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On prediction errors in regression models

with nonstationary regressors
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Academia Sinica and Xiamen University

Abstract: In this article asymptotic expressions for the final prediction er-
ror (FPE) and the accumulated prediction error (APE) of the least squares
predictor are obtained in regression models with nonstationary regressors. It
is shown that the term of order 1/n in FPE and the term of order log n in
APE share the same constant, where n is the sample size. Since the model
includes the random walk model as a special case, these asymptotic expres-
sions extend some of the results in Wei (1987) and Ing (2001). In addition,
we also show that while the FPE of the least squares predictor is not affected
by the contemporary correlation between the innovations in input and output
variables, the mean squared error of the least squares estimate does vary with
this correlation.

1. Introduction

Consider a simple regression model

(1.1) yt = βxt−1 + εt,

where β is an unknown constant, εt’s are (unobservable) independent random dis-
turbances with zero means and a common variance σ2, and xt is an unit root process
satisfying

(1.2) xt = xt−1 + ηt,

with x0 = 0, ηt =
∑t−1

j=0 cjωt−j ,
∑∞

j=0 |cj | < ∞,
∑∞

j=0 cj �= 0, and ωt being in-
dependent random noises with zero means and a common variance σ2

ω. We also
assume that εt is independent of {ωj , j ≤ t− 1}. Note that if β = 1, c0 = 1, cj = 0
if j > 0, and εt = ωt, then (1.1) becomes the well-known random walk model (see,
for instance, Chan and Wei [4]). Having observed (yi+1, xi), i = 1, . . . , n− 1, β can
be estimated by least squares

(1.3) β̂n =
∑n−1

i=1 xiyi+1∑n−1
i=1 x2

i

.

If xn also becomes available, then it is natural to predict yn+1 using the least
squares predictor,

ŷn+1 = xnβ̂n.(1.4)
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To assess the performances of the least squares predictor, we consider the final
prediction error (FPE, Akaike [1])

E
{

( yn+1 − ŷn+1 )2
}

= σ2 + E
{

x2
n( β̂n − β )2

}
,(1.5)

and the accumulated prediction error (APE, Rissanen [14])

n∑
i=2

(yi − ŷi)
2 =

n∑
i=2

{
εi − xi−1(β̂i−1 − β)

}2

=
n∑

i=2

ε2
i +

n∑
i=2

x2
i−1(β̂i−1 − β)2(1 + o(1)) a.s.,(1.6)

where the second equality of (1.6) is ensured by Chow [5]. It is straightforward to
see that the terms in (1.5) and (1.6),

n∑
i=2

x2
i−1(β̂i−1 − β)2 =

n∑
i=2

{
x2

i (
∑i−1

j=1 xjεj+1)2

(
∑i−1

j=1 x2
j )2

}
,(1.7)

and

nx2
n(β̂n − β )2 =

{
( 1√

n
xn)( 1

n

∑n−1
i=1 xiεi+1)

1
n2

∑n−1
i=1 x2

i

}2

.(1.8)

When {yt} is a random walk model mentioned above, Wei ([15], Theorem 4)
showed that the rhs of (1.7) equals 2σ2

ω log n + o(log n) a.s. By imposing further
assumptions on the distribution of ωt, Ing ([9], Corollary 1) subsequently obtained
the limiting value of the expectation on the rhs of (1.8), which is 2σ2

ω. This article
extends these two results to models (1.1) and (1.2), which provides a deeper un-
derstanding of the least squares predictor (estimate) in situations where Fisher’s
information,

∑n−1
j=1 x2

j , grows at a rate much faster than n, and the innovations in
input and output variables come from different sources. The rest of the paper is
organized as follows. Section 2 derives the asymptotic expressions for the rhs of
(1.7). In Section 3, sufficient conditions are given to ensure that the expectation on
the rhs of (1.8) is bounded by some finite positive constant for all sufficiently large
n. We then apply this moment property and the results obtained in Section 2 to
show that

lim
n→∞

E{nx2
n(β̂n − β )2} = 2σ2.(1.9)

Some discussions related to (1.9) are given at the end of Section 3. In particular,
it is shown that while the FPE of the least squares predictor is not affected by the
contemporary correlation between εt and ωt, the mean squared error of the least
squares estimate does vary with this correlation. In addition, we also show that
the squares of the normalized estimate, n(β̂n − β), and the normalized regressor,
xn/

√
n, are not asymptotically uncorrelated.

2. An asymptotic expression for the APE

To prove the main result of this section, two auxiliary lemmas are required. They
are also of independent interests.
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Lemma 1. Assume the {ωt} in Section 1 satisfy sup−∞<t<∞ E|ωt|α < ∞ for some
α > 2. Let zt =

∑t−1
j=0 djωt−j, where |dj | ≤ Cj−1 for some C > 0 and all j ≥ 1.

Then, with γt = σ2
ω

∑t−1
j=0 d2

j ,

1
n

n∑
t=1

(z2
t − γt) = o(1) a.s.(2.1)

Proof. Straightforward calculations yield that

z2
t − γt =

t∑
l=1

d2
t−l(ω

2
l − σ2

ω) + 2
t∑

l2=2

l2−1∑
l1=1

dt−l1dt−l2ωl1ωl2 .(2.2)

By (2.2) and changing the order of summations,

n2∑
t=n1

z2
t − γt

t
=

n1∑
l=1

(
n2∑

t=n1

d2
t−l

t

)
η∗

l +
n2∑

l=n1+1

(
n2∑
t=l

d2
t−l

t

)
η∗

l

+ 2
n1∑

l2=2

{
l2−1∑
l1=1

(
n2∑

t=n1

dt−l1dt−l2

t

)
ωl1

}
ωl2

+ 2
n2∑

l2=n1+1

{
l2−1∑
l1=1

(
n2∑

t=l2

dt−l1dt−l2

t

)
ωl1

}
ωl2

≡ (1) + (2) + (3) + (4),

where η∗
t = ω2

t − σ2
ω. In the following, we shall show that for some αk > 1, there

are Ck > 0, ξ1,k > 1, and ξ2,k > 1 independent of n1 and n2 such that

(2.3) E|(k)|αk ≤ Ck(
n2∑

t=n1

1
tξ1,k

)ξ2,k ,

where k = 1, . . . , 4. (2.3) and Móricz (1976) imply that for some α > 1, there are
C∗ > 0, ξ1 > 1, and ξ2 > 1 independent of n1 and n2 such that

(2.4) E max
n1≤l≤n2

|
l∑

t=n1

z2
t − γt

t
|α ≤ C∗(

n2∑
t=n1

1
tξ1

)ξ2 .

As a result, (2.1) follows from (2.4) and Kronecker’s lemma.
Let α1 = min{α/2, 2}. Then,

E|(1)|α1 ≤ C1,1E{
n1∑
l=1

(
n2∑

t=n1

d2
t−l

t
)2η∗2

l }α1/2

≤ C1,1

n2∑
t1=n1

n2∑
t2=n1

1

t
α1/2
1 t

α1/2
2

n1∑
l=1

|dt1−ldt2−l|α1E|η∗
l |α1

(2.5)

≤ C1,2

(
n2∑

t=n1

1
tα1

+
n2−1∑
t1=n1

1

t
α1/2
1

n2∑
t2=t1+1

1

t
α1/2
2

(t2 − t1)−α1

)

≤ C1,3

(
n2∑

t=n1

1
tα1

)
≤ C1,3

(
n2∑

t=n1

1
tξ1,1

)ξ2,1

,
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where C1,i, i = 1, 2, 3 are some positive constant independent of n1 and n2, 1 <
ξ1,1 < α1, ξ2,1 = α1/ξ1,1, first inequality follows from Burkholder’s inequality,
second one follows from the fact that 0 < α1/2 ≤ 1 and changing the order of
summations, third one is ensured by supt E|ωt|α < ∞ and |dj | ≤ Cj−1, which
implies for all n1 ≤ t1, t2 ≤ n2,

∑n1
l=1 |dt1−ldt2−l|α1 ≤ C1,4|t1 − t2|−α1 , for some

C1,4 > 0. As a result, (2.3) holds for k = 1. The proof of (2.3) for the case of
k = 2 is similar. The details are thus omitted. To show (2.3) for the case k = 3, let
α3 = α. Then, by Minkowski’s inequality and using Wei (1987, Lemma 2) twice,
one obtains

E|(3)|α3 ≤ C3,1E|
n1∑

l2=2

{
l2−1∑
l1=1

(
n2∑

t=n1

dt−l1dt−l2

t

)
ωl1

}
ωl2 |α3

(2.6)

≤ C3,2

(
n1∑

l2=2

l2−1∑
l1=1

(
n2∑

t=n1

dt−l1dt−l2

t
)2

)α3/2

,

where C3,i, i = 1, 2 are some positive constants independent of n1 and n2. Observe
that for n1 ≤ t1 < t2 ≤ n2 and any 1 ≤ M1 ≤ M2 ≤ n1,

∑M2
l=M1

|dt1−ldt2−l| ≤
C3,3(log t2 − log t1)/(t2 − t1), where C3,3 > 0 is independent of M1 and M2. Using
this fact and changing the order of summations, it follows that the rhs of (2.6) is
bounded by C3,4(

∑n2
t=n1

t−2)α3/2, where C3,4 is a positive constant independent of
n1 and n2. Hence, (2.3) holds for k = 3. The proof of (2.3) for the case k = 4 is
similar to that of k = 3. Therefore, we skip the details.

Remark 1. If in Lemma 1 zt =
∑∞

j=0 djωt−j with |dj | ≤ Cj−1, j ≥ 1, then the
same argument also yields (2.1) but with γt replaced by γ∗ = σ2

ω

∑∞
j=0 d2

j . For a
related result, Brockwell and Davis (1987, Proposition 7.3.5), assuming that ωj ’s are
i.i.d. with finite second moment and dj ’s satisfy

∑∞
j=0 |dj | < ∞ and

∑∞
j=0 d2

jj < ∞,
obtained (n−1

∑n
t=1 z2

t ) − γ∗ = op(1). While the moment restriction of their result
is slightly weaker than that of Lemma 1, the identically distributed assumption
can be dropped in Lemma 1. In addition, the assumption on dj in Lemma 1 seems
less stringent. More importantly, Lemma 1 gives a strong law of large number for
n−1

∑n
t=1 z2

t under rather mild assumptions, which is one of the key tools for our
asymptotic analysis of APE.

Lemma 2. Assume sup−∞<t<∞ E|ωt|α < ∞ for some α > 2 and∑
j≥k

|cj | = O(k−1).(2.7)

Then,

log

(
n−1∑
j=1

x2
j

)
= 2 log n + o(log n) a.s.

Proof. First note that xt =
∑t

j=1 ηj . Define Nt = θ
∑t

j=1 ωj , where θ =
∑∞

j=0 cj .
Then,

xt = Nt − St,(2.8)

where St =
∑t−1

j=0 fjωt−j with fj =
∑∞

l=j+1 cl. In view of (2.8),

n−1∑
j=1

x2
j =

n−1∑
j=1

N2
j − 2

n−1∑
j=1

NjSj +
n−1∑
j=1

S2
j .(2.9)
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Since |fj | = O(j−1), Lemma 1 yields

n−1∑
j=1

S2
j = O(n) a.s.(2.10)

By the law of the iterated logarithm,

n−1∑
j=1

N2
j = O(n2 log log n) a.s.(2.11)

By Lai and Wei ([12], (3.23)),

lim inf
n→∞

log log n

n2

n−1∑
j=1

N2
j > 0 a.s.(2.12)

Now, Lemma 2 follows directly from (2.9)-(2.12).

Remark 2. By assuming

∞∑
j=0

j|cj | < ∞,(2.13)

Proposition 17.3 of Hamilton (1994) gives the limiting distribution of n−2
∑n−1

j=1 x2
j ,

which is λ2
∫ 1

0
w(r)2dr, where λ = σω

∑∞
j=0 cj and w(r) denotes the standard

Brownian motion. This result immediately implies

log

(
n−1∑
j=1

x2
j

)
= 2 log n + Op(1).(2.14)

Lemma 2 and (2.14) provide different estimates for the difference between 2 log n

and log(
∑n−1

j=1 x2
j ), but neither is more informative than the other. On the other

hand, we have found that the assumption on the coefficients used in Lemma 2, (2.7),
seems to be weaker than the one imposed by Hamilton, (2.13). This can be seen by
observing that (2.7) is marginally satisfied by C1j

−2 ≤ |cj | ≤ C2j
−2, C2 ≥ C1 > 0,

whereas (2.13) is not.

We are now ready to prove the main result of this section.

Theorem 1. Assume that models (1.1), (1.2), and the assumptions of Lemma 2
hold. Also assume that sup−∞<t<∞ E|εt|α0 < ∞ for some α0 > 2. Then,

n∑
i=2

x2
i−1(β̂i−1 − β)2 = 2σ2 log n + o(log n) a.s.,(2.15)

and

n∑
i=2

(yi − ŷi)
2 =

n∑
i=2

ε2
i + 2σ2 log n + o(log n) a.s.(2.16)
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Proof. First note that (2.9)-(2.12) yield

lim sup
n→∞

n2

(log log n)
∑n

j=1 x2
j

< ∞ a.s.(2.17)

By Wei ([15], Lemma 2) and (2.7),

E

∣∣∣∣ Sn

n1/2

∣∣∣∣
α

≤ Cαn−α/2

(
n−1∑
j=0

f2
j

)α

≤ C∗
αn−α/2,(2.18)

where Cα and C∗
α depend only on α. (2.18) and the Borel-Cantelli lemma give

Sn = o(n1/2) a.s.(2.19)

Since the law of the iterated logarithm implies

Nn = O((n log log n)1/2) a.s.,

this, (2.8), (2.17), and (2.19) yield

x2
n∑n

j=1 x2
j

= o(1) a.s.(2.20)

In view of (2.20) and Wei ([15], Theorem 3), we have

n∑
i=2

x2
i−1(β̂i−1 − β)2 = σ2 log

(
n−1∑
j=1

x2
j

)
+ o


log

(
n−1∑
j=1

x2
j

)
 a.s.,(2.21)

As a result, (2.15) follows from Lemma 2 and (2.21); and (2.16) is an immediate
consequence of (2.15) and (1.6).

3. An asymptotic expression for the FPE

Assume that models (1.1) and (1.2) hold, E(εtωt) = π is a constant independent of
t, sup−∞<t<∞ E|εt|α0 < ∞, α0 > 2, and sup−∞<t<∞ E|ωt|α < ∞, α > 2. Then, by
the functional central limit theorem, continuous mapping theorem, Ito’s formula,
and some algebraic manipulations, it can be shown that

{
( 1√

n
xn)( 1

n

∑n−1
i=1 xiεi+1)

1
n2

∑n−1
i=1 x2

i

}2

(3.1)

=⇒
w2

a(1)
(
ρσω

∫ 1

0
wa(t)dwa(t) + σθ

∫ 1

0
wa(t)dwb(t)

)2

( ∫ 1

0
w2

a(t)dt
)2 ,

where “=⇒” denotes weak convergence, (wa(t), wb(t)) is a standard Brownian mo-
tion of dimension 2, ρ = π/σ2

ω, and σ2
θ = σ2 − ρ2σ2

ω. If we can further show that
for some q > 2,

E

∣∣∣∣∣
( 1√

n
xn)( 1

n

∑n−1
i=1 xiεi+1)

1
n2

∑n−1
i=1 x2

i

∣∣∣∣∣
q

= O(1),(3.2)
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then, in view of (3.1), (3.2), and (1.8),

nE{x2
n(β̂n − β )2}

(3.3)

= E




w2
a(1)

(
ρσω

∫ 1

0
wa(t)dwa(t) + σθ

∫ 1

0
wa(t)dwb(t)

)2

( ∫ 1

0
w2

a(t)dt
)2


 + o(1).

In the rest of this section, we provide sufficient conditions to ensure (3.2). In addi-
tion, the expectation on the rhs of (3.3) is investigated (Corollary 1). Let us start
with a useful lemma.

Lemma 3. Let Ft,m,am(.) be the distribution function of
∑m

j=1 ajωt+1−j, where
am = (a1, . . . , am)′. There are some positive numbers κ, ι, and M such that for all
m ≥ 1,−∞ < t < ∞ and ‖am‖2 =

∑m
j=1 a2

j = 1,

| Ft,m,am(x) − Ft,m,am(y) |≤ M | x − y |κ,(3.4)

as | x − y |≤ ι. Then, for any q > 0,

E





 1

n2

n−1∑
j=1

x2
j




−q
 = O(1).(3.5)

Proof. The proof is closely related to the one given in Ing ([9], Lemma 1), with the
assumption there being strengthened to (3.4). First note that

1
n2

n−1∑
i=1

x2
i ≥ 1

n2

n−1∑
i=nδ

x2
i =

δ

n

n−1∑
i=nδ

x2
i

nδ
≥ δ

n

n−1∑
i=nδ

x2
i

i
,(3.6)

where 0 < δ < 1, and without loss of generality, nδ is assumed to be a positive
integer. Rearranging the series on the rhs of (3.6), one obtains

δ

n

(1−δ)n
lq −1∑
j=0

lq−1∑
i=0

x2

nδ+
(1−δ)n

lq i+j

nδ + (1−δ)n
lq i + j

,(3.7)

where l > max[ 2/κ, 1/q, (1/q){(1/δ) − 1)} ] and for simplifying the discussion, lq
and { (1 − δ)n }/(lq) are also assumed to be positive integers. By the convexity of
function x−q, x > 0,(

1
n2

n−1∑
i=1

x2
i

)−q

≤
{

(1 − δ) δ

lq

}−q
lq

(1 − δ)n
(3.8)

×

(1−δ)n
lq −1∑
j=0




lq−1∑
i=0

x2

nδ+
(1−δ)n

lq i+j

nδ + (1−δ)n
lq i + j




−q

.

In view of (3.8), if one can show that for some positive number C independent of
j, the following inequality,

E




lq−1∑
i=0

x2

nδ+
(1−δ)n

lq i+j

nδ + (1−δ)n
lq i + j




−q

≤ C < ∞,(3.9)
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holds for all j = 0, 1, . . . , { (1 − δ)n/(lq) } − 1 as n is large enough, then (3.5)
follows. The rest of the proof only focuses on the case where j = 0, because the
same argument can be easily applied to other j’s.

For i = 0, . . . , lq − 1, define

Yn,i =
{

nδ +
(1 − δ)n

lq
i

}−1/2

x
nδ+

(1−δ)n
lq i

,(3.10)

Wn,i =
{

nδ +
(1 − δ)n

lq
i

}−1/2
(1−δ)n

lq −1∑
m=0

f̄mω
nδ+

(1−δ)n
lq i−m

,(3.11)

where f̄j =
∑j

l=0 cl, and

Fn,i = Yn,i − Wn,i.(3.12)

(Note that xt =
∑t−1

j=0 f̄jωt−j .) Then,

E

(
lq−1∑
i=0

Y 2
n,i

)−q

=
∫ ∞

0

Pr




(
lq−1∑
i=0

Y 2
n,i

)−q

> t


 dt

=
∫ ∞

0

Pr

(
lq−1∑
i=0

Y 2
n,i < t−1/q

)
dt

(3.13)
≤

∫ ∞

0

Pr
(
−t−1/(2q) < Yn,i < t−1/(2q), i = 0, . . . , lq − 1

)
dt

=
∫ ∞

0

E

{
E

(
lq−1∏
i=0

IAn,i

∣∣∣∣∣Fn,lq−1, Wn,i, Fn,i, i = 0, . . . , lq − 2

)}
dt,

where An,i = {−t−1/(2q) < Yn,i < t−1/(2q) }. In view of (3.10)-(3.12), for 0 ≤ p ≤
lq − 1, 0 ≤ i ≤ p, and 0 ≤ j ≤ p − 1, Wn,p is independent of (Fn,i, Wn,j). In
addition, var(Wn,i) > ζ > 0, where i = 0, . . . , lq − 1 and ζ is a positive number
independent of n and i. According to these facts, (3.4), and arguments similar
to those used in (3.10) and (3.11) of Ing [9], there exist some positive numbers
0 < C ′ < ∞, 0 < s < ∞, and a positive integer N0 such that for all n ≥ N0 and all
t ≥ s,

E

(
lq−1∏
i=0

IAn,i

)
≤ C ′t−(κl)/2.(3.14)

Since, by construction, l > 2/κ, (3.13) and (3.14) guarantee that for n > N0,

E

(
lq−1∑
i=0

Y 2
n,i

)−q

≤ s + C ′
∫ ∞

s

t−(κl)/2dt < ∞,

which yields (3.9).

Lemma 4 below shows that (3.4) is easily found in many time series applications.

Lemma 4. If ωt’s are i.i.d. random variables satisfying E(ω1) = 0, E(ω2
1) = σ2

ω >
0, and E(|ω1|α) < ∞ for some α > 2. Assume also that for some positive constant
M0 < ∞, ∫ ∞

−∞
|ϕ(t)|dt ≤ M0,(3.15)
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where ϕ(t) = E(eitω1) is the characteristic function of ω1. Then, for all −∞ < t <
∞, m ≥ 1 and ‖am‖ = 1, there is a finite positive constant M1 such that

sup
−∞<x<∞

ft,m,am(x) < M1,(3.16)

where ft,m,am(·) is the density function of
∑m

j=1 ajωt+1−j. As a result, (3.4) follows.

Proof. The proof is inspired by the ideas of Feller ([7], p. 516), which deal with the
special case, aj = m−1/2 for all j = 1, . . . , m. Without loss of generality, assume
σ2

ω = 1. Denote Y =
∑m

j=1 ajωt+1−j . Then, ϕY (t) = E(eitY ) =
∏m

j=1 ϕj(ajt). By
Chow and Teicher ([6], Theorem 8.4.1),

ϕ(ajt) = 1 −
a2

j t
2

2
+ o(a2

j t
2),

as a2
j t

2 → 0. This gives for |ajt| < δ∗1 , where δ∗1 is some small positive constant,

|ϕ(ajt)| ≤ 1 −
a2

j t
2

4
.(3.17)

On the other hand, since (3.15) yields |ϕ(t)| → 0 as |t| → ∞, by Chow and Teicher
([6], Corollary 8.4.2), |ϕ(t)| < 1 for all t �= 0, and hence for all |t| ≥ δ∗1 (with δ∗1
defined above),

|ϕ(t)| < θ1,(3.18)

where θ1 is some positive constant < 1. Now, by (3.17),∫ ∞

−∞

m∏
j=1

|ϕ(ajt)|dt ≤
∫
|t|<

δ∗
1

Om

e
−t2

4 dt +
∫
|t|≥

δ∗
1

Om

m∏
j=1

|ϕ(ajt)|dt

(3.19)
≤

∫ ∞

−∞
e

−t2

4 dt +
∫
|t|≥

δ∗
1

Om

m∏
j=1

|ϕ(ajt)|dt,

where Oj is a permutation of |aj | satisfying Om ≥ Om−1 ≥ · · · ≥ O1. For t ≥
δ∗1/Om, (3.17), (3.18) and the fact that

θ1 = 1 − (1 − θ1) ≤ 1 − 4(1 − θ1)
δ∗

2

1

a2
jδ

∗2

1

4O2
m

imply

|ϕ(ajt)| ≤ max{1 −
a2

j t
2

4
, θ1} ≤ max{1 −

a2
jδ

∗2

1

4O2
m

, θ1} ≤ 1 − ξ
a2

jδ
∗2

1

4O2
m

,(3.20)

where 0 < ξ < min{1, 4(1−θ1)/δ∗
2

1 }. In view of (3.20) and the fact that
∑m−1

j=1 O2
j =

1 − O2
m,

∫
|t|≥

δ∗
1

Om

m∏
j=1

|ϕ(ajt)|dt ≤ 1
Om

∫ ∞

−∞
e
−

ξδ∗
2

1
4O2

m

∑m−1

j=1
O2

j |ϕ(t)|dt

= e
ξδ∗

2
1
4

1
Om

e
−ξδ∗

2
1

4O2
m

∫ ∞

−∞
|ϕ(t)|dt(3.21)

≤ e
ξδ∗

2
1
4 sup

x≥1
xe

−ξδ∗
2

1 x2

4 M0 < ∞.
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By (3.21), (3.19), and the fact that

sup
−∞<x<∞

ft,m,am(x) ≤ 1
2π

∫ ∞

−∞

m∏
j=1

|ϕ(ajt)|dt,

(3.16) follows. In addition, it is not difficult to see that (3.4) can be deduced
from (3.16).

In the following lemma, some moment bounds for (1/
√

n)xn and (1/n)
∑n−1

i=1 xi×
εi+1, are obtained.

Lemma 5. Assume models (1.1) and (1.2), with supt E( |εt|q) < ∞ and
supt E( |ωt|q) < ∞, for some q ≥ 2. Then,

(i) sup
n≥1

E

( ∣∣∣∣ 1√
n

xn

∣∣∣∣
q )

< ∞,(3.22)

(ii) sup
n≥1

E

(∣∣∣∣∣ 1
n

n−1∑
i=1

xiεi+1

∣∣∣∣∣
q )

< ∞.(3.23)

Proof. The proof of Lemma 5 is similar to that of Ing ([9], Lemma 1). The details
are omitted.

Armed with the previous results, (3.2) is proved in the following theorem.

Theorem 2. Assume that (1.1), (1.2), (3.4), supt E(| εt |q) < ∞, and
supt E(|ωt |q) < ∞ are satisfied, where q > 4. Then, (3.2) holds. If we further
assume that E(εtωt) = π is a constant independent of t, then (3.3) follows.

Proof. By Lemmas 3 and 5, (3.1), and an argument similar to the one used in [9],
Theorem 1, the claimed results can be obtained.

The FPE of the least squares predictor is obtained in Corollary 1 below.

Corollary 1. Assume that (2.7) and all assumptions of Theorem 2 hold. Then,
(1.9) follows.

Proof. By (2.15), (3.2), and Minkowski’s inequality,

lim
n→∞

1
log n

n∑
i=m∗

E{x2
i−1(β̂i−1 − β)2} = 2σ2,(3.24)

where m∗ is some positive integer independent of n. Now, (1.9) is guaranteed by
(3.3) and (3.24).

Corollary 1 and Theorem 1 together indicate an interesting result that the term
of order log n in the APE and the term of order n−1 in the FPE share the same
constant, 2σ2. For applications of this type of results to model selection problems,
see [11]. Corollary 1 also shows that the FPE of the least squares predictor is not
affected by the contemporary correlation between εt and ωt. This is a somewhat
unexpected feature because the least squares estimate itself does not possess this
property. More specifically, by direct calculations, we have

n(β̂n − β) =⇒ 1
λ

ρσω

∫ 1

0
wa(t)dwa(t) + σθ

∫ 1

0
wa(t)dwb(t)∫ 1

0
w2

a(t)dt
,(3.25)
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and

n2(β̂n − β)2 =⇒ 1
λ2

(
ρσω

∫ 1

0
wa(t)dwa(t) + σθ

∫ 1

0
wa(t)dwb(t)

)2

(∫ 1

0
w2

a(t)dt
)2 ,(3.26)

where λ is defined in Remark 2. By (3.26), an argument similar to that used in the
proof of Theorem 2, and some algebraic manipulations,

lim
n→∞

n2E(β̂n − β)2 = E




1
λ2

(
ρσω

∫ 1

0
wa(t)dwa(t) + σθ

∫ 1

0
wa(t)dwb(t)

)2

(∫ 1

0
w2

a(t)dt
)2




(3.27)

=
ρ2

ι2
E

(∫ 1

0
wa(t)dwa(t)∫ 1

0
w2

a(t)dt

)2

+
σ2

θ

ι2σ2
ω

E

(
1∫ 1

0
w2

a(t)dt

)
,

where ι2 = λ2σ−2
ω . Ing ([9], (4.3)) showed that

E

(∫ 1

0
wa(t)dwa(t)∫ 1

0
w2

a(t)dt

)2

.= 13.3.(3.28)

By (3.6.4) and (3.6.5) of Arató and using a numerical integration method,

E

(
1∫ 1

0
w2

a(t)dt

)
.= 5.6.(3.29)

Consequently, (3.27)-(3.29) imply

lim
n→∞

n2E(β̂n − β)2 .=
ρ2

ι2
13.3 +

σ2
θ

ι2σ2
ω

5.6,(3.30)

which obviously varies with the strength of dependence between εt and ωt. In
particular, if σ2 = σ2

ω, then ρ = corr(εt, ωt) and (3.30) can be rewritten as

lim
n→∞

n2E(β̂n − β)2 .=
1
ι2

[ρ213.3 + (1 − ρ2)5.6].(3.31)

As observed in (3.31), the larger the magnitude of the correlation between εt and
ωt is, the larger the mean squared error of the least squares estimate is, a result
new to the literature.

As a final remark, we note that the square of the normalized estimate, n2(β̂n −
β)2, and the square of normalized regressor, x2

n/n, are not asymptotically uncorre-
lated. To see this, observe that limn→∞ E(x2

n/n) = λ2, which together with (3.30)
and Corollary 1, gives

lim
n→∞

E

(
x2

n

n

)
E

{
n2(β̂n − β)2

}
.= 13.3ρ2σ2

ω + 5.6σ2
θ

= 5.6σ2 + 7.7ρ2σ2
ω > 2σ2

= lim
n→∞

E

{
x2

n

n
n2(β̂n − β)2

}
.

Therefore, x2
n/n and n2(β̂n − β)2 are (asymptotically) negatively correlated, which

suggests that larger variation of xn can yield a better estimation result. It is worth
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mentioning that this special feature does not exist for the (asymptotically) sta-
tionary regressor. For example, when xt = ςxt−1 + ηt, with |ς| < 1, following an
argument used in Ing [10], it can be shown that

lim
n→∞

E(x2
n)E

{
[
√

n(β̂n − β)]2
}

= lim
n→∞

E
{

x2
nn(β̂n − β)2

}
= σ2.

Therefore, the square of the normalized estimate, n(β̂n −β)2, and the square of the
(normalized) regressor, x2

n, are asymptotically uncorrelated in this case.
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