JOURNAL OF Econometrics

Modified two-stage least-squares estimators for the estimation of a structural vector autoregressive integrated process

Cheng Hsiao ${ }^{\text {a,c }}$, Siyan Wang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Economics, University of Southern California, Los Angeles, CA 90089-0253, USA
${ }^{\mathrm{b}}$ Department of Economics, University of Delaware, Newark, DE 19716, USA
${ }^{\mathrm{c}}$ The Wang Yanan Institute for Studies in Economics, Xiamen University, China

Available online 24 August 2005

Abstract

We consider the estimation of a structural vector autoregressive model of nonstationary and possibly cointegrated variables without the prior knowledge of unit roots or rank of cointegration. We propose two modified two-stage least-squares estimators that are consistent and have limiting distributions that are either normal or mixed normal. Limited Monte Carlo studies are also conducted to evaluate their finite sample properties. (C) 2005 Elsevier B.V. All rights reserved.

JEL classification: C32; C12; C13

Keywords: Structural vector autoregression; Unit root; Cointegration; Asymptotic properties; Hypothesis testing

1. Introduction

We consider the estimation of an equation in a structural vector autoregressive model (SVAR) involving integrated and possibly cointegrated variables without the prior knowledge of the location of unit roots or rank of cointegration. Although the

[^0]location of unit roots or rank of cointegration can provide information for identification and may improve the efficiency of the estimates, many econometric models are identified without prior information on this. For instance, the Klein-Goldberger (Klein et al., 1955) and the large-scale Wharton quarterly models (Klein and Evans, 1969) are identified through exclusion restrictions.

The SVAR we consider is different from the reduced-form VAR considered by Johansen (1988, 1991), Phillips (1995), or Sims et al. (1990) in that we allow more than one current variables to appear in each equation. The model is similar in spirit to the Cowles Commission structural equation specification in which each equation describes a behavioral or technological relation except that no strict exogeneity assumption has been imposed on some of the variables as in Hsiao (1997a, b). It is shown by Hsiao and Wang (2004) that an identified equation in such a system may be consistently estimated by the conventional two-stage or three-stage least-squares estimator (2SLS or 3SLS). However, their limiting distributions may be nonstandard, hence a chi-square distribution may not approximate well the limiting distribution of a conventional Wald test statistic. In this paper we propose two modified estimators that are either asymptotically normally or mixed normally distributed, thus allow the construction of a Wald-type test statistic that is asymptotically chi-square distributed.

We set up the basic model in Section 2. We propose a modified two-stage leastsquares estimator (M2SLS) in Section 3 and an alternatively modified two-stage least-squares estimator (A2SLS) in Section 4. Section 5 extends the discussion by adding an intercept term to the basic model. Section 6 provides some Monte Carlo studies comparing the performance of 2SLS, M2SLS, and A2SLS. Conclusions are in Section 7.

2. The model

Let w be an $m \times 1$ vector of random variables that can be represented by the following p th order autoregressive model: ${ }^{1}$

$$
\begin{equation*}
A(L) \underset{\sim}{\underset{\sim}{w}} \underset{\sim}{c}=\underset{\sim}{\varepsilon}, \quad t=1, \ldots, T \tag{2.1}
\end{equation*}
$$

where $A(L)=A_{0}+A_{1} L+\cdots+A_{p} L^{p}$ is a p th order matrix polynomial of the lag operator L. We assume that

A1 : A_{0} is nonsingular.
A2 : The roots of $|A(L)|=0$ are either 1 or outside the unit circle.
A3 : The $m \times 1$ error vector $\underset{\sim}{\varepsilon}$ is independently, identically distributed (i.i.d.) with zero mean, nonsingular covariance matrix $\Sigma_{\varepsilon \varepsilon}$ and finite fourth cumulants.

[^1]Since we are interested in the asymptotic properties of the estimators of (2.1), for ease of exposition, we shall also assume that the initial values, $\underset{\sim}{\underset{\sim}{w}}, \underset{\sim}{w}, \ldots, \underset{\sim}{w} \underset{-p+1}{ }$ are given.

Remark 2.1. Assumption $A 1$ is needed to ensure that (2.1) contains m linearly independent behavioral equations. The purpose of A2 is to relax the stationary assumption implicitly assumed in the original Cowles Commission framework to allow for the presence of $I(1)$ variables. A3 is a standard assumption for VAR models. The existence of fourth moments is made to ensure that (functional) central limit theorem will hold in deriving the limiting distributions of the proposed estimators.

Let $A=\left[A_{0}, A_{1}, \ldots, A_{p}\right]$ and define a $(p+1) m$ dimensional nonsingular matrix \tilde{M} as

$$
\tilde{M}=\left[\begin{array}{cccc}
I_{m} & I_{m} & \ldots & I_{m} \tag{2.2}\\
\underset{\sim}{0} & I_{m} & \ldots & I_{m} \\
\underset{\sim}{0} & \underset{\sim}{\sim} & \ldots & I_{m} \\
\cdots & \cdots & \ldots & \\
\underset{\sim}{\sim} & \ldots & \underset{\sim}{0} & I_{m}
\end{array}\right] .
$$

Postmultiplying A by the matrix \tilde{M}, we obtain an error-correction representation of (2.1),

$$
\begin{equation*}
\sum_{j=0}^{p-1} A_{j}^{*} \nabla{\underset{\sim}{\sim}}_{\underset{t-j}{ }}+A_{p}^{*} \underset{\sim}{w}{ }_{t-p}=\underset{\sim}{\varepsilon}, \tag{2.3}
\end{equation*}
$$

where $\nabla=(1-L), A_{j}^{*}=\sum_{\ell=0}^{j} A_{\ell}, j=0,1, \ldots, p$. Let $A^{*}=\left[A_{0}^{*}, \ldots, A_{p}^{*}\right]=\left[\tilde{A}_{0}^{*}, A_{p}^{*}\right]$, then $A^{*}=A \tilde{M}$. The coefficient matrices \tilde{A}_{1}^{*} and A_{p}^{*} provide the implied short-run dynamics and long-run relations of the system (2.1) as defined in Hsiao (2001).

Model (2.1) is different from the conventional VAR model of Johansen (1988, 1991), Phillips (1995), Sims (1980), Sims et al. (1990), Tsay and Tiao (1990), etc. in that A_{0} is not an m-rowed identity matrix I_{m}. In other words, more than one current variables can appear in an equation. It can be viewed as a Cowles Commission structural equation model without the strict exogeneity assumption on some elements of $\underset{\sim}{w}$ (e.g. Koopmans et al., 1950; Hsiao, 1997a). Multiplying A_{0}^{-1} to (2.1) yields the conventional VAR which may be viewed as a reduced-form representation of (2.1),

$$
\begin{equation*}
\underset{\sim}{w}=\Pi_{1} \underset{\sim_{t-1}}{w}+\cdots+\Pi_{p}{\underset{\sim}{w}}_{t-p}+\underset{\sim}{v}, \tag{2.4}
\end{equation*}
$$

where $\Pi_{j}=-A_{0}^{-1} A_{j}, \underset{\sim}{v}=A_{0}^{-1} \underset{\sim}{\underset{\sim}{\varepsilon}}$.
We shall assume that at least one root of $|A(L)|=0$ is equal to 1 . More specifically,

A4 :
(a) $A_{p}^{*}=\underset{\sim}{\alpha} \beta^{\prime}$ where $\underset{\sim}{\alpha}$ and $\underset{\sim}{\beta}$ are $m \times r$ matrices of full column rank r, $0 \leqslant r \leqslant \tilde{m}-1 ;$
 matrices of full column rank such that $\underset{\sim}{\alpha_{\perp}^{\prime}} \underset{\sim}{\alpha}=\underset{\sim}{\perp}=\underset{\sim}{\beta_{\perp}} \underset{\sim}{\beta}$. (If $r=0$, then we take $\left.\underset{\sim}{\alpha}=I_{m}=\underset{\sim}{\beta}\right)$.

Under A1-A4, w has r cointegrating vectors (the columns of β) and $m-r$ unit roots. As shown by ${ }^{t}$ Johansen $(1988,1991)$ and Toda and Phillips (1993) A4 ensures that the Granger representation theorem (Engle and Granger, 1987) applies, so that $\nabla \underset{\sim}{w}$ is stationary, ${\underset{\sim}{\sim}}_{\sim}^{\beta_{\sim}^{\prime}} \underset{t}{w}$ is stationary, and $\underset{\sim}{w}$ is an $I(1)$ process when $r<m$.

Suppose that the g th equation of (2.1) satisfies the prior restrictions $\underset{\sim}{a}{ }_{g}^{\prime} \Phi_{g}=\underset{\sim}{0^{\prime}}$, where $\underset{\sim}{a}{ }_{g}^{\prime}$ denotes the g th row of A and Φ_{g} denotes a $(p+1) m \times R_{g}$ matrix with known elements. Let $\Phi_{g}^{*}=\tilde{M}^{-1} \Phi_{g}$, the existence of prior restrictions $\underset{\sim}{a_{g}^{\prime}} \Phi_{g}={\underset{\sim}{0}}^{\prime}$ is
 A^{*}. Hsiao (2001) proved the following lemma.
Lemma 2.1. Suppose that the gth equation of (2.1) is subject to the prior restrictions $\underset{\sim}{a}{ }_{g}^{\prime} \Phi_{g}=\underset{\sim}{0}{ }_{\sim}^{\prime}$. A necessary and sufficient condition for the identification of the gth equation of (2.1) or (2.2) is that

$$
\begin{equation*}
\operatorname{rank}\left(A \Phi_{g}\right)=m-1 \tag{2.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{rank}\left(A^{*} \Phi_{g}^{*}\right)=m-1 \tag{2.6}
\end{equation*}
$$

Remark 2.2. The identification condition (2.5) or (2.6) does not require the prior information about the existence or location of unit roots or rank of cointegration.

3. The modified two stage least-squares estimator

For ease of exposition, we assume that prior information is in the form of excluding certain variables, both current and lagged, from an equation. Let the g th equation of (2.1) be written as

$$
\begin{equation*}
\underset{\sim}{w}=Z_{g} \underset{\sim}{\delta}+\underset{\sim}{\varepsilon}, \tag{3.1}
\end{equation*}
$$

where $\underset{\sim}{\underset{\sim}{w}} \underset{\sim}{\text { a }} \underset{\sim}{\varepsilon}$ and denote the $T \times 1$ vectors of $\left(w_{g 1}, \ldots, w_{g T}\right)^{\prime}$ and $\left(\varepsilon_{g 1}, \ldots, \varepsilon_{g T}\right)^{\prime}$, respectively, and Z_{g} denotes the included current and lagged variables of $\underset{\sim}{\underset{\sim}{w}} \underset{t}{ }$. Let $X=\left(W_{-1}, W_{-2}, \ldots, W_{-p}\right)$. The 2SLS estimator of $\underset{\sim_{g}}{\delta}$ is given by

$$
\begin{equation*}
{\underset{\sim}{\delta}}_{g, 2 S L S}=\left[Z_{g}^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} Z_{g}\right]^{-1}\left[Z_{g}^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} \underset{\sim}{w}\right] . \tag{3.2}
\end{equation*}
$$

To derive the limiting distribution of 2SLS estimator, we let M_{g} be the nonsingular transformation matrix that transforms Z_{g} into $Z_{g}^{*}=Z_{g} M_{g}=$ $\left(Z_{g 1}^{*}, Z_{g 2}^{*}\right)$, where $Z_{g 1}^{*}$ denotes the ℓ_{g}-dimensional linearly independent $I(0)$ variables and $Z_{g 2}^{*}$ denotes the T observations of b_{g} linearly independent $I(1)$ variables, then

$$
\begin{align*}
\underset{\sim}{w} & =Z_{g} M_{g} M_{g}^{-1} \underset{\sim}{\delta} \\
& =Z_{g}^{*}+\underset{\sim}{\sim}{\underset{\sim}{g}}_{*}^{\varepsilon}+\underset{\sim}{\varepsilon} \tag{3.3}
\end{align*}
$$

 vector, respectively. Such transformation always exists. For instance, if no cointegration relation exists among the g_{Δ} included variables, say $\underset{\sim}{\underset{\sim}{\underset{\sim}{g}}} \underset{\text {, }}{ }$, then $Z_{g 1}^{*}$ consists of the first-differenced current and $p-1$ lagged included variables, $Z_{g 2}^{*}$ is simply the $T \times g_{\Delta}$ included $\underset{\sim}{\underset{\sim}{w}} \underset{g t}{\tilde{p}}$ lagged by p periods, $\underset{\sim}{\underset{\sim}{w}, t-p} \underset{\sim}{\sim}$. Suppose there exist $g_{\Delta}-b_{g}$ linearly independent cointegrating relations among the g_{Δ} included variables, $\underset{\sim}{\tilde{w}}{ }_{g t}$, then $Z_{g 1}^{*}$ consists of the current and $p-1$ lagged $\nabla_{\underset{\sim}{\tilde{w}}}^{\sim_{g}}$ and $\tilde{W}_{g 1,-p}-\tilde{W}_{g 2,-p}{\underset{\sim}{\sim}}_{g}$, where $\tilde{W}_{g 1,-p}$ is $T \times\left(g_{\Delta}-b_{g}\right), \tilde{W}_{g 2,-p}$ is $T \times b_{g}, \underset{\sim}{\pi} \underset{g}{\pi}$ is $b_{g} \times\left(g_{\Delta}-\right.$ b_{g}) of constants, and $Z_{g 2}^{*}$ consists of the T observed b_{g} linearly independent $I(1)$ variables $\tilde{W}_{g 2,-p}$.

Let M_{x} be a nonsingular transformation matrix such that $X M_{x}=\left(X_{1}^{*}, X_{2}^{*}\right)$, where X_{1}^{*} consists of the linearly independent $I(0)$ variables and X_{2}^{*} consists of the linearly independent $I(1)$ variables, say dimension b. It is shown by Hsiao and Wang (2004) that

Lemma 3.1. The 2 SLS estimate of $\underset{\sim}{\delta_{g}}$ is consistent and

$$
\begin{align*}
& \sqrt{T}\left(\underset{\sim}{\delta} \hat{\delta}_{g 1,2 \mathrm{SLS}}^{*}-\underset{\sim}{\delta_{g 1}}{ }^{*}\right) \Longrightarrow \underset{\sim}{\mathrm{N}}\left(\underset{\sim}{0}, \sigma_{g}^{2}\left(M_{z_{g 1} x_{1}}^{*} M_{x_{1} x_{1}}^{*-1} M_{x_{1} z_{g 1}}^{*}\right)^{-1}\right), \tag{3.4}\\
& T\left(\underset{\sim}{\delta^{\hat{\delta}}}{ }_{22,2 \mathrm{SLS}}^{*}-\underset{\sim}{\delta_{g 2}^{*}}\right) \Longrightarrow\left\{\int B_{z_{g 2}^{*}} B_{x_{2}^{*}}^{\prime} \mathrm{d} r\left(\int B_{x_{2}^{*}} B_{x_{2}^{*}}^{\prime} \mathrm{d} r\right)^{-1} \int B_{x_{2}^{*}} B_{z_{g 2}^{*}}^{\prime} \mathrm{d} r\right\}^{-1} \\
& \times\left\{\int B_{z_{g 2}^{*}} B_{x_{2}^{*}}^{\prime} \mathrm{d} r\left(\int B_{x_{2}^{*}} B_{x_{2}^{*}}^{\prime} \mathrm{d} r\right)^{-1}\left[\int B_{x_{2}^{*}} \mathrm{~d} B_{\varepsilon_{g}}\right]\right\}, \tag{3.5}
\end{align*}
$$

where \Longrightarrow denotes convergence in distribution of the associated probability measures,

$$
\begin{equation*}
M_{z_{g 1}, x_{1}}^{*}=\operatorname{plim} \frac{1}{T} Z_{g 1}^{* \prime} X_{1}^{*}, \quad M_{x_{1} x_{1}}^{*}=\operatorname{plim} \frac{1}{T} X_{1}^{* \prime} X_{1}^{*} \tag{3.6}
\end{equation*}
$$

$B_{\varepsilon_{g}}$ denotes the Brownian motion of $\varepsilon_{g t}$ with variance σ_{g}^{2}, $B_{x_{2}^{*}}$ denotes a $b \times 1$ vector Brownian motion of $\underset{\sim}{\underset{\sim}{x}} \underset{2 t}{*}$ with covariance matrix $\Omega_{\nabla x_{2}^{*} \nabla x_{2}^{*}}$ where $\Omega_{\nabla x_{2}^{*} \nabla x_{2}^{*}}$ is the long-run covariance matrix of $\underset{\sim}{\underset{\sim}{x}} \underset{\sim}{*}$, and $B_{z_{g 2}^{*}}$ denotes a $b_{g} \times 1$ vector Brownian motion of $\nabla \underset{\sim}{z_{g 2, t}} \underset{ }{*}$
which appears in the gth equation. Moreover $\left.\sqrt{T} \underset{\sim}{\left(\hat{\delta}_{g 1,2 \mathrm{SLS}}^{*}\right.}-\underset{\sim}{\delta_{g 1}^{*}}\right)$ and $T\left(\underset{\sim}{\delta} \hat{\sigma}^{*}, 2 \mathrm{SLS}\right.$
are asymptotically independent.
The limiting distribution of (3.5) is nonstandard. It involves a matrix unit root distribution that arises from using lagged $\underset{\sim}{w}$ as instruments when $\underset{\sim}{\underset{\sim}{w}} \underset{t}{w}$ is $I(1)$ and is contemporaneously correlated with $\underset{\sim}{\varepsilon}$. The long-run "endogeneities" of the nonstationary instruments X_{2}^{*} leads to a miscentering and skewness of the limiting distribution of (3.5). However, since $\underset{\sim}{\underset{\delta}{\delta}, 2 \text { SLS }} \underset{ }{\hat{\delta}}=M_{g}{\underset{\sim}{\delta}, 2 S L S}_{*}^{*}$, the limiting distribution of $\underset{\sim}{\underset{\delta}{\delta}, 2 S L S}$ is given by the components of $\underset{\sim}{\underset{\sim}{\delta}} \underset{g, 2 S L S}{*}$ that have slower rate of convergence. Therefore, if $p>1$ and interest is in testing a particular coefficient, say $\delta_{g k}=c_{k}$, then the conventional test statistic, $\left(\hat{\delta}_{g k, 2 S L S}-c_{k}\right) / \operatorname{Sd}\left(\hat{\delta}_{g k, 2 S L S}\right)$ is asymptotically t distributed. However, inference about the null hypothesis $P \underset{\sim}{\delta} \underset{\sim}{c}=\underset{\sim}{c}$ can be tricky, where P and $\underset{\sim}{c}$ are known matrix and vector of proper dimensions, respectively.If $\sqrt{T} P\left({\underset{\sim}{\delta}, 2 \mathrm{SLS}}_{\hat{\sim}}-\underset{\sim}{\delta}\right)$ has a singular convariance matrix, it means that there exists a nonsingular matrix L such that

$$
L P \underset{\sim_{g}}{\delta}=L P^{*}{\underset{\sim}{g}}^{\delta_{g}}=\left[\begin{array}{cc}
\tilde{P}_{11} & \tilde{P}_{12} \tag{3.7}\\
\underset{\sim}{\sim} & \tilde{P}_{22}
\end{array}\right]\left[\begin{array}{c}
{\underset{\sim}{c}}_{g 1}^{*} \\
{\underset{\sim}{\sim}}_{g 2}^{*}
\end{array}\right]
$$

with nonzero \tilde{P}_{22}. Then

$$
\begin{aligned}
& \left(P{\underset{\sim}{g}, 2 \mathrm{SLS}}_{\hat{\delta}}-\underset{\sim}{c}\right)^{\prime} \operatorname{Cov}\left(P{\underset{\sim}{q}, 2 \mathrm{SLS}}_{\hat{\delta}}\right)^{-1}\left(P{\underset{\sim}{q}, 2 \mathrm{SLS}}_{\hat{\delta}}-\underset{\sim}{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times\left\{\left[\begin{array}{ll}
\tilde{P}_{11} & \tilde{P}_{12} \\
\underset{\sim}{\sim} & P_{22}
\end{array}\right]\left[\begin{array}{l}
\hat{\sim}_{\sim}^{*} \\
\hat{g}_{1,2 S L S} \\
\hat{\delta}_{\sim g 2,2 S L S}^{*}
\end{array}\right]-L \underset{\sim}{c}\right\}
\end{aligned}
$$

where $\left.L \underset{\sim}{c}=\underset{\sim}{c}{\underset{\sim}{c}}_{1}^{\left(\tilde{c}_{1}^{\prime}\right.}, \underset{\sim}{{\underset{\sim}{c}}_{\prime}^{\prime}}\right)^{\prime}$. The first term on the right-hand side of (3.8) is asymptotically chi-square distributed. The second term, according to Lemma 3.1 has a nonstandard distribution. Hence (3.8) is not asymptotically chi-square distributed.

Remark 3.1. Our interest lies in the statistical properties of the estimators of $\underset{\sim}{\delta}$, not $\underset{\sim}{\delta_{g}}\left(\right.$ or $\underset{\sim}{\delta} \underset{\sim}{\delta_{g}^{* *}}$ to be introduced in Section 4). The matrices Z_{g}^{*} and X^{*} and the corresponding parameter vector $\underset{\sim}{{\underset{\sim}{g}}^{*}} \underset{\sim}{\delta^{*}}$ are introduced for the ease of deriving the limiting distributions of 2SLS of $\underset{\sim_{g}}{\delta}$ and the corresponding Wald test statistic. The transformed matrices Z_{g}^{*} or X^{*} is not used in actual estimation or in constructing Wald test statistics. Therefore, it is sufficient to know that transformation of Z_{g} or X to Z_{g}^{*} or X^{*} (or $Z_{g}^{* *}$ or $X^{* *}$ in later section) exists. For instance, consider a three equation model of the form

$$
\begin{equation*}
A_{0}{\underset{\sim}{\sim}}_{w}^{w}+A_{1} \underset{\sim_{t-1}}{\underset{\sim}{v}}+A_{2} \underset{\sim}{w} \underset{\sim}{\varepsilon}, \tag{3.9}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{0} & =\left(\begin{array}{ccc}
1 & a_{0,12} & 0 \\
0 & 1 & a_{0,23} \\
a_{0,31} & 0 & 1
\end{array}\right), \quad A_{1}=\left(\begin{array}{ccc}
a_{1,11} & a_{1,12} & 0 \\
0 & a_{1,22} & a_{1,23} \\
a_{1,31} & 0 & a_{1,33}
\end{array}\right), \\
A_{2} & =\left(\begin{array}{ccc}
a_{2,11} & a_{2,12} & 0 \\
0 & a_{2,22} & a_{2,23} \\
a_{2,31} & 0 & a_{2,33}
\end{array}\right),
\end{aligned}
$$

and all three equations satisfy the rank condition for identification (2.5). Consider the first equation $(g=1)$ of (3.9). We can rewrite it in the form of (3.1),

$$
\begin{equation*}
\underset{\sim}{w}=Z_{1} \underset{\sim}{\delta}+\underset{\sim}{\varepsilon}, \tag{3.10}
\end{equation*}
$$

Suppose that A_{2} takes the form

$$
A_{2}=A_{0}-A_{1}+\underset{\sim}{\alpha^{\prime}} \underset{\sim}{\beta}
$$

where $\underset{\sim}{\alpha}$ and β are $3 \times r$ matrices, $0 \leqslant r<3$. When $r=0$, there is no cointegration among $\widetilde{w_{1 t}}, w_{2 t}$ and $w_{3 t}$. Then $Z_{1}^{*}=Z_{1} M_{1}=\left(Z_{11}^{*}, Z_{12}^{*}\right)$, where

$$
M_{1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 1
\end{array}\right)
$$

 $\left.\underset{\sim 12}{\delta^{* \prime}}\right)^{\prime}, \underset{\sim 11}{\delta_{11}^{* \prime}}=-\left(a_{0,12}, a_{1,11}, a_{0,12}+a_{1,12}\right), \underset{\sim}{\delta_{12}} \underset{\sim}{* \prime}=-\left(a_{1,11}+a_{2,11}, a_{0,12}+a_{1,12}+a_{2,12}\right)$. The instruments $X=\left(W_{-1}, W_{-2}\right)$ and $X^{*}=X M_{x}=\left(X_{1}^{*}, X_{2}^{*}\right)$, where

$$
M_{x}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 1
\end{array}\right)
$$

$X_{1}^{*}=\left(\nabla W_{-1}\right)$, and $X_{2}^{*}=\left(W_{-2}\right)$.
Suppose that

$$
\underset{\sim}{\beta^{\prime}}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \quad \text { and } \quad \alpha^{\prime}=\left(\begin{array}{ccc}
\alpha_{11} & 0 & \alpha_{31} \\
0 & \alpha_{22} & \alpha_{32}
\end{array}\right)
$$

then model (3.9) is in the spirit of King et al. (1991) three-equation model in which there are two cointegrating relations ($w_{1 t}-w_{2 t}$ (money and income), and $w_{2 t}-w_{3 t}$ (income and interest rate)). The corresponding transformation of Z_{1}^{*} and X^{*} then becomes $Z_{1}^{*}=Z_{1} M_{1}=\left(Z_{11}^{*}, Z_{12}^{*}\right)$ with

$$
\begin{aligned}
& M_{1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 1
\end{array}\right), \\
& Z_{11}^{*}=\left(\nabla \underset{\sim}{w}, ~ \nabla \underset{\sim}{\sim} \underset{\sim}{w},-1, ~ \nabla{\underset{\sim}{w}}_{2,-1}^{w},{\underset{\sim}{w}}_{1,-2}-{\underset{\sim}{w}}_{2,-2}^{w}\right) \quad \text { and } \quad Z_{12}^{*}=(\underset{\sim}{w} \underset{2,-2}{ }), \quad \text { and } \\
& X^{*}=X M_{x}=\left(X_{1}^{*}, X_{2}^{*}\right) \text {, } \\
& M_{x}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & -1 & 1
\end{array}\right),
\end{aligned}
$$

$\left(\underset{\sim}{\delta_{11}}(\underset{\sim}{* \prime}, \underset{\sim}{* \prime})^{\prime}\right.$ ' now has the form, $\underset{\sim}{\delta_{11}^{* \prime}}=-\left(a_{0,12}, a_{1,11}, a_{0,12}+a_{1,12}, a_{1,11}+a_{2,11}\right)$ and
$\left.\underset{\sim}{\delta_{12}^{* \prime}}=-\left(a_{0,12}+a_{1,12}+a_{2,12}+a_{1,11}+a_{2,11}\right).\right)$

We note that the application of 2SLS does not provide asymptotically normal or mixed normal estimator because of the long-run endogeneities between lagged $I(1)$ instruments and the (current) shocks of the system (Hsiao and Wang, 2004). But if we can condition on the innovations driving the common trends it will allow us to establish the independence between Brownian motion of the errors of the conditional system involving the cointegrating relations and the innovations driving the common trends. The idea of the modified 2SLS estimator is to apply the 2SLS method to the equation conditional on the innovations driving the common trends. Unfortunately, the direction of nonstationarity is generally unknown. Neither does the identification condition given by Lemma 2.1 require such knowledge. In the event that such knowledge is unavailable, we propose to modify Phillips (1995) fully modified VAR estimator that is used to estimate the reduced-form VAR of the form (2.4) with desirable properties.

Rewrite (3.1) as

$$
\begin{align*}
\underset{\sim}{w} & =Z_{g} \tilde{M}_{g} \tilde{M}_{g}^{-1} \underset{\sim}{\delta} \\
& =\left(\begin{array}{ll}
Z_{g 1}^{* *} & Z_{g 2}^{* *} \\
Z_{g}^{* *}
\end{array}\binom{\underset{\sim}{\sim_{g 1}^{*}}}{\underset{\sim}{\delta_{g 2}^{* *}}}+\underset{\sim}{\varepsilon}\right. \\
& =Z_{g}^{* *} \underset{\sim}{\delta_{g}^{* *}}+\underset{\sim}{\varepsilon}, \tag{3.11}
\end{align*}
$$

where

$$
Z_{g}^{* *}=Z_{g} \tilde{M}_{g}=\left(Z_{g 1}^{* *}, Z_{g 2}^{* *}\right), Z_{g 1}^{* *}=\left(\nabla W_{g}, \nabla \tilde{W}_{g,-1}, \ldots, \nabla \tilde{W}_{g,-p+1}\right), Z_{g 2}^{* *}=
$$ $\tilde{W}_{g,-p}, \underset{\sim}{\delta_{g}^{* *}}=\tilde{M}_{g}^{-1} \underset{\sim}{\delta}, \nabla \tilde{W}_{g,-j}$ denoting the $T \times g_{\Delta}$ stacked first difference of the included variable $\underset{\sim}{\underset{\sim}{\tilde{w}}} \underset{g, t-j}{ }$ and ∇W_{g} denoting the $T \times\left(g_{\Delta}-1\right)$ first difference of the included variables $\underset{\sim}{\underset{\sim}{\underset{\sim}{q}}} \underset{\sim}{\tilde{w}}$ excluding $\nabla w_{g t}$. The decomposition $\left(Z_{g 1}^{* *}, Z_{g 2}^{* *}\right)$ and $\underset{\sim}{\delta_{g}^{* *}}=$ $\left(\underset{\sim}{\delta_{g 1}^{* * \prime}}, \underset{\sim}{\delta_{g 2}^{* * \prime}}\right)^{\prime}$ are identical to $\left(Z_{g 1}^{*}, Z_{g 2}^{*}\right)$ if there is no cointegrating relations among $\underset{\sim}{\underset{\sim}{\underset{w}{x}}} \underset{\sim}{\sim}$, $\underset{\sim}{\pi}=\underset{\sim}{0}$. Unlike $\left(Z_{g 1}^{*}, Z_{g 2}^{*}\right),\left(Z_{g 1}^{* *}, Z_{g 2}^{* *}\right)$ are well defined and observable. When $Z_{g 1}^{*} \neq Z_{g 1}^{* *}$, there exists a nonsingular transformation matrix D_{g} such that $\left(Z_{g 1}^{* *}, Z_{g 2}^{* *}\right) D_{g}=\left(Z_{g 1}^{*}, Z_{g 2}^{*}\right)$. Then

$$
\begin{equation*}
\underset{\sim}{\delta_{g}^{*}}=D_{g}^{-1} \underset{\sim}{-1}{\underset{\sim}{*}}_{* *} \tag{3.12}
\end{equation*}
$$

Remark 3.2. Using the example (3.9), $Z_{1}^{* *}=Z_{1} \tilde{M}_{1}=\left(Z_{11}^{* *}, Z_{12}^{* *}\right)$, where

$$
\tilde{M}_{1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 1
\end{array}\right)
$$

 $\left.a_{0,12}+a_{1,12}\right), \underset{\sim}{\sim_{12}} \underset{* * \prime}{\delta^{\prime}}=-\left(a_{1,11}+a_{2,11}, a_{0,12}+a_{1,12}+a_{2,12}\right)$ irrespective of the cointegration rank in the system.

Let

$$
\begin{equation*}
C_{g}=\left(W_{-p}^{\prime} \nabla W_{-p}-T \Delta_{\nabla w \nabla w}\right) \Omega_{\nabla w \nabla w}^{-} \Omega_{\nabla w \varepsilon_{g}}, \tag{3.13}
\end{equation*}
$$

where $\Omega_{u v}$ and $\Delta_{u v}$ denote the long-run covariance and the one-sided long-run covariance matrix of two sets of $I(0)$ variables, $(\underset{\sim}{u}, \underset{\sim}{v} \underset{\sim}{v})$,

$$
\begin{equation*}
\Omega_{u v}=\sum_{j=-\infty}^{\infty} \Gamma_{u v}(j) \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{u v}=\sum_{j=0}^{\infty} \Gamma_{u v}(j), \tag{3.15}
\end{equation*}
$$

where $\Gamma_{u v}(j)=\underset{\sim}{\mathrm{E}} \underset{\tau^{\sim} \sim t-j}{v^{\prime}}$. Let

$$
\begin{equation*}
\hat{C}_{g}=\left(W_{-p}^{\prime} \nabla W_{-p}-T \hat{\Delta}_{\nabla w \nabla w}\right) \hat{\Omega}_{\nabla w \nabla w}^{-1} \hat{\Omega}_{\nabla w \varepsilon_{g}}, \tag{3.16}
\end{equation*}
$$

where $\hat{\Omega}_{u v}$ and $\hat{\Delta}_{u v}$ are the kernel estimates of $\Omega_{u v}$ and $\Delta_{u v}$, which, following Phillips (1995), takes the form

$$
\begin{equation*}
\hat{\Omega}_{u v}=\sum_{j=-T+1}^{T-1} K(j / k) \hat{\Gamma}_{u v}(j) \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\Delta}_{u v}=\sum_{j=0}^{T-1} K(j / k) \hat{\Gamma}_{u v}(j) \tag{3.18}
\end{equation*}
$$

where $K(\cdot)$ is a kernel function and k is a truncation or bandwidth parameter, and $\hat{\Gamma}_{u v}(j)$ is the sample covariance function of $\left(\underset{\sim}{u}, \underset{\sim}{v}{ }_{t-j}\right)$,

$$
\begin{equation*}
\hat{\Gamma}_{u v}(j)=\frac{1}{T} \sum_{t=j+1}^{T} \underset{t_{t}}{\hat{u} \hat{v}^{\hat{v}^{\prime}}} . \tag{3.19}
\end{equation*}
$$

A modified 2SLS estimator following Phillips (1995) fully modified VAR estimator can be defined as

$$
\left.\left.\begin{array}{rl}
{\underset{\sim}{\delta}, \mathrm{m} 2 \mathrm{SLS}}_{\hat{\delta}^{* *}}= & \left\{Z_{g}^{* * \prime} X^{* *}\left(X^{* * \prime} X^{* *}\right)^{-1} X^{* * \prime} Z_{g}^{* *}\right\}^{-1} \\
& \times\left\{Z_{g}^{* * \prime} X^{* *}\left(X^{* * \prime} X^{* *}\right)^{-1}\left(\begin{array}{c}
X_{1}^{* * \prime} \underset{\sim}{\sim} \\
X_{2}^{* * \prime} \\
\underset{\sim}{w} \\
\\
-
\end{array}\right)\right\}, \hat{C}_{g} \tag{3.20}
\end{array}\right)\right\},
$$

where $\quad X^{* *}=X \tilde{M}_{x}=\left(X_{1}^{* *}, X_{2}^{* *}\right), X_{1}^{* *}=\left(\nabla W_{-1}, \ldots, \nabla W_{-p+1}\right)$, and $\quad X_{2}^{* *}=W_{-p}$. Just like $\left(Z_{g 1}^{* *}, Z_{g 2}^{* *}\right),\left(X_{1}^{* *}, X_{2}^{* *}\right)$ are well defined and observable.

Following Phillips (1995), we assume that
Assumption KL. The Kernel function $K(\cdot): R \rightarrow[0,1]$ in (3.17) and (3.18) is a twice continuously differentiable even function with:
(a) $K(0)=1, K^{\prime}(0)=0, K^{\prime \prime}(0) \neq 0$; and either
(b) $K(x)=0,|x| \geqslant 1$, with $\lim _{|x| \rightarrow 1}\left[K(x) /(1-|x|)^{2}\right]=$ constant, or
(c) $K(x)=\mathrm{O}\left(x^{-2}\right)$ as $|x| \rightarrow \infty$.

Assumption BW. The bandwidth parameter k in (3.17) and (3.18) has an expansion rate of the form:
$k=\mathrm{O}_{\mathrm{e}}\left(T^{q}\right)$ for some $q \in(1 / 4,2 / 3)$, where the symbol O_{e} is the expansion rate symbol such that

$$
k=\mathrm{O}_{\mathrm{e}}\left(T^{q}\right) \text { if } k \sim c_{T} T^{q} \text { as } T \rightarrow \infty
$$

for some c_{T} which is slowly varying at infinity (i.e. $c_{T x} / c_{T} \rightarrow 1$ as $T \rightarrow \infty$ for $x>0$). Thus $k / T^{2 / 3}+T^{1 / 4} / k \rightarrow 0$ and $k^{4} / T \rightarrow \infty$ as $T \rightarrow \infty$. Then

Theorem 3.1. Under assumptions $\mathrm{A} 1-\mathrm{A} 4, K L$ and BW, the modified $2 S L S$ estimator $\underset{\sim}{\hat{\delta}_{g, \mathrm{~m} 2 \mathrm{SLS}}^{*}}=D_{g}^{-1} \underset{\sim}{\underset{\sim}{\underset{\delta}{*}}}{ }^{* *} 2 \mathrm{SLS}$ is consistent. Furthermore

$$
\begin{equation*}
\sqrt{T}\left(\underset{\sim g 1, \mathrm{~m} 2 \mathrm{SLS}}{\hat{\delta}^{*}}-\underset{\sim}{\delta_{g 1}}\right) \Longrightarrow \mathrm{N}\left(\underset{\sim}{0}, \sigma_{g}^{2}\left(M_{z_{g 1} x_{1}}^{*} M_{x_{1} x_{1}}^{*-1} M_{x_{1} z_{g 1}}^{*}\right)^{-1}\right) \tag{3.21}
\end{equation*}
$$

and is independent of
which is a mixed normal of the form

$$
\begin{equation*}
\int_{M_{x_{2} x_{2}}>0} \mathrm{~N}\left(\underset{\sim}{0}, \sigma_{g \cdot \nabla x_{2}^{*}}^{2}\left(M_{z_{g 2} x_{2}}^{*} M_{x_{2} x_{2}}^{*-1} M_{x_{2} z_{g}}^{*}\right)^{-1}\right) \mathrm{d} P\left(M_{x_{2} x_{2}}^{*}\right), \tag{3.23}
\end{equation*}
$$

where $\sigma_{g \cdot \nabla x_{2}^{*}}^{2}=\sigma_{g}^{2}-\Omega_{\varepsilon_{g} \nabla x_{2}^{*}} \Omega_{\nabla x_{2}^{*} \nabla x_{2}^{*}} \Omega_{\nabla x_{2}^{*} \varepsilon_{g}}$.
Proof. See Appendix A.
Corollary 3.1. Under the assumptions of Theorem 3.1, when $r=0$, we have

$$
\begin{equation*}
T\left(\underset{\sim}{{\underset{\sim}{g} 2, \mathrm{~m} 2 \mathrm{SLS}}^{\hat{\delta}^{*}}}-\underset{\sim_{g 2}}{\delta^{*}}\right) \xrightarrow{\mathrm{p}} \underset{\sim}{0}, \tag{3.24}
\end{equation*}
$$

i.e. $\hat{\sim}_{q 2, \mathrm{~m} 2 \mathrm{SLS}}^{*}$ is hyperconsistent in the sense that its rate of convergence is faster than T. $M_{z_{g 1} x_{1}}^{*}=\operatorname{plim}(1 / T) Z_{g 1}^{* \prime} X_{1}^{*}, M_{x_{1} x_{1}}^{*}=\operatorname{plim}(1 / T) X_{1}^{* \prime} X_{1}^{*}, M_{z_{g 2} x_{2}}^{*}$ and $M_{x_{2} x_{2}}^{*}$ are $b_{g} \times b$ and $b \times b$ matrices of random variables that have the limiting distributions as that of $\left(1 / T^{2}\right) Z_{g 2}^{* \prime} X_{2}^{*}$ and $\left(1 / T^{2}\right) X_{2}^{* \prime} X_{2}^{*}$, respectively.

Proof. See Appendix A.
Remark 3.3. The modified 2SLS estimator of $\underset{\sim_{g}}{\delta}$ can be obtained as

$$
\begin{equation*}
{\underset{\sim}{\delta}, \mathrm{m} 2 \mathrm{SLS}}^{\hat{\sigma}_{g}} \tilde{M}_{g}{\underset{\sim}{\delta, \mathrm{~m} 2 \mathrm{SLS}}}_{* *}^{*}=\tilde{M}_{g} D_{g}{\underset{\sim}{\delta}, \mathrm{~m} 2 \mathrm{SLS}}^{\delta^{*}} \tag{3.25}
\end{equation*}
$$

where \tilde{M}_{g} is a known matrix but in general, not D_{g}. However, although the modified 2SLS estimator of $\underset{\sim}{\delta}{ }_{g}^{*}$ is either asymptotically normal or mixed normal, the Wald type test statistic

$$
\begin{equation*}
\frac{1}{\sigma_{g}^{2}}\left(P{\underset{\sim}{\gamma}}_{g, \mathrm{~m} 2 \mathrm{SLS}}^{\hat{\delta}}-\underset{\sim}{c}\right)^{\prime}\left\{P\left[Z_{g}^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} Z_{g}\right] P^{\prime}\right\}^{-1}(P{\underset{\sim}{\underset{\sim}{\delta}, \mathrm{~m} 2 \mathrm{SLS}}}-\underset{\sim}{c}) \tag{3.26}
\end{equation*}
$$

does not always have the asymptotic chi-square distribution under the null hypothesis $P \underset{\sim}{\delta}=\underset{\sim}{c}$, where P is a known $k \times g_{\Delta}$ matrix of rank k. To see this, rewrite (3.26) in terms of $\underset{\sim}{{\underset{\sigma}{g}}^{*}}{ }^{*}$

$$
\begin{align*}
& \frac{1}{\sigma_{g}^{2}}\left(P^{*} H_{g} \hat{\sim}_{g, \mathrm{~m} 2 \mathrm{SLS}}^{*}-\underset{\sim}{c}\right)^{\prime}\left\{P^{*} H_{g}\left[Z_{g}^{* \prime} X^{*}\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} Z_{g}^{*}\right] H_{g}^{\prime} P^{* \prime}\right\}^{-1} \\
& \quad \times\left(P^{*} H_{g} \hat{\delta}_{g, \mathrm{~m} 2 \mathrm{SLS}}^{*}-\underset{\sim}{c}\right) \tag{3.27}
\end{align*}
$$

where

$$
P^{*}=P \tilde{M}_{g} D_{g} H_{g}^{-1} \quad \text { and } \quad H_{g}=\left[\begin{array}{cc}
T^{-1 / 2} I_{l g} & 0 \\
0 & T^{-1} I_{b_{g}}
\end{array}\right]
$$

The null hypothesis becomes $P^{*} H_{g}{\underset{\sim}{g}, \mathrm{~m} 2 \mathrm{SLS}}_{*}^{*} \underset{\sim}{c}$. Notice that the asymptotic covariance matrix of $H_{g} \underset{\sim}{{\underset{\sigma}{g} \text {,m2SLS }}_{*}^{*}}$ converges to

$$
\left(\begin{array}{cc}
\sigma_{g}^{2}\left(M_{z_{g 1}^{\prime} x_{1}}^{*} M_{x_{1} x_{1}}^{*-1} M_{x_{1} z_{g 1}}^{*}\right)^{-1} & \underset{\sim}{\sim} \\
\underset{\sim}{0} & \sigma_{g \cdot \nabla x_{2}^{*}}^{2}\left(M_{z_{g 2} x_{2}}^{*} M_{x_{2} x_{2}}^{*-1} M_{x_{2} z_{g 2}}^{*}\right)^{-1}
\end{array}\right),
$$

while $H_{g}\left[Z_{g}^{* \prime} X^{*}\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} Z_{g}^{*}\right] H_{g}^{\prime}$ in (3.27) converges to

$$
\sigma_{g}^{2}\left(\begin{array}{cc}
\left(M_{z_{g 1} x_{1}}^{*} M_{x_{1} x_{1}}^{*-1} M_{x_{1} z_{g 1}}^{*}\right)^{-1} & \underset{\sim}{\sim} \\
\underset{\sim}{\sim} & \left(M_{z_{g 2} x_{2}}^{*} M_{x_{2} x_{2}}^{*-1} M_{x_{2} z_{g 2}}^{*}\right)^{-1}
\end{array}\right)
$$

Wald statistic (3.26) (or equivalently (3.27)) is asymptotically chi-square distributed with k degrees of freedom if and only if $P{\underset{\sim}{g, \mathrm{~m} 2 \mathrm{SLS}}}_{\hat{\delta}}$ (or equivalently $P^{*} H_{g} \hat{\sim}_{q, \mathrm{~m} 2 \mathrm{SLS}}^{*}$) in the hypothesis does not involve the T-consistent component $\underset{\sim}{\underset{q}{\delta}, \mathrm{~m} 2 \mathrm{SLS}} \underset{\hat{\delta}^{*}}{\text {. Otherwise, }}$ $H_{g}\left[Z_{g}^{* \prime} X^{*}\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} Z_{g}^{* \prime}\right] H_{g}^{\prime}$ would overestimate the asymptotic covariance matrix
of $H_{g}{\underset{\sim}{\delta}}_{\underline{\delta} \text {,m2SLS }}^{*}$ because $\sigma_{g \cdot \nabla x_{2}^{*}}^{2} \leqslant \sigma_{g}^{2}$ for the submatrix corresponding to $\underset{\sim}{x}{\underset{\sim}{2}}_{*}^{\text {and }} \underset{\sim}{z_{g 2}}$. In general, the test statistic (3.26) is a conservative test, with its asymptotic distribution a weighted sum of k independent χ_{1}^{2} variables with weights between 0 and 1 .

4. An alternatively modified 2SLS estimator

Section 3 shows that without pretesting for or the prior knowledge of the cointegrating space, the modified 2SLS estimator is consistent and has the desired property that coefficient estimates of the transformed system are either \sqrt{T} consistent and asymptotically normally distributed or T-consistent and mixed normally distributed in the limit. However, the construction of the modified 2SLS estimator requires nonparametric estimation of the long-run covariance matrix and the one-sided long-run covariance matrix. It is well known that kernel estimator and hence the finite sample performance of the modified 2SLS estimator could be affected substantially by the choice of the bandwidth parameter. In addition, since we cannot approximate the asymptotic covariance matrix of the modified 2SLS estimator properly, Wald test statistics based on the modified 2SLS estimator using the formula of (3.26) may not be chi-square distributed and critical values that are based on chi-square distributions can be used for conservative tests only. In this section, we propose an alternatively modified 2SLS estimator with the following properties: (1) it is fully parametric, (2) coefficient estimates of the transformed system are \sqrt{T}-convergence and asymptotically normally distributed in the stationary direction and T-convergence and asymptotically mixed normally distributed in the nonstationary direction, and (3) its asymptotic covariance matrix can be properly approximated so that Wald test statistics remain χ^{2} distributed in the limit.

We note that (2.1) implies the existence and uniqueness of a vector autoregressive moving average process of order p and 1 , respectively,

$$
\begin{equation*}
\nabla \underset{\sim}{w}=J_{1} \nabla{\underset{\sim}{t-1}}_{\underset{w}{w}}+\cdots+J_{p} \nabla \underset{\sim}{\underset{\sim}{w}}{ }_{t-p}+\underset{\sim}{\eta}, \tag{4.1}
\end{equation*}
$$

where $\underset{\sim}{\eta}=(I-\Phi L) \underset{\sim}{v}$, and $\underset{\sim}{v} \underset{t}{v}=A_{0}^{-1} \underset{\sim}{\varepsilon}$, subject to the constraint that the roots of $\left|I-J_{1} z-\cdots-J_{p} z^{p}\right|=0$ lie outside the unit circle and Φ is symmetric and idempotent. Let $w_{g t}^{+}=w_{g t}-\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-} \eta \sim_{t}$ and $\hat{w}_{g t}^{+}=w_{g t}-\hat{\Omega}_{\varepsilon_{g} \eta} \hat{\Omega}_{\eta \eta}^{*-1} \underset{\sim}{\underset{\sim}{n}}$, where $\Omega_{\varepsilon_{g} \eta}$ and $\Omega_{\eta \eta}$ are the long-run covariance between $\varepsilon_{g t}$ and $\underset{\sim}{\eta}$ and the long-run covariance matrix of $\underset{\sim}{\eta}$, respectively, $\hat{\Omega}_{\varepsilon_{g} \eta}, \hat{\Omega}_{\eta \eta}, \hat{\sim}$ 并 denote their estimates, $\Omega_{\eta \eta}^{-}$denotes the generalized inverse of $\Omega_{\eta \eta}$ and $\hat{\Omega}_{\eta \eta}^{*}=\hat{\Omega}_{\eta \eta}+T^{-d} I_{m}$, where $d \in\left(0, \frac{1}{2}\right)$. The alternatively modified 2SLS estimator (A2SLS) is defined as
where

$$
\begin{align*}
& \stackrel{\sim}{\delta}_{g, \mathrm{a} 2 \mathrm{SLS}}^{* *} \\
& \quad=\left[Z_{g}^{* * \prime} X^{* *}\left(X^{* * \prime} X^{* *}\right)^{-1} X^{* * \prime} Z_{g}^{* *}\right]^{-1}\left[Z_{g}^{* * \prime} X^{* *}\left(X^{* * \prime} X^{* *}\right)^{-1}\left(\begin{array}{c}
X_{1}^{* * \prime} \underset{\sim}{\underset{\sim}{w}} \\
X_{2}^{* * \prime} \\
\underset{\sim}{\hat{w}_{g}^{+}}
\end{array}\right)\right] . \tag{4.3}
\end{align*}
$$

The difference between the modified 2SLS and A2SLS is in the adjustment factor. The modified 2SLS uses \hat{C}_{g} (3.16). The A2SLS adjusts $\underset{\sim}{w} \underset{g t}{w}$ by $-\hat{\Omega}_{\varepsilon_{g} \eta} \hat{\Omega}_{\eta \eta}^{*-1} \underset{\sim_{t}}{\hat{\eta}}$. There is no serial correlation adjustment factor for A2SLS because η is at most a moving average process of order 1. Furthermore, $\Omega_{\varepsilon_{g} \eta}$ and $\Omega_{\eta \eta}$ can be estimated parametrically. One such estimator is

$$
\begin{equation*}
\hat{\Omega}_{\varepsilon_{g} \eta}=T^{-1} \sum_{t=1}^{T} \underset{\sim_{t}}{\hat{\varepsilon}_{g t} \hat{\eta}^{\prime}}+T^{-1} \sum_{t=1}^{T-1} \hat{\varepsilon}_{g t} \hat{\eta}_{\sim_{t+1}^{\prime}}^{\prime} \tag{4.4}
\end{equation*}
$$

and
where $\hat{\varepsilon}_{g t}$ and $\underset{\sim}{\hat{\eta}} \underset{t}{\hat{y}}$ are the 2SLS residuals of (3.1) and the MLE residuals of (4.1), respectively. The estimators (4.4) and (4.5) converge to their true values, $\Omega_{\varepsilon_{g} \eta}$ and $\Omega_{\eta \eta}$ at the speed of $T^{1 / 2}$. However, since $\Omega_{\eta \eta}$ may be singular, $\hat{\Omega}_{\varepsilon_{q} \eta} \hat{\Omega}_{\eta \eta}^{-1}$ may not converge to $\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}$. Adding $T^{-d} I_{m}$ for $d \in(0,1 / 2)$ to $\hat{\Omega}_{\eta \eta}$ does not affect the consistency property of $\hat{\Omega}_{\eta \eta}^{*}$, but ensures the convergence of $\hat{\Omega}_{\varepsilon_{g} \eta} \hat{\Omega}_{\eta \eta}^{*-1}$ to $\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}$. It is shown in Appendix B that the optimal value of $d=1 / 4$.

The reason for adjusting $\underset{\sim}{w} \underset{\text { gt }}{w}$ by $-\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}{\underset{\sim}{t}}^{\eta}$ is that the elements of the long-run covariance matrix between $\underset{\sim}{\varepsilon} \underset{g}{\varepsilon}$ and $\underset{\sim}{\eta}$ that correspond to the stationary directions are zero because the corresponding elements of $\underset{\sim}{\eta}$ are in the form of $\left.\underset{\sim}{\alpha_{\sim}^{\prime}} \underset{\sim}{v}{\underset{\sim}{t}}^{v}-\underset{\sim}{v}{ }_{t-1}\right)$ with zero long-run covariance. Only the elements of η that drive the nonstationary direction $\left(\underset{\sim}{\alpha^{\prime}} \underset{\sim}{v} \underset{\sim}{v}\right)$ will have nonzero long-run covariance. They are the only elements that enter into the adjustment, hence establishes the orthogonality between the
 driving the common trends.

Let

$$
\begin{equation*}
{\underset{\sim}{\delta, \mathrm{a} 2 \mathrm{SLS}}}_{\hat{\delta}^{*}}=\left[Z_{g}^{* \prime} X^{*}\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} Z_{g}^{*}\right]^{-1}\left[Z_{g}^{* \prime} X^{*}\left(X^{* \prime} X^{*}\right)^{-1} D_{x}^{\prime}\binom{X_{1}^{* * \prime} \underset{\sim}{\underset{\sim}{w}}}{X_{2}^{* *} \underset{\sim}{{\underset{\sim}{w}}^{+}}}\right] \tag{4.6}
\end{equation*}
$$

where $X^{*}=X^{* *} D_{x}$. It follows that
Theorem 4.1. When $p \geqslant 2$, the alternatively modified $2 S L S$ estimator $\underset{\sim}{\underset{\delta}{\delta}}{ }_{g, \mathrm{a} 2 \mathrm{SLS}}^{*}$ is consistent. Furthermore,
where $\underset{\sim}{\phi} \underset{\mathcal{g}_{1}}{ }$ and $\underset{\sim_{g 2}}{\phi}$ are independent, and

$$
\begin{aligned}
& \sum_{g 1}^{*}=\left(M_{z_{g 1} x_{1}}^{*} M_{x_{1} x_{1}}^{*-1} M_{x_{1} z_{g 1}}^{*}\right)^{-1} M_{z_{g 1} x_{1}}^{*} M_{x_{1} x_{1}}^{*-1} \tilde{\Sigma}_{g 1} M_{x_{1} x_{1}}^{*-1} M_{x_{1} z_{g 1}}^{*}\left(M_{z_{g 1} x_{1}}^{*} M_{x_{1} x_{1}}^{*-1} M_{x_{1} z_{g 1}}^{*}\right)^{-1}, \\
& \sum_{g 2}^{*}=\sigma_{g+}^{2}\left(M_{z_{g 2} x_{2}}^{*} M_{x_{2} x_{2}}^{*-1} M_{x_{2} z_{g 2}}^{*}\right)^{-1}, \\
& \sigma_{g+}^{2}=\sigma_{g}^{2}-\Omega_{\varepsilon_{g} n_{1} \eta_{\eta \eta}^{-} \Omega_{\eta \varepsilon_{g}},}^{\tilde{\Sigma}_{g 1}}=\left[\begin{array}{cc}
\sigma_{g}^{2} M_{x_{1} x_{1}}^{* *} & \sigma_{g+}^{2} M_{x_{1} \tilde{w}_{g 1}}^{* *}+\Theta_{2}^{\prime} \\
\sigma_{g+}^{2} M_{\tilde{w}_{g 1} x_{1}}^{* *}+\Theta_{2} & \Sigma_{g 1}
\end{array}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{x_{1} x_{1}}^{* *}=\operatorname{plim} \frac{1}{T} X_{1}^{* * \prime} X_{1}^{* *}, \\
& M_{x_{1} \tilde{w}_{g 1}}^{* *}=\operatorname{plim} \frac{1}{T} X_{1}^{* * \prime} \tilde{W}_{g 1,-p}^{*}, \\
& \Sigma_{g 1}=\sigma_{g+}^{2} M_{\tilde{w}_{g 1} \tilde{w}_{g 1}}^{*}+\left(\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-} \otimes M_{\widetilde{w}_{g 1} x_{1}}^{* *}\right) \operatorname{Cov}(\hat{\theta})\left(\Omega_{\eta \eta}^{-} \Omega_{\eta \varepsilon_{g}} \otimes M_{x_{1} \tilde{w}_{g 1}}^{* *}\right)+\Theta_{1}+\Theta_{1}^{\prime}, \\
& M_{\tilde{w}_{g 1} \tilde{w}_{g 1}}^{*}=\operatorname{plim} \frac{1}{T} \tilde{W}_{g 1,-p}^{* \prime} \tilde{W}_{g 1,-p}^{*}, \\
& \Theta_{1}=\mathrm{E}\left[T^{-1 / 2} \tilde{W}_{g 1,-p}^{* \prime}\left(I_{T} \otimes \Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}\right) \tilde{X}(\underset{\sim}{\hat{\theta}}-\underset{\sim}{\theta}) \cdot T^{-1 / 2} \underset{\sim}{\varepsilon_{g}^{\prime}} \tilde{W}_{g 1,-p}^{*}\right], \\
& \Theta_{2}=\mathrm{E}\left[T^{-1 / 2} \tilde{W}_{g 1,-p}^{* \prime}\left(I_{T} \otimes \Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}\right) \tilde{X}(\underset{\sim}{\hat{\theta}}-\underset{\sim}{\theta}) \cdot T^{-1 / 2} \underset{\sim}{\varepsilon_{g}^{\prime}} X_{1}^{* *}\right]
\end{aligned}
$$

with

$$
\begin{aligned}
& \underset{\sim}{\theta}=\operatorname{vech}\left(J^{*}\right), \quad J^{*}=\left(J_{1}, \ldots, J_{p}\right), \quad \tilde{X}=\left(\begin{array}{c}
I_{m} \otimes \nabla X_{1}^{\prime} \\
\vdots \\
I_{m} \otimes \nabla X_{T}^{\prime}
\end{array}\right), \\
& \nabla X_{t}^{\prime}=\left(\underset{\sim}{\underset{\sim}{w}}{ }_{t-1}^{\prime}, \ldots, \underset{\sim}{{\underset{\sim}{w}}_{t-p}^{\prime}}\right)
\end{aligned}
$$

Proof. See Appendix B.

 The limiting distribution of $\underset{\sim}{\underset{\delta}{\delta} \text { a2SLS }}$ (is determined by the component that has the slower rate of convergence. Therefore, if none of the rows of M_{g} are identically zero in its first ℓ_{g} columns, $\underset{\sim}{\delta} \hat{\delta}_{g, \text { a2SLS }}$ converges to $\underset{\sim}{\delta}$ at the speed of $T^{1 / 2}$ and its limiting distribution is singular normal. On the other hand, if for some rows of M_{g}, the first ℓ_{g} columns are identically zero, then the corresponding components of $\underset{\sim_{g, \mathrm{a} \text { SLS }}}{\hat{\delta}}$ converges to their true values at the speed of T. Let M_{g+} and M_{g++} denote the submatrix of M_{g} that the first ℓ_{g} columns of each row are not and are identically zero, respectively, and $\underset{\sim_{g+}}{\delta}$ and $\underset{\sim_{g++}}{\delta}$ denote the subvectors of $\underset{\sim_{g}}{\delta}$ that correspond to M_{g+} and M_{g++}, respectively. Then

Theorem 4.2. When $p \geqslant 2$, the alternatively modified $2 S L S$ estimator (4.2) is consistent. Furthermore

$$
\sqrt{T}\left({\underset{\sim}{\underset{\sim}{\delta}+\mathrm{a} 2 \mathrm{SLS}}}_{\hat{\delta}}-{\underset{\sim}{\sim}}_{g+}\right) \Longrightarrow \mathrm{N}\left(\underset{\sim}{0}, M_{g+}\left(\begin{array}{cc}
\Sigma_{g 1}^{*} & \underset{\sim}{\sim} \tag{4.8}\\
\underset{\sim}{\sim} & \underset{\sim}{\sim}
\end{array}\right) M_{g+}^{\prime}\right),
$$

and is independent of

$$
T\left(\underset{\sim}{\underset{\sim}{\delta}} \underset{g++, \mathrm{a} 2 \mathrm{SLS}}{ }-\underset{\sim}{\underset{\sim}{\delta}}{ }_{g++}\right) \Longrightarrow \int_{M_{x_{2} x_{2}}^{*}>0} \mathrm{~N}\left(\underset{\sim}{0}, M_{g++}\left(\begin{array}{cc}
\underset{\sim}{\sim} & \underset{\sim}{\sim} \tag{4.9}\\
\underset{\sim}{\sim} & \Sigma_{g 2}^{*}
\end{array}\right) M_{g++}^{\prime}\right) \mathrm{d} P\left(M_{x_{2} x_{2}}^{*}\right),
$$

which is mixed normal with mean $\underset{\sim}{0}$ and conditional covariance matrix

$$
M_{g++}\left(\begin{array}{cc}
\underset{\sim}{0} & \underset{\sim}{0} \\
\underset{\sim}{\sim} & \Sigma_{g 2}^{*}
\end{array}\right) M_{g++}^{\prime} .
$$

Given that the limiting distribution of $\underset{\sim}{\hat{\delta}} \underset{g, \text { a2SLS }}{ }$ is either asymptotic normal or mixed normal, the conventional Wald-style test statistic can be approximated by the chi-square distribution with appropriate degree of freedom. For instance, suppose that the null hypothesis is

$$
\begin{equation*}
\mathrm{H}_{0}: P \underset{\sim}{\underset{\sim}{\delta}} \underset{\sim}{c} \tag{4.10}
\end{equation*}
$$

where P is a known $k \times\left(\ell_{g}+b_{g}\right)$ matrix with rank k and $\underset{\sim}{c}$ is a known $k \times 1$ vector. Under the null,
where L is a nonsingular matrix that transforms $L P \underset{\sim}{\delta}$ into the form (3.7) and
 tically mixed normal, and the two limiting distributions are independent, (4.12) converges to a χ^{2} distribution with k degrees of freedom.

Corollary 4.1. When prior restrictions are in the form of exclusion restrictions and the structural VAR model has order $p>1$, then $M_{g+} \equiv M_{g}, \underset{\sim}{\delta} \hat{\sigma}_{\text {,a2SLS }} \equiv \underset{\sim_{g+, \mathrm{a} 2 \mathrm{SLL}}}{\hat{\delta}}$, i.e., each
 rate of \sqrt{T}.

Corollary 4.2. When rank of cointegration $r=0$,

$$
T\left(\underset{\sim g 2, \mathrm{a} 2 \mathrm{SLS}}{\hat{\delta}^{*}}-\underset{\sim}{\delta_{g 2}^{*}}\right) \xrightarrow{\mathrm{p}} \underset{\sim}{0} .
$$

Remark 4.1. The asymptotic efficiency of $\underset{\sim}{\underset{g}{\boldsymbol{\delta}}, \mathrm{a} 2 S L S} \underset{*}{*}$ is given by the asymptotic efficiency of the first stage estimator, $\underset{\sim}{\hat{\theta}}$. Since the reduced-form specification (4.1) ignores overidentification restrictions of (2.1), the MLE of $\underset{\sim}{\theta}$ is not as efficient as the MLE of $\underset{\sim}{\theta}$ that incorporates the overidentification restrictions. Therefore, unless the system is exactly identified, the estimator of $\underset{\sim g 1, \text { a2SLS }}{\hat{\delta}^{*}}$ is in general less efficient than the 2SLS of $\underset{\sim}{\delta_{g 1}}{ }^{*}$. What it implies is that although alternatively modified 2SLS estimator allows one to get rid of the nonstandard distribution of the part of the level coefficients associated with estimating unit roots either explicitly or implicitly, it pays a cost of efficiency loss.

Remark 4.2. Both estimators (3.20) and (4.3) have the desirable property of being consistent and asymptotically normally or mixed normally distributed. However, estimator (3.20) requires the nonparametric estimation of the long-run covariance matrix ((3.17) and (3.18)), but estimator (4.3) does not because it is known that the error of (4.1) is at most a first-order moving average process. This difference can have implication on the finite sample performance of the two estimators. Moreover, the asymptotic conditional covariance matrix of (4.2) can be properly approximated so that the Wald-type test statistic can be approximated by a chi-square distribution. But the chi-square approximation of the test statistic (3.26) may only give a conservative bound if the null hypothesis $P \underset{\sim}{\delta}=\underset{\sim}{c}$ isolates the coefficients that are T convergent.

5. Structural VAR containing intercepts

For ease of exposition, we have formulated the data generating process (2.1) as having no intercept term. In this section, we briefly illustrate that the basic messages of previous sections remain unchanged when we add an intercept term. Let

$$
\begin{equation*}
A(L) \underset{\sim}{w} \underset{\sim}{\underset{\sim}{\gamma}} \underset{\sim}{\gamma}+\underset{\sim}{\varepsilon}, \tag{5.1}
\end{equation*}
$$

where γ denotes the $G \times 1$ intercept term, which may or may not be equal to zero. Writing the g th equation of (5.1) in the form of (3.1) yields

$$
\begin{equation*}
\underset{\sim}{w} \underset{g}{w}=Z_{g} \underset{\sim}{\delta}+\underset{\sim}{e} \gamma_{g}+g \tag{5.2}
\end{equation*}
$$

where $\underset{\sim}{e}$ is a $T \times 1$ vector with all elements equal to one. The $2 \operatorname{SLS}$ of (5.2) then takes
the form

$$
\left.\left.\left.\begin{array}{rl}
\left(\begin{array}{l}
{\underset{\sim}{\underset{\sim}{\delta}, 2 \text { SLS }}}^{\hat{\gamma}_{g, 2 S L S}}
\end{array}\right)= & \left\{\binom{Z_{g}^{\prime}}{\underset{\sim}{e}}(X, \underset{\sim}{e})\right.
\end{array}\right](X, \underset{\sim}{e})^{\prime}(X, \underset{\sim}{e})\right]^{-1}\binom{X^{\prime}}{{\underset{\sim}{e}}^{\prime}}\left(Z_{g}, \underset{\sim}{e}\right)\right\}^{-1} .
$$

The limiting distribution of the 2SLS estimator (and the modified 2SLS estimators) depends on whether the $I(1)$ process w is with or without drift. We shall first consider the case that there is no $\operatorname{drift}(\gamma=\underset{\sim}{0})$. Then we can transform (5.2) in the form of (3.3),

$$
\begin{equation*}
\underset{\sim}{w}=Z_{g}^{*}{\underset{\sim}{g}}^{*}+\underset{\sim}{e} \gamma_{g}^{*}+\underset{\sim}{\varepsilon}, \tag{5.4}
\end{equation*}
$$

 transform $X=X M_{x}=\left(X_{1}^{*}, X_{2}^{*}\right)$ as those defined after (3.3), then the 2SLS of (5.2) is equal to

$$
\binom{\hat{\delta}_{g, 2 \mathrm{SLS}}}{\hat{\gamma}_{g, 2 \mathrm{SLS}}}=\left(\begin{array}{cc}
M_{g}^{-1} & 0 \tag{5.5}\\
0 & 1
\end{array}\right)\left(\begin{array}{l}
\hat{\delta}_{g, 2 S L S} \\
\hat{\gamma}^{*} \\
{\underset{g}{g, 2 S L S}}^{2}
\end{array}\right),
$$

where

$$
\begin{align*}
& \left(\begin{array}{l}
\hat{\delta}_{\underset{g 1,2 \mathrm{SLS}}{*}}^{\hat{\sim}_{\sim}^{*}} \\
\underset{\sim}{{\underset{\sim}{g 2,2 S L S}}} \\
\hat{\gamma}_{g, 2 \mathrm{SLS}}^{*}
\end{array}\right)=\left\{\left(\begin{array}{c}
Z_{g 1}^{* \prime} \\
Z_{g 2}^{* \prime} \\
\underset{\sim}{e^{\prime}}
\end{array}\right)\left(X_{1}^{*}, X_{2}^{*}, \underset{\sim}{e}\right)\left(\begin{array}{cc}
X^{* \prime} X^{*} & X^{* \prime} \\
\underset{\sim}{e} \\
\underset{\sim}{e} X^{*} & T
\end{array}\right)^{-1}\binom{X^{* \prime}}{{\underset{\sim}{e}}_{\sim}^{\sim}}\left(Z_{g}^{*}, \underset{\sim}{e}\right)\right\}^{-1} \\
& \times\left\{\binom{Z_{g}^{* \prime}}{\underset{\sim}{e}}\left(X^{*}, \underset{\sim}{e}\right)\left(\begin{array}{cc}
X^{* \prime} X^{*} & X^{* \prime} \\
\underset{\sim}{e} \\
\underset{\sim}{e} X^{*} & T
\end{array}\right)^{-1}\left(\begin{array}{c}
X_{1}^{* \prime} \underset{\sim}{w} \\
X_{g}^{* \prime} \\
{\underset{\sim}{w}}_{g} \\
\underset{\sim}{e^{\prime}} \underset{\sim}{w}
\end{array}\right)\right\} \text {. } \tag{5.6}
\end{align*}
$$

It follows that

Lemma 5.1.

$$
\begin{equation*}
\sqrt{T}\left(\underset{\sim g 1,2 \mathrm{SLS}}{\hat{\delta}^{*}}-\underset{\sim}{\delta_{g 1}}\right) \Longrightarrow \mathrm{N}\left(\underset{\sim}{0}, \sigma_{g}^{2}\left(M_{z_{g 1} x_{1}}^{*} M_{x_{1} x_{1}}^{*-1} M_{x_{1} z_{g 1}}^{*}\right)\right), \tag{5.7}
\end{equation*}
$$

and are asymptotically independent of

$$
\left[\begin{array}{c}
T\left(\hat{\sim}_{g 2,2 \mathrm{SLS}}^{*}-\delta_{\sim}^{\delta_{g 2}}\right) \tag{5.8}\\
\sqrt{T} \hat{\gamma}_{g, 2 S L S}^{*}
\end{array}\right] \Longrightarrow\left(R S^{-1} R^{\prime}\right)^{-1} R S^{-1}\left[\begin{array}{c}
\int B_{x_{2}^{*}} \mathrm{~d} B_{\varepsilon_{g}} \\
\mathrm{~N}\left(0, \sigma_{g}^{2}\right)
\end{array}\right]
$$

where

$$
\begin{aligned}
& R=\left(\begin{array}{cc}
\int B_{z_{g 2}^{*}} B_{x_{2}^{*}}^{\prime} \mathrm{d} r & \int B_{z_{g 2}^{*}} \mathrm{~d} r \\
\int B_{x_{2}^{*}}^{\prime} \mathrm{d} r & 1
\end{array}\right), \\
& S=\left(\begin{array}{cc}
\int B_{x_{2}^{*}} B_{x_{2}^{*}}^{\prime} \mathrm{d} r & \int B_{x_{2}^{*}} \mathrm{~d} r \\
\int B_{x_{2}^{*}}^{\prime} \mathrm{d} r & 1
\end{array}\right)
\end{aligned}
$$

Since $B_{\varepsilon_{g}}$ is not asymptotically independent of $B_{x_{2}^{*}}$, the 2 SLS estimator of (5.2) has the same problem as the 2SLS estimator (3.1), namely, the limiting distribution of
 Therefore, the Wald test statistic of the form (3.8) may not be asymptotically χ^{2} distributed.

Transform (5.2) in the form of (3.11),

$$
\begin{equation*}
\underset{\sim}{w}=Z_{g}^{* *} \underset{\sim}{\delta_{g}^{* *}}+\underset{\sim}{e} \gamma_{g}^{* *}+\underset{\sim}{\varepsilon}, \tag{5.9}
\end{equation*}
$$

where $Z_{g}^{* *}$ and $\underset{\sim}{{\underset{\sim}{g}}^{* *}}$ are defined after (3.11) and $\gamma_{g}^{* *}=\gamma_{g}$. The modified 2SLS for (5.2) takes the form ${ }^{\sim}{ }^{g}$

$$
\binom{\hat{\delta}_{g, \mathrm{~m} 2 \mathrm{SLS}}}{\hat{\gamma}_{g, \mathrm{~m} 2 \mathrm{SLS}}}=\left(\begin{array}{cc}
\tilde{M}_{g} & \underset{\sim}{0} \tag{5.10}\\
{\underset{\sim}{0}}^{\prime} & 1
\end{array}\right)\binom{\hat{\delta}_{g, \mathrm{~m} 2 \mathrm{SLS}}^{* *}}{\hat{\gamma}_{g, \mathrm{~m} 2 \mathrm{SLS}}^{* *}},
$$

where

The limiting distribution of (5.11) can be derived from

$$
\left(\begin{array}{l}
\hat{\sim}_{g, \mathrm{~m} 2 \mathrm{SLS}}^{*} \tag{5.12}\\
\hat{\gamma}^{*} \\
\underset{\sim}{g, \mathrm{~m} 2 \mathrm{SLS}}
\end{array}\right)=\left(\begin{array}{cc}
D_{g}^{-1} & \underset{\sim}{0} \\
{\underset{\sim}{0}}^{\prime} & 1
\end{array}\right)\binom{\hat{\delta}_{g, \mathrm{~m} 2 \mathrm{SLS}}^{* *}}{\hat{\gamma}_{g, \mathrm{~m} 2 \mathrm{SLS}}^{* *}} .
$$

Using similar manipulations as Section 3, it can be shown that
$\left.\begin{array}{l}\text { Lemma 5.2. The limiting distribution of } \sqrt{T}\left(\underset{\sim_{g 1, \mathrm{~m} 2 \mathrm{SLS}}}{\hat{\delta}^{*}}-\underset{{\underset{g}{l}}^{\delta^{*}}}{*} \text { and is asymptotically independent of }\right.\end{array}\right)$ is of the form (3.21)

$$
\left[\begin{array}{c}
T\binom{\hat{\delta}_{\sim g 2, \mathrm{~m} 2 \mathrm{SLS}}^{*}}{\sqrt{T}{\underset{\sim}{g}}^{\delta_{g}}} \tag{5.13}\\
\sqrt{T}{ }^{*} \mathrm{~m} 2 \mathrm{SLS}
\end{array}\right] \Longrightarrow\left(R S^{-1} R^{\prime}\right)^{-1} R S^{-1}\left[\begin{array}{c}
\int B_{x_{2}^{*}} \mathrm{~d} B_{\varepsilon_{g} \cdot x_{2}^{*}} \\
\mathrm{~N}\left(0, \sigma_{g}^{2}\right)
\end{array}\right] .
$$

Since $B_{\varepsilon_{g} \cdot x_{2}^{*}}$ is asymptotically independent of $B_{x_{2}^{*}}$, the modified 2SLS is either normally distributed or mixed normally distributed.

Similarly, one can derive the alternatively modified 2SLS in the form similar to that of (4.3) and its limiting distribution is either normal or mixed normal.

When $\underset{\sim}{\gamma} \neq 0$, then some or all elements of $\underset{\sim}{w}$ are $I(1)$ with drift. As $T \rightarrow \infty$, those $I(1)$ elements of $\underset{\sim}{w}$ with nonzero drift will be dominated by the trend term $\underset{\sim}{h} t$, where $\underset{\sim}{h}=A_{0}^{-1} \underset{\sim}{\gamma}$. However, as noted by Sims et al. (1990) those elements of $\underset{\sim}{\underset{\sim}{w}} \underset{t}{ }$ with nonzero drifts will be perfectly collinear. To derive the limiting distribution of 2SLS or modified 2SLS or alternatively modified 2SLS, we can follow the Sims et al. (1990) to transform $\underset{\sim}{w}$ into $\underset{\sim}{w} \underset{\sim}{*}=H \underset{\sim}{w}$, where H is an $m \times m$ nonsingular matrix of the form

$$
H=\left[\begin{array}{ccccc}
1 & \cdot & \ldots & 0 & -\left(h_{1} / h_{m}\right) \tag{5.14}\\
0 & 1 & \ldots & \cdot & -\left(h_{2} / h_{m}\right) \\
\ldots & \cdot & \ldots & \cdot & \ldots \\
0 & \cdot & \ldots & 1 & -\left(h_{m-1} / h_{m}\right) \\
0 & \cdot & \ldots & 0 & 1
\end{array}\right]
$$

and there is no loss of generality in assuming $h_{m} \neq 0$. The resulting $w_{g t}^{*}=w_{g t}-\left(h_{g} / h_{m}\right) w_{m t}, g=1, \ldots, m-1$, becomes $I(1)$ without drift and $w_{m t}^{*}=w_{m t}$ remains $I(1)$ with drift. Similarly, (5.1) can be expressed in terms of $\underset{\sim}{{\underset{\sim}{*}}^{*}}$

$$
\begin{equation*}
A(L) H^{-1} \underset{\sim}{w_{t}}{ }_{t}^{*} \underset{\sim}{\gamma}+\underset{\sim}{\varepsilon}, \tag{5.15}
\end{equation*}
$$

and the g th equation of (5.15) can be expressed in the form

$$
\begin{equation*}
\underset{\sim}{w_{g}^{*}}=\tilde{Z}_{g} \underset{\sim}{\underset{\sim}{\delta}} \underset{\sim}{\tilde{\delta}} \underset{\sim}{e} \gamma_{g}+\underset{\sim}{\varepsilon}, \tag{5.16}
\end{equation*}
$$

where \tilde{Z}_{g} denotes the matrix of T observed current and lagged $\underset{\sim}{\sim_{t}^{*}}$ that appear in the g th equation. We can transform (5.16) into the form in terms of $I(0), I(1)$ without drift and $I(1)$ with drift variables:

$$
\begin{equation*}
\underset{\sim}{w_{g}^{*}}=\tilde{Z}_{g} \tilde{\sim}_{g}^{*} \tilde{\delta}^{*}+\underset{\sim}{e} \gamma_{g}^{*}+\underset{\sim}{\varepsilon}, \tag{5.17}
\end{equation*}
$$

where $\gamma_{g}^{*}=\gamma_{g}, \tilde{Z}_{g}^{*}=\tilde{Z}_{g} \tilde{M}_{g}^{*}=\left(Z_{g 1}^{*}, Z_{g 2}^{*}, Z_{g 3}^{*}\right)$, with $Z_{g 1}^{*}$ denoting the ℓ_{g}-dimensional linearly independent zero mean $I(0)$ variables, $Z_{g 2}^{*}$ denoting the b_{g} linearly independent $I(1)$ variables without drift, and $Z_{g 3}^{*}$ denoting the $I(1)$ variable with drift, $\underset{\sim}{w}$,,$~$ and $\left(\underset{\sim}{\tilde{\delta}_{g 1}}, \stackrel{\tilde{\delta}_{g 2}}{* \prime}, \tilde{\delta}_{g 3}^{*}\right)$ the corresponding partition of the transformed parameter vector $\underset{\sim}{\underset{\sim}{\delta}}{ }_{g}^{*}=\tilde{M}_{g}^{*-1} \underset{\sim}{\underset{\sim}{\delta}} \underset{ }{\tilde{j}}$.

Similarly, we can transform X into $X^{*}=X \tilde{M}_{x}^{*}=\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}\right)$, where X_{1}^{*}, X_{2}^{*} and X_{3}^{*} consist of linearly independent $I(0), I(1)$ without drift, and $I(1)$ with drift $\underset{\sim}{\underset{\sim}{w}} \underset{m,-p}{ }$, variables, respectively. Then the 2SLS of (5.16) can be written as the transformation

$$
\binom{{\underset{\tilde{\delta}}{g, 2 S L S}}^{\hat{\gamma}^{\hat{\gamma}}}}{\underset{\sim}{2,2 S L S}}=\left(\begin{array}{cc}
\tilde{M}_{g}^{*} & \underset{\sim}{0} \tag{5.18}\\
0 & 1
\end{array}\right)\left(\begin{array}{l}
\hat{\tilde{\delta}}^{*} \\
\underset{\sim}{q, 2 S L S} \\
\hat{\gamma}^{*} \\
\underset{\sim}{*}, 2 S L S
\end{array}\right) .
$$

Lemma 5.3. The limiting distribution of $\sqrt{T}\left(\underset{\sim_{g 1,2 S L S}}{\hat{\tilde{\delta}}^{*}}-\tilde{\sim}_{g 1}^{*}\right)$ is asymptotically normally distributed with mean zero and variance covariance matrix of the form similar to (3.21), and is asymptotically independent of

$$
\left[\begin{array}{cc}
T\left({\underset{\sim}{\tilde{\delta}}}_{g 2,2 \mathrm{SLS}}^{*}-\underset{\sim}{\tilde{\delta}_{g 2}^{*}}\right) \tag{5.19}\\
T^{3 / 2}\left(\tilde{\tilde{\delta}}_{g 3,2 \mathrm{SLS}}^{*}-\tilde{\delta}_{g 3}^{*}\right) \\
T^{1 / 2}\left(\hat{\gamma}_{g, 2 \mathrm{SLS}}^{*}-\gamma_{g}^{*}\right)
\end{array}\right] \Longrightarrow\left(R^{*} S^{*-1} R^{*}\right)^{-1} R^{*} S^{*-1}\left[\begin{array}{c}
\underset{\sim}{q} \\
q_{2} \\
q_{3}
\end{array}\right],
$$

where

$$
R^{*}=\left[\begin{array}{ccc}
\int B_{z_{g 2}^{*}} B_{x_{2}^{*}}^{\prime} \mathrm{d} r & h_{m} \int r B_{z_{g 2}^{*}} \mathrm{~d} r & \int B_{z_{g 2}^{*}} \mathrm{~d} r \\
h_{m} \int r B_{x_{2}^{*}}^{\prime} \mathrm{d} r & h_{m}^{2} / 3 & h_{m} / 2 \\
\int B_{x_{2}^{*}}^{\prime} \mathrm{d} r & h_{m} / 2 & 1
\end{array}\right]
$$

$$
S^{*}=\left[\begin{array}{ccc}
\int B_{x_{2}^{*}} B_{x_{2}^{*}}^{\prime} \mathrm{d} r & h_{m} \int r B_{x_{2}^{*}} \mathrm{~d} r & \int B_{x_{2}^{*}} \mathrm{~d} r \\
h_{m} \int r B_{x_{2}^{*}}^{\prime} \mathrm{d} r & h_{m}^{2} / 3 & h_{m} / 2 \\
\int B_{x_{2}^{*}}^{\prime} \mathrm{d} r & h_{m} / 2 & 1
\end{array}\right]
$$

$\underset{\sim}{q}=\int B_{x_{2}^{*}} \mathrm{~d} B_{\varepsilon_{g}}, q_{2} \sim \mathrm{~N}\left(0, \frac{1}{3} \sigma_{g}^{2} h_{m}^{2}\right)$, and $q_{3} \sim \mathrm{~N}\left(0, \sigma_{g}^{2}\right)$.
 tically mixed normal. Since the 2SLS of (5.1) (or (5.15)) is a linear combination of ${\underset{\sim}{\tilde{\delta}}}_{\tilde{\tilde{\delta}}^{*}, 2 S L S}, \stackrel{\tilde{\tilde{\delta}}}{q 2,2 S L S}^{*}$ and $\underset{\sim}{\tilde{\tilde{\delta}}_{g 3,2 S L S}}{ }^{*}$, the Wald test statistic (3.8) again may not be asymptotically chi-squaredistributed. To ensure that the Wald test statistic be asymptotically chi-square distributed, the modified 2SLS or the alternatively modified 2SLS can be applied to ensure the asymptotic mixed normality of the estimated $\underset{\sim_{g 2}}{\tilde{\delta}_{g}^{*}}$.

6. Monte Carlo comparisons

In this section, a small simulation study is conducted to compare the finite sample performance of the 2SLS, M2SLS and A2SLS estimators. For each estimator, we compute its bias, root mean square estimation error, the size of the Wald test where critical values are derived from the conventional chi-square distributions. All computations are performed in MATLAB. It is hoped that this simulation study will shed some light on the choice of the estimators in finite sample.

We consider a three variable vector time series $\{\underset{\sim}{w}\}_{t=-1}^{T}$ generated by a secondorder structural VAR model of the form

$$
\begin{equation*}
A_{0} \underset{\sim}{w}{\underset{\sim}{t}}=A_{1}{\underset{\sim}{t-1}}_{w}^{w}+A_{2} \underset{\sim}{w}{ }_{t-2}+\underset{\sim}{\varepsilon}, \tag{6.1}
\end{equation*}
$$

where $\underset{\sim}{\varepsilon} \sim \mathrm{N}\left(0, \Sigma_{\varepsilon \varepsilon}\right)$. We let (6.1) be identified by the exclusion restrictions of the form

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ccc}
1 & a_{0,12} & 0 \\
0 & 1 & a_{0,23} \\
a_{0,31} & 0 & 1
\end{array}\right), \quad A_{1}=\left(\begin{array}{ccc}
a_{1,11} & a_{1,12} & 0 \\
0 & a_{1,22} & a_{1,23} \\
a_{1,31} & 0 & a_{1,33}
\end{array}\right) \text { and } \\
& A_{2}=\left(\begin{array}{ccc}
a_{2,11} & a_{2,12} & 0 \\
0 & a_{2,22} & a_{2,23} \\
a_{2,31} & 0 & a_{2,33}
\end{array}\right) .
\end{aligned}
$$

To generate the time series $\{\underset{\sim}{w}\}_{t=-1}^{T}$, we initialize the system at $t=-51$ with $\left(\underset{\sim}{w}{ }_{-50}, \underset{\sim}{w}{ }_{-51}\right)=(\underset{\sim}{0}, \underset{\sim}{0})$. A sequence of independent trivariate standard normal random
variables $\{\underset{\sim}{e}\}_{t=-49}^{T}$ is generated by the RANDN function of MATLAB. Let

$$
\Gamma=\left(\begin{array}{ccc}
1 & -0.5 & 0.3 \\
-0.5 & 0.9 & 0.4 \\
0.3 & 0.4 & 2.5
\end{array}\right)^{1 / 2} \quad \text { and } \quad \underset{\sim}{\varepsilon}=\Gamma \underset{\sim}{e}
$$

so that $\{\underset{\sim}{\varepsilon}\}_{t=-49}^{T}$ is a sequence of independent normal random variables with mean $\underset{\sim}{0}$ and covariance matrix Γ. To generate $\{\underset{\sim}{w}\}_{t=-49}^{T}$, we use the following parameter values of $\left(A_{0}, A_{1}, A_{2}\right)$:

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ccc}
1 & -0.4 & 0 \\
0 & 1 & 0.8 \\
0.6 & 0 & 1
\end{array}\right), \quad A_{1}=\left(\begin{array}{ccc}
0.2 & -0.1 & 0 \\
0 & 0.7 & 0.6 \\
0.2 & 0 & 0.4
\end{array}\right) \text { and } \\
& A_{2}=A_{0}-A_{1}+\underset{\sim}{\alpha^{\prime}} \underset{\sim}{\beta,} \\
& D G P 1: \underset{\sim}{\alpha}=\underset{\sim}{\beta}=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right), \\
& D G P 2: \underset{\sim}{\alpha}=\left(\begin{array}{lll}
0 & -0.4 & 0
\end{array}\right), \underset{\sim}{\beta}=\left(\begin{array}{lll}
0 & 1 & 2
\end{array}\right), \\
& D G P 3: \underset{\sim}{\alpha}=\left(\begin{array}{ccc}
-0.5 & 0 & -0.3 \\
0.25 & -0.4 & 0
\end{array}\right) \text { and } \underset{\sim}{\beta}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right),
\end{aligned}
$$

It is easy to check that $\left|A_{0}\right| \neq 0$ and that DGP1-DGP3 satisfy the rank condition for identification. In addition, DGP1 represents a system of full-rank $I(1)$ variables, DGP2 represents a system of $I(1)$ variables that has one linearly independent cointegrating relation, and DGP3 represents a system of $I(1)$ variables that has two linearly independent cointegrating relations.

To see if there are distortions of using normal approximation in hypothesis testing, we consider the following hypotheses: (A) (Test for the value of $a_{0,12}$ alone), $H_{\mathrm{A}}: a_{0,12}=c_{0}$; (B) (A joint test) $H_{\mathrm{B}}: a_{0,12}=c_{0}, a_{1,12}=c_{1}, a_{2,12}=c_{2}$, where c_{0}, c_{1} and c_{2} denote the true values of $a_{0,12}, a_{1,12}$ and $a_{2,12}$, respectively.

Our analysis shows that the standard normal distribution provides a good approximation for the conventional t-statistic for H_{A}, be the estimator as 2SLS, M2SLS, A2SLS. On the other hand, chi-square distribution may or may not be a good approximation for the Wald-type statistic for H_{B}. For instance, Wald test of H_{B} for DGP3 involves standard limiting distribution, but not for DGP1 or DGP2. For DGP1, DGP2 and DGP3, we can transform H_{B} into the form of (3.7), then test B becomes a joint test of $a_{0,12}=c_{0}, a_{1,12}-a_{0,12}=c_{1}-c_{0}$ and $a_{2,12}+a_{1,12}-$ $a_{0,12}=c_{2}+c_{1}-c_{0}$. For DGP1 and DGP2, test B isolates the coefficient of the $I(1)$ regressor, $w_{2, t-2}, a_{2,12}+a_{1,12}-a_{0,12}$. For DGP3, it only involves the coefficients of $I(0)$ regressors, $\nabla w_{2, t}, \nabla w_{2, t-1}$ and $w_{2, t-2}-2 w_{1, t-2}$, hence the Wald statistic is asymptotically chi-square distributed. In other words, chi-square approximation is

Table 1
Average percentage estimation bias (Bias)

not appropriate for DGP1 or DGP2, but is appropriate for DGP3 if the sample is of reasonable size.

Although the true DGP (6.1) has no constant term, in practice one usually estimates a VAR with an intercept. It therefore seems more appropriate in this study to include an intercept in the estimated structural VAR model. Sample sizes are fixed at $T=50,100,200$ and 400 . The number of repetition is 1000 .

Tables 1 and 2 present the average percentage estimation bias (Bias) and the average percentage root mean square estimation error (RMSE), respectively. ${ }^{2}$ In terms of Bias, the 2SLS, A2SLS and M2SLS are of similar magnitude. In terms of RMSE, 2SLS seems to be the best for $T \leqslant 200$. However, RMSE of A2SLS and M2SLS decrease rapidly with sample size and are comparable to the RMSE of 2SLS at $T=400$.

Table 3 presents the actual sizes of tests A and B where the critical values are derived from the chi-square distribution with appropriate degrees of freedom. For 2SLS, actual sizes of test A are close to nominal sizes for all three data generating processes, which is consistent with the asymptotic results. Size distortions of test B are severe if the limiting distribution of Wald statistics involves the unit root distribution (DGP1 and DGP2); otherwise, chi-square distribution approximates

[^2]Table 2
Average percentage root mean square estimation error (RMSE)

	2SLS	A2SLS	M2SLS (Parzen)			M2SLS (Tukey-Hanning)			M2SLS (quadratic)		
			$k=0.3 k=0.5 \quad k=0.66 k=0.3 \quad k=0.5 \quad k=0.66$						$k=0.3 \quad k=0.5 \quad k=0.66$		
DGP1											
$T=50$	1.7706	9.6121	2.7496	11.3405	62.6826	4.4299	16.6485	764.1035	12.8586	50.9528	480.6787
100	5.8644	2.7339	4.3117	3.1076	2.8417	3.8020	2.8231	5.0624	3.1111	3.1419	16.4015
200	0.4835	0.7795	0.5044	0.5863	0.8735	0.5225	0.6564	1.2814	0.5622	0.8773	19.9671
400	0.3330	0.3796	0.3370	0.3436	0.3677	0.3389	0.3482	0.3913	0.3415	0.3611	1.2031
DGP2											
$T=50$	0.5835	3.3762	0.7141	1.0627	8.1326	2.5182	12.1853	34.4814	1.1544	15.181	61.472
100	4.3390	3.4753	4.6274	4.3047	3.4108	4.6254	3.8877	19.7622	4.4809	4.5921	19.1205
200	0.2041	0.7074	0.2173	0.2130	0.2262	0.2177	0.2156	0.3074	0.2149	0.2297	23.4914
400	0.1361	0.1470	0.1471	0.1399	0.1397	0.1460	0.1385	0.1502	0.1427	0.1389	0.2692
DGP3											
$T=50$	1.0346	1.1079	1.0849	1.1022	1.5102	1.1076	1.3548	33.7875	1.1217	229.4205	451.0891
100	0.6646	1.6121	0.7057	0.7058	0.7193	0.7107	0.7220	2.3839	0.7147	0.7975	2.3263
200	0.4499	1.2146	0.4800	0.4691	0.4637	0.4815	0.4665	0.6184	0.4772	0.4720	11.9911
400	0.3109	0.8831	0.3370	0.3212	0.3159	0.3354	0.3178	0.3552	0.3292	0.3157	6.5968

Table 3
Finite-sample size

Finite-sample size: DGP1
Test A: test a single coefficient parameter

$\alpha=0.01$											
$T=50$	0.003	0.153	0.014	0.025	0.036	0.020	0.030	0.049	0.022	0.047	0.056
100	0.005	0.075	0.011	0.020	0.034	0.015	0.028	0.040	0.022	0.033	0.070
200	0.001	0.051	0.005	0.011	0.019	0.007	0.014	0.038	0.009	0.023	0.058
400	0.010	0.014	0.012	0.014	0.023	0.012	0.014	0.031	0.013	0.022	0.045
$\alpha=0.05$											
$T=50$	0.033	0.220	0.053	0.087	0.119	0.067	0.101	0.130	0.089	0.129	0.152
100	0.044	0.139	0.057	0.085	0.114	0.066	0.092	0.136	0.084	0.123	0.157
200	0.043	0.103	0.047	0.069	0.091	0.051	0.076	0.104	0.060	0.094	0.155
400	0.055	0.078	0.057	0.057	0.074	0.056	0.061	0.086	0.057	0.074	0.109
$\alpha=0.1$											
$T=50$	0.075	0.292	0.099	0.155	0.192	0.134	0.184	0.211	0.153	0.195	0.251
100	0.094	0.195	0.112	0.137	0.175	0.125	0.148	0.197	0.141	0.182	0.231
200	0.082	0.157	0.100	0.122	0.148	0.109	0.130	0.155	0.119	0.143	0.201
400	0.104	0.137	0.109	0.113	0.138	0.114	0.116	0.148	0.113	0.135	0.172

Test B: joint test of several coefficient parameters
$\alpha=0.01$

$$
\begin{array}{llllllllllll}
T=50 & 0.043 & 0.301 & 0.083 & 0.166 & 0.224 & 0.130 & 0.196 & 0.267 & 0.160 & 0.258 & 0.300 \\
100 & 0.060 & 0.206 & 0.098 & 0.160 & 0.217 & 0.112 & 0.187 & 0.277 & 0.149 & 0.229 & 0.371
\end{array}
$$

Table 3 (continued)

	2SLS	A2SLS	M2SLS (Parzen)			M2SLS (Tukey-Hanning)			M2SLS (quadratic)		
			$k=0.3$	$k 0.5$	$k 0.66$	$k=0.3$	$k 0.5$	$k 0.66$	$k=0.3$	$k 0.5$	$k 0.66$
200	0.053	0.143	0.074	0.113	0.173	0.083	0.130	0.215	0.095	0.181	0.299
400	0.058	0.074	0.069	0.089	0.152	0.075	0.107	0.189	0.083	0.133	0.265
$\alpha=0.05$											
$T=50$	0.159	0.402	0.196	0.265	0.320	0.228	0.304	0.378	0.269	0.363	0.424
100	0.144	0.311	0.201	0.267	0.337	0.233	0.293	0.394	0.260	0.357	0.489
200	0.159	0.240	0.172	0.215	0.277	0.184	0.235	0.313	0.204	0.277	0.404
400	0.176	0.160	0.174	0.214	0.267	0.190	0.225	0.307	0.208	0.225	0.363
$\alpha=0.1$											
$T=50$	0.238	0.469	0.277	0.337	0.401	0.304	0.371	0.458	0.341	0.441	0.502
100	0.243	0.390	0.291	0.350	0.426	0.315	0.376	0.478	0.351	0.446	0.564
200	0.262	0.316	0.268	0.299	0.359	0.282	0.324	0.409	0.292	0.365	0.499
400	0.279	0.219	0.292	0.314	0.353	0.292	0.319	0.385	0.300	0.344	0.436

Finite-sample size: DGP2

Test A: test a single coefficient parameter
$\alpha=0.01$

$T=50$	0.032	0.069	0.055	0.060	0.069	0.056	0.054	0.082	0.061	0.077	0.091
100	0.013	0.041	0.035	0.034	0.031	0.042	0.031	0.042	0.042	0.033	0.057
200	0.015	0.046	0.029	0.029	0.020	0.030	0.027	0.023	0.030	0.024	0.047
400	0.012	0.026	0.055	0.021	0.012	0.043	0.017	0.014	0.026	0.014	0.018
$\alpha=0.05$											
$T=50$	0.097	0.138	0.126	0.141	0.157	0.141	0.149	0.179	0.139	0.170	0.209
100	0.066	0.100	0.113	0.106	0.092	0.114	0.097	0.108	0.107	0.101	0.149
200	0.052	0.095	0.107	0.087	0.073	0.103	0.081	0.077	0.097	0.078	0.107
400	0.046	0.073	0.138	0.075	0.049	0.118	0.061	0.063	0.106	0.049	0.075
$\alpha=0.1$											
$T=50$	0.141	0.208	0.189	0.212	0.228	0.222	0.219	0.252	0.216	0.250	0.275
100	0.123	0.169	0.182	0.166	0.149	0.193	0.154	0.159	0.173	0.156	0.225
200	0.103	0.158	0.180	0.154	0.130	0.185	0.137	0.129	0.166	0.131	0.107
400	0.095	0.121	0.180	0.132	0.101	0.179	0.119	0.098	0.156	0.109	0.122

Test B: joint test of several coefficient parameters
$\alpha=0.01$

$T=50$	0.175	0.275	0.264	0.329	0.393	0.317	0.353	0.450	0.330	0.427	0.527
100	0.123	0.206	0.203	0.224	0.254	0.206	0.241	0.300	0.220	0.262	0.387
200	0.094	0.152	0.137	0.151	0.193	0.144	0.165	0.209	0.146	0.190	0.280
400	0.119	0.158	0.138	0.122	0.130	0.132	0.116	0.122	0.122	0.118	0.187
$\alpha=0.05$											
$T=50$	0.366	0.424	0.408	0.461	0.515	0.446	0.495	0.566	0.465	0.540	0.642
100	0.282	0.331	0.348	0.359	0.381	0.346	0.365	0.411	0.365	0.387	0.496
200	0.248	0.295	0.305	0.291	0.302	0.298	0.293	0.325	0.296	0.315	0.382
400	0.272	0.288	0.312	0.240	0.237	0.300	0.228	0.254	0.272	0.213	0.274
$\alpha=0.1$											
$T=50$	0.479	0.512	0.514	0.541	0.594	0.528	0.560	0.629	0.546	0.611	0.696
100	0.418	0.446	0.461	0.456	0.463	0.462	0.462	0.473	0.455	0.471	0.560
200	0.380	0.390	0.422	0.389	0.388	0.435	0.389	0.410	0.412	0.401	0.444
400	0.402	0.362	0.399	0.321	0.326	0.399	0.315	0.315	0.370	0.303	0.375

Table 3 (continued)

2SLS	A2SLS	M2SLS (Parzen)			M2SLS (Tukey-Hanning)			M2SLS (quadratic)		
		$k=0.3$	$k 0.5$	$k 0.66$	$k=0.3$	$k 0.5$	k 0.66	$k=0.3$	$k 0.5$	$k 0.66$

Finite-sample size: DGP3
Test A: test a single coefficient parameter

$\alpha=0.01$											
$T=50$	0.019	0.030	0.027	0.024	0.020	0.025	0.023	0.023	0.025	0.020	0.029
100	0.018	0.028	0.027	0.025	0.021	0.030	0.022	0.027	0.029	0.021	0.041
200	0.011	0.024	0.018	0.015	0.013	0.017	0.014	0.022	0.016	0.012	0.040
400	0.013	0.035	0.036	0.014	0.013	0.029	0.016	0.019	0.019	0.011	0.034
$\alpha=0.05$											
$T=50$	0.070	0.088	0.081	0.069	0.080	0.085	0.071	0.079	0.073	0.081	0.105
100	0.062	0.076	0.097	0.076	0.068	0.091	0.072	0.084	0.079	0.078	0.117
200	0.059	0.080	0.087	0.065	0.055	0.080	0.058	0.070	0.072	0.057	0.110
400	0.056	0.093	0.107	0.062	0.057	0.100	0.054	0.073	0.081	0.059	0.091
$\alpha=0.1$											
$T=50$	0.125	0.157	0.140	0.131	0.137	0.137	0.132	0.142	0.144	0.146	0.166
100	0.120	0.136	0.152	0.138	0.125	0.151	0.134	0.142	0.144	0.137	0.184
200	0.106	0.138	0.157	0.125	0.107	0.158	0.115	0.124	0.138	0.113	0.161
400	0.116	0.152	0.170	0.120	0.118	0.167	0.122	0.125	0.139	0.116	0.153

Test B: joint test of several coefficient parameters

$\alpha=0.01$											
$T=50$	0.035	0.059	0.050	0.050	0.053	0.058	0.055	0.084	0.054	0.082	0.138
100	0.018	0.069	0.037	0.038	0.035	0.043	0.041	0.058	0.042	0.051	0.095
200	0.011	0.152	0.032	0.025	0.018	0.037	0.021	0.042	0.031	0.019	0.101
400	0.011	0.093	0.035	0.019	0.016	0.037	0.017	0.030	0.027	0.018	0.077
$\alpha=0.05$											
$T=50$	0.116	0.141	0.136	0.127	0.152	0.138	0.146	0.171	0.132	0.181	0.251
100	0.076	0.175	0.110	0.113	0.111	0.122	0.116	0.153	0.122	0.126	0.187
200	0.065	0.276	0.106	0.092	0.073	0.104	0.085	0.103	0.103	0.076	0.155
400	0.061	0.147	0.130	0.082	0.067	0.119	0.072	0.090	0.107	0.068	0.135
$\alpha=0.1$											
$T=50$	0.186	0.206	0.214	0.208	0.244	0.223	0.222	0.258	0.225	0.263	0.333
100	0.133	0.283	0.185	0.179	0.187	0.195	0.179	0.210	0.195	0.202	0.257
200	0.111	0.350	0.187	0.154	0.126	0.183	0.144	0.165	0.181	0.137	0.229
400	0.113	0.198	0.198	0.147	0.118	0.192	0.128	0.134	0.171	0.123	0.186

well as sample size increases. For test B, the 2SLS seems to have smaller size distortions than A2SLS and M2SLS for $T \leqslant 200$. However, for DGP1 and DGP2 the size distortion for 2SLS remains largely unchanged as T increases. On the other hand the performance of A2SLS and M2SLS appear to rapidly improve with T.

It is worth noticing that the results of M2SLS are sensitive to the choice of the bandwith parameter and the kernel function. Our results does not corroborate the findings in Yamada and Toda (1998), in which Monte Carlo experiments was conducted to examine the size distortions of Granger causality test in the standard VAR framework. Yamada and Toda studied the fully modified VAR estimator (FM-VAR) with various kernel functions and bandwidth parameters and found that

Parzen kernel with bandwidth parameter being the closest integer to $T^{0.66}$ gives the least size distortions for most combinations of parameter values and sample sizes ranging from 50 to 200. Our simulation results of test B (which is a Granger causality test in the structural VAR model) indicate that setting bandwidth parameter to the closest integer to $T^{0.66}$ produces larger size distortion whether we use Parzen or Tukey-Hanning or quadratic kernel. In addition, setting bandwidth parameter to the integer closest to $T^{0.66}$ seems to produce substantially large Bias and RMSE for small samples $(T=50)$. Our results appear to indicate that Parzen kernel with $k=$ 0.3 or 0.5 does better than $k=0.66$ on Tukey-Hanning or quadratic kernel.

7. Conclusions

In this paper, we consider the single equation estimation of a structural VAR model of nonstationary and possibly cointegrated variables without the prior knowledge of unit roots or rank of cointegration. When all variables are integrated of order 1, the conventional 2SLS and 3SLS estimators are consistent. However, some coefficient estimates of the transformed system are \sqrt{T}-convergent and asymptotically normally distributed while others are T-convergent and involve unit root distribution in the limit. Thus, Wald-type test statistics for the joint hypotheses may not be chi-square distributed. We propose a modified 2SLS estimator and an alternatively modified 2SLS estimator that have the desirable large sample property that coefficient estimates of the transformed system are either \sqrt{T}-consistent and asymptotically normally distributed or T-consistent and mixed normally distributed in the limit. The modified estimators also have the nice property that both $I(0)$ and $I(1)$ variables are allowed in the model and we can therefore avoid the error in testing the stationarity of the variables. Between the two, the modified 2SLS estimator requires nonparametric estimation of the long-run covariance matrix and the onesided long-run covariance matrix, so its finite sample performance could be affected by the choice of the kernel function and the bandwidth parameter. In addition, since we can not approximate the asymptotic covariance matrix of the modified 2SLS estimator properly, the resulting Wald type test statistics may not be chi-square distributed and critical values that are based on chi-square distributions can be used to construct conservative tests only. In comparison, the alternatively modified 2SLS estimator does not require nonparametric estimation of the long-run covariance matrix or the one-sided long-run covariance matrix and its asymptotic covariance matrix can be properly approximated so that Wald test statistics remain chi-square distributed. On the other hand, the constrained maximum likelihood estimation in the first stage may be computationally more demanding.

Monte Carlo studies are also conducted to evaluate the finite sample performance of various estimators. Unfortunately, the desirable properties of A2SLS and M2SLS in large sample do not appear to carry over in finite sample. In general, we find that 2SLS, M2SLS and A2SLS have similar order of bias and RMSE. On the other hand, if the null hypothesis involves transformations of unit root components, the actual size of the Wald type test statistic based on the 2SLS estimates is severely distorted, so are

M2SLS or A2SLS in finite sample despite that their limiting distributions no longer involve the unit root distribution. However, the size distortion of the Wald test statistic based on M2SLS or A2SLS appears to diminish as sample size increases, while the conventional 2SLS remains the same as T increases. Therefore, if T is less than 200, it is probably more desirable to just use 2SLS, in particular, if the hypothesis an investigator is concerned with only involves a single parameter. One may attempt to use the M2SLS or A2SLS only when T is large and one's primary focus is not just in estimating unknown parameters, but also in testing joint hypotheses.

Acknowledgements

We would like to thank the editors and five referees for helpful comments and suggestions. We would also like to thank Echu Liu for computational assistance.

Appendix A. Proof of Theorem 3.1

Let $D_{g 2}$ be the submatrix of D_{g} that transforms $Z_{g 2}^{* *}$ into $\tilde{W}_{g,-p} D_{g 2}=\tilde{W}_{g,-p}^{*}=$ $\left[\tilde{W}_{g 1,-p}^{*}, \tilde{W}_{g 2,-p}^{*}\right]=\left[\tilde{W}_{g 1,-p}^{*}, Z_{g 2}^{*}\right]$, where $Z_{g 2}^{*}$ consists of linearly independent $I(1)$ variables of $\underset{\sim}{\tilde{\sim}}$, and $\tilde{W}_{g 1}^{*}$ consists of the remaining $I(1)$ variables that has been transformed into cointegrating relations. Let $D_{w 2}$ be the transformation matrix that transform W_{-p} into $W_{-p}^{*}=W_{-p} D_{w_{2}}=\left[W_{1,-p}^{*}, W_{2,-p}^{*}\right]=\left[W_{1,-p}^{*}, X_{2}^{*}\right]$, where X_{2}^{*} denotes the $(m-r)$ linearly independent $I(1)$ variables of $\underset{\sim}{w} \underset{t-p}{w}$ and $W_{1,-p}^{*}$ denotes the $T \times r$ cointegrating relations of $\underset{\sim}{w} \underset{t-p}{ }$. Let $C_{g}^{*}=\left(W_{-p}^{* \prime} \nabla W_{-p}^{*}-T \Delta_{\nabla w^{*} \nabla w^{*}}\right)$ $\Omega_{\nabla w^{*} \nabla w^{*}}^{-1} \Omega_{\nabla w^{*} \varepsilon_{g}}$, then $C_{g}^{*}=D_{w 2}^{\prime} C_{g}$ and $\hat{C}_{g}^{*}=D_{w 2}^{\prime} \hat{C}_{g}$. Partition

$$
C_{g}^{*}=\left[\begin{array}{c}
C_{g 1}^{*} \\
C_{g 2}^{*}
\end{array}\right],
$$

where $C_{g_{i}}^{*}=\left(W_{i,-p}^{* \prime} \nabla W_{-p}^{*}-T \Delta_{\nabla w_{i}^{*} \nabla w^{*}}\right) \Omega_{\nabla w^{*} \nabla w^{*}}^{-1} \Omega_{\nabla w^{*} \varepsilon_{g}}, i=1,2$, and similarly for \hat{C}_{g}^{*}. Then $\underset{\sim}{\delta_{g, \text { m2SLS }}} \hat{\sigma}_{g}^{*}=D_{g, \mathrm{~m} 2 \mathrm{SLS}}^{-1}{\underset{\delta}{\delta}}^{* *}$ can be written as

$$
\begin{align*}
& =\left\{Z_{g}^{* \prime} X^{*}\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} Z_{g}^{*}\right\}^{-1}\left\{Z_{g}^{* \prime} X^{*}\left(X^{* \prime} X^{*}\right)^{-1}\left(\begin{array}{c}
X_{1}^{* * \prime} \underset{\sim}{w} \\
W_{1,-p}^{* \prime} \underset{\sim}{w} \\
W_{2,-p}^{* \prime}-\hat{C}_{g}^{*}-\hat{C}_{g 2}^{*}
\end{array}\right)\right\} . \tag{A.1}
\end{align*}
$$

Under A1-A4, KL and BW, following the arguments of Phillips (1995), one can show that

$$
\begin{align*}
& H_{g}\left[\begin{array}{c}
X_{1}^{* * \prime} \underset{\sim}{\underset{\sim}{g}} \\
W_{1,-p}^{* \prime} \underset{\sim}{\varepsilon}-\hat{C}_{g 1}^{*} \\
W_{2,-p}^{* \prime} \underset{\sim}{\varepsilon}-\hat{C}_{g 2}^{*}
\end{array}\right]=\left[\begin{array}{c}
X_{11}^{* * \prime} \underset{\sim}{\varepsilon}{ }_{g} \\
T^{-1 / 2}\left(\begin{array}{c}
W_{1,-p}^{* \prime} \underset{\sim}{\varepsilon}-\hat{C}_{g 1}^{*}
\end{array}\right) \\
T^{-1}\left(X_{2}^{* \prime} \underset{\sim}{\varepsilon}-\hat{C}_{g_{2}}^{*}\right)
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{l}
\underset{\sim}{\xi} \\
\underset{g 1}{\xi} \\
\underset{\sim}{g} 2
\end{array}\right) \sim\binom{\mathrm{N}\left(\underset{\sim}{0}, \sigma_{g}^{2} M_{x_{1} x_{1}}^{*}\right)}{\int_{0}^{1} B_{x_{2}^{*}}(r) \mathrm{d} B_{\varepsilon_{g} \cdot x_{2}^{*}}(r)}, \tag{A.2}
\end{align*}
$$

with $\underset{\sim}{\xi}$ g1 independent of $B_{x_{2}^{*}}(r)$. The convergence is due to the fact that under assumptions $K L$ and $B W$,

$$
\hat{C}_{g 1}^{*}=\mathrm{O}_{\mathrm{p}}\left(k^{-2}\right)+\mathrm{O}_{\mathrm{p}}\left((k T)^{-1 / 2}\right)
$$

and

$$
\hat{C}_{g 2}^{*}=T \int_{0}^{1} B_{x_{2}^{*}}(r) \mathrm{d} B_{x_{2}^{*}}(r) \Omega_{\nabla x_{2}^{*} \nabla x_{2}^{*}}^{-1} \Omega_{\nabla x_{2}^{*} \varepsilon_{g}}+\mathrm{O}_{\mathrm{p}}\left(T^{-1 / 2}\right)+\mathrm{O}_{\mathrm{p}}\left(k^{3 / 2} T^{-1}\right)+\mathrm{o}_{\mathrm{p}}(1) .
$$

Therefore $T^{-1 / 2} \hat{C}_{g 1}^{*}=\mathrm{o}_{\mathrm{p}}(1)$ and $T^{-1} \hat{C}_{g 2}^{*}=\int_{0}^{1} B_{x_{2}^{*}}(r) \mathrm{d} B_{x_{2}^{*}}(r) \Omega_{\nabla x_{2}^{*} \nabla x_{2}^{*}}^{-1} \Omega_{\nabla x_{2}^{*} \varepsilon_{g}}+\mathrm{o}_{\mathrm{p}}(1)$. Theorem 4.1 follows from (A.2).

When the rank of cointegration, $r=0$, the structural VAR model (2.1) implies that ∇w follows a stationary $\operatorname{VAR}(p-1)$ process of the form (B.3) with $\Pi^{*} \equiv 0$. When ${ }^{\sim}{ }^{t} r=0, X_{2}^{*}=W_{-p}, \quad$ then $\Omega_{\nabla w^{*} \nabla w^{*}}=\left(I_{m}-\Sigma_{j=1}^{p-1} \Pi_{j}^{*}\right)^{-1} A_{0}^{-1} \Sigma_{\varepsilon \varepsilon} A_{0}^{\prime-1}\left(I_{m} \sim\right.$ $\left.\Sigma_{j=1}^{p-1} \Pi_{j}^{*}\right)^{\prime-1}, \Omega_{\varepsilon_{g} \nabla w^{*}}=\Sigma_{\varepsilon \varepsilon, g} A_{0}^{\prime-1}\left(I_{m}-\Sigma_{j=1}^{p-1} \Pi_{j}^{*}\right)^{\prime-1}$, where $\Sigma_{\varepsilon \varepsilon, g}^{j=1}$ denotes the g th row of $\Sigma_{\varepsilon \varepsilon}$. Therefore

$$
\sigma_{g \cdot \nabla x_{2}^{*}}^{2}=\sigma_{g}^{2}-\Omega_{\varepsilon_{g} \nabla x_{2}^{*}} \Omega_{\nabla x_{2}^{*} \nabla x_{2}^{*}}^{-1} \Omega_{\nabla x_{2}^{*} \varepsilon_{g}}=0 .
$$

Corollary 4.2 follows from $\sigma_{g \cdot \nabla x_{2}^{*}}^{2}=0$.

Appendix B. Proof of Theorem 4.1

We first show that there exists a unique $\operatorname{VARMA}(p, 1)$ representation (4.1) given (2.1) under A.1-A.4. We then show that the errors of the conditional equation

$$
\begin{equation*}
\underset{\sim}{w_{g}^{+}}=Z_{g}{\underset{\sim}{g}}^{\delta}+\underset{\sim}{\varepsilon}{\underset{g}{e}}_{+}^{+} \tag{B.1}
\end{equation*}
$$

is independent of the innovations driving the common trends.

Multiplying A_{0}^{-1} to (2.1) yields the reduced form

$$
\begin{equation*}
\underset{\sim}{w}{\underset{t}{w}}^{w}=\sum_{j=1}^{p} \Pi_{j} \underset{\sim}{w}{ }_{t-j}+\underset{\sim}{v}, \tag{B.2}
\end{equation*}
$$

where $\Pi_{j}=-A_{0}^{-1} A_{j}$ and $\underset{\sim}{v}=A_{0}^{-1} \underset{\sim}{\varepsilon}$. . Expressing (B.1) in the error correction form, we have

$$
\begin{equation*}
\nabla \underset{\sim}{w}=\sum_{j=1}^{p-1} \Pi_{j}^{*} \underset{\sim}{\nabla} \underset{t-j}{w}+\Pi_{\sim_{t-p}}^{w}+\underset{\sim}{v}, \tag{B.3}
\end{equation*}
$$

where $\Pi_{j}^{*}=\sum_{\ell=1}^{j} \Pi_{\ell}-I$ and $\Pi^{*}=\sum_{\ell=1}^{p} \Pi_{\ell}-I$, Suppose that rank $\left(\Pi^{*}\right)=r$, i.e. there are r linearly independent cointegrating relations among $\underset{\sim}{w}$, we can write $\Pi^{*}=\underset{\sim}{\alpha} \beta_{\sim}^{\prime}$, where $\underset{\sim}{\alpha}, \underset{\sim}{\beta}$ are $m \times r$ matrices of rank r. Let $\underset{\sim}{\alpha}$ be an $m \times(m-r)$ full column rank matrix such that $\underset{\sim}{\alpha} \underset{\sim}{\alpha}=\underset{\sim}{\alpha}$. We normalize $\underset{\sim}{\alpha} \underset{\sim}{\alpha}$ and $\underset{\sim}{\alpha}$ so that they are orthonormal matrices.

Let $R=[\underset{\sim}{\alpha}, \underset{\sim}{\alpha}]$. Then R is an $m \times m$ orthogonal matrix, i.e., $R R^{\prime}=R^{\prime} R=I_{m}$. Premultiplying (B.3) by R^{\prime}, we have

$$
\left(\begin{array}{c}
\underset{\sim}{\alpha^{\prime}} \nabla \underset{\sim}{\underset{\sim}{w}} \tag{B.4}\\
\underset{\sim}{\alpha^{\prime}} \\
\underset{\sim}{w} \\
\sim
\end{array}\right)=\sum_{j=1}^{p-1}\left[\begin{array}{c}
\underset{\sim}{\alpha^{\prime}} \Pi_{j}^{*} \\
\underset{\sim}{\alpha^{\prime}} \Pi_{j}^{*}
\end{array}\right] \nabla \underset{\sim}{\underset{\sim}{w}} \underset{t-j}{ }+\binom{\underset{\sim}{\beta^{\prime}}}{\underset{\sim}{0}} \underset{\sim}{\underset{\sim}{w}}{ }_{t-p}+\left(\begin{array}{c}
\underset{\sim}{\alpha^{\prime}} \underset{\sim}{v} \\
\underset{\sim}{\alpha^{\prime}} \\
\underset{\sim}{v}
\end{array}\right) .
$$

Note that (B.4) is identical to
where $\Pi_{p}^{*} \equiv 0$, which implies that

Multiplying R to (B.6) yields

$$
\nabla{\underset{\sim}{\sim}}_{t}^{w}=\sum_{j=1}^{p} R\left(\underset{\sim}{\underset{\sim}{\alpha_{\perp}^{\prime}} \Pi_{j}^{*} \Pi_{j}}\right) \nabla \underset{\sim}{\underset{\sim}{w}} \underset{t-j}{ }+\left[I_{m}-R\left(\begin{array}{cc}
I_{r} & \underset{\sim}{0} \tag{B.7}\\
\underset{\sim}{\sim} & \underset{\sim}{0}
\end{array}\right) R^{\prime} L\right] \underset{\sim}{v} .
$$

Let $J(L)=I-J_{1} L-\cdots-J_{p} L^{p}$, and $\Phi(L)=I-\Phi L$, where

$$
J_{j}=R\left[\begin{array}{c}
\underset{\sim}{\alpha^{\prime}} \Pi_{j} \\
\underset{\sim}{\alpha^{\prime}} \Pi_{j}^{*}
\end{array}\right], \Phi=R\left[\begin{array}{cc}
I_{r} & \underset{\sim}{0} \\
\underset{\sim}{\sim} & \underset{\sim}{\sim}
\end{array}\right] R^{\prime} .
$$

Then (B.7) can be rewritten as

$$
\begin{equation*}
J(L) \nabla \underset{\sim}{\underset{\sim}{w}} \underset{t}{w}=\Phi(L) \underset{\sim}{v}, \tag{B.8}
\end{equation*}
$$

with the properties that (i) the roots of $|J(L)|=0$ lie outside the unit circle, and (ii) Φ is symmetric and idempotent. Property (i) follows from

$$
R M(L) R^{\prime} J(L)=\left[I_{m}-R\left(\begin{array}{cc}
\underset{\sim}{\sim} & \underset{\sim}{\sim} \tag{B.9}\\
\underset{\sim}{\sim} & I_{m-r}
\end{array}\right) R^{\prime} L\right] J(L)=\Pi(L),
$$

where

$$
M(L)=\left[\begin{array}{cc}
I_{r} & \underset{\sim}{0} \\
\underset{\sim}{\sim} & (1-L) I_{m-r}
\end{array}\right]
$$

Since $|\Pi(L)|=\left|I-\Pi_{1} L-\cdots-\Pi_{p} L^{p}\right|=0$ has $m-r$ unit roots and $m(p-1)+r$ roots outside the unit circle and $|M(L)|=0$ has $m-r$ unit roots, clearly, all the roots of $|J(L)|=0$ lie outside the unit circle. Therefore (B.8) is a stationary $\operatorname{VARMA}(p, 1)$ model. However (B.8) is not invertible because $|\Phi(L)|=0$ contains r unit roots, unless $r=0$. However, the restriction that Φ is symmetric idempotent is sufficient for (B.8) to be the unique stationary $\operatorname{VARMA}(p, 1)$ representation of $\underset{\sim}{\underset{\sim}{w}} \underset{\sim}{w}$. To see this, we make the following observations.

First, since (B.2) is the true data generating process of $\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{w}$, for any stationary $\operatorname{VARMA}(p, 1)$ representation of $\underset{\sim}{\nabla} \underset{\sim}{w}, C(L) \underset{\sim}{\sim} \underset{\sim}{w}=\underset{\sim}{\eta}$, where $C(L)=I_{m}-\sum_{i=1}^{p} C_{i} L^{i}$ and η is a $\mathrm{MA}(1)$ process, there exists a lag polynomial $\phi(L)=I_{m}-\phi L$ such that

$$
\begin{equation*}
(1-L) C(L)=\phi(L) \Pi(L) \tag{B.10}
\end{equation*}
$$

and $\underset{\sim_{t}}{\eta}=\phi(L) \underset{\sim}{\sim_{t}}$. Then (B.9) and (B.10) imply that $(1-L) C(L)=\phi(L) R M(L)$ $R^{\prime} J(L)$, or equivalently

$$
\begin{equation*}
R^{\prime} \phi(L) R M(L)=(1-L) R^{\prime} C(L) J(L)^{-1} R=(1-L) D(L) \tag{B.11}
\end{equation*}
$$

where $D(L) \equiv R^{\prime} C(L) J(L)^{-1} R$. Since the left-hand side of (B.11) is a lag polynomial of maximum order $2, D(L)$ must be a lag polynomial of maximum order 1. Let $D(L)=I_{m}-D L$ and $\tilde{\phi}(L) \equiv R^{\prime} \phi(L) R=I_{m}-\tilde{\phi} L$. Some simple calculation indicates that (B.11) holds if and only if

$$
\tilde{\phi}=\left(\begin{array}{cc}
I_{r} & \tilde{\phi}_{12} \\
\underset{\sim}{\sim} & \tilde{\phi}_{22}
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
\underset{\sim}{0} & \tilde{\phi}_{12} \\
\underset{\sim}{\sim} & \tilde{\phi}_{22}
\end{array}\right)
$$

So we have

$$
\begin{aligned}
& D(L)=\left(\begin{array}{cc}
I_{r} & \tilde{\phi}_{12} L \\
\underset{\sim}{0} & I_{m-r}-\tilde{\phi}_{22} L
\end{array}\right) \text { and } \\
& \phi(L)=R \tilde{\phi}(L) R^{\prime}=I_{m}-R\left(\begin{array}{cc}
I_{r} & \tilde{\phi}_{12} \\
\underset{\sim}{0} & \tilde{\phi}_{22}
\end{array}\right) R^{\prime} L .
\end{aligned}
$$

Second, the $\operatorname{VARMA}(p, 1)$ representation $C(L) \underset{\sim}{\underset{\sim}{v}} \underset{\sim}{w} \underset{\sim}{\eta} \underset{\sim}{\eta}$ is stationary if and only if roots of $|C(L)|=0$ are outside unit circle. Since ${ }_{\sim}^{\sim_{t}}(L)=R D(L) R^{\prime} J(L)$, this condition is equivalent to that all roots of $|D(L)|=\left|I_{m-r}-\tilde{\phi}_{22} L\right|=0$ are outside the unit circle. In particular, it requires $\left|I_{m-r}-\tilde{\phi}_{22}\right| \neq 0$. Third, for

$$
\phi=R\left(\begin{array}{cc}
I_{r} & \tilde{\phi}_{12} \\
\underset{\sim}{0} & \tilde{\phi}_{22}
\end{array}\right) R^{\prime}
$$

the restriction that ϕ is symmetric leads to

$$
\phi=R\left(\begin{array}{cc}
I_{r} & \underset{\sim}{0} \\
0 & \underset{\sim}{\phi_{22}}
\end{array}\right) R^{\prime}
$$

and $\tilde{\phi}_{22}$ being symmetric. When ϕ is further restricted to be idempotent, i.e. $\phi^{2}=\phi$, we must have $\tilde{\phi}_{22}=\tilde{\phi}_{22}^{2}$, i.e., $\tilde{\phi}_{22}$ is idempotent. Then we can decompose $\tilde{\phi}_{22}$ as $\tilde{\phi}_{22}=E F E^{\prime}$, where E is a $(m-r) \times(m-r)$ orthogonal matrix,

$$
F=\left(\begin{array}{cc}
I_{R_{\phi}} & \underset{\sim}{\sim} \\
\underset{\sim}{0} & \underset{\sim}{0}
\end{array}\right)
$$

and R_{ϕ} is the rank of $\tilde{\phi}_{22}$ (Judge et al., 1985, A.2.11, p. 942). Therefore, we have

$$
I_{m-r}-\tilde{\phi}_{22} L=E\left(\begin{array}{cc}
(1-L) I_{R_{\phi}} & \underset{\sim}{0} \\
\underset{\sim}{\sim} & I_{m-r-R_{\phi}}
\end{array}\right) E^{\prime}
$$

and $\left|I_{m-r}-\tilde{\phi}_{22} L\right|=(1-L)^{R_{\phi}}$. Since the stationarity of $C(L) \underset{\sim}{\nabla} \underset{\sim_{t}}{w}=\underset{\sim}{\eta}$ requires that $\left|I_{m-r}-\tilde{\phi}_{22}\right| \neq 0$, we must have $R_{\phi}=0$, and hence

$$
\tilde{\phi}_{22}=0 \quad \text { and } \quad \phi=R\left(\begin{array}{cc}
\underset{\sim}{I} & \underset{\sim}{\sim} \\
\underset{\sim}{\sim} & \underset{\sim}{\sim}
\end{array}\right) R^{\prime}=\Phi .
$$

We have therefore proved the following lemma.

Lemma. Suppose (B.2) is the true data generating process of $\underset{\sim}{\underset{\sim}{w}} \underset{t}{*}$. Consider a $\operatorname{VARMA}(p, 1)$ specification of $\nabla \underset{\sim}{w}$,

$$
\begin{equation*}
C(L) \nabla \underset{\sim}{\underset{\sim}{w}} \underset{t}{w}=\phi(L) \underset{\sim}{v}, \tag{B.12}
\end{equation*}
$$

where $\phi(L)=I_{m}-\phi L$. The constraint that ϕ is symmetric idempotent is sufficient and necessary for (B.7)/(B.8) to be the unique stationary representation of $\underset{\sim}{\nabla} \underset{\sim}{w}$.

Let

Furthermore, since (B.8) is stationary, we can rewrite it as

$$
\nabla \underset{\sim}{w}=J(L)^{-1} R\left(\begin{array}{c}
\underset{\xi^{*}}{{\underset{\sim}{1}}^{w}} \\
\underset{\xi^{*}}{*} \\
\underset{\sim}{2}
\end{array}\right) .
$$

It follows that $\underset{\sim}{\underset{\sim}{w}} \underset{t}{ }$ and $\varepsilon_{g t}^{+}$has zero long-run covariance, so is $\underset{\sim}{\nabla} \underset{\sim}{\mathcal{X}_{2 t}^{*}}$ and $\varepsilon_{g t}^{+}$. Therefore,

The process $\left(\underset{\sim}{x} \underset{\sim}{*}, \varepsilon_{g t}^{+}\right)$satisfies the multivariate invariance principle, i.e.

$$
\left[\begin{array}{c}
T^{-1 / 2} \sum_{t=1}^{[T r]} \underset{\sim}{\nabla}{\underset{\sim}{x}}^{*} \\
T^{-1 / 2} \sum_{t=1}^{[T r]} \varepsilon_{g t}^{+}
\end{array}\right] \Longrightarrow\binom{B_{x_{2}^{*}}(r)}{B_{\varepsilon_{g}^{+}}(r)}
$$

where $B_{x_{2}^{*}}(r)$ and $B_{\varepsilon_{g}^{+}}(r)$ are independent vectors of Brownian motion.
The maximum likelihood estimator of (B.8) is consistent and asymptotically normally distributed (for detail, see Wang, 2001). Therefore, we can use the

Decompose $\underset{\sim}{\underset{\sim}{\hat{\varepsilon}}}{ }_{g}$ as $^{\sim}{ }^{\sim}$

$$
\begin{equation*}
{\underset{\sim}{\hat{\varepsilon}}}_{\hat{\varepsilon}^{+}}^{+}=\underset{\sim}{\varepsilon}{ }_{g}^{+}+\left[I_{T} \otimes\left(\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}-\hat{\Omega}_{\varepsilon_{g} \eta} \hat{\Omega}_{\eta \eta}^{*-1}\right)\right] \underset{\sim}{\hat{\eta}}+\left[I_{T} \otimes \Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}\right](\underset{\sim}{\eta}-\underset{\sim}{\hat{\eta}}) . \tag{B.13}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\left.T^{-1 / 2} W_{1,-p}^{* \prime} \underset{\sim}{\varepsilon}+\underset{\sim}{+} \Longrightarrow \underset{\sim}{0}, \sigma_{g+}^{2} M_{w_{1} w_{1}}^{*}\right) \tag{B.14}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{-1} X_{2}^{* \prime} \underset{\sim}{\varepsilon_{g}} \Longrightarrow \int_{0}^{1} B_{x_{2}^{*}}(r) \mathrm{d} B_{\varepsilon_{g}^{+}}(r) \tag{B.15}
\end{equation*}
$$

The former (B.14) is asymptotically normal. The latter (B.15) is a mixed normal of the form $\int_{M_{x_{2} x_{2}}^{*}>0} \mathrm{~N}\left(\underset{\sim}{0}, \sigma_{g+}^{2} M_{x_{2} x_{2}}^{*}\right) \mathrm{d} P\left(M_{x_{2} x_{2}}^{*}\right)$, because $B_{x_{2}^{*}}(r)$ and $B_{\varepsilon_{g}^{+}}(r)$ are independent Brownian motions.

Because $\eta-\hat{\eta}=\tilde{X}(\underset{\sim}{\hat{\theta}}-\underset{\sim}{\theta})$, as $T \rightarrow \infty$,

$$
\begin{align*}
& \left.T^{-1 / 2} \tilde{W}_{1,-p}^{*} \tilde{\sim}_{T}^{* \prime} \otimes \Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}\right)(\underset{\sim}{\eta}-\hat{\sim}) \\
& \quad=\left(\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-} \otimes T^{-1} W_{1,-p}^{* \prime}\right) \cdot \sqrt{T}(\underset{\sim}{\hat{\theta}}-\underset{\sim}{\theta}) \\
& \quad \Longrightarrow\left(\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-} \otimes M_{w_{1}^{*} x} \tilde{x}\right) \cdot \mathrm{N}(\underset{\sim}{0}, \operatorname{cov}(\underset{\sim}{\hat{\theta}})) \tag{B.16}
\end{align*}
$$

which is a normal with mean 0 and covariance $\left(\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-} \otimes M_{w_{1}^{*} \tilde{x}}\right) \operatorname{Cov}(\underset{\sim}{\hat{\theta}})\left(\Omega_{\eta \eta}^{-} \Omega_{\eta \varepsilon_{g}} \otimes\right.$ $\left.M_{w_{1}^{*} \tilde{x}}^{\prime}\right)$ with $M_{w_{1}^{*} \tilde{x}}=\operatorname{plim}(1 / T) W_{1,-p}^{* \prime} \tilde{X}$.

$$
\begin{equation*}
T^{-1} X_{2}^{* \prime}\left(I_{T} \otimes \Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}\right)(\underset{\sim}{\eta}-\underset{\sim}{\hat{\eta}})=\left(\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-} \otimes T^{-3 / 2} X_{2}^{* \prime} \tilde{X}\right) \cdot \sqrt{T}(\underset{\sim}{\hat{\theta}}-\underset{\sim}{\theta}) \xrightarrow{\mathrm{p}} \underset{\sim}{0} . \tag{B.17}
\end{equation*}
$$

Since $\hat{\Omega}_{\varepsilon_{g} \eta} \xrightarrow{\mathrm{p}} \Omega_{\varepsilon_{g} \eta}$ and $\hat{\Omega}_{\eta \eta}^{*-1} \xrightarrow{\mathrm{p}} \Omega_{\eta \eta}^{-}$at rate $T^{1 / 2}$ and T^{d}, respectively, it follows that $\hat{\Omega}_{\varepsilon_{g} \eta} \hat{\Omega}_{\eta \eta}^{*-1}-\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}=\left(\mathrm{O}\left(T^{-d}\right), \mathrm{O}\left(T^{-1 / 2+d}\right)\right) R$ (for detail, see Wang, 2001). To ensure the maximum rate of convergence, we let $d=\frac{1}{4}$. Then

$$
\begin{equation*}
T^{-1 / 2} W_{1,-p}^{* \prime}\left[I_{T} \otimes\left(\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}-\hat{\Omega}_{\varepsilon_{g} \eta} \hat{\Omega}_{\eta \eta}^{*-1}\right)\right] \underset{\sim}{\eta} \xrightarrow{\mathrm{p}} \underset{\sim}{\underset{\sim}{0}}, \text { for } p \geqslant 2 \tag{B.18}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{-1} X_{2}^{* \prime}\left[I_{T} \otimes\left(\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}-\hat{\Omega}_{\varepsilon_{g} \eta} \hat{\Omega}_{\eta \eta}^{*-1}\right)\right] \underset{\sim}{\hat{\eta}} \xrightarrow{\mathrm{p}} \underset{\sim}{0} . \tag{B.19}
\end{equation*}
$$

at the rate $T^{1 / 4}$. Substituting (B.13)-(B.19) into (4.6) yields Theorem 4.1. Corollary 7.1 follows from the argument that the limiting distribution of $\underset{\sim}{\hat{\delta}} \hat{g}_{\text {a2SLS }}$ is given by the component that has a slower rate of convergence.

When rank of cointegration $r=0, \Phi=\underset{\sim}{0}$ and $\underset{\sim}{\eta}=\underset{\sim}{v} \underset{\sim}{v}=A_{0}^{-1} \underset{\sim}{\varepsilon}$. It follows that $\Omega_{\varepsilon_{g} \eta} \Omega_{\eta \eta}^{-}=\Sigma_{\varepsilon_{g} \varepsilon} \Sigma_{\varepsilon \varepsilon}^{-1} A_{0}=\underset{\sim}{a^{\prime}}$, where $\underset{\sim}{a_{o g}^{\prime}}$ is the g th row of A_{0}. Then $\underset{\sim}{\varepsilon}{\underset{q}{g}, t}_{+}^{+}=\underset{\sim}{0}, \sigma_{g_{+}}^{2}=0$ for $g=1 \ldots, m$. Corollary 4.2 follows. Theorem 4.1 and Corollary 4.2 imply that
 Theorem 4.1 except that now $\Sigma_{g 1}^{*}$ becomes $\sigma_{g}^{2}\left(M_{z_{g 1} x_{1}}^{*} M_{x_{1} x_{1}}^{*-1} M_{x_{1} z_{g 1}}^{*}\right)^{-1}$.

When $r>0$, it is also possible for $\underset{\sim}{{\underset{g}{g 2, a 2 S L S}}^{\delta}}$ to be hyperconsistent for some g if
 zero if and only if $\underset{\sim}{a}$ is a linear combination of $\underset{\sim}{\alpha}$. From $\underset{\sim}{\alpha} \beta_{\sim}^{\prime}{ }_{\sim}^{\prime}=\Pi^{*}=-A_{0}^{-1} A_{p}^{*}$ where $A_{p}^{*}=\Sigma_{j=0}^{p} A_{j}, \underset{\sim}{a}{\underset{\sim}{\prime}}^{a^{\prime}}=\underset{\sim}{d^{\prime}} \underset{\sim}{\alpha^{\prime}}$ holds if and only if $\underset{\sim}{a_{o g}^{\prime}} A_{0}^{-1} A_{p}^{*}=\underset{\sim}{0}$, i.e., the g th row of
$A_{p}^{*}, \underset{\sim}{a}, \underset{\sim}{* \prime}=\underset{\sim}{0^{\prime}}$. Therefore, $\underset{\underset{q 2, a 2 S L S}{\delta}}{\hat{\delta}^{*}}$ is hyperconsistent if the g th equation is lying on the nonstationary direction with $\underset{\sim}{\underset{\sim}{* \prime}, g} \underset{\sim}{{\underset{\sim}{x}}^{\prime}}$.

References

Engle, R.F., Granger, C.W.J., 1987. Cointegration and error correction: representation, estimation and testing. Econometrica 55, 251-276.
Hsiao, C., 1997a. Cointegration and dynamic simultaneous equations models. Econometrica 65, 647-670.
Hsiao, C., 1997b. Statistical properties of the two stage least squares estimator under cointegration. Review of Economic Studies 64, 385-398.
Hsiao, C., 2001. Identification and dichotomization of long- and short-run relations of cointegrated vector autoregressive models. Econometric Theory 17, 889-912.
Hsiao, C., Wang, S., 2004. Statistical inference of structural vector autoregressive process. Mimeo.
Johansen, S., 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12, 231-254.
Johansen, S., 1991. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica 59, 1551-1580.
Judge, G.G., Griffiths, W.E., Carter Hill, R., Lûtkepohl, H., Lee, T.C., 1985. The Theory and Practice of Econometrics, second ed. Wiley, New York.
King, R.G., Plosser, C.I., Stock, J.H., Watson, M.W., 1991. Stochastic trends and economic fluctuations. American Economic Review 81, 819-840.
Klein, L.R., Evans, M.K., 1969. Econometric Gaming. MacMillan, New York.
Klein, L.R., Evans, M.K., Goldberger, A.S., 1955. An Econometric Model of the United States. NorthHolland, Amsterdam.
Koopmans, T.C., Rubin, H., Leipnik, R.B., 1950. Measuring the equation systems of dynamic economics. In: Koopman, T.C. (Ed.), Statistical Inference in Dynamic Economic Models. Wiley, New York, pp. 53-237.
Phillips, P.C.B., 1995. Fully modified least squares and vector autoregression. Econometrica 63, 1023-1078.
Sims, C.A., 1980. Macroeconomics and reality. Econometrica 48, 1-48.
Sims, C.A., Stock, J.H., Watson, M.W., 1990. Inference in linear time series models with some unit roots. Econometrica 58, 113-144.
Toda, H.Y., Phillips, P.C.B., 1993. Vector autoregression and causality. Econometrica 61, 1367-1393.
Tsay, R.S., Tiao, G.C., 1990. Asymptotic properties of multivariate nonstationary processes with applications to autoregressions. Annals of Statistics 18, 220-250.
Wang, S., 2001. Two essays on time series econometrics-multiple time series analysis of the Asian currency crisis and estimation and inference of the nonstationary structural vector autoregressive model. Ph.D. dissertation submitted to the University of Southern California.
Yamada, H., Toda, H.Y., 1998. Inferences in possibly integrated vector autoregressive models: some finite sample evidence. Journal of Econometrics 86, 55-96.

[^0]: *Corresponding author. Tel.: + 1302831 1924; fax: + 13028316968 .
 E-mail address: wangs@udel.edu (S. Wang).

[^1]: ${ }^{1}$ For ease of notations, we postulate (2.1) without the intercept term. The basic conclusions of this paper remain unchanged with the addition of intercept term in (2.1), see Section 5.

[^2]: ${ }^{2}$ The average percentage estimation bias (BIAS) is the absolute value of the percentage estimation bias averaged over the five coefficients in the first equation. The average percentage root mean square estimation error (RMSE) is the absolute value of the percentage root mean square estimation error averaged over the five coefficients in the first equation.

