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Abstract 

In this article we discuss serial correlation in a linear time series regression context and serial dependence in a nonlinear time series context. We first 
discuss various tests for serial correlation for both estimated regression residuals and observed raw data. Particular attention is paid to the impact of 
parameter estimation uncertainty and conditional heteroskedasticity on the asymptotic distribution of test statistics. We discuss the drawback of serial 
correlation in nonlinear time series models and introduce a number of measures that can capture nonlinear serial dependence and reveal useful 
information about serial dependence. 
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Article 

1 Introduction 

Serial correlation and serial dependence have been central to time series econometrics. The existence of serial correlation complicates statistical 
inference of econometric models; and in time series analysis, inference of serial correlation, or more generally, serial dependence, is crucial to 
characterize the dynamics of time series processes. Lack of serial correlation is also an important implication of many economic theories and 
economic hypotheses. For example, the efficient market hypothesis implies that asset returns are an martingale difference sequence (m.d.s.), and so 
are serially uncorrelated. More generally, rational expectations theory implies that the expectational errors of the economic agent are serially 
uncorrelated. In this article we first discuss various tests for serial correlation, for both estimated model residuals and observed raw data, and we 
discuss their relationships. We then discuss serial dependence in a nonlinear time series context, introducing related measures and tests for serial 
dependence. 

2 Testing for serial correlation 

Consider a linear regression model 
 

(2.1) 
 
where Yt is a dependent variable, Xt is a k×1 vector of explanatory variables, β0 is an unknown k×1 parameter vector, and εt is an unobservable 
disturbance with E(εt|Xt)=0. Suppose Xt is strictly exogenous such that cov(Xt, εs)=0 for all t, s. Then (2.1) is called a static regression model. If Xt 
contains lagged dependent variables, (2.1) is called a dynamic regression model. 
For a linear dynamic regression model, serial correlation in {εt} will generally render inconsistent the OLS estimator. To see this, we consider an AR
(1) model 

 
 
where Xt=(1, Yt−1)′. If {εt} also follows an AR(1) process, we will have , rendering inconsistent the OLS estimator for β0. It is therefore 
important to check serial correlation for estimated model residuals, which serves as a misspecification test for a linear dynamic regression model. For 
a static linear regression model, it is also useful to check serial correlation. In particular, if there exists no serial correlation in {εt} in a static 
regression model, then there is no need to use a long-run variance estimator of the OLS estimator  (for example, Andrews, 1991; Newey and West, 
1987). 

2.1 Durbin–Watson test 

Testing for serial correlation has been a longstanding problem in time series econometrics. The most well known test for serial correlation in 
regression disturbances is the Durbin–Watson test, which is the first formal procedure developed for testing first order serial correlation 

 
 
using the OLS residuals  in a static linear regression model. Durbin and Watson (1950; 1951) propose a test statistic 
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Durbin and Watson present tables of bounds at the 0.05, 0.025 and 0.01 significance levels of the d statistic for static regressions with an intercept. 
Against the one-sided alternative that ρ>0, if d is less than the lower bound dL, the null hypothesis that ρ=0 is rejected; if ρ is greater than the upper 
bound dU, the null hypothesis is accepted. Otherwise, the test is equivocal. Against the one-sided alternative that ρ<0, 4−d can be used to replace d in 
the above procedure. 
The Durbin–Watson test has been extended to test for lag 4 autocorrelation by Wallis (1972) and for autocorrelation at any lag by Vinod (1973). 

2.2 Durbin's h test 

The Durbin–Watson d test is not applicable to dynamic linear regression models, because parameter estimation uncertainty in the OLS estimator  
will have nontrivial impact on the distribution of d. Durbin (1970) developed the so-called h test for first-order autocorrelation in {εt} that takes into 
account parameter estimation uncertainty in . Consider a simple dynamic linear regression model 

 
 
where Xt is strictly exogenous. Durbin's h statistic is defined as: 

 
 
where  is an estimator for the asymptotic variance of ,  is the OLS estimator from regressing et on et−1 (in fact, ). Durbin (1970) 

shows that  as n→∞ under null hypothesis that ρ=0. 

2.3 Breusch−Godfrey test 

A more convenient and generally applicable test for serial correlation is the Lagrange multiplier test developed by Breusch (1978) and Godfrey 
(1978). Consider an auxiliary autoregression of order p: 

 
(2.2) 
 
The null hypothesis of no serial correlation implies αj=0 for all 1≤j≤p. Under the null hypothesis, we have , where  is the uncentred R2 
of (2.2). However, the autoregression (2.2) is infeasible because εt is unobservable. One can replace εt with the OLS residual et: 

 
 
Such a replacement, however, may contaminate the asymptotic distribution of the test statistic because  contains the estimation error 

 where Xt may have nonzero correlation with the regressors et−j for 1≤j≤p in dynamic regression models. This correlation affects the 

asymptotic distribution of  so that it will not be . To purge this impact of the asymptotic distribution of the test statistic, one can consider the 
augmented auxiliary regression 

 
(2.3) 
 
The inclusion of Xt will capture the impact of estimation error . As a result, the test statistic  under the null hypothesis, where, 

assuming that Xt contains an intercept, R2 is the centred squared multi-correlation coefficient in (2.3). For a static linear regression model, it is not 
necessary to include Xt in the auxiliary regression, because {Xt} and {εt} are uncorrelated, but it does not harm the size of the test if Xt is included. 

Therefore, the nR2 test is applicable to both static and dynamic regression models. We note that Durbin's h test is asymptotically equivalent to the 
nR2 test of (2.3) with p=1. 

2.4 Box–Pierce–Ljung test 

In time series ARMA modelling, Box and Pierce (1970) propose a portmanteau test as a diagnostic check for the adequacy of an ARMA model 

 
(2.4) 
 
Suppose et is an estimated residual obtained from a maximum likelihood estimator. One can define the residual sample autocorrelation function 

 
 

where  is the residual sample autocovariance function. 
Box and Pierce (1970) propose a portmanteau test 

 
 
where the asymptotic χ2 distribution follows under the null hypothesis of no serial correlation, and the adjustment of degrees of freedom r+q is due to 
the impact of parameter estimation uncertainty for the r autoregressive coefficients and q moving average coefficients in (2.4). 
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To improve small sample performance of the Q test, Ljung and Box (1978) propose a modified Q test statistic: 

 
 
The modification matches the first two moments of Q* with those of the χ2 distribution. This improves the size in small samples, although not the 
power of the test. 
The Q test is applicable to test serial correlation in the OLS residuals {et} of a linear static regression model, with  under the null hypothesis. 

Unlike for ARMA models, there is no need to adjust the degrees of freedom for the χ2 distribution because the estimation error  has no 
impact on it, due to the fact that cov(Xt, εs)=0 for all t, s. In fact, it could be shown that the nR2 and Q statistics are asymptotically equivalent under 
the null hypothesis. However, when applied to the estimated residual of a dynamic regression model which contains both endogenous and exogenous 
variables, the asymptotic distribution of the Q test is generally unknown (Breusch and Pagan, 1980). One solution is to modify the Q test statistic as 
follows: 

 
 
where  and  captures the impact caused by nonzero correlation between {Xt} and {εs}. See Hayashi (2000, Section 2.10) for more 
discussion. 

2.5 Spectral density-based test 

Much criticism has been levelled at the possible low power of the Box–Pierce–Ljung portmanteau tests, which also applies to the nR2 test, due to the 
asymptotic equivalence between the Q test and the nR2 test for a static regression. Moreover, there is no theoretical guidance on the choice of p for 
these tests. A fixed lag order p will render inconsistent any test for serial correlation of unknown form. 
To test serial correlation of unknown form in the estimated residuals of a linear regression model, which can be static or dynamic, Hong (1996) uses 
a kernel spectral density estimator 

 
 
and compares it with the flat spectrum implied by the null hypothesis of no serial correlation: 

 
 
Under the null hypothesis,  and  are close. If  is significantly different from  there is evidence of serial correlation. A global 
measure of the divergence between  and  is the quadratic form 

 
 
The test statistic is a normalized version of the quadratic form: 

 
 
where the centring and scaling factors 

 
 
 

 
 
This test can be viewed as a generalized version of Box and Pierce's (1970) portmanteau test, the latter being equivalent to using the truncated kernel 
k(z)=1(|z|≤1), which gives equal weighting to each of the first p lags. In this case, Mo is asymptotically equivalent to 

 
 
However, uniform weighting to different lags may not be powerful when a large number of lags is employed. For any weakly stationary process, the 
autocovariance function γ(j) typically decays to 0 as lag order j increases. Thus, it is more efficient to discount higher order lags. This can be 
achieved by using non-uniform kernels. Most commonly used kernels, such as the Bartlett, Pazren and quadratic-spectral kernels, discount higher 
order lags. Hong (1996) shows that the Daniell kernel k(z)=sin(πz)/(πz), −∞<z<∞, maximizes the power of the M test over a wide class of the kernel 
functions when p→∞. The optimal kernel for hypothesis testing differs from the optimal kernel for spectral density estimation. 
It is important to note that the spectral density test M applies to both static and dynamic regression models, and no modification is needed when 
applied to a dynamic regression model. Intuitively, parameter estimation uncertainty causes some adjustment of degrees of freedom, which becomes 
asymptotically independent when the lag order p→∞ as n→∞. This differs from the case where p is fixed. 
For similar spectral density-based tests for serial correlation, see Paparoditis (2000), Chen and Deo (2004), and Fan and Zhang (2004). 

2.6 Heteroskedasticity–robust tests 

All the aforementioned tests assume conditional homoskedasticity or even i.i.d. on {εt}. This rules out high frequency financial time series, which 
have been documented to have persistent volatility clustering. Some effort has been devoted to robustifying tests for serial correlation. Wooldridge 
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(1990; 1991) proposes a two-stage procedure to robustify the nR2 test for serial correlation in estimated residuals {et} of a linear regression model 
(2.1): (i) regress (et−1,…, et−p) on Xt and save the estimated p×1 residual vector ; (ii) regress 1 on and obtain SSR, the sum of squared residuals; 

(iii) compare the n−SSR statistic with the asymptotic  distribution. The first auxiliary regression purges the impact of parameter estimation 
uncertainty in the OLS estimator  and the second auxiliary regression delivers a test statistic robust to conditional heteroskedasticity of unknown 
form. 
Whang (1998) also proposes a semiparametric test for serial correlation in estimated residuals of a possibly nonlinear regression model. Assuming 
that εt=σ[Zt(α)]zt, where {zt}∼i.i.d.(0,1), var(εt|It−1)=σ2[Zt(α)] depends on a random vector with fixed dimension (for example,  

for a fixed K), but the functional form σ2(·) is unknown. This covers a variety of conditionally heteroskedastic processes, although it rules out non-
Markovian processes such as Bollerslev's (1986) GARCH model. Whang (1998) first estimates σ2[Zt(α)] using a kernel method, and then constructs a 
Box–Pierce type test for serial correlation in the estimated regression residuals standardized by the square root of the nonparametric variance 
estimator. 
The assumption imposed on var(εt|It−1) in Whang (1998) rules out GARCH models, and both Wooldridge (1991) and Whang (1998) test serial 
correlation up to a fixed lag order only. Hong and Lee (2007) have recently robustified Hong's (1996) spectral density-based consistent test for serial 
correlation of unknown form: 

 
 
where the centring and scaling factors 

 
 
 

 
 

with  and . Intuitively, the centring and scaling factors have 
taken into account possible volatility clustering and asymmetric features of volatility dynamics, so the  test is robust to these effects. It allows for 
various volatility processes, including GARCH models, Nelson's (1991) EGARCH, and Glosten, Jagannathan and Runkle's (1993) Threshold 
GARCH models. 

Martingale tests 

Several tests for serial correlation are motivated for testing the m.d.s. property of an observed time series {Yt}, say asset returns, rather than estimated 
residuals of a regression model. We now present a unified framework to view some martingale tests for observed data. 
Extending an idea of Cochrane (1988), Lo and MacKinlay (1988) first rigorously present an asymptotic theory for a variance ratio test for the m.d.s. 
hypothesis of {Yt}. Because the m.d.s. hypothesis implies γ(j)=0 for all j>0, one has 

 
 
This unity property of the variance ratio can be used to test the m.d.s. hypothesis because any departure from unity is evidence against the m.d.s. 
hypothesis. 
The variance ratio test is essentially based on the statistic 

 
 
where  is a kernel-based normalized spectral density estimator at frequency 0, with the Bartlett kernel k(z)=(1−|z|) 1 (|z|≤1) and a lag order p. In 
other words, VRo is based on a spectral density estimator of frequency 0, and because of this, it is particularly powerful against long memory 
processes, whose spectral density at frequency 0 is infinity (see Robinson, 1994, for an excellent survey). 
Under the m.d.s. hypothesis with conditional homoskedasticity, Lo and MacKinlay (1988) show that for any fixed p, 

 
 
Lo and MacKinlay (1988) also consider a heteroskedasticity-consistent variance ratio test: 

 
 
where  is a consistent estimator for the asymptotic variance of  under conditional heteroskedasticity. Lo and MacKinlay (1988) assume a 
fourth order cumulant condition that 

 
(2.5) 
 

Intuitively, this condition ensures that the sample autocovariances at different lags are asymptotically uncorrelated; that is,  for 
all . As a result, the heroskedasticity-consistent VR has the same asymptotic distribution as VRo. However, the condition in (2.5) rules out many 
important volatility processes, such as EGARCH and Threshold GARCH models. Moreover, the variance ratio test only exploits the implication of 
the m.d.s. hypothesis on the spectral density at frequency 0; it does not check the spectral density at nonzero frequencies. As a result, it is not 
consistent against serial correlation of unknown form. See Durlauf (1991) for more discussion.

Page 4 of 10serial correlation and serial dependence : The New Palgrave Dictionary of Economics

8/4/2008https://sslvpn.pitt.edu/,DanaInfo=www.dictionaryofeconomics.com+article?id=pde2008_S0...



Durlauf (1991) considers testing the m.d.s. hypothesis for observed raw data {Yt}, using the spectral distribution function 

 
 
where h(ω) is the spectral density of {Yt}: 

 
 
Under the m.d.s. hypothesis, H(λ) becomes a straight line: 

 
 
An m.d.s. test can be obtained by comparing a consistent estimator for H(λ) and . 
Although the periodogram (or sample spectral density function) 

 
 
is not consistent for the spectral density h(ω), the integrated periodogram 

 
 
is consistent for H(λ), thanks to the smoothing provided by the integration. Among other things, Durlauf (1991) proposes a Cramer–von Mises type 
statistic 

 
 
Under the m.d.s. hypothesis with conditional homoskedasticity, Durlauf (1991) shows 

 
 

where  is a sequence of i. i. d. χ2 random variables with one degree of freedom. This asymptotic distribution is nonstandard, but it is 
distribution-free and can be easily tabulated or simulated. An appealing property of Durlauf's (1991) test is its consistency against serial correlation 
of unknown form, and there is no need to choose a lag order p. 
Deo (2000) shows that under the m.d.s. hypothesis with conditional heteroskedasticity, Durlauf's (1991) test statistic can be robustified as follows: 

 
 
where  is a consistent estimator for the asymptotic variance of  and the asymptotic distribution remains unchanged. Like Lo and MacKinlay 
(1988), Deo (2000) also imposes the crucial fourth order joint cumulant condition in (2.5). 

3 Serial dependence in nonlinear models 

The autocorrelation function γ(j), or equivalently, the power spectrum h(ω), of a time series {Yt}, is a measure for linear association. When {Yt} is a 
stationary Gaussian process, γ(j) or h(ω) can completely determine the full dynamics of {Yt}. 
It has been well documented, however, that most economic and financial time series, particularly high-frequency economic and financial time series, 
are not Gaussian. For non-Gaussian processes, γ(j) and h(ω) may not capture the full dynamics of {Yt}. We consider two nonlinear process examples: 

Bilinear (BL) autoregressive process: 

 
(3.1) 
 
Nonlinear moving average (NMA) process: 

 
(3.2) 
 

For these two processes, there exists nonlinearity in conditional mean: E(Yt|It−1)=αεt−1Yt–2 under (3.1) and E(Yt|It−1)=αεt−1Yt–2 under (3.2). 
However, both processes are serially uncorrelated. If {Yt} follows either a BL process in (3.1) or a NMA process in (3.2), {Yt} is not m.d.s. but γ(j) 
and h(ω) will miss it. Hong and Lee (2003a) document that indeed, for foreign currency markets, most foreign exchange changes are serially 
uncorrelated, but they are all not m.d.s. There exist predictable nonlinear components in the conditional mean of foreign exchange markets. 
Serial dependence may also exist only in higher order conditional moments. An example is Engle's (1982) first order autoregressive conditional 
heteroskedastic (ARCH (1)) process: 

 
(3.3) 
 
For this process, the conditional mean E(Yt|It−1)=0; which implies γ(j)=0 for all j>0. 
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However, the conditional variance, , depends on the previous volatility. Both γ(j) and h(ω) will miss such higher order 
dependence. 
In nonlinear time series modelling, it is important to measure serial dependence, that is, any departure from i.i.d., rather than merely serial 
correlation. As Priestley (1988) points out, the main purpose of nonlinear time series analysis is to find a filter h(·) such that 

 
 
In other words, the filter h(·) can capture all serial dependence in {Yt} so that the ‘residual’ {εt} becomes an i.i.d. sequence. One example of h(·) in 
modelling the conditional probability distribution of Yt given It−1, is the probability integral transform 

 
 
where f(y|It−1, β) is a conditional density model for Yt given and It−1, and β is an unknown parameter. When f(y|It−1, β) is correctly specified for the 

conditional probability density of Yt given It−1, that is, when the true conditional density coincides with f(y|It−1, β0) for some β0, the probability 
integral transforms becomes 

 
(3.4) 
 
Thus, one can test whether f(y|It−1, β) is correctly specified by checking the i.i.d.U[0,1] for the probability integral transform series. 

3.1 Bispectrum and higher-order spectra 

Because the autocorrelation function γ(j) and the spectral density h(ω) are rather limited in nonlinear time series analysis, various alternative tools 
have been proposed to capture nonlinear serial dependence (for example, Granger and Terasvirta, 1993; Tjøstheim, 1996). For example, one often 
uses the third-order cumulant function 

 
 
This is also called the biautocovariance function of {Yt}. It can capture certain nonlinear time series, particularly those displaying asymmetric 
behaviours such as skewness. Hsieh (1989) proposes a test based on C(j, k) for a given pair of (j, k) which can detect some predictable nonlinear 
components in asset returns. 
The Fourier transform of C(j, k), 

 
 
is called the bispectrum of {Yt}. When {Yt} is i.i.d., b(ω1, ω2) becomes a flat bispectral surface: 

 
 
Any deviation from a flat bispectral surface will indicate the existence of serial dependence in {Yt}. Moreover, b(ω1, ω2) can be used to distinguish 
some linear time series processes from nonlinear time series processes. When {Yt} is a linear process with i.i.d. innovations, that is, when 

 
 
the normalized bispectrum 

 
 
is a flat surface. Any departure from a flat normalized bispectral surface will indicate that {Yt} is not a linear time series with i.i.d. innovations. 
The bispectrum b(ω1, ω2) can capture the BL and NMA processes in (3.1) and (3.2), because the third order cumulant C(j, k) can distinguish them 
from an i.i.d process. However, it may still miss some important alternatives. For example, it will easily miss ARCH (1) with i.i.d. N(0,1) innovation 
{εt}. In this case, b(ω1, ω2) becomes a flat bispectrum and cannot distinguish ARCH (1) from an i.i.d. sequence. One could use higher order spectra 
or polyspectra (Brillinger and Rosenblatt, 1967a; 1967b), which are the Fourier transforms of higher order cumulants. However, higher-order spectra 
have met with some difficulty in practice: Their spectral shapes are difficult to interpret, and their estimation is not stable in finite samples, due to the 
assumption of the existence of higher order moments. Indeed, it is often a question whether economic and financial data, particularly high-frequency 
data, have finite higher order moments. 

3.2 Nonparametric measures of serial dependence 

Nonparametric measures for serial dependence have been proposed in the literature, which avoid assuming the existence of moments. Granger and 
Lin (1994) propose a nonparametric entropy measure for serial dependence to identify significant lags in nonlinear time series. Define the Kullback–
Leibler information criterion 

 
 
where fj(x, y) is the joint probability density of Yt and Yt−j, and g(x) is the marginal probability density of {Yt}. The Granger–Lin normalized entropy 
measure is defined as follows: 
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which enjoys some appealing features. For example, e(j)=0 if and only if Yt and Yt−j are independent, and it is invariant to any monotonic continuous 
transformation. Because fj(x, y) and g(x) are unknown, Granger and Lin (1994) use nonparametric kernel density estimators. They establish the 
consistency of their entropy estimator (say ) but do not derive its asymptotic distribution, which is important for confidence interval estimation 
and hypothesis testing. 
In fact, Robinson (1991) has elegantly explained the difficulty of obtaining the asymptotic distribution of  for serial dependence, namely it is a 
degenerate statistic so that the usual root-n normalization does not deliver a well-defined asymptotic distribution. Robinson (1991) considers a 
modified entropy estimator 

 
 
where  and  are nonparametric kernel density estimators, Ct(γ)=1−γ if t is odd, Ct(γ)=1+γ if t is even, and γ is a pre-specified parameter. 

The weighting device Ct(γ) does not affect the consistency of  to I(j) and affords a well-defined asymptotic N(0,1) distribution under the i.i.d. 
hypothesis. 
Skaug and Tjøstheim (1993a; 1996) use a different weighting function to avoid the degeneracy of the entropy estimator for serial dependence: 

 
 
where w(Yt, Yt−j) is a weighting function of observations Xt and Xt−j. Unlike using Robinson's (1991) weighting device,  is not consistent for the 

population entropy I(j), but it also delivers a well-defined asymptotic N(0, 1) distribution after a root-n normalization. 
Intuitively, the use of weighting devices slows down the convergence rate of the entropy estimators, giving a well-defined asymptotic N(0,1) 
distribution after the usual root-n normalization. However, this is achieved at the cost of an efficiency loss, due to the slower convergence rate. 
Moreover, this approach breaks down when {Yt} is uniformly distributed, as in the case of the probability integral transforms of the conditional 
density in (3.4). Instead of using a weighting device, Hong and White (2005) exploit the degeneracy of  and use a degenerate U-statistic theory to 
establish its asymptotic normality. Specifically, Hong and White (2005) show 

 
 
where h=h(n) is the bandwidth, and  and V are nonstochastic factors. This approach preserves the convergence rate of the unweighted entropy 
estimator, giving sharper confidence interval estimation and more powerful hypothesis tests. It is applicable when {Yt} is uniformly distributed. 
Skaug and Tjøstheim (1993b) also use an Hoeffding measure to test serial dependence (see also Delgado, 1996; Hong, 1998; 2000). The empirical 
Hoeffding measures are based on the empirical distribution functions, which avoid smoothed nonparametric density estimation. 

3.3 Generalized spectrum 

Without assuming the existence of higher order moments, Hong (1999) proposes a generalized spectrum as an alternative analytic tool to the power 
spectrum and higher order spectra. The basic idea is to transform {Yt} via a complex-valued exponential function 

 
 
and then consider the spectrum of the transformed series. Let  be the marginal characteristic function of {Yt} and let 

 be the pairwise joint characteristic function of. . Define the covariance function between transformed 
variables  and : 

 
 
Straightforward algebra yields σj(u, v)=ψj(u, v)−ψ(u) ψ(v), which is zero for all u, v if and only if Yt and Yt−|j| are independent. Thus σj(u, v) can 
capture any type of pairwise serial dependence over various lags, including those with zero autocorrelation. For example, σj(u, v) can capture the BL, 
NMA and ARCH (1) processes in (3.1)−(3.3), all of which are serially uncorrelated. 
The Fourier transform of the generalized covariance σj(u, v): 

 
 
is called the ‘generalized spectral density’ of {Yt}. Like σj(u, v), f(ω, u, v) can capture any type of pairwise serial dependencies in {Yt} over various 
lags. Unlike the power spectrum and higher order spectra, f(ω, u, v) does not require any moment condition on {Yt}. When var(Yt) exists, the power 
spectrum of {Yt} can be obtained by differentiating f(ω, u, v) with respect to (u v) at (0, 0): 

 
 
This is the reason why f(ω, u, v) is called the ‘generalized spectral density’ of {Yt}. 
When {Yt} is i.i.d., f(ω, u, v) becomes a flat generalized spectrum as a function of ω: 

 
 
Any deviation of f(ω, u, v) from the flat generalized spectrum f0(ω, u, v) is evidence of serial dependence. Thus, f(ω, u, v) is suitable to capture any 
departures from i.i.d. Hong and Lee (2003b) use the generalized spectrum to develop a test for the adequacy of nonlinear time series models by 
checking whether the standardized model residuals are i.i.d. Tests for i.i.d. are more suitable than tests for serial correlation in nonlinear contexts. 
Indeed, Hong and Lee (2003b) find that some popular EGARCH models are inadequate in capturing the full dynamics of stock returns, although the 
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standardized model residuals are serially uncorrelated. 
Insight into the ability of f(ω, u, v) can be gained by considering a Taylor series expansion 

 
 
Although f(ω, u, v) has no physical interpretation, it can be used to characterize cyclical movements caused by linear and nonlinear serial 
dependence. Examples of nonlinear cyclical movements include cyclical volatility clustering, and cyclical distributional tail clustering (for example, 
Engle and Manganelli's (2004) CAVaR model). Intuitively, the supremum function 

 
 
can measure the maximum dependence at frequency ω of {Yt}. It can be viewed as an operational frequency domain analogue of Granger and 
Terasvirta's (1993) maximum correlation measure 

 
 
Once generic serial dependence is detected using f(ω, u, v) or any other dependence measure, one may like to explore the nature and pattern of serial 
dependence. For example, one may be interested in the following questions: 

Is serial dependence operative primarily through the conditional mean or through conditional higher order moments?  
If serial dependence exists in conditional mean, is it linear or nonlinear?  
If serial dependence exists in conditional variance, does there exist linear or nonlinear and asymmetric ARCH?  

Different types of serial dependence have different economic implications. For example, the efficient market hypothesis fails if and only if there is no 
serial dependence in conditional mean. 
Just as the characteristic function can be differentiated to generate various moments, generalized spectral derivatives, when they exist, can capture 
various specific aspects of serial dependence, thus providing information on possible types of serial dependence. Suppose  for 
some nonnegative integers m, l. Then the following generalized spectral derivative exists: 

 
 

where . As an illustrative example, we consider the generalized spectral derivative of order (m, l)=(1,0): 

 
 

Observe  for all v∈(−∞,∞) if and only if E(Yt|Yt−|j|)=E(Yt) a.s. The function E(Yt|Yt−|j|) is called the autoregression 
function of {Yt} at lag j. It can capture a variety of linear and nonlinear dependencies in conditional mean, including the BL and NMA processes in 

(3.1) and (3.2). (The use of , which can be easily estimated by a sample average, avoids smoothed nonparametric estimation of E(Yt|Yt−|j|).) 

Thus, the generalized spectral derivative  can be used to capture a wide range of serial dependence in conditional mean. In particular, 
the function 

 
 
can be viewed as an operational frequency domain analogue of Granger and Terasvirta's (1993) maximum mean correlation measure 

 
 
See Hong and Lee (2005) for more discussion. 
Suppose one has found evidence of serial dependence in conditional mean using f(0,1,0) (ω, u, v) or any other suitable measure, one can go further to 
explore whether there exists linear serial dependence in mean. This can be done by using the (1,1)-th order generalized derivative 

 
 
which checks serial correlation. Moreover, one can further use f(0,1,l) (ω, u, v) for l≥2 to reveal nonlinear serial dependence in mean. In particular, 
these higher-order derivatives can suggest that there exist: (i) an ARCH-in-mean effect (for example, Engle, Lilien and Robins, 1987) if 

, (ii) a skewness-in-mean effect (for example, Harvey and Siddique, 2000) if , and (iii) kurtosis-in-mean effect (for 

example, Brooks, Burke and Persand, 2005) if . These effects may arise from the existence of a time-varying risk premium, 
asymmetry of market behaviours, and inadequate account for large losses, respectively. 

See Also 

kernel estimators in econometrics  
spectral analysis  

I thank Steven Durlauf (editor) for suggesting this topic and comments on an earlier version, and Jing Liu for excellent research assistance and 
references. This research is supported by the Cheung Kong Scholarship of the Chinese Ministry of Education and Xiamen University. All remaining 
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