to both local and distributional misspecifications. These tests are

constructed by adjusting the mean and variance of the usual score test statistics and have correct

size asymptotically. The proposed tests can be simplified when either the error term follows the

normal distribution or the nuisance parameters are estimated consistently. We discuss the property

of the score test under distributional misspecification without considering nuisance parameter and

show that Burridge (1980)’ test is robust to distributional misspecification. As an expansion of

Anselin, Bera, Florax and Yoon (1996)’s tests, we also derive robust score tests when the nuisance

parameter is locally misspecified from non-zero constant. Interestingly, we show that Anselin,

Bera, Florax and Yoon (1996)’s tests are robust to local and distributional misspecifications. In

other words, our results support Anselin, Bera, Florax and Yoon (1996) since their tests are even

robust to misspecification of the underlying distribution. These tests are easy to be implemented,

and our Monte-Carlo simulation results show that they have good finite sample properties.

Recent contributions on spatial dependence tests in the presence of local deviation and/or dis-

4



tributional misspecification include Saavedra (2003) and Yang (2009). Instead of testing the spatial

dependence, Yang (2009) proposes a modified Anselin (2001)’s LM statistic which is robust to spa-

tial layouts and distributional misspecification in spatial error components model. Saavedra (2003)

proposes the generalized method of moment (GMM) version of three conventional statistics (Wald,

LM, and LR) to test spatial lag dependence in the spatial autoregressive model with autocorrelated

errors. Due to the semiparametric nature of GMM estimation, these GMM based tests are free of

distributional misspecification. However, the estimation procedure for GMM based tests contains

the non-linear optimization so that it may have a considerable computational burden. Moreover,

Saavedra (2003) shows that the finite sample performance of GMM based tests are not quite satis-

factory under some circumstances.

The rest of the paper is organized as follows: Section 2 briefly summarizes the main results of

score tests under misspecification. Section 3 discusses spatial dependence tests in a spatial autore-

gressive model with a spatial autoregressive disturbance. Section 4 develops new diagnostic score

type tests robust to both local parametric and distributional misspecifications. Section 5 presents a

Monte Carlo simulation to examine the size and power performance in small samples. The paper

concludes in Section 6.

2 Score test under misspecification

Suppose the DGP can be fully characterized by θ = (β′, λ, ρ)′ and correctly specified by the prob-

ability density f (y; θ) which satisfies the regularity conditions of White (1982). For θ = (β′, λ, ρ)′,

β is a parameter vector, and for simplicity, λ and ρ are assumed to be scalars. The null hypothesis

of interest is Hλ
0 : λ = λ0. The properties of the test for Hλ

0 depend on how β is estimated and

whether Hρ
0 : ρ = ρ0 is true or not. We consider three alternative hypotheses, Hλ

a : λ = λ0 +δ1/
√

N,

Hρ
a : ρ = ρ0 + δ2/

√
N and Hλρ

a : λ = λ0 + δ1/
√

N and ρ = ρ0 + δ2/
√

N, where N is the sample size.

5



The score vector, the negative Hessian matrix and the information matrix are defined, respectively,

as

d(θ) =
∂ ln L(θ)
∂θ

=



∂ ln L(θ)
∂β

∂ ln L(θ)
∂λ

∂ ln L(θ)
∂ρ

 ,

J(θ) = −E f

(
1
N
∂2 ln L(θ)
∂θ∂θ′

)
=


Jβ Jβλ Jβρ
Jλβ Jλ Jλρ
Jρβ Jρλ Jρ

 ,

K(θ) = E f

(
1
N
∂ ln L(θ)
∂θ

· ∂ ln L(θ)
∂θ′

)
=


Kβ Kβλ Kβρ

Kλβ Kλ Kλρ

Kρβ Kρλ Kρ

 ,

where E f (·) denotes the expectation under f (y; θ), and ln L(θ) is the corresponding log-likelihood

function. It can be shown that Rao’s score test statistic for Hλ
0 under Hλ

a and Hρ
0 can be expressed

by

RS λ(θ̃) =
1
N

d′λ(θ̃)J−1
λ·β(θ̃)dλ(θ̃) χ2

1(ζ1), (2.1)

where Jλ·β = Jλ − JλβJ−1
β Jβλ, θ̃ = (β̃′, λ0, ρ0)′ is the ML estimator under Hλ

0 and Hρ
0 , and the

non-centrality parameter ζ1 = δ′1Jλ·βδ1. Since δ1 = 0 under Hλ
0 , RS λ has the central chi-square

distribution under the joint null Hλ
0 and Hρ

0 . However, this approach can have misleading conse-

quences if the untested hypothesis is false, i.e., Hρ
a is true. Two approaches can be used to address

this problem. The first obvious approach is to test both parameters jointly. However, a more gen-

eral model may be inferred if only a subset of the joint hypothesis is false, which in turn lead

to over-parameterization (Jaggia and Trivedi, 1994). The second approach is to test Hλ
0 allowing

for the dependence of the test on certain nuisance parameters β and ρ, i.e., ρ needs to be esti-

mated. Since the test statistic depends on an estimator ρ̂, the estimation of ρ sometimes makes

the procedure quite complicate. One interesting way to avoid estimation procedure for ρ is that

ρ is assumed to be locally misspecified. Davidson and Mackinnon (1987), Saikkonen (1989) and

Godfrey (1996) show that the score test statistic converges to the following non-central chi-square
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distribution under Hλ
0 and Hρ

a

RS λ(θ̃) =
1
N

dλ(θ̃)′J−1
λ·β(θ̃)dλ(θ̃) χ2

1(ζ2), (2.2)

where ζ2 = δ′2Jρλ·βJ−1
λ·βJλρ·βδ2 and Jλρ·β = Jλρ − JλβJ−1

β Jβρ = J′ρλ·β. Thus under locally misspecified

alternative, the score test does not follow the central chi-square distribution asymptotically even

under the null hypothesis. This causes incorrect asymptotic size of the test statistic. Davidson and

Mackinnon (1987) and Saikkonen (1989) investigate the power properties of RS λ for the various

choices of ρ.

In order to construct score tests robust to the misspecified local alternative, Bera and Yoon

(1993) suggest a modified score test by adjusting the asymptotic mean and variance of RS λ. The

resulting test has the central χ2
1 limiting distribution and asymptotically correct size under local

misspecification. Under Hλρ
a , they propose a robust score test

RS P
λ (θ̃) =

1
N

[dλ(θ̃) − Dλ(θ̃)]′V(θ̃)−1[dλ(θ̃) − Dλ(θ̃)] χ2
1(ζ3), (2.3)

where Dλ = Jλρ·βJ−1
ρ·βdρ, V = Jλ·β − Jλρ·βJ−1

ρ·βJρλ·β and ζ3 = δ′1Vδ1. The supper-script "P" denotes a

test which is robust to local misspecification. The modified RS P
λ is asymptotically valid while the

classical RS λ usually has the size distortion under local misspecification. However, since ζ1 − ζ3 =

δ′1Jλρ·βJ−1
ρ·βJρλ·βδ1 ≥ 0, the asymptotic power of RS P

λ is lower than that of RS λ when Hρ
0 is true.

Even though RS P
λ is robust to local misspecification, it is invalid if the assumed density f (y; θ)

deviates from the true density, say, g(y). When the assumed density f (y; θ) differs from the true

density g(y), in other words, g(y) does not contain f (y; θ) as a special case, we have the problem of

distributional (model) misspecification (see White (1994)). White (1982) provides a robust form

of LM test under distributional misspecification. Let ζ = (β′, ρ)′ under Hλ
0 , the score test statistic

can be expressed as

RS D
λ (θ̃) =

1
N

dλ(θ̃)′B−1
λ·ζ(θ̃)dλ(θ̃) χ2

1(0), (2.4)
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where Bλ·ζ = Kλ + JλζJ−1
ζ KζJ−1

ζ Jζλ − JλζJ−1
ζ Kζλ − KλζJ−1

ζ Jζλ. The supper-script "D" denotes a test

robust to distributional misspecification.

It is quite natural that one can consider two types of misspecification at the same time. In the

literature, Bera, Bilias and Yoon (2007) derive a general score test which is robust to the joint

presence of distributional and local misspecifications. Under Hλ
0 , their test can be written by

RS PD
λ (θ̃) =

1
N

[d′λ(θ̃) − Dλ(θ̃)]′[Bλ·β(θ̃) + Cλ(θ̃)]−1[d′λ(θ̃) − Dλ(θ̃)] χ2
1(0), (2.5)

where Cλ = Jλρ·βJ−1
ρ·βBρ·βJ−1

ρ·βJρλ·β − Jλρ·βJ−1
ρ·βBρλ·β − Bλρ·βJ−1

ρ·βJρλ·β and Bλρ·β = Kλρ + JλβJ−1
β KβJ−1

β Jβρ −
JλβJ−1

β Kβρ−KλβJ−1
β Jβρ. The supper-script "PD" denotes a test robust to both local and distributional

misspecifications.

We should note that (2.5) is a general form of the score test which is easy to compute since it

only requires the QML estimator of β under the null hypothesis. When ρ is replaced by the QML

estimator or Jλρ·β = 0, (2.5) is reduced to the classical score test under distributional misspecifi-

cation proposed by White (1982). When f (y, θ) ≡ g(y), i.e., J = K, (2.5) is exactly the score test

under local misspecification proposed by Bera and Yoon (1993).

3 Spatial Dependence Tests

Consider the following spatial autoregressive model with a spatial autoregressive disturbance:

y = ρW1y + Xβ + ε, (3.1)

ε = λW2ε + u, (3.2)

where y is the dependent variable, X is a N × k matrix of explanatory variables, β denotes a k × 1

unknown parameter vector, ρ and λ are scalar spatial parameters, W1 and W2 are N × N known

spatial weight matrices, ε is the N × 1 vector of regression disturbances, and u is the N × 1 vector

of innovations with ui ∼ i.i.d(0, σ2) for i = 1, 2, · · · ,N. This model is a generalization of the
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model introduced by Cliff and Ord (1972). It is fairly general in the sense that it allows for spatial

spill-overs in the dependent variable and disturbances as well. For the notational convenience, we

denote θ = (β′, σ2, λ, ρ)′, γ = (β′, σ2, λ)′, η = (β′, σ2), A = IN − ρW1, B = IN − λW2, GA = W1A−1

and GB = W2B−1.

Suppose that the DGP can be fully characterized by θ = (β′, σ2, λ, ρ)′ and a correctly specified

probability density f (y; θ) which satisfies the regularity conditions in Lee (2004). Under the nor-

mality assumption, the log-likelihood function of (3.1) and (3.2) can be written by (see Anselin

(1988a))

ln L = −N
2

ln 2π − N
2

lnσ2 + ln |A| + ln |B| − 1
2σ2 u′u, (3.3)

where u = B(Ay − Xβ). The null hypothesis of interest is Hλ
0 : λ = 0. The performance of the test

for Hλ
0 depends on how β is estimated and whether the hypothesis for the nuisance parameter Hρ

0 :

ρ = 0 is true or not. We consider three alternative hypotheses, Hλ
a : λ = δ1/

√
N, Hρ

a : ρ = δ2/
√

N

and Hλρ
a : λ = δ1/

√
N and ρ = δ2/

√
N.

Burridge (1980) proposes an one-directional score test for Hλ
0 assuming ρ = 0 in (3.1). The

score test statistic in (2.1) is expressed by

RS λ =

(
ũ′W2ũ/σ̃2

)2

T22
, (3.4)

where T22 = tr
[
(W2 + W ′

2)W2

]
, ũ = y − Xβ̃ and σ̃2 = ũ′ũ/N. Here θ̃ = (β̃′, σ̃2, 0, 0)′ denotes the

constraint maximum likelihood estimator (MLE) under Hλ
0 . The test statistic, RS λ, converges to

χ2
1(0) under Hλ

0 . However, if the above assumption, ρ = 0, is contaminated by a local deviation,

say, ρ = δ2/
√

N, it can be expressed by

1√
N

dλ(θ̃) N(Jρλ·ηδ2, Jλ·η), (3.5)

where Jλ·η = Jλ − JληJ−1
η Jηλ and Jρλ·η = Jρλ − JρηJ−1

η Jλη. Due to the non-zero drift term, Jρλ·ηδ2, of

the limiting distribution of dλ(θ), RS λ will generally over-reject Hλ
0 even if Hλ

0 is true.
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Two approaches are readily available in the literature to deal with the above problem. Anselin

(1988b) proposes a LM test for the spatial error autocorrelation by estimating η and ρ jointly.

Specifically, he shows under Hλ
0

LMP
λ =

[
ũ′W2ũ/σ̃2

]2

T22 − T̃ 2
2Avar(ρ̃)

, (3.6)

where ũ = y− ρ̃W1y−Xβ̃, σ̃2 = ũ′ũ/N and T̃2A = tr
[
(W ′

2 + W2)GA

]
for GA = W1(IN−ρ0W1)−1. LMP

λ

converges in distribution to χ2
1(0) under Hλ

0 . Alternatively, Anselin, Bera, Florax and Yoon (1996)

construct a robust score test for the spatial error autocorrelation by eliminating the non-central term

in (2.2). Using the one-step method-of-scoring estimator, a modified score test is given by

RS P
λ =

[
ũ′W2ũ/σ̃2 − T21

(
NJ̃ρ·η

)−1
ũ′W1y/σ̃2

]2

T22 − T 2
21

(
NJ̃ρ·η

)−1 , (3.7)

where ũ are the OLS residuals, σ̃2 = ũ′ũ/N, T21 = tr
[
(W2 + W ′

2)W1

]
, J̃ρ·η = 1

Nσ̃2

[
T̃11σ̃

2+(W1Xβ)′ MX

(W1Xβ)
]

for T11 = tr
[
(W1 + W ′

1)W1

]
and MX = IN − X (X′X)−1 X. RS P

λ converges to χ2
1(0) under

Hλ
0 and ρ = δ2/

√
N. Note that the above test is derived under the assumption ρ = δ2/

√
N that is ρ

deviates locally from 0.

Similarly, there are some score tests for Hρ
0 : ρ = 0 in the literature. Anselin (1988b) proposes

an one-directional score test for Hρ
0 : ρ = 0 assuming λ = 0 in (3.2). The test statistic is given by

RS ρ =

(
ũ′W1y/σ̃2

)2

NJ̃ρ·η
, (3.8)

where ũ = y − Xβ̃ and σ̃2 = ũ′ũ/N. Anselin (1988a) proposes a LM test for the spatial error

autocorrelation by estimating β and λ jointly. The test statistic is given by

LMP
ρ =

[
ũ′B′BW1y/σ̃2

]2

Hρ − Hγρvar(γ̃)H′γρ
, (3.9)

where ũ is a vector of residuals in the ML estimation of the null model, Hρ = TC1C1 +(BW1Xβ)′(BW1

Xβ)/σ2 and Hγρ = ((BX)′(BW1Xβ)/σ2, 0, tr(Gs
BC1)) for TC1C1 = tr

[
(C′1 + C1)C1

]
, C1 = BW1B−1,
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Gs
B = GB + G′B and B = IN − λ̃W2. Anselin, Bera, Florax and Yoon (1996) propose a robust score

test for spatial lag dependence

RS P
ρ =

[
ũ′W1y/σ̃2 − T12T−1

22

(
NJ̃ρ·η

)−1
ũ′W2ũ/σ̃2

]2

NJ̃ρ·η − T 2
21T−1

22

, (3.10)

where Jρ·η = 1
N

[
TC1C1 + 1

σ2 (BW1Xβ)′ MBX (BW1Xβ)
]

and MBX = IN − (BX)[(BX)′(BX)]−1(BX).

RS P
ρ converges to χ2

1(0) under Hρ
0 and λ = δ1/

√
N. We should note that all the above test procedures

are constructed under the normality of random disturbance term. This implies their models are

correctly specified. However, it is well known that, in many cases, the error term does not satisfy

the normality assumption. Thus a robust testing procedure is of importance to take care of deviation

from the true model.

4 A Modified Score Test Robust to Local and Distributional
Misspecifications

Suppose that the true DGP characterized by g(y) could be different from the assumed probability

distribution f (y, θ). Although the LMP
λ and RS P

λ are robust to local misspecification, both tests are

generally invalid under distributional (model) misspecification. We assume that g(y) and f (y, θ)

satisfy the regularity conditions in Lee (2004). When g(y) , f (y, θ), the information matrix, K(θ),

and the negative Hessian matrix, J(θ), are not equivalent any more. As a result, the variance-

covariance matrix of the score statistic has to be modified. In general, not only mean but also

variance of the score test statistic have to be adjusted accordingly to take care of the model mis-

specification.

Under local and distributional misspecifications, i.e., ρ = ρ0 + δ2/
√

N for δ2 > 0 and g(y) ,

f (y, θ), we propose a modified score test for spatial dependence Hλ
0 : λ = 0 as follows [for deriva-
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tion, see Appendix B]

RS PD
λ =

{
ũ′W2ũ/σ̃2 − T̃2A

(
NJ̃ρ·η

)−1 [
−tr(GA) + ũ′W1y/σ̃2

]}2

T22 − T̃ 2
2A

(
NJ̃ρ·η

)−1
+ 1

N T̃ 2
2A

(
J̃−2
ρ·ηB̃∗ρ·η

) , (4.1)

where ũ = y − ρ0W1y − Xβ̃ is OLS residuals, σ̃2 = ũ′ũ/N, T̃2A = tr
[
(W ′

2 + W2)GA

]
and GA =

W1 (I − ρ0W1)−1. When ρ0 = 0 and T̃2A = T21, it can be easily checked that B∗ρη = 0, and therefore,

(4.1) is simplified to (3.7), i.e., the test statistic is equivalent to that of Anselin, Bera, Florax and

Yoon (1996). When g(y) = f (y, θ) so that J(θ) = K(θ), the denominator in (4.1) is exactly the same

as the denominator in RS P
λ . Note that the terms in the denominator in (4.1) are

J̃ρ·η =
1
N

[
T̃AA − 2

N
tr2(GA) +

1
σ2

(
GAXβ̃

)′
MX

(
GAXβ̃

)]
, (4.2)

B̃∗ρ·η =
1

Nσ4

{
2µ̃3

(
GAXβ̃

)′
MXḠA + κ̃4Ḡ′AḠA

}
, (4.3)

where T̃AA = tr
[(

G′A + GA

)
GA

]
, ḠA = vecD(GA) − 1

N lNtr(GA), µ̃3 = 1
N

∑N
i=1 ũ3

i , µ̃4 = 1
N

∑N
i=1 ũ4

i and

κ̃4 = µ̃4 − 3σ̃4. Here lN is a N × 1 vector of ones and vecD(GA) is a column vector formed by the

diagonal elements of GA. If ρ0 = 0, it is easy to check that GA = W1, vecD(GA) and tr(GA) are equal

to 0. Thus ρ0 = 0 yields B∗ρ·η = 0, and therefore, Anselin, Bera, Florax and Yoon (1996)’s test

is automatically robust to distributional misspecification. Moreover, Jλη = 01×(k+1), Kλ = Jλ and

Bλ·η = Jλ·η under Hλ
0 when ρ = 0. Thus RS PD

λ in (4.1) is reduced to Burridge (1980)’s test in (3.4).

Thus it can be also shown that Burridge’s test is also robust to distributional misspecification when

ρ = 0 and λ = 0. When the true density is given by the normal distribution, µ̃3 and κ̃4 in (4.3) are

equal to zero which yields B̃∗ρ·η = 0. However, when ρ0 = 0, our results show that B̃∗ρ·η = 0 even

though g(y) is different from the normal distribution. Thus the non-normality does not affect the

score test statistic when ρ0 = 0.

We can consider the case that ρ is a parameter to be estimated under Hλ
0 . Since (β̃′, σ̃2, ρ̃)′ is the
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constrained MLE under Hλ
0 , the score term −tr(GA) + ũ′W1y/σ̃2 = 0, and RS PD

λ can be rewritten by

RS
PD
λ =

(
ũ′W2ũ/σ̃2

)2

T22 − T̃ 2
2A

(
NJ̃ρ·η

)−1
+ 1

N T̃ 2
2A

(
J̃−2
ρ·ηB̃∗ρ·η

) . (4.4)

Note that var(ρ̃) =
(
NJ̃ρ·η

)
in this case. Compared to Anselin (1998b)’s test in (3.6), the only

difference comes form the fact that we correct the variance of the score test in (4.4) to incorporate

the distributional misspecification.

Similarly, let us consider tests for the null hypothesis Hρ
0 : ρ = 0. In this case, a modified score

test for spatial dependence Hρ
0 can be derived as [for derivation, see Appendix C]

RS PD
ρ =

{
ũ′BW1y/σ̃2 − T̃BC1(NJ̃λ·η)−1

[
−tr(GB) + ũ′GBũ/σ̃2

]}2

NJ̃ρ·η − 1
N T̃ 2

BC1
(J̃λ·η)−1 + N

(
B̃∗ρ·η + C̃∗ρ

) , (4.5)

where ũ = (I−λ0W2)(y−Xβ̃) and σ̃2 = ũ′ũ/N, T̃BC1 = tr
[
(G′B + GB)C1

]
, J̃λ·η = 1

N2

[
NTBB − 2tr2(GB))

]
,

J̃ρ·η = 1
N

[
TC1C1 + 1

σ̃2

(
BW1Xβ̃

)′
MBX

(
BW1Xβ̃

)]
, B̃∗ρ·η + C̃∗ρ = 1

Nσ̃4

[
κ̃4F̃′F̃ + 2µ̃3(BW1Xβ̃)′MBX F̃

]
for

F̃ = vecD(C1) − J̃ρλ·η J̃−1
λ·η

˜̄GB, J̃ρλ·η = 1
N TBC1 and ˜̄GB = vecD(GB) − 1

N lNtr(GB). When λ is absent,

RS PD
ρ in (4.5) is reduced to the test statistic proposed by Anselin (1988b) which is not originally

robust to the distributional misspecification. This implies that Anselin (1988b)’s test is robust to

distributional misspecification when ρ = 0 and λ = 0. Note that when λ0 = 0, B = I, GB = W2,

C1 = W2, vecD(GB) = 0, tr(GB) = 0, and vecD(C1) = 0. Thus the drift term in (4.5) is reduced to the

drift term in Anselin, Bera, Florax and Yoon (1996). Moreover, since F̃ = 0 yields B̃∗ρ·η + C̃∗ρ = 0 in

this case, the denominator in (4.5) is exactly the same as the denominator in Anselin, Bera, Florax

and Yoon (1996). It implies Anselin, Bera, Florax and Yoon (1996)’s test is robust to distributional

misspecification when λ0 = 0. Thus the non-normality does not give any impact to the test statis-

tics whenever λ0 = 0.

Let us consider λ is a parameter to be estimated under Hρ
0 . Since (β̃′, σ̃2, λ̃)′ is the constrained

MLE under the null Hρ
0 , the score term S̃ λ1 = 0, and therefore, RS PD

ρ can be expressed by

RS
PD
ρ =

(
ũ′BW1y/σ̃2

)2

NJ̃ρ·η − 1
N T̃ 2

BC1
(J̃λ·η)−1 + N

(
B̃∗ρ·η + C̃∗ρ

) . (4.6)
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Compared to Anselin (1998a)’s test, the main difference comes from the fact that we correct the

variance of the score test in (4.6) to adopt the distributional misspecification.

5 Monte Carlo simulation

We conduct some Monte Carlo simulations to examine the finite sample performance of the pro-

posed test in the presence of local and distributional misspecifications. We consider the following

model

y = ρW1y + X1β1 + X2β2 + X3β3 + ε, ε = λW2ε + u. (5.1)

Following the simulation design in Liu, Lee and Bollinger (2006), we consider four different dis-

tributions of ui. All of distributions have mean 0 and variance 2. The first distribution for ui

explored in the experiment is i.i.d. normal distribution, which is regarded as a benchmark model

for the maximum likelihood estimation. The second distribution is Student’s t distribution with the

degree of freedom k (tk) whose skewness (η3) and kurtosis (η4) are 0 and 9, respectively. More

specifically, we consider that ui =
√

6/5ν, where ν ∼ t5. The third distribution is gamma dis-

tribution with η3 =
√

2 and η4 = 6, where ui = ν − 2 and ν ∼ gamma(2, 1). The fourth one

is an asymmetric bimodal mixture normal with η3 ≈ 0.84 and η4 ≈ 2.79, where ui = ν/2 and

ν ∼ .5N(−3, 1) + .5N(3, 13). For the choice of weight matrices, we follow Kelejian and Prucha

(1999)’s procedure and specify a “circular” world so that uN is directly connected to u1 and uN−1.

Similarly, u1 is related to u2 and uN . The sample sizes we considered are 45, 90 and 180. For each

set of the generated sample observations, we select the weight matrix by "2 ahead and 2 behind"

setup that is each element of ui is directly connected to the two elements before and after it. In

our simulations, all weight matrices are row-standardized, and the same weight matrices are used

in both spatial lag and error autoregressive terms. The first regressor X1 is given by a vector of

1. The remaining regressors, X2 and X3, are randomly drawn from the uniform distribution with
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range [0,10]. The values of coefficients β are set to 1. The nominal size of all tests are set to be

0.05. The number of repetition is 2000, and the actual sizes and powers are reported.

We consider three test statistics: (i) Burridge (1980)’s test statistics, RS λ and RS ρ; (ii) Anselin

(1988b)’s LM statistics, LMP
λ and LMP

ρ ; (iii) RS PD
λ and RS PD

ρ test statistics proposed in the paper.

Our test statistics are identical to those of Anselin, Bera, Florax and Yoon (1996) when the nui-

sance parameters in the true non-null model deviate locally from zero. Recall that the other two

test statistics are also robust test statistics in the sense that Burridge’s test is robust to distributional

misspecification, and Anselin’s tests are robust to local misspecification since it incorporates the

estimation procedure for the nuisance parameters.

[Table 1]

Table 1 reports the empirical sizes of all tests for different experimental designs. The first four

columns with numbers report the actual rejection probability of the tests for spatial lag dependence

under different distributions and four values of λ = (0, 0.1, 0.2, 0.3), while the next four columns

present the actual sizes of the tests for spatial error autocorrelation. Using the normal approxi-

mation to the binomial distribution, 95% confidence intervals for the estimated actual sizes are

[0.041, 0.059] for 2000 replications. When the model is correctly specified, and there exists no

parametric misspecification, i.e., either λ = 0 or ρ = 0, the rejection frequencies of all tests for

N = 90 and N = 180 and all distributional specifications belong to the 95% confidence interval.

However, when local misspecification is present, the sizes of RS ρ and RS λ increase rapidly as the

degree of local misspecification increases even in the case of the normal distribution. This implies

that RS ρ and RS λ are unable to capture the source of the spatial dependence. On the contrary, LMP
ρ

and LMP
λ are quite stable under local misspecification since they take into account the estimation

procedure of λ and ρ, respectively. The empirical size of RS PD
ρ tends to increase as λ increases,

but the magnitude of such increase is not as large as that of RS ρ. One interesting finding is that the
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empirical sizes of RS PD
λ are relatively stable comparing to those of RS PD

ρ and even quite similar to

those of LMP
λ .

The impact of distributional misspecification on the empirical sizes turns out to be quite small.

This could be owing to the robust characteristics of Burridge’s and Anselin, Bera, Florax and

Yoon’s tests. Moreover, when we do not consider local misspecification, for almost all cases, the

empirical sizes of LMP
ρ and LMP

λ are in the 95% confidence interval. Only exceptions are LMP
ρ

with N = 45 and normal and gamma distributions. This phenomenon might be due to the specifi-

cation of the experimental designs. For small samples as in our simulations, implied skewness and

kurtosis of considered distributions are not distinct enough to distinguish from those of the normal

distribution. Saavedra (2003) also performed a Monte-Carlo simulation to analyze the empirical

sizes and powers of GMM based tests and the robust tests of Anselin, Bera, Florax and Yoon

(1996). He shows that GMM based tests have considerable distortions for the irregular weight ma-

trices while the robust tests show better size performance in this case. Moreover, one can check in

Table 3 in Saavedra (2003), there are no huge differences of LMP
ρ with the normal and log-normal

distributions. Even the empirical sizes are better in the log-normal situation when sample size is

51. We can say that these findings also support the robust score tests considered in our study.

[Tables 2-7]

The power performances are demonstrated from Tables 2 to 7 for different sample sizes. Tables

2-4 report the powers of the tests for spatial lag dependence when the sample sizes are 45, 90 and

180, respectively. Tables 5-7 show the power performance of the tests for spatial error autocor-

relation. Both of the tests have very similar patterns in power performance. First of all, all the

tests have reasonable powers under all situations even when the sample size is relative small, say,

N = 45. When the sample size increases, the rejection probabilities of all the tests approach to one

very quickly. For example, in the case of N = 180 and λ = 0 (Table 4), the rejection probability
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of RS ρ is equal to 1 when ρ = 0.3, and those of LMP
ρ and RS PD

ρ are 1 when ρ = 0.4. The tests

for spatial error autocorrelation seem to be less powerful than those for spatial lag dependence.

However, the rejection probability converges to 1 reasonably quickly as the sample size increases.

In all Tables, RS ρ (RS λ) is more powerful than LMP
ρ and RS PD

ρ (LMP
λ and RS PD

λ ), however, RS ρ

and RS λ are invalid since they have extreme size distortion under local misspecification.

RS PD
ρ and RS PD

λ achieve considerable powers when the model is locally and/or globally mis-

specified. There is little loss of powers for RS PD
ρ when λ changes form 0 to 0.3, and the magnitude

of the loss can be negligible as the sample size increases. RS PD
ρ and RS PD

λ are uniformly more

powerful than LMP
ρ and LMP

λ , respectively, when N = 45. The difference of the powers between

RS PD
ρ (RS PD

λ ) and LMP
ρ (LMP

λ ) decreases rapidly as the sample sizes increase. This could be due to

the errors in the estimation procedure for LMP
ρ and LMP

λ . These estimation errors tend to decrease

quickly as the sample size increase. An interesting finding is that the power of RS PD
ρ is positively

correlated with kurtosis of the distribution. Note that the Student’s t and gamma distributions have

significantly larger kurtosis than those of the normal and mixture normal distributions. In Tables

2-4, we can observe that the rejection probability generating from the former two distributions are

uniformly larger than those in the latter under all situations.

6 Conclusion

In this paper we derive modified score tests robust to both local and distributional misspecifications

in the spatial autoregressive model with a spatial autoregressive error term. We show that some

popular spatial dependence tests, such as Burridge (1980), Anselin (1988b), and Anselin, Bera,

Florax, and Yoon (1996), can be expressed as special cases of our tests. We also find that Burridge

(1980) and Anselin, Bera, Florax, and Yoon (1996)’s tests are automatically robust to distributional

misspecification under some special cases. Our findings in this paper support the usage of Anselin,
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Bera, Florax, and Yoon (1996)’s tests for spatial dependence since they are also robust to distri-

butional misspecification. The Monte Carlo simulations demonstrate that the proposed tests have

good sizes and powers in the finite sample.
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Table 1: Empirical size of test statistics

N Dist. Test
ρ = 0.0

Test
λ = 0.0

λ = 0.0 λ = 0.1 λ = 0.2 λ = 0.3 ρ = 0.0 ρ = 0.1 ρ = 0.2 ρ = 0.3
45 Normal RS ρ 0.057 0.058 0.084 0.169 RS λ 0.042 0.056 0.167 0.322

LMP
ρ 0.067 0.049 0.056 0.064 LMP

λ 0.048 0.052 0.061 0.061
RS PD

ρ 0.061 0.060 0.075 0.096 RS PD
λ 0.046 0.046 0.050 0.048

S tudent RS ρ 0.048 0.064 0.085 0.154 RS λ 0.031 0.059 0.180 0.394
LMP

ρ 0.055 0.068 0.053 0.057 LMP
λ 0.038 0.045 0.048 0.049

RS PD
ρ 0.052 0.071 0.076 0.101 RS PD

λ 0.033 0.046 0.040 0.041
Gamma RS ρ 0.053 0.070 0.094 0.144 RS λ 0.031 0.068 0.168 0.405

LMP
ρ 0.062 0.055 0.064 0.060 LMP

λ 0.038 0.043 0.044 0.042
RS PD

ρ 0.053 0.060 0.077 0.094 RS PD
λ 0.039 0.042 0.031 0.039

Asy RS ρ 0.047 0.058 0.107 0.187 RS λ 0.050 0.066 0.142 0.312
LMP

ρ 0.055 0.060 0.066 0.052 LMP
λ 0.054 0.054 0.051 0.041

RS PD
ρ 0.056 0.069 0.085 0.088 RS PD

λ 0.046 0.052 0.056 0.042
90 Normal RS ρ 0.050 0.089 0.145 0.290 RS λ 0.047 0.098 0.317 0.629

LMP
ρ 0.058 0.059 0.049 0.042 LMP

λ 0.055 0.046 0.049 0.054
RS PD

ρ 0.058 0.069 0.072 0.081 RS PD
λ 0.049 0.044 0.047 0.045

S tudent RS ρ 0.049 0.074 0.125 0.238 RS λ 0.047 0.095 0.363 0.753
LMP

ρ 0.055 0.059 0.048 0.063 LMP
λ 0.048 0.049 0.049 0.042

RS PD
ρ 0.054 0.062 0.071 0.093 RS PD

λ 0.046 0.047 0.049 0.055
Gamma RS ρ 0.047 0.065 0.126 0.220 RS λ 0.043 0.103 0.341 0.736

LMP
ρ 0.054 0.054 0.051 0.051 LMP

λ 0.053 0.041 0.047 0.051
RS PD

ρ 0.053 0.065 0.069 0.090 RS PD
λ 0.050 0.036 0.044 0.053

Asy RS ρ 0.056 0.078 0.179 0.346 RS λ 0.051 0.105 0.294 0.603
LMP

ρ 0.055 0.062 0.059 0.055 LMP
λ 0.053 0.057 0.045 0.047

RS PD
ρ 0.052 0.066 0.079 0.086 RS PD

λ 0.053 0.059 0.051 0.047
180 Normal RS ρ 0.051 0.106 0.254 0.512 RS λ 0.044 0.166 0.583 0.920

LMP
ρ 0.050 0.059 0.052 0.052 LMP

λ 0.048 0.050 0.044 0.052
RS PD

ρ 0.055 0.066 0.070 0.080 RS PD
λ 0.048 0.048 0.047 0.064

S tudent RS ρ 0.054 0.090 0.194 0.368 RS λ 0.044 0.178 0.653 0.967
LMP

ρ 0.059 0.056 0.052 0.056 LMP
λ 0.050 0.049 0.038 0.051

RS PD
ρ 0.050 0.062 0.070 0.090 RS PD

λ 0.048 0.049 0.047 0.082
Gamma RS ρ 0.047 0.092 0.201 0.376 RS λ 0.044 0.183 0.634 0.968

LMP
ρ 0.051 0.056 0.051 0.057 LMP

λ 0.047 0.045 0.055 0.047
RS PD

ρ 0.046 0.066 0.071 0.087 RS PD
λ 0.046 0.045 0.058 0.088

Asy RS ρ 0.052 0.111 0.278 0.557 RS λ 0.052 0.148 0.551 0.905
LMP

ρ 0.054 0.050 0.047 0.060 LMP
λ 0.047 0.046 0.050 0.042

RS PD
ρ 0.057 0.063 0.065 0.081 RS PD

λ 0.046 0.051 0.052 0.059

Note: A 95 % confidence interval for p=0.05 with 2000 replications is 0.0408 < p < 0.0591
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Table 2: Empirical power of test statistics for Hρ
0 : N=45

λ ρ
Normal S tudent Gamma Asy − normal

RS ρ LMP
ρ RS PD

ρ RS ρ LMP
ρ RS PD

ρ RS ρ LMP
ρ RS PD

ρ RS ρ LMP
ρ RS PD

ρ

λ = 0.0 ρ = 0.1 0.152 0.139 0.148 0.251 0.219 0.240 0.263 0.232 0.248 0.129 0.112 0.116
ρ = 0.2 0.507 0.344 0.387 0.729 0.586 0.634 0.731 0.611 0.649 0.443 0.289 0.318
ρ = 0.3 0.834 0.601 0.664 0.959 0.857 0.913 0.957 0.853 0.907 0.781 0.516 0.581
ρ = 0.4 0.975 0.784 0.884 0.998 0.955 0.985 0.998 0.947 0.983 0.952 0.667 0.786
ρ = 0.5 0.999 0.849 0.964 1.000 0.967 0.996 1.000 0.970 0.997 0.996 0.751 0.905
ρ = 0.6 1.000 0.866 0.988 1.000 0.964 0.999 1.000 0.968 1.000 1.000 0.791 0.971
ρ = 0.7 1.000 0.846 0.999 1.000 0.967 1.000 1.000 0.968 1.000 1.000 0.767 0.986
ρ = 0.8 1.000 0.852 1.000 1.000 0.969 1.000 1.000 0.975 1.000 1.000 0.756 0.994

λ = 0.1 ρ = 0.1 0.255 0.128 0.141 0.355 0.206 0.228 0.361 0.214 0.245 0.248 0.119 0.125
ρ = 0.2 0.647 0.340 0.361 0.814 0.615 0.645 0.812 0.592 0.632 0.566 0.258 0.287
ρ = 0.3 0.904 0.583 0.651 0.980 0.855 0.900 0.984 0.851 0.900 0.869 0.506 0.577
ρ = 0.4 0.987 0.765 0.859 0.999 0.942 0.977 0.998 0.938 0.973 0.977 0.658 0.762
ρ = 0.5 1.000 0.849 0.950 1.000 0.962 0.995 1.000 0.964 0.993 0.997 0.746 0.892
ρ = 0.6 1.000 0.864 0.979 1.000 0.972 0.998 1.000 0.973 0.999 1.000 0.794 0.951
ρ = 0.7 1.000 0.879 0.991 1.000 0.978 1.000 1.000 0.982 0.999 1.000 0.806 0.971
ρ = 0.8 1.000 0.898 0.998 1.000 0.984 1.000 1.000 0.986 1.000 1.000 0.809 0.984

λ = 0.2 ρ = 0.1 0.409 0.125 0.138 0.513 0.230 0.250 0.461 0.236 0.250 0.374 0.113 0.123
ρ = 0.2 0.754 0.329 0.368 0.869 0.563 0.609 0.862 0.577 0.598 0.730 0.269 0.313
ρ = 0.3 0.945 0.567 0.627 0.983 0.836 0.870 0.986 0.832 0.857 0.927 0.464 0.530
ρ = 0.4 0.995 0.755 0.821 0.999 0.933 0.963 0.996 0.934 0.960 0.987 0.651 0.710
ρ = 0.5 1.000 0.852 0.916 1.000 0.957 0.988 1.000 0.959 0.989 0.999 0.725 0.855
ρ = 0.6 1.000 0.878 0.965 1.000 0.977 0.995 1.000 0.975 0.997 1.000 0.812 0.921
ρ = 0.7 1.000 0.903 0.981 1.000 0.984 0.998 1.000 0.983 1.000 1.000 0.837 0.959
ρ = 0.8 1.000 0.937 0.989 1.000 0.985 0.999 1.000 0.987 1.000 1.000 0.862 0.976

λ = 0.3 ρ = 0.1 0.544 0.116 0.132 0.575 0.212 0.237 0.578 0.208 0.227 0.572 0.122 0.145
ρ = 0.2 0.839 0.334 0.356 0.896 0.549 0.580 0.901 0.535 0.556 0.836 0.260 0.295
ρ = 0.3 0.970 0.551 0.575 0.990 0.817 0.836 0.990 0.806 0.832 0.968 0.443 0.481
ρ = 0.4 0.993 0.719 0.762 1.000 0.938 0.939 1.000 0.918 0.935 1.000 0.650 0.668
ρ = 0.5 1.000 0.815 0.886 1.000 0.960 0.978 1.000 0.977 0.983 1.000 0.737 0.807
ρ = 0.6 1.000 0.879 0.946 1.000 0.982 0.991 1.000 0.983 0.993 1.000 0.814 0.887
ρ = 0.7 1.000 0.928 0.962 1.000 0.989 0.995 1.000 0.989 0.996 1.000 0.870 0.927
ρ = 0.8 1.000 0.946 0.984 1.000 0.996 0.997 1.000 0.996 0.999 1.000 0.902 0.957
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Table 3: Empirical power of test statistics for Hρ
0 : N=90

λ ρ
Normal S tudent Gamma Asy − normal

RS ρ LMP
ρ RS PD

ρ RS ρ LMP
ρ RS PD

ρ RS ρ LMP
ρ RS PD

ρ RS ρ LMP
ρ RS PD

ρ

λ = 0.0 ρ = 0.1 0.319 0.227 0.237 0.491 0.413 0.429 0.475 0.401 0.419 0.250 0.171 0.181
ρ = 0.2 0.834 0.648 0.673 0.964 0.907 0.916 0.961 0.900 0.920 0.760 0.508 0.543
ρ = 0.3 0.991 0.894 0.926 0.999 0.994 0.996 1.000 0.995 0.999 0.981 0.838 0.884
ρ = 0.4 1.000 0.984 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.935 0.980
ρ = 0.5 1.000 0.990 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.947 0.996
ρ = 0.6 1.000 0.985 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.955 1.000
ρ = 0.7 1.000 0.983 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.961 1.000
ρ = 0.8 1.000 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 1.000

λ = 0.1 ρ = 0.1 0.508 0.213 0.227 0.627 0.383 0.389 0.629 0.382 0.392 0.502 0.177 0.188
ρ = 0.2 0.933 0.611 0.636 0.986 0.881 0.901 0.984 0.880 0.896 0.910 0.525 0.553
ρ = 0.3 0.998 0.906 0.935 1.000 0.989 0.997 1.000 0.987 0.992 0.996 0.787 0.838
ρ = 0.4 1.000 0.965 0.987 1.000 0.998 1.000 1.000 0.999 1.000 1.000 0.928 0.971
ρ = 0.5 1.000 0.992 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.958 0.994
ρ = 0.6 1.000 0.982 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.961 0.998
ρ = 0.7 1.000 0.989 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.969 1.000
ρ = 0.8 1.000 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.970 1.000

λ = 0.2 ρ = 0.1 0.710 0.213 0.237 0.776 0.376 0.384 0.791 0.366 0.389 0.716 0.170 0.186
ρ = 0.2 0.970 0.587 0.609 0.995 0.868 0.871 0.991 0.853 0.863 0.968 0.494 0.512
ρ = 0.3 1.000 0.873 0.904 1.000 0.986 0.987 1.000 0.983 0.984 0.998 0.761 0.808
ρ = 0.4 1.000 0.963 0.981 1.000 0.999 1.000 1.000 0.999 0.999 1.000 0.910 0.947
ρ = 0.5 1.000 0.983 0.997 1.000 0.998 0.999 1.000 1.000 1.000 1.000 0.956 0.986
ρ = 0.6 1.000 0.991 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.964 0.997
ρ = 0.7 1.000 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.970 1.000
ρ = 0.8 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 1.000

λ = 0.3 ρ = 0.1 0.866 0.209 0.217 0.872 0.355 0.350 0.877 0.360 0.360 0.878 0.178 0.184
ρ = 0.2 0.996 0.574 0.588 0.995 0.835 0.838 0.997 0.841 0.825 0.992 0.450 0.461
ρ = 0.3 1.000 0.842 0.848 1.000 0.979 0.979 1.000 0.974 0.979 1.000 0.752 0.750
ρ = 0.4 1.000 0.949 0.964 1.000 0.997 0.999 1.000 0.996 0.996 1.000 0.904 0.914
ρ = 0.5 1.000 0.986 0.989 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.951 0.969
ρ = 0.6 1.000 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.975 0.990
ρ = 0.7 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.997
ρ = 0.8 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.999
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Table 4: Empirical power of test statistics for Hρ
0 : N=180

λ ρ
Normal S tudent Gamma Asy − normal

RS ρ LMP
ρ RS PD

ρ RS ρ LMP
ρ RS PD

ρ RS ρ LMP
ρ RS PD

ρ RS ρ LMP
ρ RS PD

ρ

λ = 0.0 ρ = 0.1 0.599 0.411 0.426 0.783 0.679 0.687 0.785 0.689 0.694 0.504 0.323 0.332
ρ = 0.2 0.993 0.910 0.926 1.000 0.997 0.999 1.000 0.995 0.996 0.979 0.815 0.832
ρ = 0.3 1.000 0.996 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.992
ρ = 0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
ρ = 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

λ = 0.1 ρ = 0.1 0.823 0.387 0.389 0.905 0.652 0.657 0.913 0.662 0.672 0.808 0.322 0.337
ρ = 0.2 0.999 0.900 0.915 1.000 0.992 0.991 1.000 0.992 0.993 0.996 0.815 0.835
ρ = 0.3 1.000 0.994 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.981 0.990
ρ = 0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
ρ = 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
ρ = 0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

λ = 0.2 ρ = 0.1 0.959 0.381 0.393 0.975 0.651 0.652 0.966 0.634 0.638 0.954 0.308 0.320
ρ = 0.2 1.000 0.888 0.894 1.000 0.991 0.991 1.000 0.992 0.990 1.000 0.778 0.788
ρ = 0.3 1.000 0.995 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.970
ρ = 0.4 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.999
ρ = 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

λ = 0.3 ρ = 0.1 0.992 0.350 0.355 0.994 0.621 0.606 0.995 0.618 0.612 0.995 0.289 0.298
ρ = 0.2 1.000 0.850 0.850 1.000 0.987 0.983 1.000 0.986 0.979 1.000 0.751 0.742
ρ = 0.3 1.000 0.988 0.987 1.000 1.000 0.998 1.000 1.000 1.000 1.000 0.965 0.960
ρ = 0.4 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.999
ρ = 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ = 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5: Empirical power of test statistics for Hλ
0 : N=45

ρ λ
Normal S tudent Gamma Asy − normal

RS λ LMP
λ RS PD

λ RS λ LMP
λ RS PD

λ RS λ LMP
λ RS PD

λ RS λ LMP
λ RS PD

λ

ρ = 0.0 λ = 0.1 0.120 0.060 0.058 0.124 0.058 0.061 0.138 0.057 0.061 0.131 0.061 0.061
λ = 0.2 0.255 0.094 0.098 0.251 0.101 0.113 0.245 0.096 0.105 0.243 0.096 0.105
λ = 0.3 0.434 0.180 0.186 0.432 0.201 0.216 0.439 0.203 0.224 0.419 0.167 0.184
λ = 0.4 0.607 0.278 0.296 0.625 0.325 0.353 0.637 0.326 0.346 0.623 0.254 0.272
λ = 0.5 0.811 0.425 0.449 0.799 0.505 0.535 0.808 0.498 0.535 0.792 0.380 0.404
λ = 0.6 0.912 0.563 0.615 0.917 0.676 0.709 0.921 0.663 0.715 0.916 0.524 0.544
λ = 0.7 0.975 0.685 0.737 0.976 0.815 0.855 0.980 0.806 0.841 0.980 0.620 0.634
λ = 0.8 0.994 0.789 0.789 0.997 0.893 0.907 0.998 0.892 0.918 0.998 0.700 0.681

ρ = 0.1 λ = 0.1 0.263 0.064 0.068 0.285 0.060 0.055 0.304 0.057 0.068 0.267 0.072 0.074
λ = 0.2 0.415 0.091 0.106 0.441 0.102 0.112 0.433 0.094 0.108 0.428 0.101 0.104
λ = 0.3 0.599 0.173 0.178 0.638 0.189 0.216 0.639 0.202 0.237 0.631 0.174 0.178
λ = 0.4 0.756 0.289 0.292 0.778 0.316 0.341 0.787 0.337 0.368 0.763 0.268 0.280
λ = 0.5 0.880 0.413 0.425 0.898 0.509 0.522 0.909 0.484 0.517 0.883 0.378 0.389
λ = 0.6 0.962 0.556 0.553 0.963 0.673 0.698 0.962 0.647 0.659 0.962 0.514 0.511
λ = 0.7 0.988 0.685 0.656 0.986 0.792 0.808 0.991 0.804 0.815 0.991 0.637 0.602
λ = 0.8 0.997 0.783 0.704 1.000 0.897 0.861 0.999 0.895 0.873 0.999 0.712 0.620

ρ = 0.2 λ = 0.1 0.486 0.067 0.067 0.539 0.052 0.065 0.537 0.065 0.066 0.460 0.071 0.068
λ = 0.2 0.656 0.107 0.106 0.695 0.100 0.118 0.672 0.107 0.119 0.630 0.110 0.107
λ = 0.3 0.763 0.172 0.159 0.800 0.209 0.225 0.834 0.205 0.220 0.757 0.173 0.171
λ = 0.4 0.880 0.286 0.280 0.893 0.336 0.347 0.911 0.345 0.331 0.878 0.266 0.241
λ = 0.5 0.945 0.402 0.372 0.950 0.497 0.490 0.959 0.495 0.491 0.951 0.385 0.333
λ = 0.6 0.983 0.547 0.504 0.985 0.660 0.640 0.982 0.675 0.644 0.979 0.504 0.446
λ = 0.7 0.997 0.667 0.593 0.994 0.797 0.740 0.997 0.800 0.757 0.997 0.614 0.511
λ = 0.8 1.000 0.770 0.641 1.000 0.890 0.804 0.999 0.891 0.791 1.000 0.725 0.528

ρ = 0.3 λ = 0.1 0.703 0.064 0.048 0.785 0.064 0.064 0.792 0.059 0.062 0.667 0.053 0.048
λ = 0.2 0.815 0.099 0.096 0.861 0.112 0.112 0.849 0.108 0.111 0.798 0.098 0.086
λ = 0.3 0.895 0.183 0.160 0.921 0.189 0.185 0.926 0.207 0.202 0.890 0.169 0.158
λ = 0.4 0.946 0.293 0.249 0.965 0.348 0.306 0.958 0.312 0.279 0.953 0.270 0.235
λ = 0.5 0.982 0.423 0.344 0.985 0.486 0.424 0.989 0.501 0.416 0.985 0.413 0.334
λ = 0.6 0.991 0.566 0.445 0.995 0.651 0.543 0.993 0.663 0.553 0.993 0.524 0.388
λ = 0.7 0.997 0.700 0.531 1.000 0.789 0.642 0.999 0.790 0.643 0.997 0.641 0.425
λ = 0.8 1.000 0.780 0.548 1.000 0.884 0.663 1.000 0.899 0.693 1.000 0.742 0.431
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Table 6: Empirical power of test statistics for Hλ
0 : N=90

ρ λ
Normal S tudent Gamma Asy − normal

RS λ LMP
λ RS PD

λ RS λ LMP
λ RS PD

λ RS λ LMP
λ RS PD

λ RS λ LMP
λ RS PD

λ

ρ = 0.0 λ = 0.1 0.253 0.072 0.082 0.268 0.076 0.083 0.257 0.090 0.095 0.257 0.073 0.080
λ = 0.2 0.509 0.182 0.200 0.503 0.190 0.227 0.508 0.192 0.224 0.494 0.157 0.171
λ = 0.3 0.749 0.346 0.387 0.782 0.408 0.474 0.777 0.410 0.458 0.755 0.313 0.373
λ = 0.4 0.925 0.565 0.621 0.924 0.642 0.706 0.935 0.645 0.726 0.927 0.506 0.561
λ = 0.5 0.986 0.756 0.821 0.983 0.846 0.889 0.992 0.860 0.906 0.983 0.683 0.739
λ = 0.6 0.999 0.897 0.936 1.000 0.941 0.973 0.999 0.953 0.975 0.997 0.824 0.877
λ = 0.7 1.000 0.948 0.972 1.000 0.986 0.994 1.000 0.988 0.998 1.000 0.920 0.948
λ = 0.8 1.000 0.981 0.983 1.000 0.998 0.999 1.000 0.996 0.999 1.000 0.952 0.963

ρ = 0.1 λ = 0.1 0.544 0.083 0.097 0.594 0.082 0.115 0.570 0.081 0.106 0.522 0.081 0.103
λ = 0.2 0.762 0.169 0.206 0.802 0.198 0.267 0.796 0.195 0.267 0.763 0.173 0.192
λ = 0.3 0.922 0.334 0.404 0.926 0.400 0.501 0.927 0.419 0.500 0.920 0.319 0.373
λ = 0.4 0.981 0.540 0.621 0.986 0.647 0.741 0.985 0.657 0.751 0.976 0.510 0.554
λ = 0.5 0.997 0.739 0.799 0.996 0.829 0.896 0.999 0.847 0.904 0.997 0.705 0.752
λ = 0.6 1.000 0.885 0.912 1.000 0.940 0.968 1.000 0.949 0.977 1.000 0.810 0.859
λ = 0.7 1.000 0.942 0.960 1.000 0.988 0.994 1.000 0.982 0.995 1.000 0.913 0.937
λ = 0.8 1.000 0.976 0.975 1.000 0.995 0.997 1.000 0.996 0.996 1.000 0.948 0.958

ρ = 0.2 λ = 0.1 0.815 0.082 0.108 0.882 0.085 0.148 0.881 0.077 0.131 0.793 0.084 0.107
λ = 0.2 0.932 0.176 0.232 0.955 0.186 0.290 0.958 0.191 0.305 0.928 0.168 0.197
λ = 0.3 0.982 0.355 0.421 0.990 0.405 0.535 0.989 0.418 0.527 0.980 0.302 0.356
λ = 0.4 0.997 0.562 0.619 0.998 0.655 0.759 0.999 0.645 0.748 0.995 0.496 0.537
λ = 0.5 1.000 0.756 0.789 1.000 0.835 0.888 1.000 0.833 0.893 1.000 0.692 0.714
λ = 0.6 1.000 0.873 0.885 1.000 0.949 0.962 1.000 0.950 0.970 1.000 0.832 0.835
λ = 0.7 1.000 0.946 0.927 1.000 0.989 0.986 1.000 0.984 0.986 1.000 0.921 0.882
λ = 0.8 1.000 0.970 0.936 1.000 0.997 0.987 1.000 0.996 0.987 1.000 0.954 0.895

ρ = 0.3 λ = 0.1 0.969 0.080 0.106 0.986 0.088 0.176 0.985 0.074 0.154 0.958 0.077 0.100
λ = 0.2 0.989 0.167 0.212 0.995 0.198 0.323 0.997 0.194 0.331 0.984 0.151 0.179
λ = 0.3 0.998 0.334 0.379 1.000 0.381 0.508 1.000 0.392 0.513 0.997 0.325 0.342
λ = 0.4 0.999 0.560 0.573 1.000 0.653 0.705 1.000 0.658 0.729 1.000 0.527 0.549
λ = 0.5 1.000 0.755 0.735 1.000 0.841 0.853 1.000 0.847 0.856 1.000 0.707 0.667
λ = 0.6 1.000 0.885 0.831 1.000 0.945 0.939 1.000 0.942 0.937 1.000 0.826 0.759
λ = 0.7 1.000 0.948 0.874 1.000 0.985 0.965 1.000 0.989 0.964 1.000 0.917 0.819
λ = 0.8 1.000 0.982 0.897 1.000 0.997 0.962 1.000 0.995 0.968 1.000 0.961 0.829
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Table 7: Empirical power of test statistics for Hλ
0 : N=180

ρ λ
Normal S tudent Gamma Asy − normal

RS λ LMP
λ RS PD

λ RS λ LMP
λ RS PD

λ RS λ LMP
λ RS PD

λ RS λ LMP
λ RS PD

λ

ρ = 0.0 λ = 0.1 0.478 0.109 0.131 0.501 0.124 0.158 0.499 0.123 0.148 0.480 0.111 0.119
λ = 0.2 0.819 0.325 0.377 0.832 0.391 0.451 0.842 0.387 0.447 0.819 0.298 0.346
λ = 0.3 0.968 0.613 0.683 0.968 0.715 0.787 0.978 0.721 0.786 0.966 0.571 0.644
λ = 0.4 0.999 0.858 0.916 1.000 0.932 0.955 0.999 0.933 0.965 0.999 0.821 0.895
λ = 0.5 1.000 0.967 0.985 1.000 0.991 0.999 1.000 0.990 0.997 1.000 0.956 0.984
λ = 0.6 1.000 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.983 0.995
λ = 0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
λ = 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.1 λ = 0.1 0.858 0.121 0.168 0.903 0.118 0.231 0.892 0.115 0.194 0.859 0.105 0.147
λ = 0.2 0.971 0.316 0.415 0.976 0.375 0.538 0.984 0.377 0.540 0.975 0.293 0.361
λ = 0.3 0.997 0.647 0.750 0.998 0.719 0.857 0.999 0.710 0.847 0.997 0.557 0.677
λ = 0.4 1.000 0.854 0.920 1.000 0.929 0.977 1.000 0.925 0.974 1.000 0.818 0.884
λ = 0.5 1.000 0.967 0.985 1.000 0.988 0.998 1.000 0.990 0.998 1.000 0.939 0.972
λ = 0.6 1.000 0.995 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.997
λ = 0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000
λ = 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.2 λ = 0.1 0.991 0.118 0.192 0.995 0.123 0.318 0.995 0.110 0.313 0.981 0.109 0.165
λ = 0.2 0.999 0.327 0.466 1.000 0.370 0.633 0.999 0.384 0.631 0.999 0.306 0.419
λ = 0.3 1.000 0.616 0.765 1.000 0.707 0.875 1.000 0.726 0.885 1.000 0.559 0.692
λ = 0.4 1.000 0.847 0.929 1.000 0.925 0.980 1.000 0.926 0.980 1.000 0.811 0.887
λ = 0.5 1.000 0.965 0.984 1.000 0.988 0.999 1.000 0.986 0.999 1.000 0.942 0.969
λ = 0.6 1.000 0.994 0.999 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.987 0.991
λ = 0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.996
λ = 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.3 λ = 0.1 1.000 0.119 0.249 1.000 0.122 0.434 1.000 0.125 0.438 1.000 0.108 0.203
λ = 0.2 1.000 0.326 0.517 1.000 0.383 0.702 1.000 0.371 0.702 1.000 0.316 0.451
λ = 0.3 1.000 0.638 0.775 1.000 0.724 0.905 1.000 0.712 0.898 1.000 0.568 0.679
λ = 0.4 1.000 0.856 0.925 1.000 0.924 0.985 1.000 0.929 0.982 1.000 0.822 0.872
λ = 0.5 1.000 0.966 0.974 1.000 0.983 0.996 1.000 0.992 0.997 1.000 0.944 0.956
λ = 0.6 1.000 0.992 0.993 1.000 0.998 1.000 1.000 0.999 1.000 1.000 0.988 0.980
λ = 0.7 1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.985
λ = 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Appendix A. The derivatives of the log-likelihood function

This appendix derives the first and second order derivatives of the log-likelihood function of the

spatial autoregressive model with a spatial autoregressive disturbance. The log-likelihood function

is given by

ln L = −N
2

ln 2π − N
2

lnσ2 + ln |A| + ln |B| − 1
2σ2 u′u,

where A = IN − ρW1, B = IN − λW2 and u = B (Ay − Xβ). Denoting GA = W1A−1 and GB =

W2B−1, the partial derivatives of the log-likelihood function with respect to the parameter vector

(β′, σ2, λ, ρ)′ can be written as

dβ = ∂ ln L
∂β

= 1
σ2 (BX)′u,

dσ2 = ∂ ln L
∂σ2 = − N

2σ2 + u′u
2σ4 ,

dλ = ∂ ln L
∂λ

= −tr(GB) + 1
σ2 u′GBu,

dρ = ∂ ln L
∂ρ

= −tr(GA) + 1
σ2 u′BW1y.

We use the fact that ∂ ln |A|
∂ρ

= tr
(
A−1 ∂A

∂ρ

)
to derive the above equations (see Anselin (1988a, p.74)).

The corresponding elements of the hessian matrix are calculated by

Jβ = − 1
N E

(
∂2 ln L
∂β∂β′

)
= 1

Nσ2 BX′BX,
Jβσ2 = − 1

N E
(
∂2 ln L
∂β∂σ2

)
= 0,

Jβλ = − 1
N E

(
∂2 ln L
∂β∂λ

)
= 0,

Jβρ = − 1
N E

(
∂2 ln L
∂β∂ρ

)
= 1

Nσ2 (BX)′BGAXβ,
Jσ2 = − 1

N E
(
∂2 ln L
∂σ2∂σ2

)
= 1

2σ4 ,

Jσ2λ = − 1
N E

(
∂2 ln L
∂σ2∂λ

)
= 1

Nσ2 tr(GB),
Jσ2ρ = − 1

N E
(
∂2 ln L
∂σ2∂ρ

)
= 1

Nσ2 tr(GA),
Jλ = − 1

N E
(
∂2 ln L
∂λ2

)
= 1

N TBB,

Jλρ = − 1
N E

(
∂2 ln L
∂λ∂ρ

)
= 1

N TBCA ,

Jρ = − 1
N E

(
∂2 ln L
∂ρ2

)
= 1

N TCACA + 1
Nσ2 (BGAXβ)′ (BGAXβ) ,

where TBB = tr
[
(G′B + GB)GB

]
, TBCA = tr

[
(G′B + GB)CA

]
and TCACA = tr

[
(C′A + CA)CA

]
with CA =

BGAB−1.
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The information matrix can be expressed by the following results

Kβ = 1
N E

(
∂ ln L
∂β
· ∂ ln L

∂β′

)
= 1

Nσ2 BX′BX,
Kβσ2 = 1

N E
(
∂ ln L
∂β
· ∂ ln L
∂σ2

)
=

µ3
2Nσ6 (BX)′lN ,

Kβλ = 1
N E

(
∂ ln L
∂β
· ∂ ln L

∂λ

)
=

µ3
Nσ4 (BX)′vecD(GB),

Kβρ = 1
N E

(
∂ ln L
∂β
· ∂ ln L

∂ρ

)
= 1

Nσ2 (BX)′(BGAXβ) +
µ3

Nσ4 (BX)′vecD(CA),
Kσ2 = 1

N E
(
∂ ln L
∂σ2 · ∂ ln L

∂σ2

)
= 1

2σ4 + κ4
4σ8 ,

Kσ2λ = 1
N E

(
∂ ln L
∂σ2 · ∂ ln L

∂λ

)
= 1

Nσ2 tr(GB) + κ4
2Nσ6 tr(GB),

Kσ2ρ = 1
N E

(
∂ ln L
∂σ2 · ∂ ln L

∂ρ

)
= 1

Nσ2 tr(GA)+ 1
2Nσ6

[
(BGAXβ)′ lNµ3 + κ4tr(GA)

]
,

Kλ = 1
N E

(
∂ ln L
∂λ
· ∂ ln L

∂λ

)
= 1

N TBB + κ4
Nσ4 vec′D (GB) vecD (GB) ,

Kλρ = 1
N E

(
∂ ln L
∂λ
· ∂ ln L

∂ρ

)
= 1

N TBCA + 1
Nσ4

{[
µ3 (BGAXβ)′ + κ4vec′D (CA)

]
vecD (GB)

}
,

Kρ = 1
N E

(
∂ ln L
∂ρ
· ∂ ln L

∂ρ

)
,

= 1
N

{
1
σ2 (BGAXβ)′ (BGAXβ) + TCACA + 1

σ4

[
2 (BGAXβ)′ µ3 + κ4vec′D (CA)

]
vecD (CA)

}
.

In order to calculate the above equations we use the fact that E(P′ε · ε′Qε) = P′vecD(Q)µ3 and

E(ε′Pε · ε′Qε) = κ4vec′D(P)vecD(Q)+σ4 [tr(P)tr(Q) + tr(QsP)], where P and Q are N×N matrices,

vecD(Q) is a column vector formed by the diagonal elements of Q, µ3 = E(u3
i ), µ4 = E(u4

i ) and

κ4 = µ4 − 3σ4 (See Lee (2007, pp. 494-504)).

Appendix B. Score test for Hλ
0 : λ = 0

Note that under the null, B = I, GB = W2, tr (GB) = 0 and vecD (GB) = 0. When ρ is locally mis-

specified from a known constant ρ0, under Hλ
0 , d(θ), J(θ) and K(θ) can be expressed, respectively,

by

d(θ) =



1
σ2 X′u

− N
2σ2 + u′u

2σ4
1
σ2 u′W2u

−tr(GA) + 1
σ2 u′W1y


,

J(θ) =
1

Nσ2



X′X 0k×1 0k×1 X′GAXβ
∗ N

2σ2 01×1 tr (GA)
∗ ∗ σ2T22 σ2T2A

∗ ∗ ∗ σ2TAA + (GAXβ)′(GAXβ)


,

K(θ) = J(θ) + K∗(θ),
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where T22 = tr
[
(W ′

2 + W2)W2

]
, TAA = tr

[
(G′A + GA)GA

]
, T2A = tr

[
(W ′

2 + W2)GA

]
and

K∗(θ) =
1

Nσ4



0k×k
µ3

2σ2 X′lN 0k×1 X′vecD(GA)µ3
∗ N

4σ4 κ4 01×1
1

2σ2

[
(GAXβ)′lNµ3 + κ4tr (GA)

]
∗ ∗ 01×1 01×1

∗ ∗ ∗
[
2(GAXβ)′µ3 + κ4vec′D(GA)

]
vecD(GA)


.

From (2.5) it follows that

Jλρ·η = Jλρ − JληJ−1
η Jηρ = 1

N T2A,

Jρ·η = Jρ − JρηJ−1
η Jηρ = 1

N

[
TAA − 2

N tr2(GA) + 1
σ2 (GAXβ)′MX(GAXβ)

]
,

Bλ·η = Kλ + JληJ−1
η KηJ−1

η Jηλ − JληJ−1
η Kηλ − KληJ−1

η Jηλ = 1
N T22,

Bρ·η = Kρ + JρηJ−1
η KηJ−1

η Jηρ − JρηJ−1
η Kηρ − KρηJ−1

η Jηρ = Jρ·η + B∗ρ·η,
Bρλ·η = Kρλ + JρηJ−1

η KηJ−1
η Jηλ − JρηJ−1

η Kηλ − KρηJ−1
η Jηλ = 1

N T2A,

where MX = IN−X (X′X)−1 X′ and B∗ρ·η = 1
Nσ4

[
2µ3 (GAXβ)′ MXḠA + κ4Ḡ′AḠA

]
for ḠA = vecD(GA)−

1
N lNtr(GA). Under Hλ

0 , the resulting score test is given by

RS PD
λ =

{
ũ′W2ũ/σ̃2 − T̃2A

(
NJ̃ρ·η

)−1 [
−tr(GA) + ũ′W1y/σ̃2

]}2

T22 − T̃ 2
2A

(
NJ̃ρ·η

)−1
+ 1

N T̃ 2
2A

(
J̃−2
ρ·ηB̃∗ρ·η

) , (A-1)

where ũ = y − ρ0W1y − Xβ̃ and σ̃2 = ũ′ũ/N.

Appendix C. Score test for Hρ
0 : ρ = 0

Note that under the null hypothesis, A = I, GA = W1, tr (GA) = 0 and vecD (GA) = 0. When λ is

locally misspecified from a constant λ0, under the null hypothesis, d(θ), J(θ) and K(θ) are written

by

d(θ) =



1
σ2 (BX)′u
− N

2σ2 + u′u
2σ4

−tr(GB) + 1
σ2 u′GBu

1
σ2 u′BW1y


,

J(θ) =
1

Nσ2



(BX)′BX 0k×1 0k×1 (BX)′BW1Xβ
∗ N

2σ2 tr (GB) 01×1

∗ ∗ σ2TBB σ2TBC1

∗ ∗ ∗ σ2TC1C1 + (BW1Xβ)′ (BW1Xβ)


,

K(θ) = J(θ) + K∗(θ),
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where TBC1 = tr
[
(G′B + GB)C1

]
with C1 = BW1B−1 and

K∗(θ) =
1

Nσ4



0k×k
µ3

2σ2 (BX)′lN (BX)′vecD(GB)µ3 (BX)′vecD(C1)µ3

∗ N
4σ4 κ4

1
2σ2 κ4tr(GB) 1

2σ2 (BW1Xβ)′lNµ3

∗ ∗ κ4vec′D(GB)vecD(GB)
[
µ3 (BW1Xβ)′ + κ4vec′D (C1)

]
vecD (GB)

∗ ∗ ∗
[
2(BW1Xβ)′µ3 + κ4vec′D(C1)

]
vecD(C1)


.

From (2.5) it follows that

Jρλ·η = Jρλ − JρηJ−1
η Jηλ = 1

N TBC1 ,

Jρ·η = Jρ − JρηJ−1
η Jηρ = 1

N

[
TC1C1 + 1

σ2 (BW1Xβ)′ MBX (BW1Xβ)
]
,

Jλ·η = Jλ − JληJ−1
η Jηλ = 1

N2

[
NTBB − 2tr2(GB))

]
,

Bλ·η = Kλ + JληJ−1
η KηJ−1

η Jηλ − JληJ−1
η Kηλ − KληJ−1

η Jηλ = Jλ·η + B∗λ·η,
Bρ·η = Kρ + JρηJ−1

η KηJ−1
η Jηρ − JρηJ−1

η Kηρ − KρηJ−1
η Jηρ = Jρ·η + B∗ρ·η,

Bρλ·η = Kρλ + JρηJ−1
η KηJ−1

η Jγλ − JρηJ−1
η Kηλ − KρηJ−1

η Jηλ = Jρλ·η + B∗ρλ·η,

where

B∗λ·η = K∗λ + JληJ−1
η K∗ηJ−1

η Jηλ − JληJ−1
η K∗ηλ − K∗ληJ−1

η Jηλ

= κ4
Nσ4

[
vec′D(GB)vecD(GB)− tr2(GB)

N

]
,

B∗ρ·η = K∗ρ + JρηJ−1
η K∗ηJ−1

η Jηρ − JρηJ−1
η K∗ηρ − K∗ρηJ−1

η Jηρ
= 1

Nσ4

[
2(BW1Xβ)′MBXvecD(C1)µ3+κ4vec′D(C1)vecD(C1)

]
,

B∗ρλ·η = K∗ρλ + JρηJ−1
η K∗ηJ−1

η Jηλ − JρηJ−1
η K∗ηλ − K∗ρηJ−1

η Jηλ
= 1

Nσ4

{
(BW1Xβ)′MBXµ3

[
vecD(GB) − 1

N lNtr(GB)
]

+ κ4vec′D (C1) vecD (GB)
}
.

Thus
B̃∗ρ·η + C̃∗ρ = Jρλ·ηJ−1

λ·ηB
∗
λ·ηJ−1

λ·ηJλρ·η − Jρλ·ηJ−1
λ·ηB

∗
λρ·η − B∗ρλ·ηJ−1

λ·ηJλρ·η + B∗ρ·η
= 1

Nσ4

[
κ4F′F + 2µ3(BW1Xβ)′MBXF

]
,

where MBX = IN − (BX)
[
(BX)′ (BX)

]−1 (BX)′, F = vecD(C1) − Jρλ·ηJ−1
λ·ηḠB and ḠB = vecD(GB) −

1
N lNtr(GB). Under Hρ

0 , the score test that robust to local and distributional misspecifications can be

expressed as

RS PD
ρ =

{
ũ′BW1y/σ̃2 − T̃BC1(NJ̃λ·η)−1

[
−tr(GB) + ũ′GBũ/σ̃2

]}2

NJ̃ρ·η − 1
N T̃ 2

BC1
(J̃λ·η)−1 + N

(
B̃∗ρ·η + C̃∗ρ

) , (A-2)

where ũ = (I − λ0W2)(y − Xβ̃) and σ̃2 = ũ′ũ/N.
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