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Abstract

We calculate the ratio of the viscosity to the entropy density for both Bose and Fermi

gases in the unitary limit using a new approach to the quantum statistical mechanics of

gases based on the S-matrix. In the unitary limit the scattering length diverges and the

S-matrix equals −1. For the fermion case we obtain η/s > 4.7 times the proposed lower

bound of ~/4πkB which came from the AdS/CFT for gauge theories, consistent with the

most recent experiments. For the bosonic case we present evidence that the gas undergoes

a phase transition to a strongly interacting Bose-Einstein condensate, and is a more perfect

fluid, with η/s > 1.3 times the bound.
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I. INTRODUCTION

One measure of the perfection of a fluid is its viscosity. In recent years new

insights on such properties came from string theory, more precisely the AdS/CFT

correspondence[1, 2]. This correspondence relates a conformally invariant (scale in-

variant) strongly coupled gauge theory in d+ 1 space-time dimensions to a gravita-

tional dual in one higher spatial dimension. By studying black hole solutions in the

higher dimensional theory, one can study finite temperature and density properties

of the lower dimensional quantum field theory. In its original version, the conformal

quantum field theory is a certain N = 4 supersymmetric gauge theory, which is con-

formally invariant for all couplings since the beta function vanishes. Although such

a supersymmetric gauge theory does not describe nature as we currently understand

it, the AdS/CFT correspondence is nevertheless very useful for thinking about these

difficult problems in new ways and inspiring the study of specific properties that were

hardly considered before. A prominent example is the ratio of the shear viscosity η

to the entropy density s. In natural units with ~ = kB = 1, it is a dimensionless

quantity. Using the AdS/CFT correspondence it was found that the supersymmetric

gauge theory had η/s = 1/4π. It was conjectured that this value represents a lower

bound[2], i.e.
η

s
≥ 1

4π

~

kB
(1)

The observed η/s for the quark-gluon plasma, studied via heavy ion collisions, is

about 5 times this bound[3]. Theoretical estimates for the quark-gluon plasma tend

to be lower, but consistent with the bound.

Note that the bound (1) does not depend on the speed of light. Thus, the natural

question arises: “Do non-relativistic condensed matter systems respect the conjec-

tured bound, and which class of fluids has the smallest η/s?” For the relativistic

fluids studied wth the AdS/CFT correspondence, the scale invariance plays an im-
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portant role. It has thus been proposed that the unitary Fermi gas may be the most

perfect fluid[4–7], in part because it is scale invariant. In the so-called unitary limit

of a quantum Bose or Fermi gas, the scattering length a diverges. This occurs at

a fixed point of the renormalization group, thus these systems provide interesting

examples of interacting, scale-invariant theories with dynamical exponent z = 2, i.e.

non-relativistic. They can be realized experimentally by tuning the scattering length

to ±∞ using a Feshbach resonance. (See for instance [8, 9] and references therein.)

They are also thought to occur at the surface of neutron stars. These systems have

attracted much theoretical interest[10–24].

Because of the scale-invariance, the only length scales in the problem are based on

the density n1/3, and the thermal wavelength λT =
√

2π/mT . Equivalently, the only

energy scales are the chemical potential µ and the temperature T . The problem is

challenging since there is no small parameter to expand in such as na3. Any possible

critical point must occur at a specific value of x = µ/T . This can be translated into

universal values for ncλ
3
T , or for fermions universal values for Tc/TF where ǫF = kBTF

is the Fermi energy. For instance the critical point of an ideal Bose gas is the simplest

example, where ncλ
3
T = ζ(3/2) = 2.61.

The models considered are the simplest models of non-relativistic bosons or

fermions with quartic interactions. The bosonic model is defined by the action for a

complex scalar field φ.

S =

∫
d3xdt

(
iφ†∂tφ− |~∇φ|2

2m
− g

4
(φ†φ)2

)
(2)

For fermions, due to the fermionic statistics, one needs at least a 2-component field

ψ↑,↓:

S =

∫
d3xdt

(
∑

α=↑,↓

iψ†
α∂tψα − |~∇ψα|2

2m
− g

2
ψ†
↑ψ↑ψ

†
↓ψ↓

)
(3)

In both cases, positive g corresponds to repulsive interactions. The bosonic theory
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only has a U(1) symmetry. The fermionic theory on the other hand has the much

larger SO(5) symmetry. This is evident from the work[24] which considered an N -

component version with Sp(2N) symmetry, and noting that Sp(4) = SO(5).

The original AdS/CFT conjecture was for a specific, relativistic, and supersym-

metric gauge theory. There have been some proposals to use the AdS/CFT corre-

spondence to learn about non-relativistic systems[25–28]. One difficulty is that the

conformal symmetry of relativistic systems is larger than the Schrödinger symme-

try of non-relativistic systems, so the black hole solutions on the gravity side are

less obvious. Also, given a black hole geometry, it remains unclear which condensed

matter system it is dual to. Thus far, the AdS/CFT approaches for non-relativistic

systems lead to η/s = 1/4π. Recent experimental work on the unitary Fermi gas

reports values of η/s about 4− 5 times the bound[30], thus it seems unlikely that a

gravity dual exists that corresponds exactly to the unitary Fermi gas. Nevertheless,

it is hoped that one can still discover some general, model-independent properties, in

the same way that AdS/CFT for supersymmetric Yang-Mills provided insights into

QCD.

For the remainder of this paper we will describe a novel, but more conventional

approach to the problem[29]. The calculation there predicted a minimum η/s of 4.7

times the conjectured lower bound, consistent with the most recent experiments[30].

Theoretical studies have mainly focussed on the fermionic case, and for the most

part at zero temperature, which is appropriate for a large Fermi energy. The bosonic

case has been less studied, since a homogeneous bosonic gas with attractive interac-

tions is thought to be unstable against mechanical collapse, and the collapse occurs

before any kind of BEC. The situation is actually different for harmonically trapped

gases, where BEC can occur[31]. However studies of the homogeneous bosonic case

were based on a small, negative scattering length[32–35], and it is not clear that the

conclusions reached there can be extrapolated to the unitary limit. Since the den-
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sity of collapse is proportional to 1/a[33], extrapolation to infinite scattering length

suggests that the gas collapses at zero density, which seems unphysical, since the gas

could in principle be stabilized at finite temperature by thermal pressure. One can

also point out that in the van der Waals gas, the collapse is stabilized by a finite size

of the atoms, which renders the compressibility finite. In the unitary limit, there is

nothing to play such a role. In the sequel we will present evidence that the unitary

Bose gas undergoes BEC when nλ3T ≈ 1.3. This lower value compared to the free

case is consistent with the attractive interactions. For this bosonic case, the mini-

mum η/s predicted in [29] was only 1.3 times the bound, and thus may be a better

candidate than unitary fermions for the most perfect strongly interacting fluid.

II. S-MATRIX, RENORMALIZATION GROUP AND SCATTERING

LENGTH

In this section we describe the renormalization group fixed point, the bound state,

and the scattering length. The interplay between all of these properties is most clearly

seen from the S-matrix.

The free versions of the models described in the introduction have a scale invari-

ance with dynamical exponent z = 2, i.e. are invariant under

t→ Λ−2t, x → Λ−1x

As we now explain, the models possess a renormalization group fixed point, i.e.

quantum critical point, where they have the same scale invariance. The renormal-

ization group behavior can be inferred from the coupling constant dependence of the

S-matrix. Consider first the single boson; the differences for two-component fermions

will be described at the end of this section. The S-matrix can be calculated exactly

by summing multi-loop ladder diagrams. By the Galilean invariane, the two-body S-
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matrix depends only on the difference of the incoming momentum of the two particles

k,k′:

S(|k− k′|) = 16π/mgR − i|k− k′|
16π/mgR + i|k− k′| (4)

Unitarity of the S-matrix amounts to S∗S = 1.

The momentum space integrals for the higher loop corrections are divergent and an

upper cut-off Λ must be introduced. In the above expression, gR is the renormalized

coupling:
1

gR
=

1

g
+
mΛ

4π2
(5)

Defining g = ĝ/Λ, where ĝ is dimensionless, and requiring gR to be independent of

Λ gives the beta-function:
dĝ

dℓ
= −ĝ − m

4π2
ĝ2 (6)

where ℓ = − log Λ is the logarithm of a length scale. The above beta function is

exact since it was calculated from the exact S-matrix. One thus sees that the theory

possesses a fixed point at the negative coupling g∗ = −4π2/mΛ.

We turn now to the scattering length a. From the above expression for the S-

matrix one can infer the scattering amplitude and compute the total cross-section σ.

Equating σ = πa2 gives

a(k) =
m

2π

gR√
1 + (mgRk/8π)2

(7)

where here k is the momentum of one of the particles in the center of mass frame.

If a(k) is measured at very small momentum transfer |k− k′| ≈ 0, this leads to the

definition of the scattering length

a =
mgR
2π

=
mg

2π(1− g/g∗)
(8)

One sees that scattering length diverges at precisely the fixed point g = g∗. Note

the S-matrix becomes S = −1. The scattering length a → ±∞, depending on from
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which side g∗ is approached. When g = g−∗ , i.e. just less than g∗, then a → ∞,

whereas when g = g+∗ , a→ −∞.

Finally, we turn to the bound state. The S-matrix (4) has a pole at k = 16πi/mgR.

Since physical bound states correspond to poles at Im(k) > 0, the bound state exists

only for g below g∗. The energy of this bound state is

Ebound−state = −128π2

m3g2R
(9)

Note that at the fixed point where gR diverges, the energy of the bound state goes

to zero as it should, since it disappears beyond this point.

Consider now two-component fermions with the action in the Introduction. The

relative normalizations of the coupling g were chosen such that the beta function

is the same for both the boson verses fermion cases. The S-matrix eq. (4) here

represents the scattering of two fermions of opposite spin. Thus, the fermion case

also has a diverging scattering length at the fixed point. In the fermionic context, the

coupling g∗ is the boundary of the so-called BEC/BCS crossover. On the BCS side

just above g∗, the scattering length is negative, which implies effectively attractive

interactions. Here it is believed that at low enough temperatures there is a phase

transition to a strongly interacting version of superconductivity. For g < g∗, the

scattering length is positive, signifying repulsive interactions, and a bound state

exists. This bosonic bound state can undergo Bose-Einstein condensation, hence

this region is referred to as the BEC side. The physics is expected to be smooth

as one crosses g∗. In the treatment of the thermodynamics below, we will work

on the BCS side since here there is no need to incorporate a bound state into the

thermodynamics.
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III. THERMODYNAMICS AT THE QUANTUM CRITICAL POINT

At the quantum critical point, the only energy scales in the problem are the

chemical potential µ and the temperature T = 1/β. This implies some universal

scaling forms for the various thermodynamic functions[13]. The free energy density

has the form

F = −ζ(5/2)T λ−3
T c(µ/T ) (10)

where ζ is Riemann’s zeta function and λT =
√
2π/mT is the thermal wavelength.

The scaling function c is only a function of x ≡ µ/T . With the above normalization,

a single free boson has c = 1 in the limit of x→ 0. It is also convenient to define the

scaling function q, which is a measure of the quantum degeneracy, in terms of the

density n as follows:

nλ3T = q (11)

The two scaling functions c and q are of course related since n = −∂F/∂µ, which
leads to q = ζ(5/2)c′, where c′ is the derivative of c with respect to x. Henceforth b′

will always denote the derivative of a function b(x) with respect to x.

The approach to the statistical mechanics of particles developed in complete gen-

erality in [36] is based on the S-matrix. On starts from a formula derived in [37] for

the partition function:

Z = Z0 +
1

4πi

∫
dEe−βE Tr Im∂E log Ŝ(E) (12)

where Z0 is the partition function for the free theory and Ŝ(E) is the off-shell S-

matrix operator in the usual scattering theory. Though the above expression is

simple enough, a considerable amount of additional work is required to turn it into

something useful. The trace is over the multi-particle Fock space, thus the above

expression contains contributions from N-body processes for all N. For integrable
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theories in one spatial dimension, the N-body S-matrix factorizes into 2-body S-

matrices, and though it has never been proven, the above expression should recover

the thermodynamic Bethe ansatz[38]. In the present context, we restrict ourselves

to 2-body processes only, which, as explained in the last section, can be calculated

exactly. This should be a good approximation if the gas is not too dense. The con-

sistent resummation of all 2-body processes can be recast into a variational principle,

and leads to the following formulas.

Consider again for simplicity a single component bosonic or fermionic gas. The

filling fractions, or occupation numbers, are parameterized in terms of a pseudo-

energy ε(k):

f(k) =
1

eβε(k) − s
(13)

which determine the density:

n =

∫
d3k

(2π)3
1

eβε(k) − s
(14)

where s = 1,−1 corresponds to bosons, fermions respectively. The consistent sum-

mation of 2-body scattering leads to an integral equation for the pseudo-energy ε(k),

analogous to the Yang-Yang integral equation. It is convenient to define the quantity:

y(k) = e−β(ε(k)−ωk+µ) (15)

where ωk = k2/2m. Then y satisfies the integral equation

y(k) = 1 + β

∫
d3k′

(2π)3
G(k− k′)

y(k′)−1

eβε(k′) − s
(16)

The free energy density is then

F = −T
∫

d3k

(2π)3

[
−s log(1− se−βε)− 1

2

(1− y−1)

eβε − s

]
(17)

The kernel G is related to the logarithm of the 2-body S-matrix of the last section,

and depends on the coupling g. In the unitary limit g → g∗ the kernel simplifies
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greatly since S = −1:

G(k− k′) = ∓ 8π2

m|k− k′| , (18)

where the − sign corresponds to g being just below the fixed point g∗, where the

scattering length a → +∞ on the BEC side, whereas the + sign corresponds to

a→ −∞ on the BCS side. As explained in the last section, we will work on the BCS

side.

Finally comparing with the definitions above for the scaling functions c, q one

finds:

q(x) =
2√
π

∫ ∞

0

dκ
√
κ

y(κ)z

eκ − sy(κ)z
(19)

and

c =
2√

πζ(5/2)

∫ ∞

0

dκ
√
κ

(
−s log

(
1− szy(κ)e−κ

)
− 1

2

z(y(κ)− 1)

eκ − szy(κ)

)
(20)

where z = eµ/T is the fugacity and the dimensionless integration variable is κ =

k2/2mT . The ideal, free gas limit corresponds to y = 1 where q = sLi3/2(sz) and

c = sLi5/2(sz)/ζ(5/2), where Li is the polylogarithm. The BEC critical point of the

ideal gas occurs at µ = 0, i.e. q = ζ(3/2).

Consider now two-component fermions with the action (3). There are two pseudo-

energies ε↑,↓ satisfying two coupled integral equations. Due to the SU(2) symmetry,

for equal chemical potentials ε↑ = ε↓. However the available phase space for 2-particle

scattering is doubled and the kernels have an extra 1/2:

Gfermi =
1

2
Gbose (21)

Thus the two-component fermion reduces to two identical copies of the above 1-

component expressions, with the modification (21).
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IV. PHASE TRANSITIONS IN TEMPERATURE

In the present context of quantum statistical mechanics, the quantum critical

point at g = g∗ does not signify a phase transition. However in the unitary limit at

fixed g = g∗ phase transitions may occur in regions of temperature versus density.

From the scaling form of the free energy, such a phase transition must occur at a fixed,

specific value of x = xc = µ/T . We will continue to refer to such phase transitions as

critical points. The simplest case is BEC in the free boson theory, where the phase

transition occurs at xc = 0, which can be translated into the well-known relation

between temperature and density at the critical point ncΛ
3
T = ζ(3/2) = 2.61.

A. Fermionic case

The integral equation for y(κ), eq. (16), can be solved numerically by iteration.

One first substitutes y0 = 1 on the right hand side and this gives the approximation

y1 for y. One then substitutes y1 on the right hand side to generate y2, etc. For

regions of z where there are no critical points, this procedure converges rapidly, and

as little as 5 iterations are needed. For fermions, as one approaches zero temperature,

i.e. x large and positive, more iterations are needed for convergence. The following

results are based on 50 iterations.

When z ≪ 1, y ≈ 1, and the properties of the free ideal gas are recovered, since the

gas is very dilute. There are solutions to eq. (16) for all −∞ < x < ∞. (x = µ/T ).

The scaling function c at zero chemical potential is c(0) = 1.76 compared to the free

fermion value cfree = 2− 2−1/2 = 1.29, thus the interactions have a significant effect.

(These are twice the 1-component values.)

Whereas c and q are nearly featureless, other quantities seem to indicate a phase

transition at large density. For instance, the entropy per particle decreases with de-
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creasing temperature up to x < xc ≈ 11.2. Beyond this point the entropy per particle

has the unphysical behavior of increasing with temperature. A further indication that

the region x > xc is unphysical is that the specific heat per particle becomes nega-

tive, as shown in Figure 1. When x ≪ 0, CV /N approaches the classical value 3/2.

This leads us to suggest a phase transition, at x = xc = 11.2. This value of x can be

expressed as a critical temperature Tc in units of the Fermi energy ǫF = kBTF . From

the definition ǫF = (3π2n/
√
2)2/3/m, one has T/TF = (4/3

√
πq)2/3. From the value

q(xc), one finds the critical temperature Tc/TF ≈ 0.1. As we will show, our analysis

of the viscosity to entropy-density ratio suggests a higher Tc/TF . There have been

numerous estimates of Tc/TF based on various approximation schemes, mainly using

Monte Carlo methods on the lattice [17–22], quoting results for Tc/TF between 0.05

and 0.23. The work [18] puts an upper bound Tc/TF < 0.14, and the most recent

results of Burovski et. al. quote Tc/TF = 0.152(7). Our result is thus consistent

with previous work.

6 8 10 12 14

-0.1

0.1

0.2

0.3

Specific heat per particle for fermions

x = µ/T

CV /N

FIG. 1: Specific heat per particle as a function of x for fermions.
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B. Bosonic case

The possibility of a phase transition in the unitary Bose gas is more subtle, since

a bosonic gas with attractive interactions is susceptible to mechanical collapse to a

denser state. This issue has been studied for small negative scattering length in a

number of works[32–35], and the consensus is that mechanical collapse occurs before

BEC. However it is not clear whether this conclusion can be extrapolated to unitary

limit where the scattering length is infinite. In the approach described in the last

section, we found strong evidence for a phase transition to a strongly interacting

version of BEC, as we now explain.

We again solved the integral equation (16) by iteration, starting from y = 1.

Since the occupation numbers decay quickly as a function of κ, we introduced a cut-

off κ < 10. For x less than approximately −2, the gas behaves nearly classically. The

main feature of the solution to the integral equation is that for x > xc ≡ −1.2741,

there is no solution that is smoothly connected to the classical limit x → −∞.

Numerically, when there is no solution the iterative procedure fails to converge. In

Figure 2, we plot ε(k = 0) as a function of x, and one sees that it goes to zero at

xc. This implies the occupation number f diverges at k = 0 at this critical point.

One clearly sees this behavior in Figure 3. We also found that the compressibility

diverges at xc, again consistent with BEC.

This strongly suggests that there is a critical point at xc which is a strongly

interacting, scale invariant version of the ideal BEC. In terms of the density, the

critical point is:

ncλ
3
T = 1.325, (µ/T = xc = −1.2741) (22)

The negative value of the chemical potential is consistent with the effectively attrac-

tive interactions. The above should be compared with the ideal BEC of the free
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0.1

0.2

0.3

0.4

0.5

x = µ/T

ε(k = 0)/T

FIG. 2: The pseudo-energy ε at k = 0 as a function of x = µ/T .

theory, where xc = 0 and ncλ
3
T = ζ(3/2) = 2.61, which is higher by a factor of 2.

A critical exponent ν characterizing the diverging compressibility can be defined

as

κ ∼ (T − Tc)
−ν (23)

A log-log plot of the compressibility verses T − Tc shows an approximately straight

line, and we obtain ν ≈ 0.69. This should be compared with BEC in an ideal gas,

where ν ≈ 1.0. Clearly the unitary gas version of BEC is in a different universality

class.

V. VISCOSITY TO ENTROPY DENSITY RATIO

Finally we turn to the intended focus of this article, the ratio of the viscosity to

entropy density. Consider first a single component gas. The simplest expressions for

the shear viscosity are based on kinetic theory, where it is related to the momentum

transfer through an imaginary 2-dimensional plane cutting through the 3-dimensional
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Occupation number for bosons

κ = βk2/2m

f

xc

FIG. 3: The occupation number f(κ) for x = −1.275 and xc = −1.2741.

bulk in the presence of a velocity gradient in the fluid flow. It can be expressed as

η =
1

3
nvmℓfree (24)

where v is the average speed and ℓfree is the mean free path[39]. The mean free path

is ℓfree = 1/(
√
2nσ) where σ is the total cross-section. (The

√
2 comes from the

ratio of the mean speed to the mean relative speed.) In the unitary limit where the

S-matrix S = −1, the scattering amplitude M leads to the cross-section:

σ =
m2|M|2

4π
=

16π

|k|2 (25)

where k is the momentum of one of the particles in the center of mass frame, i.e.

|k1 − k2| = 2|k|. Since k = mv, this gives

η =
m3v3

48
√
2π

(26)

For a unitary gas, the relation between the energy, volume and pressure is the

same as for a free theory: E/V = 3p/2[13]. Since the pressure is due to the kinetic
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energy, this implies
1

2
mv2 = E/N =

3

2

c

c′
T (27)

Since the entropy density s = −∂F/∂T , one finally has

η

s
=

√
3π

8ζ(5/2)

( c
c′

)3/2 1

5c/2− xc′
(28)

For two-component fermions, the available phase space is doubled. Also, spin up

particles only scatter with spin down. This implies η is 8 times the above expression.

Since the entropy density is doubled, this implies that η/s is 4 times the expression

eq. (28), where c is the 1-component value appropriate to fermions.

The ratio η/s for fermions as a function of T/TF is shown in Figure 4, and is

in good agreement both quantitatively and qualitatively with the experimental data

summarized in [6]. The lowest value occurs at x = 2.33, which corresponds to

T/TF = 0.28, and
η

s
> 4.72

~

4πkB
(29)

This is consistent with the most recent experimental data which shows a minimum

that is about 4 − 5 times the bound[30]. Other, considerably more complicated

theoretical approaches, e.g. using a Kubo formula for the viscosity, gives results

around 6− 7 times the bound.

For bosons, the ration η/s is plotted in Figure 5 as a function of T/Tc. One sees

that it has a minimum at the critical point, where

η

s
> 1.26

~

4πkB
(30)

Thus the bosonic gas at the unitary critical point is a more perfect fluid than that

of fermions.
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Viscosity�entropy for attractive fermions

T/TF

η/s

FIG. 4: The viscosity to entropy-density ratio as a function of T/TF for fermions. The

horizontal line is 1/4π.

VI. CONCLUSIONS

In summary, we have calculated the ratio of viscosity to entropy density for both

Bose and Fermi gases in the unitary limit using the S-matrix based approach in [29].

For the fermionic gas, we found η/s ≥ is greater than 4.7 times the conjectured

lower bound of 1/4π, which is lower than the result of other theoretical approaches,

and more consistent with the most recent experimental results[30]. We provided

evidence that the unitary Bose gas is stable and has a strongly interacting BEC

phase transition. The same calculation indicates that the Bose case is a more perfect

fluid, with η/s ≥ 1.7 times the lower bound.

VII. ACKNOWLEDGMENTS

We wish to thank the editors of this special issue for the invitation to present

these results. This work is supported by the National Science Foundation under

17



1.1 1.2 1.3 1.4 1.5 1.6

0.1

0.2

0.3

0.4

Viscosity to entropy ratio for bosons

T/Tc

η/s

FIG. 5: The viscosity to entropy-density ratio as a function of T/Tc for bosons. The

horizontal line is 1/4π.

grant number NSF-PHY-0757868.

[1] J. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231.

[2] P. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev. Lett. 94 (2005) 111606

[arXiv:hep-th/0405231].

[3] T. Schaefer and D. Teaney, Rep. Prog. Phys. 72 (2009) 126001.

[4] P. Massignan, G. M. Bruun and H. Smith, Viscous relaxation and collective oscilla-

tions in a trapped Fermi gas near the unitarity limit, Phys. Rev. A71 (2005) 033607

[arXiv:cond-mat/0409660].

[5] B. A. Gelman, E. V. Shuryak and I. Zahed, Cold Strongly Coupled Atoms Make a

Near-perfect Liquid, Phys. Rev. A72 (2005) 043601 [arXiv:nucl-th/0410067].

18

http://arxiv.org/abs/hep-th/0405231
http://arxiv.org/abs/cond-mat/0409660
http://arxiv.org/abs/nucl-th/0410067
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