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Abstract

We consider the estimation of a structural vector autoregressive model of nonstationary and

possibly cointegrated variables without the prior knowledge of unit roots or rank of

cointegration. We propose two modified two-stage least-squares estimators that are consistent

and have limiting distributions that are either normal or mixed normal. Limited Monte Carlo

studies are also conducted to evaluate their finite sample properties.
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1. Introduction

We consider the estimation of an equation in a structural vector autoregressive
model (SVAR) involving integrated and possibly cointegrated variables without the
prior knowledge of the location of unit roots or rank of cointegration. Although the
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location of unit roots or rank of cointegration can provide information for
identification and may improve the efficiency of the estimates, many econometric
models are identified without prior information on this. For instance, the
Klein–Goldberger (Klein et al., 1955) and the large-scale Wharton quarterly models
(Klein and Evans, 1969) are identified through exclusion restrictions.

The SVAR we consider is different from the reduced-form VAR considered by
Johansen (1988, 1991), Phillips (1995), or Sims et al. (1990) in that we allow more
than one current variables to appear in each equation. The model is similar in spirit
to the Cowles Commission structural equation specification in which each equation
describes a behavioral or technological relation except that no strict exogeneity
assumption has been imposed on some of the variables as in Hsiao (1997a, b). It is
shown by Hsiao and Wang (2004) that an identified equation in such a system may
be consistently estimated by the conventional two-stage or three-stage least-squares
estimator (2SLS or 3SLS). However, their limiting distributions may be non-
standard, hence a chi-square distribution may not approximate well the limiting
distribution of a conventional Wald test statistic. In this paper we propose two
modified estimators that are either asymptotically normally or mixed normally
distributed, thus allow the construction of a Wald-type test statistic that is
asymptotically chi-square distributed.

We set up the basic model in Section 2. We propose a modified two-stage least-
squares estimator (M2SLS) in Section 3 and an alternatively modified two-stage
least-squares estimator (A2SLS) in Section 4. Section 5 extends the discussion by
adding an intercept term to the basic model. Section 6 provides some Monte Carlo
studies comparing the performance of 2SLS, M2SLS, and A2SLS. Conclusions are
in Section 7.
2. The model

Let w
�t

be an m� 1 vector of random variables that can be represented by the
following pth order autoregressive model:1

AðLÞw
�t
¼ �
�t
; t ¼ 1; . . . ;T , (2.1)

where AðLÞ ¼ A0 þ A1Lþ � � � þ ApLp is a pth order matrix polynomial of the lag
operator L. We assume that
A1
1F

rema
: A0 is nonsingular.

A2
 : The roots of jAðLÞj ¼ 0 are either 1 or outside the unit circle.

A3
 : The m� 1 error vector �

�t
is independently, identically distributed (i.i.d.) with

zero mean, nonsingular covariance matrix S�� and finite fourth cumulants.
or ease of notations, we postulate (2.1) without the intercept term. The basic conclusions of this paper

in unchanged with the addition of intercept term in (2.1), see Section 5.
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Since we are interested in the asymptotic properties of the estimators of (2.1), for ease
of exposition, we shall also assume that the initial values, w

�0
;w
��1

; . . . ;w
��pþ1

are given.

Remark 2.1. Assumption A1 is needed to ensure that (2.1) contains m linearly
independent behavioral equations. The purpose of A2 is to relax the stationary
assumption implicitly assumed in the original Cowles Commission framework to allow
for the presence of Ið1Þ variables. A3 is a standard assumption for VAR models. The
existence of fourth moments is made to ensure that (functional) central limit theorem
will hold in deriving the limiting distributions of the proposed estimators.

Let A ¼ ½A0;A1; . . . ;Ap� and define a ðpþ 1Þm dimensional nonsingular matrix ~M as

~M ¼

Im Im . . . Im

0
�

Im . . . Im

0
�

0
�

. . . Im

. . . . . . . . .

0
�

. . . 0
�

Im

2
66666664

3
77777775
. (2.2)

Postmultiplying A by the matrix ~M, we obtain an error-correction representation of (2.1),

Xp�1
j¼0

A�j 5 w
�t�j
þ A�pw

�t�p
¼ �
�t
, (2.3)

where 5 ¼ ð1� LÞ;A�j ¼
Pj

‘¼0 A‘; j ¼ 0; 1; . . . ; p. Let A� ¼ ½A�0; . . . ;A
�
p� ¼ ½

~A
�

0;A
�
p�,

then A� ¼ A ~M. The coefficient matrices ~A
�

1 and A�p provide the implied short-run
dynamics and long-run relations of the system (2.1) as defined in Hsiao (2001).

Model (2.1) is different from the conventional VAR model of Johansen (1988,
1991), Phillips (1995), Sims (1980), Sims et al. (1990), Tsay and Tiao (1990), etc. in that
A0 is not an m-rowed identity matrix Im. In other words, more than one current
variables can appear in an equation. It can be viewed as a Cowles Commission
structural equation model without the strict exogeneity assumption on some elements

of w
�t

(e.g. Koopmans et al., 1950; Hsiao, 1997a). Multiplying A�10 to (2.1) yields the

conventional VAR which may be viewed as a reduced-form representation of (2.1),

w
�t
¼ P1w

�t�1
þ � � � þPpw

�t�p
þ v
�t
, (2.4)

where Pj ¼ �A�10 Aj ; v
�t
¼ A�10 �

�t
.

We shall assume that at least one root of jAðLÞj ¼ 0 is equal to 1. More
specifically,
A4
 :

(a) A�p ¼ a
�
b
�

0 where a
�

and b
�

are m� r matrices of full column rank r,
0prpm� 1;
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(b) a
�

0

?
Jb
�?

is nonsingular, where J ¼
Pp�1

j¼0 A�j ; a
�?

and b
�?

are m� ðm� rÞ

matrices of full column rank such that a
�

0

?
a
�
¼ 0
�
¼ b
�

0

?

b
�

. (If r ¼ 0, then we

take a
�?
¼ Im ¼ b

�?

).
Under A1–A4, w
�t

has r cointegrating vectors (the columns of b
�

) and m� r unit
roots. As shown by Johansen (1988, 1991) and Toda and Phillips (1993) A4 ensures
that the Granger representation theorem (Engle and Granger, 1987) applies, so that

5w
�t

is stationary, b
�

0w
�t

is stationary, and w
�t

is an Ið1Þ process when rom.

Suppose that the gth equation of (2.1) satisfies the prior restrictions a
�

0

g
Fg ¼ 0

�

0,

where a
�

0

g
denotes the gth row of A and Fg denotes a ðpþ 1Þm� Rg matrix with

known elements. Let F�g ¼ ~M
�1
Fg, the existence of prior restrictions a

�

0

g
Fg ¼ 0

�

0 is

equivalent to the existence of prior restrictions a
�

�0

g
F�g ¼ 0

�

0, where a
�

�0

g
is the gth row of

A�. Hsiao (2001) proved the following lemma.

Lemma 2.1. Suppose that the gth equation of (2.1) is subject to the prior restrictions

a
�

0

g
Fg ¼ 0

�

0. A necessary and sufficient condition for the identification of the gth equation

of (2.1) or (2.2) is that

rankðAFgÞ ¼ m� 1, (2.5)

or

rankðA�F�gÞ ¼ m� 1. (2.6)

Remark 2.2. The identification condition (2.5) or (2.6) does not require the prior
information about the existence or location of unit roots or rank of cointegration.
3. The modified two stage least-squares estimator

For ease of exposition, we assume that prior information is in the form of
excluding certain variables, both current and lagged, from an equation. Let the gth
equation of (2.1) be written as

w
�g
¼ Zgd

�g
þ �
�g
, (3.1)

where w
�g

and �
�g

denote the T � 1 vectors of ðwg1; . . . ;wgT Þ
0 and ð�g1; . . . ; �gT Þ

0,

respectively, and Zg denotes the included current and lagged variables of w
�t
. Let

X ¼ ðW�1;W�2; . . . ;W�pÞ. The 2SLS estimator of d
�g

is given by

d̂
�g;2SLS

¼ ½Z0gX ðX 0X Þ�1X 0Zg�
�1½Z0gX ðX 0X Þ�1X 0w

�g
�. (3.2)
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To derive the limiting distribution of 2SLS estimator, we let Mg be the

nonsingular transformation matrix that transforms Zg into Z�g ¼ ZgMg ¼

ðZ�g1;Z
�
g2Þ, where Z�g1 denotes the ‘g-dimensional linearly independent Ið0Þ variables

and Z�g2 denotes the T observations of bg linearly independent Ið1Þ variables, then

w
�g
¼ ZgMgM�1

g d
�g
þ �
�g

¼ Z�gd
�

�

g
þ �
�g
, ð3:3Þ

where d
�

�

g
¼M�1

g d
�g
¼ ðd
�

�0

g1
; d
�

�0

g2
Þ
0 with d

�

�

g1
and d

�

�

g2
denoting the ‘g � 1 and bg � 1

vector, respectively. Such transformation always exists. For instance, if no
cointegration relation exists among the gD included variables, say ~w

�gt
, then Z�g1

consists of the first-differenced current and p� 1 lagged included variables, Z�g2 is

simply the T � gD included ~w
�gt

lagged by p periods, ~w
�g;t�p

. Suppose there exist

gD � bg linearly independent cointegrating relations among the gD included

variables, ~w
�gt

, then Z�g1 consists of the current and p� 1 lagged 5 ~w
�g

and

~W g1;�p � ~W g2;�pp
�g
, where ~W g1;�p is T� (gD � bg), ~W g2;�p is T � bg, p

�g
is bg � ðgD �

bgÞ of constants, and Z�g2 consists of the T observed bg linearly independent Ið1Þ

variables ~W g2;�p.

Let Mx be a nonsingular transformation matrix such that XMx ¼ ðX
�
1;X

�
2Þ, where

X �1 consists of the linearly independent Ið0Þ variables and X �2 consists of the linearly
independent Ið1Þ variables, say dimension b. It is shown by Hsiao and Wang (2004)
that

Lemma 3.1. The 2SLS estimate of d
�

�

g
is consistent andffiffiffiffi

T
p
ðd̂
�

�

g1;2SLS
� d
�

�

g1
Þ¼)Nð0

�
;s2gðM

�
zg1x1

M��1
x1x1

M�
x1zg1
Þ
�1
Þ, (3.4)

Tðd̂
�

�

g2;2SLS
� d
�

�

g2
Þ¼)

Z
Bz�

g2
B0x�

2
dr

Z
Bx�

2
B0x�

2
dr

� ��1 Z
Bx�

2
B0z�

g2
dr

( )�1

�

Z
Bz�

g2
B0x�

2
dr

Z
Bx�

2
B0x�

2
dr

� ��1 Z
Bx�

2
dB�g

� �( )
, ð3:5Þ

where ¼) denotes convergence in distribution of the associated probability measures,

M�
zg1;x1
¼ plim

1

T
Z�0g1X

�
1; M�

x1x1
¼ plim

1

T
X �01 X �1, (3.6)

B�g
denotes the Brownian motion of �gt with variance s2g;Bx�

2
denotes a b� 1 vector

Brownian motion of 5x
�

�

2t
with covariance matrix O5x�

2
5x�

2
where O5x�

2
5x�

2
is the long-run

covariance matrix of 5x
�

�

2t
, and Bz�

g2
denotes a bg � 1 vector Brownian motion of 5z

�

�

g2;t
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which appears in the gth equation. Moreover
ffiffiffiffi
T
p
ðd̂
�

�

g1;2SLS
� d
�

�

g1
Þ and Tðd̂

�

�

g2;2SLS
� d
�

�

g2
Þ

are asymptotically independent.

The limiting distribution of (3.5) is nonstandard. It involves a matrix unit root
distribution that arises from using lagged w

�
as instruments when w

�t
is Ið1Þ and is

contemporaneously correlated with �
�t
. The long-run ‘‘endogeneities’’ of the

nonstationary instruments X �2 leads to a miscentering and skewness of the limiting

distribution of (3.5). However, since d̂
�g;2SLS

¼Mg d̂
�

�

g;2SLS
, the limiting distribution of

d̂
�g;2SLS

is given by the components of d̂
�

�

g;2SLS
that have slower rate of convergence.

Therefore, if p41 and interest is in testing a particular coefficient, say dgk ¼ ck, then

the conventional test statistic, ðd̂gk;2SLS � ckÞ=Sdðd̂gk;2SLSÞ is asymptotically t-

distributed. However, inference about the null hypothesis Pd
�g
¼ c
�
can be tricky,

where P and c
�
are known matrix and vector of proper dimensions, respectively.Ifffiffiffiffi

T
p

Pðd̂
�g;2SLS

� d
�g
Þ has a singular convariance matrix, it means that there exists a

nonsingular matrix L such that

LPd
�g
¼ LP�d

�

�

g
¼

~P11
~P12

0
�

~P22

2
4

3
5 d
�

�

g1

d
�

�

g2

2
64

3
75 (3.7)

with nonzero ~P22. Then

ðPd̂
�g;2SLS

� c
�
Þ
0 Cov ðPd̂

�g;2SLS
Þ
�1
ðPd̂
�g;2SLS

� c
�
Þ

¼

~P11
~P12

0
�

~P22

2
4

3
5 d̂
�

�

g1;2SLS

d̂
�

�

g2;2SLS

2
664

3
775� L c

�

8>><
>>:

9>>=
>>;
0

Cov ðLPd̂
�g;2SLS

Þ
�1

�

~P11
~P12

0
�

P22

2
4

3
5 d̂
�

�

g1;2SLS

d̂
�

�

g2;2SLS

2
664

3
775� L c

�

8>><
>>:

9>>=
>>;

¼)T ~P11 d̂
�

�

g1;2SLS
þ ~P12d̂

�

�

g2;2SLS
� ~c
�1

� �0
Cov

ffiffiffiffi
T
p

~P11d̂
�

�

g1;2SLS

� ��1

� ~P11d̂
�

�

g1;2SLS
þ ~P12d̂

�

�

g2;2SLS
� ~c
�1

� �
þ T2 ~P22d̂

�

�

g2;2SLS
� ~c
�2

� �0

�Cov T ~P22d̂
�

�

g2;2SLS

� ��1
~P22d̂
�

�

g2;2SLS
� ~c
�2

� �
, ð3:8Þ
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where L c
�
¼ ð ~c
�

0

1
; ~c
�

0

2
Þ
0. The first term on the right-hand side of (3.8) is asymptotically

chi-square distributed. The second term, according to Lemma 3.1 has a nonstandard
distribution. Hence (3.8) is not asymptotically chi-square distributed.

Remark 3.1. Our interest lies in the statistical properties of the estimators of d
�g
, not

d
�

�

g
(or d

�

��

g
to be introduced in Section 4). The matrices Z�g and X � and the

corresponding parameter vector d
�

�

g
are introduced for the ease of deriving the

limiting distributions of 2SLS of d
�g

and the corresponding Wald test statistic. The

transformed matrices Z�g or X � is not used in actual estimation or in constructing

Wald test statistics. Therefore, it is sufficient to know that transformation of Zg or X

to Z�g or X � (or Z��g or X �� in later section) exists. For instance, consider a three

equation model of the form

A0w
�t
þ A1w

�t�1
þ A2w

�t�2
¼ �
�t
, (3.9)

where

A0 ¼

1 a0;12 0

0 1 a0;23

a0;31 0 1

0
BB@

1
CCA; A1 ¼

a1;11 a1;12 0

0 a1;22 a1;23

a1;31 0 a1;33

0
BB@

1
CCA,

A2 ¼

a2;11 a2;12 0

0 a2;22 a2;23

a2;31 0 a2;33

0
BB@

1
CCA,

and all three equations satisfy the rank condition for identification (2.5). Consider
the first equation ðg ¼ 1Þ of (3.9). We can rewrite it in the form of (3.1),

w
�1
¼ Z1d

�1
þ �
�1
, (3.10)

where Z1 ¼ ðw
�2
;w
�1;�1

;w
�2;�1

;w
�1;�2

;w
�2;�2
Þ, and d

�1
¼ �ða0;12; a1;11; a1;12; a2;11; a2;12Þ

0.

Suppose that A2 takes the form

A2 ¼ A0 � A1 þ a
�

0 b
�

,

where a
�
and b

�

are 3� r matrices, 0pro3. When r ¼ 0, there is no cointegration
among w1t;w2t and w3t. Then Z�1 ¼ Z1M1 ¼ ðZ

�
11;Z

�
12Þ, where

M1 ¼

1 0 0 0 0

0 1 0 0 0

�1 0 1 0 0

0 �1 0 1 0

0 0 �1 0 1

0
BBBBBB@

1
CCCCCCA
,
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Z�11 ¼ ð5w
�2
;5w
�1;�1

;5w
�2;�1
Þ, and Z�012 ¼ ðw

�1;�2
;w
�2;�2
Þ, and d

�

�

1
¼M�1

1 d
�1
¼ ðd
�

�0

11
;

d
�

�0

12
Þ
0; d
�

�0

11
¼ �ða0;12; a1;11; a0;12 þ a1;12Þ; d

�

�0

12
¼ �ða1;11 þ a2;11; a0;12 þ a1;12 þ a2;12Þ. The

instruments X ¼ ðW�1;W�2Þ and X � ¼ XMx ¼ ðX
�
1;X

�
2Þ, where

Mx ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

�1 0 0 1 0 0

0 �1 0 0 1 0

0 0 �1 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
,

X �1 ¼ ð5W�1Þ, and X �2 ¼ ðW�2Þ.

Suppose that

b
�

0
¼

1 �1 0

0 1 �1

� �
and a0 ¼

a11 0 a31
0 a22 a32

 !
,

then model (3.9) is in the spirit of King et al. (1991) three-equation model in which
there are two cointegrating relations (w1t � w2t (money and income), and w2t � w3t

(income and interest rate)). The corresponding transformation of Z�1 and X � then
becomes Z�1 ¼ Z1M1 ¼ ðZ

�
11;Z

�
12Þ with

M1 ¼

1 0 0 0 0

0 1 0 0 0

�1 0 1 0 0

0 �1 0 1 0

0 0 �1 �1 1

0
BBBBBB@

1
CCCCCCA
,

Z�11 ¼ ð5w
�2
;5w
�1;�1

;5w
�2;�1

;w
�1;�2

� w
�2;�2
Þ and Z�12 ¼ ðw

�2;�2
Þ, and

X � ¼ XMx ¼ ðX
�
1;X

�
2Þ,

Mx ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

�1 0 0 1 0 0

0 �1 0 �1 1 0

0 0 �1 0 �1 1

0
BBBBBBBB@

1
CCCCCCCCA
,

X �1 ¼ ð5W�1;w
�1;�2

� w
�2;�2

;w
�2;�2

� w
�3;�2
Þ;X �2 ¼ ðw

�3;�2
Þ. (The parameter vector d

�

�

1
¼

ðd
�

�0

11
; d
�

�0

12
Þ
0 now has the form, d

�

�0

11
¼ �ða0;12; a1;11; a0;12 þ a1;12; a1;11 þ a2;11Þ and

d
�

�0

12
¼ �ða0;12 þ a1;12 þ a2;12 þ a1;11 þ a2;11Þ.)
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We note that the application of 2SLS does not provide asymptotically normal or
mixed normal estimator because of the long-run endogeneities between lagged Ið1Þ
instruments and the (current) shocks of the system (Hsiao and Wang, 2004). But if
we can condition on the innovations driving the common trends it will allow us to
establish the independence between Brownian motion of the errors of the conditional
system involving the cointegrating relations and the innovations driving the common
trends. The idea of the modified 2SLS estimator is to apply the 2SLS method to the
equation conditional on the innovations driving the common trends. Unfortunately,
the direction of nonstationarity is generally unknown. Neither does the identification
condition given by Lemma 2.1 require such knowledge. In the event that such
knowledge is unavailable, we propose to modify Phillips (1995) fully modified VAR
estimator that is used to estimate the reduced-form VAR of the form (2.4) with
desirable properties.

Rewrite (3.1) as

w
�g
¼ Zg

~Mg
~M
�1

g d
�g
þ �
�g

¼ ðZ��g1 Z��g2Þ

d
�

��

g1

d
�

��

g2

0
B@

1
CAþ �

�g

¼ Z��g d
�

��

g
þ �
�g
, ð3:11Þ

where Z��g ¼ Zg
~Mg ¼ ðZ

��
g1 ;Z

��
g2Þ;Z

��
g1 ¼ ð5W g;5 ~W g;�1; . . . ;5 ~W g;�pþ1Þ;Z

��
g2 ¼

~W g;�p; d
�

��

g
¼ ~M

�1

g d
�g
;5 ~W g;�j denoting the T � gD stacked first difference of the

included variable 5 ~w
�g;t�j

and 5W g denoting the T � ðgD � 1Þ first difference of the

included variables 5 ~w
�gt

excluding 5wgt. The decomposition ðZ��g1 ;Z
��
g2Þ and d

�

��

g
¼

ðd
�

��0

g1
; d
�

��0

g2
Þ
0 are identical to ðZ�g1;Z

�
g2Þ if there is no cointegrating relations among ~w

�gt
,

p
�g
¼ 0
�
. Unlike ðZ�g1;Z

�
g2Þ; ðZ

��
g1 ;Z

��
g2Þ are well defined and observable. When

Z�g1aZ��g1, there exists a nonsingular transformation matrix Dg such that

ðZ��g1 ;Z
��
g2ÞDg ¼ ðZ

�
g1;Z

�
g2Þ. Then

d
�

�

g
¼ D�1g d

�

��

g
. (3.12)

Remark 3.2. Using the example (3.9), Z��1 ¼ Z1
~M1 ¼ ðZ

��
11 ;Z

��
12Þ, where

~M1 ¼

1 0 0 0 0

0 1 0 0 0

�1 0 1 0 0

0 �1 0 1 0

0 0 �1 0 1

0
BBBBBB@

1
CCCCCCA
,
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with Z��11 ¼ ð5w
�2
;5w
�1;�1

;5w
�2;�1
Þ and Z��12 ¼ ðw

�1;�2
;w
�2;�2
Þ, and d

�

��0

11
¼ �ða0;12; a1;11;

a0;12 þ a1;12Þ; d
�

��0

12
¼ �ða1;11 þ a2;11; a0;12 þ a1;12 þ a2;12Þ irrespective of the cointegra-

tion rank in the system.

Let

Cg ¼ ðW
0
�p 5W�p � TD5w5wÞO�5w5wO5w�g , (3.13)

where Ouv and Duv denote the long-run covariance and the one-sided long-run
covariance matrix of two sets of Ið0Þ variables, ðu

�t
; v
�t
Þ,

Ouv ¼
X1

j¼�1

GuvðjÞ, (3.14)

and

Duv ¼
X1
j¼0

GuvðjÞ, (3.15)

where GuvðjÞ ¼ Eu
�t

v
�

0

t�j
. Let

Ĉg ¼ ðW
0
�p 5W�p � TD̂5w5wÞÔ

�1

5w5wÔ5w�g , (3.16)

where Ôuv and D̂uv are the kernel estimates of Ouv and Duv, which, following Phillips
(1995), takes the form

Ôuv ¼
XT�1

j¼�Tþ1

Kðj=kÞĜuvðjÞ, (3.17)

and

D̂uv ¼
XT�1
j¼0

Kðj=kÞĜuvðjÞ, (3.18)

where Kð�Þ is a kernel function and k is a truncation or bandwidth parameter, and
ĜuvðjÞ is the sample covariance function of ðu

�t
; v
�t�j
Þ,

ĜuvðjÞ ¼
1

T

XT

t¼jþ1

û
�t

v̂
�

0

t�j
. (3.19)

A modified 2SLS estimator following Phillips (1995) fully modified VAR estimator
can be defined as

d̂
�

��

g;m2SLS
¼ fZ��0g X ��ðX ��0X ��Þ�1X ��0Z��g g

�1

� Z��0g X ��ðX ��0X ��Þ�1

X ��01 w
�g

X ��02 w
�g
� Ĉg

0
B@

1
CA

8><
>:

9>=
>;, ð3:20Þ
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where X �� ¼ X ~Mx ¼ ðX
��
1 ;X

��
2 Þ;X

��
1 ¼ ð5W�1; . . . ;5W�pþ1Þ, and X ��2 ¼W�p.

Just like ðZ��g1 ;Z
��
g2Þ; ðX

��
1 ;X

��
2 Þ are well defined and observable.

Following Phillips (1995), we assume that

Assumption KL. The Kernel function Kð�Þ : R! ½0; 1� in (3.17) and (3.18) is a twice
continuously differentiable even function with:
(a)
 Kð0Þ ¼ 1;K 0ð0Þ ¼ 0;K 00ð0Þa0; and either

(b)
 KðxÞ ¼ 0; jxjX1, with limjxj!1½KðxÞ=ð1� jxjÞ

2
� ¼ constant, or
(c)
 KðxÞ ¼ Oðx�2Þ as jxj ! 1.
Assumption BW. The bandwidth parameter k in (3.17) and (3.18) has an expansion
rate of the form:

k ¼ OeðT
qÞ for some q 2 (1/4, 2/3), where the symbol Oe is the expansion rate

symbol such that

k ¼ OeðT
qÞ if k�cT Tq as T !1

for some cT which is slowly varying at infinity (i.e. cTx=cT ! 1 as T !1 for x40).
Thus k=T2=3 þ T1=4=k! 0 and k4=T !1 as T !1. Then

Theorem 3.1. Under assumptions A1–A4, KL and BW, the modified 2SLS estimator

d̂
�

�

g;m2SLS
¼ D�1g d̂

�

��

g;m2SLS
is consistent. Furthermoreffiffiffiffi

T
p

d̂
�

�

g1;m2SLS
� d
�

�

g1

� �
¼)Nð0

�
;s2gðM

�
zg1x1

M��1
x1x1

M�
x1zg1
Þ
�1
Þ (3.21)

and is independent of

T d̂
�

�

g2;m2SLS
� d
�

�

g2

� �
¼)ðM�

zg2
x2

M��1
x2x2

M�
x2zg2
Þ
�1M�

zg2
x2

M��1
x2x2

Z
Bx�

2
dB�g:x�2

,

(3.22)

which is a mixed normal of the formZ
M�

x2x2
40

N 0
�
;s2g:5x�

2
ðM�

zg2x2
M��1

x2x2
M�

x2zg2
Þ
�1

� �
dPðM�

x2x2
Þ, (3.23)

where s2g:5x�
2
¼ s2g � O�g5x�

2
O5x�

2
5x�

2
O5x�

2
�g
.

Proof. See Appendix A. &

Corollary 3.1. Under the assumptions of Theorem 3.1, when r ¼ 0, we have

T d̂
�

�

g2;m2SLS
� d
�

�

g2

� � p
�! 0
�
, (3.24)

i.e. d̂
�

�

g2;m2SLS
is hyperconsistent in the sense that its rate of convergence is faster than T.

M�
zg1x1
¼ plim ð1=TÞZ�0g1X

�
1;M

�
x1x1
¼ plim ð1=TÞX �01 X �1;M

�
zg2x2

and M�
x2x2

are bg � b

and b� b matrices of random variables that have the limiting distributions as that of

ð1=T2ÞZ�0g2X
�
2 and ð1=T2ÞX �02 X �2, respectively.
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Proof. See Appendix A. &

Remark 3.3. The modified 2SLS estimator of d
�g

can be obtained as

d̂
�g;m2SLS

¼ ~Mg d̂
�

��

g;m2SLS
¼ ~MgDgd̂

�

�

g;m2SLS
, (3.25)

where ~Mg is a known matrix but in general, not Dg. However, although the modified
2SLS estimator of d

�

�

g
is either asymptotically normal or mixed normal, the Wald type

test statistic

1

s2g
ðPd̂
�g;m2SLS

� c
�
Þ
0
fP½Z0gX ðX 0X Þ�1X 0Zg�P

0g�1 Pd̂
�g;m2SLS

� c
�

� �
(3.26)

does not always have the asymptotic chi-square distribution under the null
hypothesis Pd

�g
¼ c
�
, where P is a known k � gD matrix of rank k. To see this,

rewrite (3.26) in terms of d̂
�

�

g;m2SLS

1

s2g
P�Hg d̂

�

�

g;m2SLS
� c
�

� �0
fP�Hg½Z

�0
g X �ðX �0X �Þ�1X �0Z�g�H

0
gP�0g�1

� P�Hg d̂
�

�

g;m2SLS
� c
�

� �
, ð3:27Þ

where

P� ¼ P ~MgDgH�1g and Hg ¼
T�1=2I lg 0

0 T�1Ibg

" #
.

The null hypothesis becomes P�Hgd̂
�

�

g;m2SLS
¼ c
�
. Notice that the asymptotic

covariance matrix of Hg d̂
�

�

g;m2SLS
converges to

s2gðM
�
z0

g1
x1

M��1
x1x1

M�
x1zg1
Þ
�1 0

�

0
�

s2g:5x�
2
ðM�

zg2x2
M��1

x2x2
M�

x2zg2
Þ
�1

0
B@

1
CA,

while Hg½Z
�0
g X �ðX �0X �Þ�1X �0Z�g�H

0
g in (3.27) converges to

s2g

ðM�
zg1x1

M��1
x1x1

M�
x1zg1
Þ
�1 0

�

0
�

ðM�
zg2x2

M��1
x2x2

M�
x2zg2
Þ
�1

0
B@

1
CA,

Wald statistic (3.26) (or equivalently (3.27)) is asymptotically chi-square distributed

with k degrees of freedom if and only if Pd̂
�g;m2SLS

(or equivalently P�Hgd̂
�

�

g;m2SLS
Þ in

the hypothesis does not involve the T-consistent component d̂
�

�

g2;m2SLS
. Otherwise,

Hg½Z
�0
g X �ðX �0X �Þ�1X �0Z�0g �H

0
g would overestimate the asymptotic covariance matrix
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of Hg d̂
�

�

g;m2SLS
because s2g�5x�

2
ps2g for the submatrix corresponding to x

�

�

2
and z

�

�

g2
. In

general, the test statistic (3.26) is a conservative test, with its asymptotic distribution

a weighted sum of k independent w21 variables with weights between 0 and 1.
4. An alternatively modified 2SLS estimator

Section 3 shows that without pretesting for or the prior knowledge of the
cointegrating space, the modified 2SLS estimator is consistent and has the desired
property that coefficient estimates of the transformed system are either

ffiffiffiffi
T
p

-
consistent and asymptotically normally distributed or T-consistent and mixed
normally distributed in the limit. However, the construction of the modified 2SLS
estimator requires nonparametric estimation of the long-run covariance matrix and
the one-sided long-run covariance matrix. It is well known that kernel estimator and
hence the finite sample performance of the modified 2SLS estimator could be
affected substantially by the choice of the bandwidth parameter. In addition, since
we cannot approximate the asymptotic covariance matrix of the modified 2SLS
estimator properly, Wald test statistics based on the modified 2SLS estimator using
the formula of (3.26) may not be chi-square distributed and critical values that are
based on chi-square distributions can be used for conservative tests only. In this
section, we propose an alternatively modified 2SLS estimator with the following
properties: (1) it is fully parametric, (2) coefficient estimates of the transformed
system are

ffiffiffiffi
T
p

-convergence and asymptotically normally distributed in the
stationary direction and T-convergence and asymptotically mixed normally
distributed in the nonstationary direction, and (3) its asymptotic covariance matrix
can be properly approximated so that Wald test statistics remain w2 distributed in the
limit.

We note that (2.1) implies the existence and uniqueness of a vector autoregressive
moving average process of order p and 1, respectively,

5w
�t
¼ J1 5 w

�t�1
þ � � � þ Jp 5 w

�t�p
þ Z
�t

, (4.1)

where Z
�t

¼ ðI � FLÞv
�t
, and v

�t
¼ A�10 �

�t
, subject to the constraint that the roots of

jI � J1z� � � � � Jpzpj ¼ 0 lie outside the unit circle and F is symmetric and

idempotent. Let wþgt ¼ wgt � O�gZO
�
ZZZ
�t

and ŵþgt ¼ wgt � Ô�gZÔ
��1

ZZ Ẑ
�t

, where O�gZ and

OZZ are the long-run covariance between �gt and Z
�t

and the long-run covariance

matrix of Z
�t

, respectively, Ô�gZ; ÔZZ; Ẑ
�

denote their estimates, O�ZZ denotes the

generalized inverse of OZZ and Ô
�

ZZ ¼ ÔZZ þ T�dIm, where d 2 ð0; 1
2
Þ. The

alternatively modified 2SLS estimator (A2SLS) is defined as

d̂
�g;a2SLS

¼ ~Mgd̂
�

��

g;a2SLS
¼ ~MgDgd̂

�

�

g;a2SLS
(4.2)
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where

d̂
�

��

g;a2SLS

¼ ½Z��0g X ��ðX ��0X ��Þ�1X ��0Z��g �
�1 Z��0g X ��ðX ��0X ��Þ�1

X ��01 w
�g

X ��02 ŵ
�

þ

g

0
B@

1
CA

2
64

3
75. ð4:3Þ

The difference between the modified 2SLS and A2SLS is in the adjustment factor.

The modified 2SLS uses Ĉg (3.16). The A2SLS adjusts w
�gt

by �Ô�gZÔ
��1

ZZ Ẑ
�t

. There is

no serial correlation adjustment factor for A2SLS because Z
�

is at most a moving

average process of order 1. Furthermore, O�gZ and OZZ can be estimated

parametrically. One such estimator is

Ô�gZ ¼ T�1
XT

t¼1

�̂gtẐ
�

0

t

þ T�1
XT�1
t¼1

�̂gt Ẑ
�

0

tþ1

(4.4)

and

ÔZZ ¼ T�1
XT

t¼1

Ẑ
�t

Ẑ
�

0

t

þ T�1
XT�1
t¼1

Ẑ
�t

Ẑ
�

0

tþ1

þ T�1
XT

t¼2

Ẑ
�t

Ẑ
�

0

t�1

, (4.5)

where �̂gt and Ẑ
�t

are the 2SLS residuals of (3.1) and the MLE residuals of (4.1),

respectively. The estimators (4.4) and (4.5) converge to their true values, O�gZ and OZZ

at the speed of T1=2. However, since OZZ may be singular, Ô�gZÔ
�1

ZZ may not converge

to O�gZO
�
ZZ. Adding T�dIm for d 2 ð0; 1=2Þ to ÔZZ does not affect the consistency

property of Ô
�

ZZ, but ensures the convergence of Ô�gZÔ
��1

ZZ to O�gZO
�
ZZ. It is shown in

Appendix B that the optimal value of d ¼ 1=4.
The reason for adjusting w

�gt
by �O�gZO

�
ZZZ
�t

is that the elements of the long-run

covariance matrix between �
�g

and Z
�

that correspond to the stationary directions are

zero because the corresponding elements of Z
�

are in the form of a
�

0ðv
�t
� v
�t�1
Þ with

zero long-run covariance. Only the elements of Z
�

that drive the nonstationary

direction ða
�

0

?
v
�t
Þ will have nonzero long-run covariance. They are the only elements

that enter into the adjustment, hence establishes the orthogonality between the

conditional error �
�

þ

gt
¼ �
�gt
� Ô�gZÔ

��1

ZZ Z
�t

of the gth equation and the innovations

driving the common trends.



ARTICLE IN PRESS

C. Hsiao, S. Wang / Journal of Econometrics 135 (2006) 427–463 441
Let

d̂
�

�

g;a2SLS
¼ ½Z�0g X �ðX �0X �Þ�1X �0Z�g�

�1 Z�0g X �ðX �0X �Þ�1D0x

X ��01 w
�g

X ��02 ŵ
�

þ

g

0
B@

1
CA

2
64

3
75, (4.6)

where X � ¼ X ��Dx. It follows that

Theorem 4.1. When pX2, the alternatively modified 2SLS estimator d̂
�

�

g;a2SLS
is

consistent. Furthermore,ffiffiffiffi
T
p
ðd̂
�

�

g1;a2SLS
� d
�

�

g1
Þ

Tðd̂
�

�

g2;a2SLS
� d
�

�

g2
Þ

2
64

3
75¼)

f
�g1

f
�g2

0
B@

1
CA� Nð0;S�g1ÞR

M�
x2x2

40 Nð0;S
�
g2ÞdPðM�

x2x2
Þ

0
@

1
A, (4.7)

where f
�g1

and f
�g2

are independent, and

S�g1 ¼ ðM
�
zg1x1

M��1
x1x1

M�
x1zg1
Þ
�1M�

zg1x1
M��1

x1x1

~Sg1M
��1
x1x1

M�
x1zg1
ðM�

zg1x1
M��1

x1x1
M�

x1zg1
Þ
�1,

S�g2 ¼ s2gþðM
�
zg2x2

M��1
x2x2

M�
x2zg2
Þ
�1,

s2gþ ¼ s2g � O�gZO
�
ZZOZ�g

,

~Sg1 ¼

s2gM��
x1x1

s2gþM��
x1 ~wg1
þY02

s2gþM��
~wg1x1
þY2 Sg1

2
4

3
5,

where

M��
x1x1
¼ plim

1

T
X ��01 X ��1 ,

M��
x1 ~wg1
¼ plim

1

T
X ��01

~W
�

g1;�p,

Sg1 ¼ s2gþM�
~wg1 ~wg1
þ ðO�gZO

�
ZZ �M��

~wg1x1
ÞCovðŷ

�
ÞðO�ZZOZ�g

�M��
x1 ~wg1
Þ þY1 þY01,

M�
~wg1 ~wg1

¼ plim
1

T
~W
�0

g1;�p
~W
�

g1;�p,

Y1 ¼ E½T�1=2 ~W
�0

g1;�pðIT � O�gZO
�
ZZÞ

~X ðŷ
�
� y
�
Þ � T�1=2 �

�

0

g

~W
�

g1;�p�,

Y2 ¼ E½T�1=2 ~W
�0

g1;�pðIT � O�gZO
�
ZZÞ

~X ðŷ
�
� y
�
Þ � T�1=2 �

�

0

g
X ��1 �
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with

y
�
¼ vech ðJ�Þ; J� ¼ ðJ1; . . . ; JpÞ; ~X ¼

Im �5X 01

..

.

Im �5X 0T

0
BBB@

1
CCCA,

5 X 0t ¼ 5w
�

0

t�1
; . . . ;5w

�

0

t�p

� �

so that (4.1) is rewritten as 5w
�
¼ ~X y

�
þ Z
�

, where 5w
�

0 ¼ ð5w
�

0

1
; . . . ;5w

�

0

T
Þ.

Proof. See Appendix B. &

The alternative 2SLS estimator (4.2) is related to d̂
�

�

g;a2SLS
by d̂
�g;a2SLS

¼Mg d̂
�

�

g;a2SLS
.

The limiting distribution of d̂
�g;a2SLS

is determined by the component that has the

slower rate of convergence. Therefore, if none of the rows of Mg are identically zero

in its first ‘g columns, d̂
�g;a2SLS

converges to d
�g

at the speed of T1=2 and its limiting

distribution is singular normal. On the other hand, if for some rows of Mg, the first

‘g columns are identically zero, then the corresponding components of d̂
�g;a2SLS

converges to their true values at the speed of T. Let Mgþ and Mgþþ denote the

submatrix of Mg that the first ‘g columns of each row are not and are identically

zero, respectively, and d
�gþ

and d
�gþþ

denote the subvectors of d
�g

that correspond to

Mgþ and Mgþþ, respectively. Then

Theorem 4.2. When pX2, the alternatively modified 2SLS estimator (4.2) is

consistent. Furthermore

ffiffiffiffi
T
p

d̂
�gþ;a2SLS

� d
�gþ

� �
¼)N 0

�
;Mgþ

S�g1 0
�

0
�

0
�

0
@

1
AM 0

gþ

0
@

1
A, (4.8)

and is independent of

T d̂
�gþþ;a2SLS

� d
�gþþ

� �
¼)

Z
M�

x2x2
40

N 0
�
;Mgþþ

0
�

0
�

0
�

S�g2

0
@

1
AM 0

gþþ

0
@

1
AdPðM�

x2x2
Þ,

(4.9)

which is mixed normal with mean 0
�

and conditional covariance matrix

Mgþþ

0
�

0
�

0
�

S�g2

0
@

1
AM 0

gþþ.
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Given that the limiting distribution of d̂
�g;a2SLS

is either asymptotic normal or

mixed normal, the conventional Wald-style test statistic can be approximated by the
chi-square distribution with appropriate degree of freedom. For instance, suppose
that the null hypothesis is

H0 : Pd
�g
¼ c
�
, (4.10)

where P is a known k � ð‘g þ bgÞ matrix with rank k and c
�
is a known k � 1 vector.

Under the null,

d̂
�g;a2SLS

� d
�g

� �0
P0Cov Pd̂

�g;a2SLS

� ��1
P d̂
�g;a2SLS

� d
�g

� �

¼

~P11
~P12

0
�

~P22

2
4

3
5 d̂
�

�

g1;a2SLS

d̂
�

�

g2;a2SLS

2
664

3
775� L c

�

8>><
>>:

9>>=
>>;
0

Cov ðLPd̂
�g;a2SLS

Þ
�1

�

~P11
~P12

0
�

~P22

2
4

3
5 d̂
�

�

g1;a2SLS

d̂
�

�

g2;a2SLS

2
664

3
775� L c

�

8>><
>>:

9>>=
>>; ð4:11Þ

¼)T ~P11d̂
�

�

g1;a2SLS
þ ~P12 d̂

�

�

g2;a2SLS
� ~c
�1

� �0
Cov

ffiffiffiffi
T
p

~P11d̂
�

�

g1;a2SLS

� ��1
~P11d̂
�

�

g1;a2SLS
þ ~P12d̂

�

�

g2;a2SLS
� ~c
�1

� �

þ T2 ~P22d̂
�

�

g2;a2SLS
� ~c
�2

� �0
Cov T ~P22d̂

�

�

g2;a2SLS

� ��1
~P22d̂
�

�

g2;a2SLS
� ~c
�2

� �
,

ð4:12Þ

where L is a nonsingular matrix that transforms LPd
�g

into the form (3.7) and

L c
�
¼ ð ~c
�

0

1
; ~c
�

0

2
Þ
0. Since

ffiffiffiffi
T
p

d̂
�

�

g1;a2SLS
is asymptotically normal, T d̂

�

�

g2;a2SLS
is asympto-

tically mixed normal, and the two limiting distributions are independent, (4.12)

converges to a w2 distribution with k degrees of freedom.

Corollary 4.1. When prior restrictions are in the form of exclusion restrictions and the

structural VAR model has order p41, then Mgþ �Mg; d̂
�g;a2SLS

� d̂
�gþ;a2SLS

, i.e., each

element of the alternatively modified 2SLS estimator d̂
�g;a2SLS

converges to d
�g

at the

rate of
ffiffiffiffi
T
p

.
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Corollary 4.2. When rank of cointegration r ¼ 0,

T d̂
�

�

g2;a2SLS
� d
�

�

g2

� � p
�! 0
�
.

Remark 4.1. The asymptotic efficiency of d̂
�

�

g1;a2SLS
is given by the asymptotic

efficiency of the first stage estimator, ŷ
�
. Since the reduced-form specification (4.1)

ignores overidentification restrictions of (2.1), the MLE of y
�
is not as efficient as the

MLE of y
�
that incorporates the overidentification restrictions. Therefore, unless the

system is exactly identified, the estimator of d̂
�

�

g1;a2SLS
is in general less efficient than

the 2SLS of d
�

�

g1
. What it implies is that although alternatively modified 2SLS

estimator allows one to get rid of the nonstandard distribution of the part of the level
coefficients associated with estimating unit roots either explicitly or implicitly, it pays
a cost of efficiency loss.

Remark 4.2. Both estimators (3.20) and (4.3) have the desirable property of being
consistent and asymptotically normally or mixed normally distributed. However,
estimator (3.20) requires the nonparametric estimation of the long-run covariance
matrix ((3.17) and (3.18)), but estimator (4.3) does not because it is known that the
error of (4.1) is at most a first-order moving average process. This difference can
have implication on the finite sample performance of the two estimators. Moreover,
the asymptotic conditional covariance matrix of (4.2) can be properly approximated
so that the Wald-type test statistic can be approximated by a chi-square distribution.
But the chi-square approximation of the test statistic (3.26) may only give a
conservative bound if the null hypothesis P d

�
¼ c
�
isolates the coefficients that are T

convergent.
5. Structural VAR containing intercepts

For ease of exposition, we have formulated the data generating process (2.1) as
having no intercept term. In this section, we briefly illustrate that the basic messages
of previous sections remain unchanged when we add an intercept term. Let

AðLÞw
�t
¼ g
�

þ�
�t
, (5.1)

where g
�

denotes the G � 1 intercept term, which may or may not be equal to zero.
Writing the gth equation of (5.1) in the form of (3.1) yields

w
�g
¼ Zgd

�g
þ e
�
gg þ g, (5.2)

where e
�
is a T � 1 vector with all elements equal to one. The 2SLS of (5.2) then takes
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the form

d̂
�g;2SLS

ĝg;2SLS

0
B@

1
CA ¼ Z0g

e
�

0

0
@

1
AðX ; e

�
Þ ðX ; e�

Þ
0
ðX ; e

�
Þ

h i�1 X 0

e
�

0

0
@

1
AðZg; e

�
Þ

8<
:

9=
;
�1

�

Z0g

e
�

0

0
@

1
AðX ; e

�
Þ

X 0

e
�

0

0
@

1
AðX ; e

�
Þ

2
4

3
5
�1

X 0

e
�

0

0
@

1
Aw
�g

8<
:

9=
;. ð5:3Þ

The limiting distribution of the 2SLS estimator (and the modified 2SLS
estimators) depends on whether the Ið1Þ process w

�t
is with or without drift. We

shall first consider the case that there is no drift ðg
�

¼ 0
�
Þ. Then we can transform (5.2)

in the form of (3.3),

w
�g
¼ Z�gd

�

�

g
þ e
�
g�g þ �

�g
, (5.4)

where Z�g ¼ ZgMg ¼ ðZ
�
g1;Z

�
g2Þ, d

�

�

g
¼ ðd
�

�0

g1
; d
�

�0

g2
Þ
0
¼M�1

g d
�g

and g�g ¼ gg. Similarly

transform X ¼ XMx ¼ ðX
�
1;X

�
2Þ as those defined after (3.3), then the 2SLS of (5.2)

is equal to

d̂
�g;2SLS

ĝg;2SLS

0
@

1
A ¼ M�1

g 0

0 1

 ! d̂
�

�

g;2SLS

ĝ
�

�

g;2SLS

0
B@

1
CA, (5.5)

where

d̂
�

�

g1;2SLS

d̂
�

�

g2;2SLS

ĝ�g;2SLS

0
BBBBB@

1
CCCCCA ¼

Z�0g1

Z�0g2

e
�

0

0
BBB@

1
CCCAðX �1;X �2; e�Þ

X �0X � X �0 e
�

e
�

0X � T

0
B@

1
CA
�1

X �0

e
�

0

0
@

1
AðZ�g; e

�
Þ

8>>><
>>>:

9>>>=
>>>;

�1

�

Z�0g

e
�

0

0
@

1
AðX �; e

�
Þ

X �0X � X �0 e
�

e
�

0X � T

0
B@

1
CA
�1

X �01 w
�g

X �02 w
�g

e
�

0w
�g

0
BBBBB@

1
CCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
. ð5:6Þ

It follows that

Lemma 5.1.

ffiffiffiffi
T
p

d̂
�

�

g1;2SLS
� d
�

�

g1

� �
¼)Nð0

�
;s2gðM

�
zg1x1

M��1
x1x1

M�
x1zg1
ÞÞ, (5.7)
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and are asymptotically independent of

Tðd̂
�

�

g2;2SLS
� d
�

�

g2
Þffiffiffiffi

T
p

ĝ�g;2SLS

2
64

3
75¼)ðRS�1R0Þ�1RS�1

R
Bx�

2
dB�g

Nð0;s2gÞ

" #
, (5.8)

where

R ¼

R
Bz�

g2
B0x�

2
dr

R
Bz�

g2
drR

B0x�
2
dr 1

0
@

1
A,

S ¼

R
Bx�

2
B0x�

2
dr

R
Bx�

2
drR

B0x�
2
dr 1

0
@

1
A.

Since B�g
is not asymptotically independent of Bx�

2
, the 2SLS estimator of (5.2) has

the same problem as the 2SLS estimator (3.1), namely, the limiting distribution of

d̂
�

�

g2;2SLS
is nonstandard because of the long-run endogeneities between X �2 and �

�g
.

Therefore, the Wald test statistic of the form (3.8) may not be asymptotically w2

distributed.
Transform (5.2) in the form of (3.11),

w
�g
¼ Z��g d

�

��

g
þ e
�
g��g þ �

�g
, (5.9)

where Z��g and d
�

��

g
are defined after (3.11) and g��g ¼ gg. The modified 2SLS for (5.2)

takes the form

d̂
�g;m2SLS

ĝg;m2SLS

0
@

1
A ¼ ~Mg 0

�

0
�

0 1

0
@

1
A d̂

�

��

g;m2SLS

ĝ��g;m2SLS

0
@

1
A, (5.10)

where

d̂
�

��

g1;m2SLS

d̂
�

��

g2;m2SLS

ĝ��g;m2SLS

0
BBBBB@

1
CCCCCA ¼

Z��0g1

Z��0g2

e
�

0
BBB@

1
CCCAðX ��; e�Þ

X ��0X �� X ��0 e
�

e
�

0X �� T

0
B@

1
CA
�1

X ��0

e
�

0

0
@

1
AðZ��; e

�
Þ

8>>><
>>>:

9>>>=
>>>;

�1

�

Z��0g

e
�

0

0
@

1
AðX ��; e

�
Þ

X ��0X �� X ��0 e
�

e
�

0X ��0 T

0
B@

1
CA
�1

�

X ��01 w
�g

X ��02 w
�g
� Ĉg

e
�

0w
�g

0
BBBBB@

1
CCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
.

ð5:11Þ
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The limiting distribution of (5.11) can be derived from

d̂
�

�

g;m2SLS

ĝ
�

�

g;m2SLS

0
B@

1
CA ¼ D�1g 0

�

0
�

0 1

0
@

1
A d̂

�

��

g;m2SLS

ĝ��g;m2SLS

0
@

1
A. (5.12)

Using similar manipulations as Section 3, it can be shown that

Lemma 5.2. The limiting distribution of
ffiffiffiffi
T
p

d̂
�

�

g1;m2SLS
� d
�

�

g1

� �
is of the form (3.21)

and is asymptotically independent of

T d̂
�

�

g2;m2SLS
� d
�

�

g2

� �
ffiffiffiffi
T
p

ĝ�g;m2SLS

2
64

3
75¼)ðRS�1R0Þ�1RS�1

R
Bx�

2
dB�g:x�2

Nð0;s2gÞ

" #
. (5.13)

Since B�g:x�2
is asymptotically independent of Bx�

2
, the modified 2SLS is either

normally distributed or mixed normally distributed.
Similarly, one can derive the alternatively modified 2SLS in the form similar to

that of (4.3) and its limiting distribution is either normal or mixed normal.
When g

�

a0, then some or all elements of w
�t

are Ið1Þ with drift. As T !1, those

Ið1Þ elements of w
�t

with nonzero drift will be dominated by the trend term h
�

t, where

h
�
¼ A�10 g

�

. However, as noted by Sims et al. (1990) those elements of w
�t

with nonzero

drifts will be perfectly collinear. To derive the limiting distribution of 2SLS
or modified 2SLS or alternatively modified 2SLS, we can follow the Sims et al. (1990)
to transform w

�t
into w

�

�

t
¼ Hw

�t
, where H is an m�m nonsingular matrix of the

form

H ¼

1 � . . . 0 �ðh1=hmÞ

0 1 . . . � �ðh2=hmÞ

. . . � . . . � . . .

0 � . . . 1 �ðhm�1=hmÞ

0 � . . . 0 1

2
6666664

3
7777775
, (5.14)

and there is no loss of generality in assuming hma0. The resulting
w�gt ¼ wgt � ðhg=hmÞwmt; g ¼ 1; . . . ;m� 1, becomes Ið1Þ without drift and w�mt ¼ wmt

remains Ið1Þ with drift. Similarly, (5.1) can be expressed in terms of w
�

�

t

AðLÞH�1w
�

�

t
¼ g
�

þ�
�t
, (5.15)

and the gth equation of (5.15) can be expressed in the form

w
�

�

g
¼ ~Zg

~d
�g
þ e
�
gg þ �

�g
, (5.16)
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where ~Zg denotes the matrix of T observed current and lagged w
�

�

t
that appear in the

gth equation. We can transform (5.16) into the form in terms of Ið0Þ, Ið1Þ without
drift and Ið1Þ with drift variables:

w
�

�

g
¼ ~Z

�

g
~d
�

�

g
þ e
�
g�g þ �

�g
, (5.17)

where g�g ¼ gg, ~Z
�

g ¼
~Zg
~M
�

g ¼ ðZ
�
g1;Z

�
g2;Z

�
g3Þ, with Z�g1 denoting the ‘g-dimensional

linearly independent zero mean Ið0Þ variables, Z�g2 denoting the bg linearly

independent Ið1Þ variables without drift, and Z�g3 denoting the Ið1Þ variable with

drift, w
�m;�p

, and ~d
�

�0

g1
; ~d
�

�0

g2
; ~d
�

g3

� �
the corresponding partition of the transformed

parameter vector ~d
�

�

g
¼ ~M

��1

g
~d
�g
.

Similarly, we can transform X into X � ¼ X ~M
�

x ¼ ðX
�
1;X

�
2;X

�
3Þ, where X �1, X �2 and

X �3 consist of linearly independent Ið0Þ, Ið1Þ without drift, and Ið1Þ with drift w
�m;�p

,

variables, respectively. Then the 2SLS of (5.16) can be written as the transformation

of the 2SLS of ~̂d
�

�

g;2SLS
,

~̂d
�g;2SLS

ĝ
�g;2SLS

0
BB@

1
CCA ¼

~M
�

g 0
�

0
�

1

0
@

1
A ~̂d

�

�

g;2SLS

ĝ
�

�

g;2SLS

0
BB@

1
CCA. (5.18)

Lemma 5.3. The limiting distribution of
ffiffiffiffi
T
p

~̂d
�

�

g1;2SLS
� ~d
�

�

g1

� �
is asymptotically

normally distributed with mean zero and variance covariance matrix of the form

similar to (3.21), and is asymptotically independent of

Tð ~̂d
�

�

g2;2SLS
� ~d
�

�

g2
Þ

T3=2ð ~̂d
�

g3;2SLS �
~d
�

g3Þ

T1=2ðĝ�g;2SLS � g�gÞ

2
66664

3
77775¼)ðR�S��1R�Þ�1R�S��1

q
�1

q2

q3

2
664

3
775, (5.19)

where

R� ¼

R
Bz�

g2
B0x�

2
dr hm

R
rBz�

g2
dr

R
Bz�

g2
dr

hm

R
rB0x�

2
dr h2

m=3 hm=2R
B0x�

2
dr hm=2 1

2
6664

3
7775,
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S� ¼

R
Bx�

2
B0x�

2
dr hm

R
rBx�

2
dr

R
Bx�

2
dr

hm

R
rB0x�

2
dr h2

m=3 hm=2R
B0x�

2
dr hm=2 1

2
6664

3
7775,

q
�1

¼
R

Bx�
2
dB�g ; q2�Nð0;

1
3
s2gh2

mÞ, and q3�Nð0;s
2
gÞ.

Although ~̂d
�

�

g1;2SLS
and ~̂d

�

�

g2;2SLS
are asymptotically normal, ~̂d

�

�

g3;2SLS
is not asympto-

tically mixed normal. Since the 2SLS of (5.1) (or (5.15)) is a linear combination of

~̂d
�

�

g1;2SLS
; ~̂d
�

�

g2;2SLS
and ~̂d

�

�

g3;2SLS
, the Wald test statistic (3.8) again may not be

asymptotically chi-squaredistributed. To ensure that the Wald test statistic be
asymptotically chi-square distributed, the modified 2SLS or the alternatively
modified 2SLS can be applied to ensure the asymptotic mixed normality of the

estimated ~d
�

�

g2
.

6. Monte Carlo comparisons

In this section, a small simulation study is conducted to compare the finite sample
performance of the 2SLS, M2SLS and A2SLS estimators. For each estimator, we
compute its bias, root mean square estimation error, the size of the Wald test where
critical values are derived from the conventional chi-square distributions. All
computations are performed in MATLAB. It is hoped that this simulation study will
shed some light on the choice of the estimators in finite sample.

We consider a three variable vector time series fw
�t
gTt¼�1 generated by a second-

order structural VAR model of the form

A0w
�t
¼ A1w

�t�1
þ A2w

�t�2
þ �
�t
, (6.1)

where �
�t
�Nð0;S��Þ. We let (6.1) be identified by the exclusion restrictions of the form

A0 ¼

1 a0;12 0

0 1 a0;23

a0;31 0 1

0
BB@

1
CCA; A1 ¼

a1;11 a1;12 0

0 a1;22 a1;23

a1;31 0 a1;33

0
BB@

1
CCA and

A2 ¼

a2;11 a2;12 0

0 a2;22 a2;23

a2;31 0 a2;33

0
BB@

1
CCA.

To generate the time series fw
�t
gTt¼�1, we initialize the system at t ¼ �51 with

ðw
��50

;w
��51
Þ ¼ ð0

�
; 0
�
Þ. A sequence of independent trivariate standard normal random
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variables fe
�t
gTt¼�49 is generated by the RANDN function of MATLAB. Let

G ¼

1 �0:5 0:3

�0:5 0:9 0:4

0:3 0:4 2:5

0
B@

1
CA

1=2

and �
�t
¼ Ge

�t
,

so that f�
�t
gTt¼�49 is a sequence of independent normal random variables with mean 0

�

and covariance matrix G. To generate fw
�t
gTt¼�49; we use the following parameter

values of ðA0;A1;A2Þ:

A0 ¼

1 �0:4 0

0 1 0:8

0:6 0 1

0
BB@

1
CCA; A1 ¼

0:2 �0:1 0

0 0:7 0:6

0:2 0 0:4

0
BB@

1
CCA and

A2 ¼ A0 � A1 þ a
�

0 b
�

,

DGP1 : a
�
¼ b
�

¼ ð 0 0 0 Þ,

DGP2 : a
�
¼ ð 0 �0:4 0 Þ; b

�

¼ ð 0 1 2 Þ,

DGP3 : a
�
¼
�0:5 0 �0:3

0:25 �0:4 0

� �
and b

�

¼
1 0 1

0 1 2

� �
,

It is easy to check that jA0ja0 and that DGP1–DGP3 satisfy the rank condition
for identification. In addition, DGP1 represents a system of full-rank Ið1Þ variables,
DGP2 represents a system of Ið1Þ variables that has one linearly independent
cointegrating relation, and DGP3 represents a system of Ið1Þ variables that has two
linearly independent cointegrating relations.

To see if there are distortions of using normal approximation in hypothesis testing,
we consider the following hypotheses: (A) (Test for the value of a0;12 alone),
HA : a0;12 ¼ c0; (B) (A joint test) HB: a0;12 ¼ c0, a1;12 ¼ c1; a2;12 ¼ c2, where c0; c1 and
c2 denote the true values of a0;12; a1;12 and a2;12, respectively.

Our analysis shows that the standard normal distribution provides a good
approximation for the conventional t-statistic for HA, be the estimator as 2SLS,
M2SLS, A2SLS. On the other hand, chi-square distribution may or may not be a
good approximation for the Wald-type statistic for HB. For instance, Wald test of
HB for DGP3 involves standard limiting distribution, but not for DGP1 or DGP2.
For DGP1, DGP2 and DGP3, we can transform HB into the form of (3.7), then test
B becomes a joint test of a0;12 ¼ c0; a1;12 � a0;12 ¼ c1 � c0 and a2;12 þ a1;12�

a0;12 ¼ c2 þ c1 � c0. For DGP1 and DGP2, test B isolates the coefficient of the
Ið1Þ regressor, w2;t�2; a2;12 þ a1;12 � a0;12. For DGP3, it only involves the coefficients
of Ið0Þ regressors, 5w2;t;5w2;t�1 and w2;t�2 � 2w1;t�2, hence the Wald statistic is
asymptotically chi-square distributed. In other words, chi-square approximation is
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Table 1

Average percentage estimation bias (Bias)

2SLS A2SLS M2SLS (Parzen) M2SLS (Tukey–Hanning) M2SLS (quadratic)

k ¼ 0:3 k ¼ 0:5 k ¼ 0:66 k ¼ 0:3 k ¼ 0:5 k ¼ 0:66 k ¼ 0:3 k ¼ 0:5 k ¼ 0:66

DGP1

T ¼ 50 0.3424 0.7615 0.2500 0.4133 1.0228 0.1916 0.6275 23.0699 0.4333 1.0467 16.1004

100 0.1854 0.0865 0.1363 0.0983 0.0899 0.1202 0.0893 0.1601 0.0984 0.0994 0.5187

200 0.0878 0.0327 0.0853 0.0654 0.0437 0.0802 0.0576 0.0406 0.0705 0.0461 0.5743

400 0.0405 0.0164 0.0388 0.0372 0.0352 0.0384 0.0368 0.0335 0.0374 0.0347 0.0282

DGP2

T ¼ 50 0.2950 0.3477 0.3060 0.2637 0.1042 0.3054 0.6037 0.8564 0.2627 0.4577 0.8069

100 0.1372 0.1099 0.1463 0.1361 0.1079 0.1463 0.1229 0.6249 0.1417 0.1452 0.6046

200 0.0696 0.0696 0.0703 0.0637 0.0538 0.0685 0.0606 0.0452 0.0655 0.0539 0.6793

400 0.0399 0.0309 0.0401 0.0370 0.0335 0.0389 0.0361 0.0305 0.0375 0.0340 0.0189

DGP3

T ¼ 50 0.3728 0.1120 0.3290 0.2352 0.2804 0.2817 0.2275 0.9336 0.2321 7.1467 14.3012

100 0.1821 0.1139 0.1370 0.1001 0.1298 0.1117 0.1153 0.1996 0.0956 0.1304 0.1188

200 0.0897 0.1420 0.0614 0.0520 0.0622 0.0541 0.0556 0.0530 0.0506 0.0630 0.3021

400 0.0470 0.0730 0.0199 0.0232 0.0353 0.0148 0.0283 0.0405 0.0172 0.0340 0.2077

C. Hsiao, S. Wang / Journal of Econometrics 135 (2006) 427–463 451
not appropriate for DGP1 or DGP2, but is appropriate for DGP3 if the sample is of
reasonable size.

Although the true DGP (6.1) has no constant term, in practice one usually
estimates a VAR with an intercept. It therefore seems more appropriate in this study
to include an intercept in the estimated structural VAR model. Sample sizes are fixed
at T ¼ 50, 100, 200 and 400. The number of repetition is 1000.

Tables 1 and 2 present the average percentage estimation bias (Bias) and the
average percentage root mean square estimation error (RMSE), respectively.2 In
terms of Bias, the 2SLS, A2SLS and M2SLS are of similar magnitude. In terms of
RMSE, 2SLS seems to be the best for Tp200. However, RMSE of A2SLS and
M2SLS decrease rapidly with sample size and are comparable to the RMSE of 2SLS
at T ¼ 400.

Table 3 presents the actual sizes of tests A and B where the critical values are
derived from the chi-square distribution with appropriate degrees of freedom. For
2SLS, actual sizes of test A are close to nominal sizes for all three data generating
processes, which is consistent with the asymptotic results. Size distortions of test B
are severe if the limiting distribution of Wald statistics involves the unit root
distribution (DGP1 and DGP2); otherwise, chi-square distribution approximates
2The average percentage estimation bias (BIAS) is the absolute value of the percentage estimation bias

averaged over the five coefficients in the first equation. The average percentage root mean square

estimation error (RMSE) is the absolute value of the percentage root mean square estimation error

averaged over the five coefficients in the first equation.
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Table 2

Average percentage root mean square estimation error (RMSE)

2SLS A2SLS M2SLS (Parzen) M2SLS (Tukey–Hanning) M2SLS (quadratic)

k ¼ 0:3 k ¼ 0:5 k ¼ 0:66 k ¼ 0:3 k ¼ 0:5 k ¼ 0:66 k ¼ 0:3 k ¼ 0:5 k ¼ 0:66

DGP1

T ¼ 50 1.7706 9.6121 2.7496 11.3405 62.6826 4.4299 16.6485 764.1035 12.8586 50.9528 480.6787

100 5.8644 2.7339 4.3117 3.1076 2.8417 3.8020 2.8231 5.0624 3.1111 3.1419 16.4015

200 0.4835 0.7795 0.5044 0.5863 0.8735 0.5225 0.6564 1.2814 0.5622 0.8773 19.9671

400 0.3330 0.3796 0.3370 0.3436 0.3677 0.3389 0.3482 0.3913 0.3415 0.3611 1.2031

DGP2

T ¼ 50 0.5835 3.3762 0.7141 1.0627 8.1326 2.5182 12.1853 34.4814 1.1544 15.181 61.472

100 4.3390 3.4753 4.6274 4.3047 3.4108 4.6254 3.8877 19.7622 4.4809 4.5921 19.1205

200 0.2041 0.7074 0.2173 0.2130 0.2262 0.2177 0.2156 0.3074 0.2149 0.2297 23.4914

400 0.1361 0.1470 0.1471 0.1399 0.1397 0.1460 0.1385 0.1502 0.1427 0.1389 0.2692

DGP3

T ¼ 50 1.0346 1.1079 1.0849 1.1022 1.5102 1.1076 1.3548 33.7875 1.1217 229.4205 451.0891

100 0.6646 1.6121 0.7057 0.7058 0.7193 0.7107 0.7220 2.3839 0.7147 0.7975 2.3263

200 0.4499 1.2146 0.4800 0.4691 0.4637 0.4815 0.4665 0.6184 0.4772 0.4720 11.9911

400 0.3109 0.8831 0.3370 0.3212 0.3159 0.3354 0.3178 0.3552 0.3292 0.3157 6.5968

Table 3

Finite-sample size

2SLS A2SLS M2SLS (Parzen) M2SLS (Tukey–Hanning) M2SLS (quadratic)

k ¼ 0:3 k 0.5 k 0.66 k ¼ 0:3 k 0.5 k 0.66 k ¼ 0:3 k 0.5 k 0.66

Finite-sample size: DGP1

Test A: test a single coefficient parameter

a ¼ 0:01
T ¼ 50 0.003 0.153 0.014 0.025 0.036 0.020 0.030 0.049 0.022 0.047 0.056

100 0.005 0.075 0.011 0.020 0.034 0.015 0.028 0.040 0.022 0.033 0.070

200 0.001 0.051 0.005 0.011 0.019 0.007 0.014 0.038 0.009 0.023 0.058

400 0.010 0.014 0.012 0.014 0.023 0.012 0.014 0.031 0.013 0.022 0.045

a ¼ 0:05
T ¼ 50 0.033 0.220 0.053 0.087 0.119 0.067 0.101 0.130 0.089 0.129 0.152

100 0.044 0.139 0.057 0.085 0.114 0.066 0.092 0.136 0.084 0.123 0.157

200 0.043 0.103 0.047 0.069 0.091 0.051 0.076 0.104 0.060 0.094 0.155

400 0.055 0.078 0.057 0.057 0.074 0.056 0.061 0.086 0.057 0.074 0.109

a ¼ 0:1
T ¼ 50 0.075 0.292 0.099 0.155 0.192 0.134 0.184 0.211 0.153 0.195 0.251

100 0.094 0.195 0.112 0.137 0.175 0.125 0.148 0.197 0.141 0.182 0.231

200 0.082 0.157 0.100 0.122 0.148 0.109 0.130 0.155 0.119 0.143 0.201

400 0.104 0.137 0.109 0.113 0.138 0.114 0.116 0.148 0.113 0.135 0.172

Test B: joint test of several coefficient parameters

a ¼ 0:01
T ¼ 50 0.043 0.301 0.083 0.166 0.224 0.130 0.196 0.267 0.160 0.258 0.300

100 0.060 0.206 0.098 0.160 0.217 0.112 0.187 0.277 0.149 0.229 0.371
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Table 3 (continued )

2SLS A2SLS M2SLS (Parzen) M2SLS (Tukey–Hanning) M2SLS (quadratic)

k ¼ 0:3 k 0.5 k 0.66 k ¼ 0:3 k 0.5 k 0.66 k ¼ 0:3 k 0.5 k 0.66

200 0.053 0.143 0.074 0.113 0.173 0.083 0.130 0.215 0.095 0.181 0.299

400 0.058 0.074 0.069 0.089 0.152 0.075 0.107 0.189 0.083 0.133 0.265

a ¼ 0:05
T ¼ 50 0.159 0.402 0.196 0.265 0.320 0.228 0.304 0.378 0.269 0.363 0.424

100 0.144 0.311 0.201 0.267 0.337 0.233 0.293 0.394 0.260 0.357 0.489

200 0.159 0.240 0.172 0.215 0.277 0.184 0.235 0.313 0.204 0.277 0.404

400 0.176 0.160 0.174 0.214 0.267 0.190 0.225 0.307 0.208 0.225 0.363

a ¼ 0:1
T ¼ 50 0.238 0.469 0.277 0.337 0.401 0.304 0.371 0.458 0.341 0.441 0.502

100 0.243 0.390 0.291 0.350 0.426 0.315 0.376 0.478 0.351 0.446 0.564

200 0.262 0.316 0.268 0.299 0.359 0.282 0.324 0.409 0.292 0.365 0.499

400 0.279 0.219 0.292 0.314 0.353 0.292 0.319 0.385 0.300 0.344 0.436

Finite-sample size: DGP2

Test A: test a single coefficient parameter

a ¼ 0:01
T ¼ 50 0.032 0.069 0.055 0.060 0.069 0.056 0.054 0.082 0.061 0.077 0.091

100 0.013 0.041 0.035 0.034 0.031 0.042 0.031 0.042 0.042 0.033 0.057

200 0.015 0.046 0.029 0.029 0.020 0.030 0.027 0.023 0.030 0.024 0.047

400 0.012 0.026 0.055 0.021 0.012 0.043 0.017 0.014 0.026 0.014 0.018

a ¼ 0:05
T ¼ 50 0.097 0.138 0.126 0.141 0.157 0.141 0.149 0.179 0.139 0.170 0.209

100 0.066 0.100 0.113 0.106 0.092 0.114 0.097 0.108 0.107 0.101 0.149

200 0.052 0.095 0.107 0.087 0.073 0.103 0.081 0.077 0.097 0.078 0.107

400 0.046 0.073 0.138 0.075 0.049 0.118 0.061 0.063 0.106 0.049 0.075

a ¼ 0:1
T ¼ 50 0.141 0.208 0.189 0.212 0.228 0.222 0.219 0.252 0.216 0.250 0.275

100 0.123 0.169 0.182 0.166 0.149 0.193 0.154 0.159 0.173 0.156 0.225

200 0.103 0.158 0.180 0.154 0.130 0.185 0.137 0.129 0.166 0.131 0.107

400 0.095 0.121 0.180 0.132 0.101 0.179 0.119 0.098 0.156 0.109 0.122

Test B: joint test of several coefficient parameters

a ¼ 0:01
T ¼ 50 0.175 0.275 0.264 0.329 0.393 0.317 0.353 0.450 0.330 0.427 0.527

100 0.123 0.206 0.203 0.224 0.254 0.206 0.241 0.300 0.220 0.262 0.387

200 0.094 0.152 0.137 0.151 0.193 0.144 0.165 0.209 0.146 0.190 0.280

400 0.119 0.158 0.138 0.122 0.130 0.132 0.116 0.122 0.122 0.118 0.187

a ¼ 0:05
T ¼ 50 0.366 0.424 0.408 0.461 0.515 0.446 0.495 0.566 0.465 0.540 0.642

100 0.282 0.331 0.348 0.359 0.381 0.346 0.365 0.411 0.365 0.387 0.496

200 0.248 0.295 0.305 0.291 0.302 0.298 0.293 0.325 0.296 0.315 0.382

400 0.272 0.288 0.312 0.240 0.237 0.300 0.228 0.254 0.272 0.213 0.274

a ¼ 0:1
T ¼ 50 0.479 0.512 0.514 0.541 0.594 0.528 0.560 0.629 0.546 0.611 0.696

100 0.418 0.446 0.461 0.456 0.463 0.462 0.462 0.473 0.455 0.471 0.560

200 0.380 0.390 0.422 0.389 0.388 0.435 0.389 0.410 0.412 0.401 0.444

400 0.402 0.362 0.399 0.321 0.326 0.399 0.315 0.315 0.370 0.303 0.375
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Table 3 (continued )

2SLS A2SLS M2SLS (Parzen) M2SLS (Tukey–Hanning) M2SLS (quadratic)

k ¼ 0:3 k 0.5 k 0.66 k ¼ 0:3 k 0.5 k 0.66 k ¼ 0:3 k 0.5 k 0.66

Finite-sample size: DGP3

Test A: test a single coefficient parameter

a ¼ 0:01
T ¼ 50 0.019 0.030 0.027 0.024 0.020 0.025 0.023 0.023 0.025 0.020 0.029

100 0.018 0.028 0.027 0.025 0.021 0.030 0.022 0.027 0.029 0.021 0.041

200 0.011 0.024 0.018 0.015 0.013 0.017 0.014 0.022 0.016 0.012 0.040

400 0.013 0.035 0.036 0.014 0.013 0.029 0.016 0.019 0.019 0.011 0.034

a ¼ 0:05
T ¼ 50 0.070 0.088 0.081 0.069 0.080 0.085 0.071 0.079 0.073 0.081 0.105

100 0.062 0.076 0.097 0.076 0.068 0.091 0.072 0.084 0.079 0.078 0.117

200 0.059 0.080 0.087 0.065 0.055 0.080 0.058 0.070 0.072 0.057 0.110

400 0.056 0.093 0.107 0.062 0.057 0.100 0.054 0.073 0.081 0.059 0.091

a ¼ 0:1
T ¼ 50 0.125 0.157 0.140 0.131 0.137 0.137 0.132 0.142 0.144 0.146 0.166

100 0.120 0.136 0.152 0.138 0.125 0.151 0.134 0.142 0.144 0.137 0.184

200 0.106 0.138 0.157 0.125 0.107 0.158 0.115 0.124 0.138 0.113 0.161

400 0.116 0.152 0.170 0.120 0.118 0.167 0.122 0.125 0.139 0.116 0.153

Test B: joint test of several coefficient parameters

a ¼ 0:01
T ¼ 50 0.035 0.059 0.050 0.050 0.053 0.058 0.055 0.084 0.054 0.082 0.138

100 0.018 0.069 0.037 0.038 0.035 0.043 0.041 0.058 0.042 0.051 0.095

200 0.011 0.152 0.032 0.025 0.018 0.037 0.021 0.042 0.031 0.019 0.101

400 0.011 0.093 0.035 0.019 0.016 0.037 0.017 0.030 0.027 0.018 0.077

a ¼ 0:05
T ¼ 50 0.116 0.141 0.136 0.127 0.152 0.138 0.146 0.171 0.132 0.181 0.251

100 0.076 0.175 0.110 0.113 0.111 0.122 0.116 0.153 0.122 0.126 0.187

200 0.065 0.276 0.106 0.092 0.073 0.104 0.085 0.103 0.103 0.076 0.155

400 0.061 0.147 0.130 0.082 0.067 0.119 0.072 0.090 0.107 0.068 0.135

a ¼ 0:1
T ¼ 50 0.186 0.206 0.214 0.208 0.244 0.223 0.222 0.258 0.225 0.263 0.333

100 0.133 0.283 0.185 0.179 0.187 0.195 0.179 0.210 0.195 0.202 0.257

200 0.111 0.350 0.187 0.154 0.126 0.183 0.144 0.165 0.181 0.137 0.229

400 0.113 0.198 0.198 0.147 0.118 0.192 0.128 0.134 0.171 0.123 0.186
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well as sample size increases. For test B, the 2SLS seems to have smaller size
distortions than A2SLS and M2SLS for Tp200. However, for DGP1 and DGP2 the
size distortion for 2SLS remains largely unchanged as T increases. On the other hand
the performance of A2SLS and M2SLS appear to rapidly improve with T.

It is worth noticing that the results of M2SLS are sensitive to the choice of the
bandwith parameter and the kernel function. Our results does not corroborate the
findings in Yamada and Toda (1998), in which Monte Carlo experiments was
conducted to examine the size distortions of Granger causality test in the standard
VAR framework. Yamada and Toda studied the fully modified VAR estimator
(FM-VAR) with various kernel functions and bandwidth parameters and found that
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Parzen kernel with bandwidth parameter being the closest integer to T0:66 gives the
least size distortions for most combinations of parameter values and sample sizes
ranging from 50 to 200. Our simulation results of test B (which is a Granger causality
test in the structural VAR model) indicate that setting bandwidth parameter to the
closest integer to T0:66 produces larger size distortion whether we use Parzen or
Tukey–Hanning or quadratic kernel. In addition, setting bandwidth parameter to
the integer closest to T0:66 seems to produce substantially large Bias and RMSE for
small samples ðT ¼ 50Þ. Our results appear to indicate that Parzen kernel with k ¼

0:3 or 0.5 does better than k ¼ 0:66 on Tukey–Hanning or quadratic kernel.
7. Conclusions

In this paper, we consider the single equation estimation of a structural VAR
model of nonstationary and possibly cointegrated variables without the prior
knowledge of unit roots or rank of cointegration. When all variables are integrated
of order 1, the conventional 2SLS and 3SLS estimators are consistent. However,
some coefficient estimates of the transformed system are

ffiffiffiffi
T
p

-convergent and
asymptotically normally distributed while others are T-convergent and involve unit
root distribution in the limit. Thus, Wald-type test statistics for the joint hypotheses
may not be chi-square distributed. We propose a modified 2SLS estimator and an
alternatively modified 2SLS estimator that have the desirable large sample property
that coefficient estimates of the transformed system are either

ffiffiffiffi
T
p

-consistent and
asymptotically normally distributed or T-consistent and mixed normally distributed
in the limit. The modified estimators also have the nice property that both Ið0Þ and
Ið1Þ variables are allowed in the model and we can therefore avoid the error in testing
the stationarity of the variables. Between the two, the modified 2SLS estimator
requires nonparametric estimation of the long-run covariance matrix and the one-
sided long-run covariance matrix, so its finite sample performance could be affected
by the choice of the kernel function and the bandwidth parameter. In addition, since
we can not approximate the asymptotic covariance matrix of the modified 2SLS
estimator properly, the resulting Wald type test statistics may not be chi-square
distributed and critical values that are based on chi-square distributions can be used
to construct conservative tests only. In comparison, the alternatively modified 2SLS
estimator does not require nonparametric estimation of the long-run covariance
matrix or the one-sided long-run covariance matrix and its asymptotic covariance
matrix can be properly approximated so that Wald test statistics remain chi-square
distributed. On the other hand, the constrained maximum likelihood estimation in
the first stage may be computationally more demanding.

Monte Carlo studies are also conducted to evaluate the finite sample performance of
various estimators. Unfortunately, the desirable properties of A2SLS and M2SLS in
large sample do not appear to carry over in finite sample. In general, we find that
2SLS, M2SLS and A2SLS have similar order of bias and RMSE. On the other hand, if
the null hypothesis involves transformations of unit root components, the actual size
of the Wald type test statistic based on the 2SLS estimates is severely distorted, so are
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M2SLS or A2SLS in finite sample despite that their limiting distributions no longer
involve the unit root distribution. However, the size distortion of the Wald test statistic
based on M2SLS or A2SLS appears to diminish as sample size increases, while the
conventional 2SLS remains the same as T increases. Therefore, if T is less than 200, it
is probably more desirable to just use 2SLS, in particular, if the hypothesis an
investigator is concerned with only involves a single parameter. One may attempt to
use the M2SLS or A2SLS only when T is large and one’s primary focus is not just in
estimating unknown parameters, but also in testing joint hypotheses.
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Appendix A. Proof of Theorem 3.1

Let Dg2 be the submatrix of Dg that transforms Z��g2 into ~W g;�pDg2 ¼ ~W
�

g;�p ¼

½ ~W
�

g1;�p; ~W
�

g2;�p� ¼ ½
~W
�

g1;�p;Z
�
g2�; where Z�g2 consists of linearly independent Ið1Þ

variables of ~w
�gt

, and ~W
�

g1 consists of the remaining Ið1Þ variables that has been

transformed into cointegrating relations. Let Dw2 be the transformation matrix that
transform W�p into W �

�p ¼W�pDw2
¼ ½W �

1;�p;W
�
2;�p� ¼ ½W

�
1;�p;X

�
2�; where X �2

denotes the ðm� rÞ linearly independent Ið1Þ variables of w
�t�p

and W �
1;�p denotes

the T � r cointegrating relations of w
�t�p

. Let C�g ¼ ðW
�0
�p 5W �

�p � TD5w�5w� Þ

O�15w�5w�O5w��g
, then C�g ¼ D0w2Cg and Ĉ

�

g ¼ D0w2Ĉg. Partition

C�g ¼
C�g1

C�g2

" #
,

where C�gi
¼ ðW �0

i;�p 5W �
�p � TD5w�

i
5w� ÞO�15w�5w�O5w��g

; i ¼ 1; 2, and similarly for

Ĉ
�

g. Then d̂
�

�

g;m2SLS
¼ D�1g d̂

�

��

g;m2SLS
can be written as

d̂
�

�

g;m2SLS

¼ fZ�0g X �ðX �0X �Þ�1X �0Z�gg
�1 Z�0g X �ðX �0X �Þ�1
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�
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>>>>>>:
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>>>>>>;
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ðA:1Þ
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Under A1–A4, KL and BW, following the arguments of Phillips (1995), one can
show that

Hg

X ��01 �
�g

W �0
1;�p �
�g
� Ĉ

�

g1

W �0
2;�p �
�g
� Ĉ

�

g2

2
6666664

3
7777775
¼

T�1=2

X ��01 �
�g

W �0
1;�p �
�g
� Ĉ

�

g1

0
B@

1
CA

T�1ðX �02 �
�g
� Ĉ

�

g2
Þ

2
6666664

1
CCCCCCA

¼)

x
�g1

x
�g2

0
B@

1
CA� Nð0

�
;s2gM�

x1x1
Þ

R 1
0 Bx�

2
ðrÞdB�g�x�2

ðrÞ

0
B@

1
CA, ðA:2Þ

with x
�g1

independent of x
�g2

, where B�g�x
�
2
ðrÞ ¼ B�g ðrÞ � O�g 5x�

2
O�15x�

2
5x�

2
Bx�

2
ðrÞ, which is

independent of Bx�
2
ðrÞ. The convergence is due to the fact that under assumptions KL

and BW,

Ĉ
�

g1 ¼ Opðk
�2
Þ þOpððkTÞ�1=2Þ

and

Ĉ
�

g2 ¼ T

Z 1

0

Bx�
2
ðrÞdBx�

2
ðrÞO�15x�

2
5x�

2
O5x�

2
�g
þOpðT

�1=2Þ þOpðk
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Therefore T�1=2Ĉ
�

g1 ¼ opð1Þ and T�1Ĉ
�

g2 ¼
R 1
0 Bx�

2
ðrÞdBx�

2
ðrÞO�15x�

2
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2
O5x�

2
�g
þ opð1Þ.

Theorem 4.1 follows from (A.2).
When the rank of cointegration, r ¼ 0, the structural VAR model (2.1) implies

that 5w
�t

follows a stationary VARðp� 1Þ process of the form (B.3) with P� � 0
�
.

When r ¼ 0;X �2 ¼W�p, then O5w�5w� ¼ ðIm � Sp�1
j¼1 P

�
j Þ
�1A�10 S�� A0�10 ðIm�

Sp�1
j¼1 P

�
j Þ
0�1;O�g5w� ¼ S��;g A0�10 ðIm � Sp�1

j¼1 P
�
j Þ
0�1, where S��;g denotes the gth row of

S��. Therefore

s2g:5x�
2
¼ s2g � O�g 5x�

2
O�15x�

2
5x�

2
O5x�

2
�g
¼ 0.

Corollary 4.2 follows from s2g:5x�
2
¼ 0.
Appendix B. Proof of Theorem 4.1

We first show that there exists a unique VARMAðp; 1Þ representation (4.1) given
(2.1) under A.1–A.4. We then show that the errors of the conditional equation

w
�

þ

g
¼ Zgd

�g
þ �
�

þ

g
(B.1)

is independent of the innovations driving the common trends.
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Multiplying A�10 to (2.1) yields the reduced form

w
�t
¼
Xp

j¼1

Pjw
�t�j
þ v
�t
, (B.2)

where Pj ¼ �A�10 Aj and v
�t
¼ A�10 �

�t
. Expressing (B.1) in the error correction form,

we have

5w
�t
¼
Xp�1
j¼1

P�j 5 w
�t�j
þP�w

�t�p
þ v
�t
, (B.3)

where P�j ¼
Pj

‘¼1 P‘ � I and P� ¼
Pp

‘¼1P‘ � I , Suppose that rank ðP�Þ ¼ r, i.e.

there are r linearly independent cointegrating relations among w
�t
, we can write

P� ¼ a
�
b
�

0, where a
�
; b
�

are m� r matrices of rank r. Let a
�?

be an m� ðm� rÞ full

column rank matrix such that a
�

0

?
a
�
¼ 0
�
. We normalize a

�
and a

�?
so that they are

orthonormal matrices.
Let R ¼ ½a

�
; a
�?
�. Then R is an m�m orthogonal matrix, i.e., RR0 ¼ R0R ¼ Im.

Premultiplying (B.3) by R0, we have
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Note that (B.4) is identical to
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where P�p � 0, which implies that
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Multiplying R to (B.6) yields

5w
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¼
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Let JðLÞ ¼ I � J1L� � � � � JpLp, and FðLÞ ¼ I � FL, where

Jj ¼ R
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�
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Then (B.7) can be rewritten as

JðLÞ 5 w
�t
¼ FðLÞv

�t
, (B.8)

with the properties that (i) the roots of jJðLÞj ¼ 0 lie outside the unit circle, and (ii) F
is symmetric and idempotent. Property (i) follows from

RMðLÞR0JðLÞ ¼ Im � R

0
�

0
�

0
�

Im�r

0
@

1
AR0L

2
4

3
5JðLÞ ¼ PðLÞ, (B.9)

where

MðLÞ ¼

Ir 0
�

0
�
ð1� LÞIm�r

2
4

3
5.

Since jPðLÞj ¼ jI �P1L� � � � �PpLpj ¼ 0 has m� r unit roots and mðp� 1Þ þ r

roots outside the unit circle and jMðLÞj ¼ 0 has m� r unit roots, clearly, all the roots
of jJðLÞj ¼ 0 lie outside the unit circle. Therefore (B.8) is a stationary VARMAðp; 1Þ
model. However (B.8) is not invertible because jFðLÞj ¼ 0 contains r unit roots,
unless r ¼ 0. However, the restriction that F is symmetric idempotent is sufficient for
(B.8) to be the unique stationary VARMAðp; 1Þ representation of 5w

�t
. To see this,

we make the following observations.
First, since (B.2) is the true data generating process of 5w

�t
, for any stationary

VARMAðp; 1Þ representation of 5w
�t
;CðLÞ 5 w

�t
¼ Z
�t

, where CðLÞ ¼ Im �
Pp

i¼1 CiL
i

and Z
�t

is a MA(1) process, there exists a lag polynomial fðLÞ ¼ Im � fL such that

ð1� LÞCðLÞ ¼ fðLÞPðLÞ (B.10)

and Z
�t

¼ fðLÞv
�t
. Then (B.9) and (B.10) imply that ð1� LÞCðLÞ ¼ fðLÞRMðLÞ

R0JðLÞ, or equivalently

R0fðLÞRMðLÞ ¼ ð1� LÞR0CðLÞJðLÞ�1R ¼ ð1� LÞDðLÞ, (B.11)

where DðLÞ � R0CðLÞJðLÞ�1R. Since the left-hand side of (B.11) is a lag polynomial
of maximum order 2, DðLÞ must be a lag polynomial of maximum order 1. Let

DðLÞ ¼ Im �DL and ~fðLÞ � R0fðLÞR ¼ Im �
~fL. Some simple calculation indi-

cates that (B.11) holds if and only if

~f ¼
Ir

~f12

0
�

~f22

0
@

1
A and D ¼

0
�

~f12

0
�

~f22

0
B@

1
CA.
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So we have

DðLÞ ¼

Ir
~f12L

0
�

Im�r �
~f22L

0
@

1
A and

fðLÞ ¼ R ~fðLÞR0 ¼ Im � R

Ir
~f12

0
�

~f22

0
@

1
AR0L.

Second, the VARMAðp; 1Þ representation CðLÞ 5 w
�t
¼ Z
�t

is stationary if and only

if roots of jCðLÞj ¼ 0 are outside unit circle. Since CðLÞ ¼ RDðLÞR0JðLÞ, this

condition is equivalent to that all roots of jDðLÞj ¼ jIm�r �
~f22Lj ¼ 0 are outside the

unit circle. In particular, it requires jIm�r �
~f22ja0. Third, for

f ¼ R
Ir

~f12

0
�

~f22

0
@

1
AR0,

the restriction that f is symmetric leads to

f ¼ R

Ir 0
�

0
�

~f22

0
@

1
AR0

and ~f22 being symmetric. When f is further restricted to be idempotent, i.e. f2
¼ f,

we must have ~f22 ¼
~f
2

22, i.e.,
~f22 is idempotent. Then we can decompose ~f22 as

~f22 ¼ EFE0, where E is a ðm� rÞ � ðm� rÞ orthogonal matrix,

F ¼

IRf 0
�

0
�

0
�

0
@

1
A

and Rf is the rank of ~f22 (Judge et al., 1985, A.2.11, p. 942). Therefore, we have

Im�r �
~f22L ¼ E

ð1� LÞIRf 0
�

0
�

Im�r�Rf

0
@

1
AE 0,

and jIm�r �
~f22Lj ¼ ð1� LÞRf . Since the stationarity of CðLÞ 5 w

�t
¼ Z
�t

requires that

jIm�r �
~f22ja0, we must have Rf ¼ 0, and hence

~f22 ¼ 0 and f ¼ R

I
�r

0
�

0
�

0
�

0
@

1
AR0 ¼ F.

We have therefore proved the following lemma.
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Lemma. Suppose (B.2) is the true data generating process of 5w
�t
. Consider a

VARMAðp; 1Þ specification of 5w
�t
,

CðLÞ 5 w
�t
¼ fðLÞv

�t
, (B.12)

where fðLÞ ¼ Im � fL. The constraint that f is symmetric idempotent is sufficient and

necessary for (B.7)/(B.8) to be the unique stationary representation of 5w
�t
.

Let

x
�

�

t

¼

x
�

�

1t

x
�

�

2t

0
B@

1
CA ¼ a

�

0ðv
�t
� v
�t�1
Þ

a
�

0

?
v
�t

0
@

1
A

then Z
�t

¼ Rx
�

�

t

and O�gZO
�
ZZZ
�t

¼ S�gx
�
2
S�1x�2x

�
2
x
�

�

2t

. Hence �þgt ¼ �gt � O�gZO
�
ZZZ
�t

¼ �gt �

S�gx
�
2
S�1x�2x

�
2
x
�

�

2t

is i.i.d. and uncorrelated with x
�

�

2t

.

Furthermore, since (B.8) is stationary, we can rewrite it as

5w
�t
¼ JðLÞ�1R

x
�

�

1t

x
�

�

2t

0
B@

1
CA.

It follows that 5w
�t

and �þgt has zero long-run covariance, so is 5x
�

�

2t
and �þgt.

Therefore,
The process ð5x

�

�

2t
; �þgtÞ satisfies the multivariate invariance principle, i.e.

T�1=2
P½Tr�

t¼1

5x
�

�

2t

T�1=2
P½Tr�

t¼1

�þgt

2
66664

3
77775 ¼)

Bx�
2
ðrÞ

B�þg
ðrÞ

 !
,

where Bx�
2
ðrÞ and B�þg

ðrÞ are independent vectors of Brownian motion.

The maximum likelihood estimator of (B.8) is consistent and asymptotically
normally distributed (for detail, see Wang, 2001). Therefore, we can use the
estimated residuals, Ẑ

�t

¼ F̂ðLÞv̂
�t

to construct ŵ
�

þ

gt
.

Decompose �̂
�

þ

g
as

�̂
�

þ

g
¼ �
�

þ

g
þ ½IT � ðO�gZO

�
ZZ � Ô�gZÔ

��1

ZZ Þ�Ẑ
�

þ ½IT � O�gZO
�
ZZ�ðZ
�

�Ẑ
�

Þ. (B.13)

Then,

T�1=2W �0
1;�p �
�

þ

g
¼)Nð0

�
; s2gþM�

w1w1
Þ, (B.14)

and

T�1X �02 �
�

þ

g
¼)

Z 1

0

Bx�
2
ðrÞdB�þg ðrÞ. (B.15)



ARTICLE IN PRESS

C. Hsiao, S. Wang / Journal of Econometrics 135 (2006) 427–463462
The former (B.14) is asymptotically normal. The latter (B.15) is a mixed normal of

the form
R

M�
x2x2

40 Nð0�
;s2gþM�

x2x2
ÞdPðM�

x2x2
Þ, because Bx�

2
ðrÞ and B�þg

ðrÞ are indepen-

dent Brownian motions.
Because Z

�

�Ẑ
�

¼ ~X ðŷ
�
� y
�
Þ, as T !1,

T�1=2W �0
1;�pðIT � O�gZO

�
ZZÞðZ
�

�Ẑ
�

Þ

¼ ðO�gZO
�
ZZ � T�1W �0

1;�p
~X Þ �

ffiffiffiffi
T
p
ðŷ
�
� y
�
Þ

¼)ðO�gZO
�
ZZ �Mw�

1
~xÞ �Nð0

�
; cov ðŷ

�
ÞÞ ðB:16Þ

which is a normal with mean 0 and covariance ðO�gZO
�
ZZ �Mw�

1
~xÞ Cov ðŷ

�
ÞðO�ZZOZ�g �

M 0
w�
1
~xÞ with Mw�

1
~x ¼ plim ð1=TÞW �0

1;�p
~X .

T�1X �02 ðIT � O�gZO
�
ZZÞðZ
�

�Ẑ
�

Þ ¼ ðO�gZO
�
ZZ � T�3=2X �02

~X Þ �
ffiffiffiffi
T
p
ðŷ
�
� y
�
Þ

p
�! 0
�
.

(B.17)

Since Ô�gZ
p
�!O�gZ and Ô

��1

ZZ
p
�!O�ZZ at rate T1=2 and Td , respectively, it follows that

Ô�gZÔ
��1

ZZ � O�gZO
�
ZZ ¼ ðOðT

�d Þ;OðT�1=2þdÞÞR (for detail, see Wang, 2001). To ensure

the maximum rate of convergence, we let d ¼ 1
4
. Then

T�1=2W �0
1;�p½IT � ðO�gZO

�
ZZ � Ô�gZÔ

��1

ZZ Þ�Ẑ
�

p
�! 0
�
; for pX2, (B.18)

and

T�1X �02 ½IT � ðO�gZO
�
ZZ � Ô�gZÔ

��1

ZZ Þ�Ẑ
�

p
�! 0
�
. (B.19)

at the rate T1=4. Substituting (B.13)–(B.19) into (4.6) yields Theorem 4.1. Corollary

7.1 follows from the argument that the limiting distribution of d̂
�g;a2SLS

is given by the

component that has a slower rate of convergence.

When rank of cointegration r ¼ 0;F ¼ 0
�

and Z
�t

¼ v
�t
¼ A�10 �

�t
. It follows that

O�gZO
�
ZZ ¼ S�g�S

�1
�� A0 ¼ a

�

0

og
, where a

�

0

og
is the gth row of A0. Then �

�

þ

g;t
¼ 0
�
;s2gþ ¼ 0 for

g ¼ 1 . . . ;m. Corollary 4.2 follows. Theorem 4.1 and Corollary 4.2 imply thatffiffiffiffi
T
p
ðd̂
�

�

g1;a2SLS
� d
�

�

g1
Þ¼)Nð0

�
;S�g1Þand Tðd̂

�

�

g2;a2SLS
� d
�

�

g2
Þ

p
�! 0
�
, where S�g1 is defined in

Theorem 4.1 except that now S�g1 becomes s2gðM
�
zg1x1

M��1
x1x1

M�
x1zg1
Þ
�1.

When r40, it is also possible for d̂
�

�

g2;a2SLS
to be hyperconsistent for some g if

a
�

0

og
¼ d
�

0a
�

0

?
. This follows from �

�

þ

gt
¼ �gt � Eð�gtjx

�

�

2t

Þ ¼ a
�

0

og
v
�t
� Eða

�

0

og
v
�t
ja
�

0

?
v
�t
Þ equaling

zero if and only if a
�og

is a linear combination of a
�?

. From a
�
b
�

0
¼ P� ¼ �A�10 A�p

where A�p ¼ Sp
j¼0Aj ; a

�

0

og
¼ d
�

0a
�

0

?
holds if and only if a

�

0

og
A�10 A�p ¼ 0

�
, i.e., the gth row of
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A�p; a
�

�0

p;g
¼ 0
�

0. Therefore, d̂
�

�

g2;a2SLS
is hyperconsistent if the gth equation is lying on the

nonstationary direction with a
�

�0

p;g
¼ 0
�

0.
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