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Abstract

We provide a generalization of the reduction and Robertson positive maps in matrix algebras. They give
rise to a new class of optimal entanglement witnesses. Their structural physical approximation is analyzed.
As a byproduct we provide new examples of PPT (Positive Partial Transpose) entangled states.

1 Introduction

The interest on quantum entanglement has dramatically increased during the last two decades due to the
emerging field of quantum information theory [1]. It turns out that quantum entanglement may be used as
basic resources in quantum information processing and communication. The prominent examples are quantum
cryptography, quantum teleportation, quantum error correction codes and quantum computation.

Since the quantum entanglement is the basic resource for the new quantum information technologies it
is therefore clear that there is a considerable interest in efficient theoretical and experimental methods of
entanglement detection (see [2] and [3] for the review).

Let us recall that a quantum state represented by the density operator in HA ⊗HB is separable if and only
if it can be represented as a convex combination of product states

ρ =
∑

α

pαρ
(A)
α ⊗ ρ(B)

α , (1)

where pα denotes a probability distribution whereas ρ(A)
α and ρ(B)

α are density operators of A and B subsystem,
respectively. It is clear that separable states define a convex subset in the space of all density operators in
HA ⊗HB and states which are not separable are called entangled. The most general approach to characterize
quantum entanglement uses a notion of an entanglement witness (EW) [4, 5]. A Hermitian operator W defined
on a tensor product HA ⊗HB is called an entanglement witness if and only if: 1) Tr(Wσsep) ≥ 0 for all separable
states σsep, and 2) there exists an entangled state ρ such that Tr(Wρ) < 0 (one says that ρ is detected by W ).

It turns out that a state is entangled if and only if it is detected by some EW [4]. In recent years there was a
considerable effort in constructing and analyzing the structure of EWs [6]–[18]. In particular several procedures
for optimizing EWs for arbitrary states were proposed [7, 19, 20, 21]. Each entangled state ρ may be detected
by a specific choice of W . It is therefore clear that each EW provides a new separability test and it may be
interpreted as a new type of Bell inequality [10]. There is, however, no general procedure for constructing EWs.

In this paper we provide a new class of EWs. It is well known (see the next section for all details) that each
EW is uniquely related to a linear positive map Λ : B(HA) → B(HB). We provide new classes of linear positive
maps by constructing generalization of well known maps, namely reduction map and Robertson map. It is shown
that generalized maps and corresponding witnesses are optimal, that is, they detect quantum entanglement in
an ‘optimal way’ (see next section for the precise definition). Optimal EWs are of primary importance since
to perform complete classification of quantum states of a bipartite system it is enough to use only optimal
EWs. Finally, we discuss how these maps are related to the idea of physical structural approximation (SPA)
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[22, 23, 24]. It is shown that there is a strong evidence that these EWs support the conjecture [24] (see also [25])
that physical structural approximation to optimal positive map gives rise to an entanglement breaking channel.

The paper is organized as follows: we recall in Section 2 basic facts about linear positive maps and en-
tanglement witnesses. Section 3 discusses generalization of the reduction map whereas Section 4 discusses
generalization of the Robertson map. We show that these maps and the corresponding entanglement witnesses
are optimal. Final conclusions are collected in the last Section.

2 Preliminaries and notation

In this paper we consider finite dimensional complex Hilbert spaces. Let Mn(C) denote an algebra (actually, a
C∗-algebra) of n× n complex matrices. A linear map Λ : Mn(C) → Mm(C) is called to be positive if it maps
positive elements from Mn(C) into positive elements in Mm(C). It means that for any vectors |x〉 ∈ Cn and
|y〉 ∈ Cm one has

Tr(PyΛ(Px)) ≥ 0 , (2)

where Px = |x〉〈x| and Py = |y〉〈y|. Equivalently, 〈y|Λ(|x〉〈x|)|y〉 ≥ 0 . Note, that the above condition is in
general very hard to check since it does not reduce to any spectral condition. Unfortunately, in spite of the
considerable effort, the structure of positive maps is rather poorly understood [28]–[32] (see also the monograph
by Paulsen [33]). For some recent works see [34, 35, 36, 37, 17, 18, 38] and for a review paper see [39]. Positive
maps play an important role both in physics and mathematics providing generalization of ∗-homomorphisms,
Jordan homomorphisms and conditional expectations. Normalized positive maps define affine mappings between
sets of states of C∗-algebras. A positive linear map Λ is k-positive if the map

1lk ⊗Λ :Mk(Mn(C)) −→Mk(Mm(C)), (3)

is positive (Mk(A) denotes a set of k × k complex matrices with entries from the C∗-algebra A). Clearly, a
k-positive map is l-positive for all l < k. A map which is k-positive for all k is called completely positive.
Actually, in the finite dimensional case we consider in this paper Λ is completely positive if and only if it is k
positive with k = min{n,m} [30].

Let {e1, . . . , en} be a fixed orthonormal basis in Cn. Denote by eij := |ei〉〈ej | an orthonormal basis in
Mn(C). Let T : Mn(C) −→ Mn(C) denotes transposition map with respect to the fixed basis {ei}, that is
T(eij) = eji. Evidently, ‘T’ defines linear positive map. Now, a positive map Λ is called decomposable if and
only if

Λ = Λ1 + Λ2 ◦ T , (4)

where Λ1 and Λ2 are completely positive . Maps which are not decomposable are called indecomposable (or
nondecomposable).

Using Choi-Jamiołkowski [30, 40] isomorphism each positive map Λ gives rise to entanglement witness W

W = (1ln ⊗Λ)P+
n , (5)

where P+
n denotes maximally entangled state in Cn ⊗Cn and 1ln denotes an identity map acting on Mn(C).

Using fixed basis {ei} one has

W =
1

n

n∑

i,j=1

eij ⊗Λ(eij) . (6)

An entanglement witness W is called (in)decomposable if the corresponding positive map Λ is (in)decomposable.
Hence, any decomposable entanglement witness may be represented as follows

W = Q1 +QΓ
2 , (7)

where Q1, Q2 ≥ 0, and AΓ := (1ln ⊗T)A denotes partial transposition of A. Let us observe that the positivity
of Λ implies that W satisfies

〈x⊗ y|W |x⊗ y〉 ≥ 0 , (8)
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for any vectors |x〉 ∈ Cn and |y〉 ∈ Cm. Hermitian operators satisfying (8) are often called block-positive. Note,
that if Λ is completely positive then the corresponding W is not only block-positive but even positive.

Let us recall that entanglement witnesses play a key role in the theory of entanglement. A density operator
ρ living in Cn ⊗Cm is entangled if and only if there exists an entanglement witness W such that

Tr(Wρ) < 0 . (9)

One says that ρ is detected by W . Recall, that a state represented by a density operator ρ is PPT (Positive
Partial Transpose) if ρΓ ≥ 0. One has [28, 7]

Proposition 1 W is an indecomposable entanglement witness if and only if there exists a PPT state ρ detected
by W . Equivalently, a PPT state ρ is entangled if and only if there exists an indecomposable entanglement
witness which detects ρ.

Let D be a subset of density operators of a composite quantum system living in Cn ⊗Cm detected by a given
entanglement witness W , i.e. D = {ρ | Tr(Wρ) < 0}. Given two entanglement witnesses W1 and W2 one says
that W2 is finer than W1 if D1 ⊂ D2, that is, all states detected by W1 are also detected by W2. A witness W
is optimal if there is no other entanglement witness which is finer than W . It means that W detects quantum
entanglement in the ‘optimal way’. It is clear that the knowledge of optimal entanglement witnesses is crucial
to classify quantum states of composite systems. One proves [7] the following

Proposition 2 W is an optimal entanglement witness if and only if W −Q is no longer entanglement witness
for arbitrary positive operator Q.

Authors of Ref. [7] formulated the following criterion for the optimality of W .

Proposition 3 If the set of product vectors x⊗ y ∈ Cn ⊗Cm satisfying

〈x⊗ y|W |x⊗ y〉 = 0 , (10)

span the total Hilbert space Cn ⊗Cm, then W is optimal.

It should be stressed that the converse theorem is not true, i.e. the existence of product vectors which span
Cn ⊗Cm and satisfy (10) is not necessary for the optimality of W . A well know example is provided by the
entanglement witness corresponding to the celebrated Choi indecomposable map [30] which is known to be
optimal but does not provide the corresponding collection of |x⊗ y〉.

Finally, let us comment on an interesting conjecture proposed in [24]: let W be a normalized entanglement
witness, i.e. TrW = 1. An operator W̃ (p) defined by

W̃ (p) =
1− p

n2
In ⊗ In + pW (11)

is called structural physical approximation (SPA) of W if W̃ (p) ≥ 0. Now, let p∗ be a maximal p for which
W̃ (p) defines SPA for W , that is, W̃ (p) ≥ 0 for p ∈ [0, p∗].

Conjecture 1 If W is an optimal entanglement witness, then W̃ (p∗) defines a separable state.

It should be clear that SPA can be equivalently defined for a positive map Λ :Mn(C) −→Mn(C). Let us recall
[26]

Definition 1 A completely positive map Λ : Mn(C) −→ Mn(C) is entanglement breaking if and only if
(1ln ⊗Λ)ρ defines a separable state for any ρ living in Cn ⊗Cn.

Interestingly, any entanglement breaking quantum channel (trace preserving completely positive map) can be
represented in the Holevo form [27]

Λ(ρ) =
∑

i

RiTr(Fiρ) , (12)
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where Ri are density operators in Cm and Fi are positive operators in Cn satisfying
∑

i Fi = In, i.e. a set
{Fi} defines a generalized quantum measurement. Now, a positive map Λ is optimal if Λ − Φ, with Φ being a
completely positive map, is no longer positive. A positive map

Λ̃(p) = (1− p)1ln + pΛ , (13)

defines a SPA for Λ if Λ̃(p) is completely positive. The above conjecture may be equivalently formulated as
follows: if Λ is an optimal positive map, then Λ̃(p∗) is entanglement breaking. One proves [17] the following

Theorem 1 Let Λ : Mn(C) → Mn(C) be a unital map (i.e. Λ(In) = In) that detects all entangled isotropic
states. Then SPA of Λ is an entanglement breaking map.

Let W̃ (p) be SPA of W and let λmin be the smallest eigenvalue of W . One easily finds

p∗ =
1

1 + |λmin|n2
. (14)

Now, it follows from Theorem 1 that p∗ = 1
n+1 and hence

Corollary 1 If Λ : Mn(C) → Mn(C) is a unital map, and the smallest eigenvalue of the corresponding entan-
glement witness W satisfies

λmin ≤ − 1

n
, (15)

then SPA of W defines a separable state.

Conjecture 1 is supported by several examples (see [24] and [17, 18]). The present paper provides another
family of examples supporting above conjecture.

3 New optimal EWs out of the reduction map

3.1 Reduction map in Mn(C)

Let us start with an elementary positive map in Mn(C) called reduction map

Rn(X) =
1

n− 1

[
InTrX −X

]
, (16)

for X ∈Mn(C). Positivity of Rn follows from the fact that Rn maps rank-1 projectors into projectors. Indeed,
for X = |ψ〉〈ψ| with 〈ψ|ψ〉 = 1, one has

Rn(|ψ〉〈ψ|) =
1

n− 1

[
In − |ψ〉〈ψ|

]
, (17)

which is evidently positive, since In − |ψ〉〈ψ| is a projector (of rank ‘n − 1’) onto the (n − 1)–dimensional
hyperplane orthogonal to |ψ〉. The corresponding entanglement witness is given by

W =
1

n− 1

( 1
n
In ⊗ In − P+

n

)
. (18)

One has for the partial transposition

(1l⊗T)W =
1

n(n− 1)

∑

i<j

Pij , (19)

where
Pij = |ψij〉〈ψij | , (20)
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with
|ψij〉 = ei⊗ ej − ej ⊗ ei , (21)

which shows that (1ln ⊗T)W ≥ 0 and hence W defines a decomposable EW. Equivalently, it shows that the
map Rn ◦T is completely positive, i.e. it defines a legitimate quantum channel. Note, that decomposition (19)
proves that W is not extremal, since it decomposes into a convex combination of extremal witnesses PΓ

ij (it is
extremal for n = 2 only, due to W = 1

2P
−Γ
12 ). Interestingly, being not extremal it is still optimal.

Proposition 4 W is an optimal EW.

Proof: to show that W is optimal we use Proposition 3. Let us introduce the following set of vectors in Cn ⊗Cn:

fkl = (ek + el)⊗ (ek + el) , gkl = (ek + iel)⊗ (ek − iel),

for each 1 ≤ k < l ≤ n. It is easy to check that n2 vectors { ek ⊗ ek , fkl , gkl } are linearly independent and
hence they do span Cn ⊗Cn. Direct calculation shows that

〈fkl|W |fkl〉 = 0 , 〈gkl|W |gkl〉 = 0 , 〈ek ⊗ ek|W |ek ⊗ ek〉 = 0 , (22)

which ends the proof. �

Finally, the reduction map Rn supports recent conjecture [24], that is, one has the following

Proposition 5 The structural physical approximation of Rn is an entanglement breaking map.

Let as observe that the smallest eigenvalue of W is given by λmin = −1/n, and hence, due to Corollary 1,
SPA of W is separable. Actually, the above proposition was already proved in [24].

3.2 Generalized reduction map

Let us observe that taking the orthonormal basis eij in Mn(C) the reduction map Rn may be defined as follows

Rn(eii) =
1

n− 1
(In − eii) , (23)

Rn(eij) = − 1

n− 1
eij , i 6= j . (24)

Let us take n(n − 1)/2 complex numbers zij (i < j) satisfying |zij | ≤ 1 and denote by z the collection
{z12, . . . , zn−1,n}. Finally, let us define a map

R(z)
n : Mn(C) −→ Mn(C) , (25)

by

R(z)
n (eii) =

1

n− 1
(In − eii) , (26)

R(z)
n (eij) = − zij

n− 1
eij , i < j , (27)

and zij = zji for i > j. It is clear that for zij = 1 one reconstructs the original reduction map Rn.

Proposition 6 R
(z)
n defines a positive decomposable map.

Proof: let us observe that the corresponding entanglement witness W (z)
n has the following form

W (z) =
1

n(n− 1)

n∑

i,j=1

eij ⊗W
(z)
ij , (28)
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where
W

(z)
ii = In − eii , W

(z)
ij = −zijeij (i < j) . (29)

To complete the proof observe that (1ln ⊗T)W (z) is a positive operator. Indeed, one has

(1ln ⊗T)W (z) =
1

n(n− 1)

∑

i<j

P
(z)
ij , (30)

where the operators P (z)
ij are defined by

P
(z)
ij = eii ⊗ ejj + ejj ⊗ eii − zijeij ⊗ eji − zij eji ⊗ eij (31)

and hence they are positive for |zij | ≤ 1. It shows that (1ln ⊗T)W (z) ≥ 0 and hence W (z) is a decomposable
entanglement witness. �

Note, that if at least one zij 6= 0, then the map R
(z)
n is not completely positive. Indeed, the following

principal submatrix of W (z) (
0 zij
zij 0

)
,

is not positive definite and hence W (z) � 0. If |zij | = 1, then P (z)
ij = |ψ(z)

ij 〉〈ψ(z)
ij |, with

|ψ(z)
ij 〉 = ei⊗ ej − zij ej ⊗ ei . (32)

Proposition 7 The positive map R
(z)
n is optimal if and only if |zij | = 1 for all i 6= j.

Proof: the condition |zij | = 1 is necessary for optimality. Indeed, suppose for example that |zkl| < 1 for some
pair k < l. Then

(1ln ⊗T)W (z) − 1

n(n− 1)
Q

(z)
kl , (33)

where
Q

(z)
kl = (1 − |zkl|2)(ekk ⊗ ell + ell ⊗ ekk) , (34)

is still a positive operator, and hence

W (z) − 1

n(n− 1)
Q

(z)
kl , (35)

defines decomposable entanglement witness (note, that (1ln ⊗T)Q
(z)
kl = Q

(z)
kl ).

Suppose now that |zkl| = 1. To show that W (z) is optimal we use again the result of Lewenstein et. al. [7].
Let zkl = eiαkl . It is easy to check that the following vectors

fkl = (ek + e−iαkl/2el)⊗ (ek + e−iαkl/2el) , gkl = (ek + ie−iαkl/2el)⊗ (ek − ie−iαkl/2el) , ek ⊗ ek ,

span the entire Hilbert space Cn ⊗Cn. Moreover, they satisfy

〈fkl|W (z)|fkl〉 = 〈gkl|W (z)|gkl〉 = 0 (36)

for k < l, and
〈ek ⊗ ek|W (z)|ek ⊗ ek〉 = 0 , (37)

for k = 1, . . . , n which proves that W (z) is an optimal entanglement witness. �

Finally, consider the structural physical approximation to W (z)

W̃ (z)(p) =
1− p

n2
In ⊗ In + pW (z) (38)
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and let λ(z)min be the smallest eigenvalue of W (z). One has

p
(z)
∗ =

1

1 + |λ(z)min|n2
. (39)

Note, that λ(z)min is the smallest eigenvalue to the n× n Hermitian matrix Z defined by

Zii := 0 , Zij := zij (i < j) . (40)

Note, that if all zij = 1 (standard reduction map), then

λ
(z)
min = − 1

n
, (41)

and if all zij = −1, then

λ
(z)
min = − 1

n(n− 1)
. (42)

For a set of arbitrary zij = eiαij the analytic formula for λ(z)min is not available. However, it is clear that in the
general case one has

− 1

n
≤ λ

(z)
min ≤ − 1

n(n− 1)
, (43)

and hence
1

n+ 1
≥ p

(z)
∗ ≥ n− 1

2n+ 1
. (44)

We have already shown that for zij = 1 the SPA of W (z) defines a separable state (see Proposition 5).

Proposition 8 The structural physical approximation R
(z)
n (p

(z)
∗ ), with |zij | = 1, is an entanglement breaking

map.

Proof: one has

W̃ (z)(p
(z)
∗ ) =

1− p
(z)
∗

n2
In ⊗ In + p

(z)
∗ W (z) = p

(z)
∗

[
|λ(z)min| In ⊗ In +W (z)

]
, (45)

and hence to prove the Proposition one has to show that

B(z) = |λ(z)min| In ⊗ In +W (z)

defines a separable positive operator.

Lemma 1 A positive operator

A(z) =

n∑

i,j=1

eij ⊗A
(z)
ij , (46)

with
A

(z)
ii = |λ(z)min|In , A

(z)
ij = −zij eij , (i < j) , (47)

is separable.

Proof: consider the following operator living in Cn ⊗Cn:

A(z) =
n∑

i,j=1

Z̃ij eij ⊗ eij + |λ(z)min|
∑

i6=j

eii⊗ ejj , (48)

where the n× n matrix Z̃ is defined as follows

Z̃ii = |λ(z)min| , Z̃ij = −zij , (i < j) . (49)
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It is clear that Z̃ ≥ 0, and hence A(z) ≥ 0. Now, let us define the linear map Λ(z) : Mn(C) −→Mn(C) defined
as follows

Λ(z)(X) = Z̃ ◦X , (50)

where Z̃ ◦X denotes the Hadamard product of matrices X, Z̃ ∈ Mn(C). Recall, that [A ◦B]ij := AijBij . It is
well known [46] that Λ(z) is completely positive due to the positivity of the matrix Z̃. Observe, that

A(z) = (1l⊗Λ(z))A0 , (51)

where

A0 =
n∑

i,j=1

eij ⊗ eij +
∑

i6=j

eii ⊗ ejj . (52)

Note, that A0 = A(z) with zij = 1. Now, it is well known that A0 defines a separable operator and hence due
to (51) the operator A(z) is separable as well. �

It is evident that the separability of B(z) follows from the separability of A(z) which completes the proof of
the Proposition. �

Remark 1 Note, that for n = 2 all maps R
(z)
2 with |z| = 1 are unitarily equivalent (z ≡ z12)

R
(z)
2 (X) = V (z)R2(X)V (z) † , (53)

with

V (z) =

(
1 0
0 z

)
. (54)

Clearly, it is not longer true for n > 2.

4 New optimal EWs out of the Robertson map

4.1 Robertson map in M2k(C)

Robertson provided [41] the following linear map Φ4 :M4(C) −→M4(C)

Φ4

(
X11 X12

X21 X22

)
=

1

2

(
I2 TrX22 −[X12 +R2(X21)]

−[X21 +R2(X12)] I2 TrX11

)
, (55)

where Xkl ∈ M2(C). It turns out [41] that Φ4 defines a unital positive indecomposable map. Moreover, Φ4 is
extremal and hence optimal. Interestingly, Robertson map supports the SPA conjecture [24].

Recently, [43, 44] (see also discussion in [17, 18, 42]) Robertson map was generalized to a linear map
Φ2k :M2k(C) −→M2k(C)

Φ2k




X11 X12 · · · X1k

X21 X22 · · · X2k

...
...

. . .
...

Xk1 Xk2 · · · Xkk


 =

1

2(k − 1)




A1 −B12 · · · −B1k

−B21 A2 · · · −B2k

...
...

. . .
...

−Bk1 −Bk2 · · · Ak


 , (56)

where
Ak = I2(TrX − TrXkk) , (57)

and
Bkl = Xkl −R2(Xlk) . (58)

It was shown [43] that Φ2k defines an indecomposable optimal positive map. Analyzing the spectrum of the
corresponding entanglement witness W = (1l2k ⊗Φ2k)P

+
2k one finds single negative eigenvalue ‘−1/2k’, one

strictly positive eigenvalue ‘1/[2k(k− 1)]’ with multiplicity 2k2 − (k+1), and k(2k+1) zero-modes. Therefore,
due to the Corollary 1 the SPA of Φ2k defines an entanglement breaking map and hence supports conjecture of
[24].
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Remark 2 Note, that Φ2k defines a special example of the Breuer-Hall map [43, 44]

ΦU
2k(X) =

1

2(k − 1)

(
R2k(X)− UXTU †

)
, (59)

where U is a unitary antisymmetric 2k × 2k matrix. It corresponds to

U = Ik ⊗ σy . (60)

It was shown [43] that for any U the map ΦU
2k is indecomposable and optimal. The special form of ΦU

2k resembling
the original Robertson map in M4(C) was proposed in [17].

4.2 Generalized Robertson map in M2k(C)

In analogy to the reduction map discussed in the previous section we propose the following generalization of
the Robertson map Φ2k: for any collection of k(k − 1)/2 complex numbers zij , with i < j, satisfying |zij | ≤ 1

we define Φ
(z)
2k :M2k(C) −→M2k(C) by

Φ
(z)
2k




X11 X12 · · · X1k

X21 X22 · · · X2k

...
...

. . .
...

Xk1 Xk2 · · · Xkk


 =

1

2(k − 1)




A1 −z12B12 · · · −z1kB1k

−z21B21 A2 · · · −z2kB2k

...
...

. . .
...

−zk1 Bk1 −zk2Bk2 · · · Ak


 . (61)

The main result of this section consists in the following

Theorem 2 Φ
(z)
2k defines a positive map.

Proof: to prove the positivity of Φ(z)
2k one has to show that for any rank-1 projector P2k = |ψ〉〈ψ|, one has

Φ
(z)
2k (P2k) ≥ 0 , (62)

where ψ ∈ C2k and 〈ψ|ψ〉 = 1. Now, any normalized |ψ〉 ∈ C2k may be considered as a direct sum

|ψ〉 = √
α1 |ψ1〉 ⊕ . . .⊕√

αk |ψk〉 , (63)

where |ψi〉 ∈ C2, such that 〈ψi|ψi〉 = 1, and α1, . . . , αk ≥ 0 satisfy normalization condition

α1 + . . .+ αk = 1 . (64)

Using such representation the projector P2k = |ψ〉〈ψ| has the following form

P2k =




α1|ψ1〉〈ψ1|
√
α1α2|ψ1〉〈ψ2| · · · √

α1αk|ψ1〉〈ψk|√
α2α1|ψ2〉〈ψ1| α2|ψ2〉〈ψ2| · · · √

α2αk|ψ2〉〈ψk|
...

...
. . .

...√
αkα1|ψk〉〈ψ1|

√
αkα2|ψk〉〈ψ2| · · · αk|ψk〉〈ψk|


 , (65)

and hence

Φ
(z)
2k (P2k) =

1

2(k − 1)




(1− α1)I2 −z12M12 · · · −z1kM1k

−z12M21 (1 − α2)I2 · · · −z2kM2k

...
...

. . .
...

−z1kMk1 −z2kMk2 · · · (1− αk)I2


 , (66)

where the 2× 2 matrices Mij are defined as follows

Mij =
√
αiαj

[
|ψi〉〈ψj |+ σy|ψi〉〈ψj |σy

]
. (67)
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Lemma 2 Matrices Mij satisfy the following properties:

1. MijMji = αiαj I2,

2. MijMjk = αjMik.

One proves this lemma by direct calculation. To prove (62) we perform the induction with respect to k. For
k = 2 any Φ

(z)
4 is unitarily equivalent to the Robertson map Φ4. Suppose now that the theorem is true for

k = n− 1. To prove that it holds for k = n we use the following well known

Lemma 3 (Bhatia [46]) A block matrix (
A X
X† B

)
,

with A ≥ 0 and B > 0, is positive if and only if

A ≥ XB−1X† . (68)

Hence

2(k − 1)Φ
(z)
2k (P2k) =




(1 − α1)I2 −z12M12 · · · −z1nM1n

−z12M21 (1− α2)I2 · · · −z2nM2n

...
...

. . .
...

−z1nMn1 −z2nMn2 · · · (1− αn)I2


 ≥ 0 , (69)

if and only iff




(1− α1)I2 −z12M12 · · · −z1,n−1M1,n−1

z12M21 (1− α2)I2 · · · −z2,n−1M2,n−1

...
...

. . .
...

−z1,n−1Mn−1,1 −z2,n−1Mn−1,2 · · · (1− αn−1)I2


 ≥

αn

1− αn




α1I2 z1nz2nM12 · · · z1nzn−1,nM1,n−1

z1nz2nM21 α2I2 · · · z2nzn−1,nM2,n−1

...
...

. . .
...

z1nzn−1,nMn−1,1 z2nzn−1,nMn−1,2 · · · αn−1I2


 . (70)

Now let us define a new set of positive numbers

α′
i :=

αi

1− αn
, i = 1, . . . , n− 1 , (71)

and new set of matrices M ′
ij

M ′
ij :=

√
α′
iα

′
j

αiαj
Mij , (72)

for i, j = 1, . . . , n− 1. It is clear that
α′
1 + . . .+ α′

n−1 = 1 , (73)

and the matrices M ′
ij satisfy Lemma 2 with αi replaced by α′

i. Using these new quantities and the condition
|zij | ≤ 1 the inequality (70) may be rewritten as follows




(1− α′
1)I2 −z′12M ′

12 · · · −z′1,n−1M
′
1,n−1

−z′12M ′
21 (1 − α′

2)I2 · · · −z′2,n−1M
′
2,n−1

...
...

. . .
...

−z′1,n−1M
′
n−1,1 −z′2,n−1M

′
n−1,2 · · · (1− α′

n−1)I2


 ≥ 0 , (74)
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where
z′ij := (1− αn)zij + αnzinzjn . (75)

Note, that
|z′ij | ≤ (1− αn)|zij |+ αn|zinzjn| ≤ 1 , (76)

due to |zij | ≤ 1. Hence inequality (74) is equivalent to

Φ
(z′)
2(n−1)(P2(n−1)) ≥ 0 , (77)

which is true due to our original assumption that the theorem holds for k = n− 1. �

It should be stressed that Φ
(z)
2k does not in general correspond to the Breuer-Hall map [43, 44]. One has

Proposition 9 A map Φ
(z)
2k is equivalent to the Breuer-Hall map iff zij = zizj, where (z1, . . . , z2k) are defined

by zk = eiαk .

Proof: indeed, any such vector gives rise to the unitary matrix U (z) via

U
(z)
kl = δklzl . (78)

One has

Φ
(z)
2k (X) = U (z)Φ2k(X)U (z) , (79)

and hence Φ
(z)
2k is unitary equivalent to the Breuer-Hall map. If zij 6= zizj , then the corresponding entanglement

witness W (z) has different spectrum and hence cannot be equivalent to the entanglement witness corresponding
to the Breuer-Hall map.

Proposition 10 Φ
(z)
2k , with |zij | = 1, defines an indecomposable map.

Proof: let us consider the following state ρ living in C2k ⊗C2k:

ρ(z) = N
2k∑

i,j=1

eij ⊗ ρ
(z)
ij , (80)

where ρ(z)ij ∈M2k(C) are defined as follows: if i+ j = 2ℓ, then

ρ
(z)
ij = −W (z)

ij . (81)

If i+ j = 2ℓ+ 1, one has either
ρ
(z)
ij = O2k , (82)

for (i, j) = (2m− 1, 2m) and m = 1, . . . , k, or

ρ
(z)
ij =

zij
4k(k − 1)

eij , (83)

for (i, j) 6= (2m−1, 2m). Finally, the normalization constant reads N = 1/3. One easily checks that ρ(z) defines
a PPT state. Now direct calculation shows that

Tr(W (z)ρ(z)) = − 1

24k(k − 1)
< 0 , (84)

which proves that W (z) is an indecomposable entanglement witness. �

Corollary 2 The formula (80) defines a new class of PPT entangled states in C2k ⊗C2k.
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4.3 Optimality and SPA

Finally, let us analyze the problem of optimality of Φ(z)
2k . One has the following

Proposition 11 Φ
(z)
2k is optimal if and only if |zij | = 1.

Proof: the necessity of |zij | = 1 is obvious (compare the proof of Proposition 7). Now, to prove that this
condition is also sufficient we use again the result of Lewenstein et. al. [7] (cf. Proposition 3). Let zkl = eiαkl ,
as before. It is easy to check that the following vectors

fkl = (ek + e−iαkl/2el)⊗ (ek + e−iαkl/2el) , gkl = (ek + ie−iαkl/2el)⊗ (ek − ie−iαkl/2el) , ek ⊗ ek ,

span the whole Hilbert space C2k ⊗C2k and that they satisfy condition:

〈fkl|W (z)|fkl〉 = 〈gkl|W (z)|gkl〉 = 0 , 〈ek ⊗ ek|W (z)|ek ⊗ ek〉 = 0. (85)

Thus, W (z) = (1l⊗Φ
(z)
2k )P

+
2k is an optimal entanglement witness. �

Concerning SPA we have the following

Proposition 12 SPA for Φ
(z)
6 and zij = −1 is entanglement breaking.

Proof: consider the following class of states living in Cd⊗Cd

ρ =

d∑

k,l=1

aijeij ⊗ eij +
∑

i6=j

bijeii⊗ ejj , (86)

where the d × d complex matrix aij is positive semidefinite. It was shown [45] that ρ is invariant under the
maximal abelian subgroup of U(d)

Ux⊗Ux ρ = ρUx⊗Ux , (87)

where

Ux = exp

(
i

d−1∑

k=0

xkekk

)
, (88)

and x = (x1, . . . , xd) ∈ [0, 2π)× . . .× [0, 2π). Let P denotes the following projector

P(ρ) :=
1

(2π)d

∫ 2π

0

dx1 . . .

∫ 2π

0

dxd Ux⊗Ux ρ(Ux ⊗Ux)
† , (89)

that is, P(ρ) performs symmetrization of ρ with respect to Ux. It is clear that P maps separable states into
separable states. Now, observe that

W (z) = P(V1) + P [(1ln ⊗ σx)V2(1ln ⊗ σx)] +D , (90)

where

V1 =

4∑

i=1

|ψi ⊗ ψi〉〈ψi ⊗ ψi| , V2 =

4∑

i=1

|ψi ⊗ φi〉〈ψi ⊗ φi| , (91)

with

ψ1 = [1 0 1 0 1 0] , ψ2 = [1 0 0 1 0 1] , ψ3 = [0 1 1 0 0 1] , ψ4 = [0 1 0 1 1 0] ,

and

φ1 = [1 0 1 0 1 0] , φ2 = [1 0 0 − 1 0 − 1] , φ3 = [0 1 − 1 0 0 1] , φ4 = [0 1 0 1 − 1 0] .

Finally, D is diagonal. It is clear, that V1 and V2 are separable. Hence, W (z) is separable being the convex
combination of symmetrized separable operators and diagonal D. �

Remark 3 Clearly the above proposition is trivially satisfied for Φ
(z)
4 and z12 = −1. Actually, there is a strong

numerical evidence that SPA for Φ
(z)
4 with |z12| = 1 is entanglement breaking.
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5 Conclusions

We provided a generalization of the well known linear positive maps: reduction map in Mn(C) and Robertson
map in M2k(C): R

(z)
n and Φ

(z)
2k , respectively. We showed that for each collection zij (i < j) satisfying |zij | ≤ 1

these maps are positive. Hence, each collection of points from the unit disc in the complex plane C gives rise
to a positive map. Interestingly, points from the boundary, i.e. satisfying |zij | = 1, generate optimal maps:
decomposable in the case of reduction map and indecomposable in the case of Robertson map.

Our construction gives rise to the new classes of entanglement witnesses: decomposable entanglement wit-
nesses corresponding to R(z)

n , and indecomposable entanglement witnesses corresponding to Φ
(z)
2k . As a byproduct

we provided new examples of PPT entangled states in C2k ⊗C2k detected by indecomposable entanglement wit-
nesses. Our analysis supports recent conjecture [24, 25] that structural physical approximation to an optimal
positive map defines entanglement breaking completely positive map. Actually, we were able to prove it for
generalized reduction map. Concerning generalized Robertson map Proposition 12 provides evidence that it
supports conjecture [24, 25] as well.
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