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Abstract 
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Varying the VaR for Unconditional and Conditional Environments 
 

1. INTRODUCTION 

Accurate forecasting of volatility is the key to successful risk management techniques.  

Many financial disasters attributable to failures of risk management procedures has 

led to greater regulatory control such as the Basle requirements, and the subject of this 

paper, greater emphasis on accurate modelling of market risk.  Measures such as 

Value at Risk (VaR) incorporating new modelling procedures have been developed.  

This paper presents a novel procedure for scaling relatively high frequency VaR 

estimates encompassing the conditional distribution of price changes for the largest 

European stock index futures.   

 

It is now clear that given the unconditional fat-tailed characteristic of futures price 

changes, the assumption of modelling market risk with the thin-tailed Gaussian 

distribution is inappropriate.  Risk measures are misspecified with an underestimation 

(overestimation) bias for single-period (multi-period) settings leading to invalid risk 

management practices due to inappropriate capital reserves.  In contrast, this paper 

uses extreme value theory to provide downside risk management techniques and this 

approach dominates other techniques for low probability and quantile combinations 

(Danielsson and de Vries, 2000).1  Comparisons are made with gaussian estimates for 

conditional single-period and scaled multi-period intervals.   

 

Previous applications of extreme value theory in risk management (Pownall and 

Koedijk, 1999; Longin, 2000; and Danielsson and de Vries, 2000) present 

unconditional estimates for a single-period setting.  These inform risk managers of 

                                                           
1The relative strengths and weaknesses in applying this approach are outlined in Diebold et al. (1998). 
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constant time-invariant VaRs averaged over the whole period of analysis thereby 

allowing them to assess the extent of the overall risk inherent in an asset.  This paper 

extends the analysis twofold by presenting conditional risk estimates and scaling these 

for multi-periods.2  Conditional estimates provide a profile of time-varying VaRs 

updated by current volatility.  Conditional volatility modelling is important in many 

situations, for example in a short holding period during times of high volatility when 

there is a need to incorporate time-varying volatility signals into the investor’s trading 

strategy.  However, exclusive reliance on conditional risk measures is not a panacea 

for the risk manager’s problems.  Trading strategies would have to be continuously 

updated given new volatility estimates with associated high transaction costs.  Thus it 

is also important to provide an overview of risk facing investors over long periods 

using unconditional measures.  Thus this paper presents distinct VaR measures 

dealing separately with the unconditional and conditional distributions for single-

period and multi-period settings providing investors with different and often diverging 

information.   

 

The conditional environment is modelled with a GARCH process induced with fat-

tailed characteristics through assuming student-t innovations.  This results in 

identically and independently distributed (iid) filtered returns, and predictors of 

conditional returns and volatility through iteration.  Investors now have risk measures 

conditional on the present risk and return environment facing the asset.  Simulation 

results demonstrate the statistical properties of the time-varying procedure.  

Moreover, the multi-period estimates exploit the α-root scaling law applicable in 

extreme value theory that only requires an iid variable.  The scaling procedure  

                                                           
2See Jansen et al. (2000) for an application of scaling in an unconditional context.   
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advantageously requires no further estimation of any additional parameters and 

obtains efficiency in the scaling operation by using the highest frequency realisations.  

Scaling from high to low frequency has many applications, and most importantly 

gives investors risk scenarios for different holding periods.3   

 

The paper proceeds in the following section with an outline of extreme value theory.  

Section III details the methods applied to generate the conditional and unconditional 

risk management estimates and in particular, detailing the use of the GARCH filter 

and the scaling procedure for multi-periods.  The statistical properties of the 

conditional approach are investigated through simulation.  The results are presented 

for leading stock index futures from European bourses in section IV.  Here, a 

description of the conditional environment, tail estimates, single and multi-period 

estimates and a comparison of conditional approaches are given.  Finally, concluding 

comments are documented in section V.      

 

2. EXTREME VALUE THEORY  

Extreme value theory underpins the risk measures relying on order statistics where a 

set of logarithmic futures returns {R1, R2,..., Rn} associated with days 1, 2.. n, are 

assumed to be independent and identically distributed (iid), and belonging to the true 

unknown distribution F.4    We examine the maxima (Mn) of a sequence of n random 

variables   

Mn = Max{ R1, R2,..., Rn}         (1) 

                                                           
3 Investors also use scaling to meet regulatory requirements, for example, Basle’s 10-day VaR. 
4 Much of the theory is previously documented and this will present only the salient features relevant 
for this study.  For a comprehensive discussion of extreme value results under a wide range of 
distributional situations see Leadbetter et al. (1983). 
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The corresponding density function of Mn is got from the cumulative probability 

relationship: 

P{Mn  ≤ r} = P{R1 ≤ r, …, Rn ≤ r}  =  F(r) = 1 – ar-α -∞ < r < ∞        (2) 

where the scaling constant is given by a and α is the tail index, for α > 0.  The random 

variables of interest in this analysis are tail values, for example, the VaR measures the 

amount of possible loss exposure upto the extreme return, r.   

 

The Fisher-Tippett theorem gives the asymptotic behaviour of the distribution 

detailing three types of limit laws:   

Type I (Gumbell): Λ(r) = exp (- e -r )    -∞ < r < ∞ 
 
Type II (Fréchet): Φα(r) = 0     r ≤ 0 
            = exp(-r)(-α)    r > 0  
 
Type III (Weibull): ψα(r)  = exp (- (- r)(α))    r ≤ 0 
            = 1      r > 0  (3) 
and for α > 0. 
 

The types of limit distribution are distinguished by the shape parameter α, the tail 

index, in (3), detailing the asymptotic convergence rate.  Of importance to this study 

is the Type II process that exhibits the fat-tailed characteristic in line with financial 

returns.  This type of extreme value distribution exhibits a tail with a power decline  

causing a relatively slow decay for convergence towards the limit, vis-à-vis the 

exponential decline of the type I process.  Also, the relatively slow decline in the tails 

generates moments that are not necessarily always finite with bounded moments upto 

the tail index, α.   

 

Fortunately, the necessary and sufficient conditions for asymptotic convergence on 

the type II distribution can be met using Gnedenko’s theorem: 
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Type II (Fréchet): lim   1 - F(tr) =  r-α =  r-(1/γ)  (4)
   t → +∞ 1 - F(t) 
For r > 0, α > 0.          
 
This condition allows for unbounded moments and represents a tail having a regular 

variation at infinity property and behaves like the fat-tailed pareto distribution (Feller, 

1972).  By l’Hopital’s rule a number of other distributions exhibit this unifying 

regular variation property and are fat-tailed including the independent student-t 

distribution and dependent ARMA process with stable innovations for α < 2.  More 

commonly, the finance literature models derivative first differences with second 

moment dependence using ARCH related specifications (see Hull and White, 1998 for 

an example).  These processes are also unconditionally fat-tailed and display regular 

varying property even if the conditional distribution is thin-tailed including iid normal 

innovations in the case of ARCH (p) and GARCH (p, q) processes, for example 

ARCH (1) and GARCH (1, 1) models, although this does not apply to stochastic 

volatility models  (de Haan et al., 1989).  Furthermore assuming, for example, 

conditional student-t innovations, many of these processes have an unconditional 

distribution exhibiting even fatter tails better matching the empirical features of the 

financial time series. 

 

The extension of extreme value theory in the strict iid case to the assumption of strict 

stationarity is fully discussed in Leadbetter et al. (1983).  Support for the stationary 

series being an associated iid series implies that both series have the same qualitative 

limiting behaviour.  Two conditions are required, a distributional mixing condition 

indicating weak long-range dependence, supported for financial data, and an anti-

clustering condition rejected in the presence of ARCH type effects.  Whether the 

extreme values of financial returns exhibit clustering is debatable (Danielsson and de 
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Vries, 2000) but their existence would bias the estimation of the tail index (see de 

Haan et al., 1989).  This paper adopts Huisman’s et al. (2001) modified small sample 

tail estimator that indicates little bias for clustered data based on a simulation study of 

a GARCH (1, 1) process.   

 

However, for the conditional modelling, the conditions of stationary modelling with 

GARCH processes are not always met (Ghose and Kroner, 1995).  For stationary 

processes, the tail index must be greater than 2 because second unconditional 

moments exist requiring the sum of the GARCH parameters be less than one.  This 

implies that certain GARCH processes, for example the IGARCH process, are 

inappropriate as its unconditional variance is undefined.  Rather a GARCH (1, 1) 

model with parameters summing to less than one is applicable. 

 

3. METHODOLOGY 

3.1 Risk Management Measures 

We now focus on the conditional and unconditional risk measures.  Using the 

distribution, F(r), given in (3), VaR measures can be estimated for the conditional and 

unconditional distributions, providing risk managers with several pieces of 

information for use in their strategic responses to different risk scenarios.5  The 

former provides risk managers with dynamic risk information on prospective losses 

occurring in a time-varying fashion whereas the latter details constant large-scale 

losses over long periods of analysis.  From a number of stochastic processes that 

incorporate time-varying volatility, parametric estimation of an AR (1)-GARCH (1, 1) 

filter and student-t innovations with 4 degrees of freedom is used in this paper to 

                                                           
5 As well as quantile estimates, associated probability estimates can be obtained but are not presented 
for conciseness.  Results available on request. 



 7 

profile the conditional distribution.6  The statistical properties of this conditional 

approach and the related measures are investigated through simulation analysis 

discussed shortly. 

 

The unconditional VaR measure corresponding to a prescribed quantile, rp, from the 

tail of the marginal distribution, F(r) is:    

VaR [Rrp] =  rm, n (m/np)γ                  (5) 

Where γ is the Hill (1975) semi-parametric tail estimator.7 

In terms of robustness, the Hill estimator is recognised as the most efficient semi-

parametric tail estimator (Kearns and Pagan, 1997), and also, it operates analogously 

with extreme value theory by dealing with order statistics.  This downside risk 

estimator has the same statistical properties as the quantile measure: 

 γ = 1/α = (1/m - 1) � [log (-ri) - log (-rm)]  for i  = 1,...., m - 1.             (6) 

The Hill estimator is asymptotically normal, (γ - E{γ})/(m)1/2 ≈ (0, γ2) (Hall, 1982).  

Choice of the optimal threshold value, m, is nontrivial in tail estimation although a 

modified estimator removing bias in small samples is available (Huisman et al., 

2001). 

 

Second, we focus on the conditional risk estimates.  The unconditional VaR estimates 

are modified according to the conditional distribution generating a set of predictive 

time-varying estimates.  For example, the conditional VaR estimate for a one-day 

holding period is obtained with:  

VaR[Rtrp]=  µt + 1 + σt + 1VaR [Zrp]                 (7) 

                                                           
6 The choice of the conditional distribution is due to the GARCH process with student-t innovations 
satisfying the fat-tailed regular variation at infinity property. 
7 VaR measures are not without criticism as they do not examine losses beyond the chosen quantile 
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The series Z represents the returns series filtered by the GARCH estimate of 

conditional standard deviation, that also predicts conditional mean and volatility 

through iteration.  Appropriate filtering of this type can result in iid variables (see 

Taylor, 1986; and Andersen et al., 2000, for applications with different methods).  

The application of a simple and efficient α-root scaling law applicable for extreme 

values allows for the extension to multi-period risk management forecasts.   

 

Thus far the discussion is for a single-period.  For multi-period forecasts the risk 

measures are scaled by a α-root of time multiplication factor.  Illustrating the scaling 

law for the conditional measures, taking two return sequences, the single-period Rt, 

and the multi-period M[Rt] sum of n periods single returns M R Rt t
t

n

[ ]=
=
�

1

, we can 

adjust the asymptotic distribution of the fat-tailed Fréchet distribution in (3) by 

applying Feller’s theorem (Feller, 1972, VIII.8): 

P{ R r = qF(r)i
t =1

n

� ≤            (8) 

Asymptotically this implies that the scaling factor for the VAR estimates are easily 

adjusted by q (for q = n1/α).  This law is strictly applicable for an iid variable and bias 

may occur for the multi-period forecasts of the unconditional sequences (Jansen et al., 

2000).  However, this bias would be reduced dramatically in the conditional multi-

period application due to the near iid structure of the filtered returns. 

Our forecasts extended for a multi-period setting gives a quantile estimate of  

M[VaR[R r ]] =  q[VaR[R r ]t
p

t
p        (9) 

 

                                                                                                                                                                      
 (see Artzner et al. 1999, for a discussion of one such alternative measure). 
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Advantageously the extension for the extreme value estimates is similar to a gaussian 

distribution with its square root of time scaling factor (Diebold et al., 1998).  In an 

unconditional setting, the scaling law application infers a reverse of the estimation 

dilemma in comparing gaussian and Extreme Value estimates.  The single-period 

underestimation problem assuming normality (Cotter, 2001) reverses to become a 

multi-period overestimation problem when scaled upwards.  This is due to the fat-

tailed distribution exhibiting a finite variance (α > 2) and resulting in n  > n1/α  (see 

Dacorogna et al., 1995; for further details).  The paper uses a small simulation to 

explore the comparison of the scaling laws for a conditional setting.  

 

Advantageously, extreme value scaling for multi-period forecasts can be completed 

without re-estimation of any additional parameters.  More importantly, the tail index 

estimates, 1/α, are most efficient at highest frequencies due to their fractal nature 

(Dacorogna et al., 1995).  The increased efficiency for high frequency tail estimation 

is due to negative sample size effects for low frequency returns.  However, high 

frequency tail estimation empirically does involve the possibility of a downward bias 

(although tail estimates are theoretically invariant with respect to time aggregation).8 

Combining these outcomes, the bias gains of estimating tail values for aggregated 

returns are dominated by the efficiency gains in using single-period observations with 

their increased sample size.   

 

3.2 GARCH Filtering Procedure 

In order to obtain the conditional risk estimates, related measures of the mean and 

variance parameters, and more importantly, the sequence Z are required.  From a 

                                                           
8 This downward bias for relatively small samples can be circumvented with the appropriate tail 
estimation procedure (Huisman et al., 2001). 
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number of alternative processes applied in a similar fashion including ARMA-

GARCH (Barone-Adesi et al., 1999) and AR-GARCH (McNeil and Frey, 2000) 

specifications, the latter is chosen as it fulfils the objectives of obtaining a forecast of 

the conditional expected value µt + 1 through the AR component of the filter, the 

conditional variance σt + 1 and residual sequence Z through the GARCH component.   

Assuming that a sequence of returns, R, is related to Z by: 

Rt = µt  + σt Zt                    (10) 

Conditional on the information upto day t.  The sequence, Z, introduces randomness 

by being a (near) iid sequence and is by the extreme value methods applying the Hill 

estimator, and is used to calculate the conditional quantile estimator.  Extensions for 

multi-period conditional forecasts are obtained from the extreme value α-root scaling 

law. 

 

The main assumption of GARCH models is that the conditional second moment, σt, 

has a degree of persistence focusing on volatility clustering with periods of high (low) 

volatility followed by similar periods of high (low) volatility.  Our conditional VaR 

measure explicitly adapts the risk values for this feature by assuming that volatility is 

time-varying.  Furthermore, the volatility clustering feature in GARCH (1, 1) models 

gives rise to fat-tails due to positive excess kurtosis assuming the unconditional fourth 

moment exists.  Formally an ARMA process defines the volatility term: 

σ2
t = α0 + α1Rt - 1

2 + β1σ2
t - 1                                        (11) 

for α0, α1, and β > 0; and 0 < α1 + β1 < 1 to fulfil the strictly stationary requirement in 

line with the unconditional extreme value framework.  β measures the persistence in 

volatility.  To formally account for fat-tails the GARCH model is fitted to the data 

assuming the conditional density follows a student-t distribution with 4 degrees of 
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freedom.9  Specifically Mikosch and Starcia (2000) show that under the assumption of 

a student t conditional distribution, the GARCH (1, 1) process belongs to the marginal 

distribution F  

�
∞

∞−
><+ 0�0,dzg(z)�z�ln 01

2
1                  (12)   

where g(z) is a student-t density with 4 degrees of freedom and the prerequisite is 

easily verified numerically.   

 

3.3 Monte Carlo Simulation: 

Here we examine the statistical properties of the proposed conditional estimators.10  

The quantile estimator is obtained in the time-varying environment by a stochastic 

process represented by a GARCH (1, 1) model.  Specifically a stationary process is 

assumed by having α0 > 0, and 0 < α1 + β1 < 1.11  Parameters α0 = 0.1, α1 = 0.15, and 

β1 = 0.8 are chosen.  The GARCH model incorporates volatility clustering that is an 

important feature of financial returns series.  The simulated data also meets the 

requirement for financial returns of having a heavy tailed conditional distribution 

have student-t innovations with 4 degrees of freedom.  To examine the impact of 

scaling from single-periods to multi-periods the simulations are repeated for n = 2, 4 

and 5.  A sample size of 2000 is chosen with 200 replications and the average results 

are presented in table 1.  The small sample modified Hill estimator suggested by 

Huisman et al. (2001) is used in the quantile estimates and then scaled using the α- 

 

                                                           
9 The fitted GARCH model can assume a range of underlying distribution function including the 
commonly assumed thin-tailed Gaussian density as utilised by Riskmetrics in their development of 
VaR measures.  However, this would underestimate the magnitude of tail behaviour.  
10 Monte Carlo simulations for a related unconditional approach are discussed in Jansen et al. (2000).   
11 Non-stationary series which have undefined second moments are avoided such as EGARCH with the 
leverage term λ = 1 and IGARCH processes (Ghose and Kroner, 1995).   
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root scaling law as outlined requiring no further estimation at lower frequencies.12   

   

Quantile estimates are presented for the single-period and multi-periods chosen to 

demonstrate the conditional procedure.  The true quantiles are in parentheses.  The 

precision of the findings is favourable with the predicted values close to the true 

values.  The results deteriorate slightly going from relatively high probabilities of 

95% in contrast to low probabilities of 99%.  The estimates also fare well for the 

multi-period extensions although the predicted values tend to overestimate relative to 

the true values.  This overestimation bias tends to increase moving to longer multi-

period settings.  Again there is a deterioration of the results moving from high to low 

probabilities supporting the properties of the unconditional procedure (see Jansen et 

al., 2001).  However, all the predicted quantities are reasonably close to the true 

values supporting the modeling procedure.  

INSERT TABLE 1 HERE 

 

4. EMPIRICAL FINDINGS  

The futures analysed entail the main twelve stock index contracts traded on the 

respective European exchanges.  Basic summary details on the contracts are given in 

table 2.  Futures returns use the first difference of the natural logarithm of daily 

closing prices.  The continuous time series of returns is generated for each contract 

using prices for the nearest maturing contract, and within this, upto the last trading 

day prior to the delivery month before overlapping with the next maturity.  Futures 

returns like other speculative assets display a number of common characteristics 

                                                           
12 This uses a weighted least squares regression of Hill estimates against associated numbers of tail 
estimates, γ(m) = β0 + β1 + ε(m)  for m = 1,….,η.  The approach minimises heteroskedasticity in the 
regression’s error term with the weighted least squares approach.  Huisman et al. (2001) find that the 
estimator works well for small samples (similar in size to that analysed here) and with GARCH type 
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including weak stationarity, skewness, leptokurtosis and non-normality.  The fat-

tailed characteristic present for all contracts is illustrated by the Quantile-Quantile (Q-

Q) plot for the Dutch AEX contract in figure 1 with both lower and upper values 

diverging substantially from the corresponding normal values.   

INSERT TABLE 2 HERE 

INSERT FIGURE 1 HERE 

 

Maximum Likelihood estimates of the conditioning variables from fitting the AR-

GARCH (1, 1) model with student-t innovations, and the dependence structure of the 

futures returns and filtered series are given in table 3.  The conditioning mean 

parameter is strongest for the PSI20 contract with an AR coefficient of 0.134.  The 

time-varying GARCH parameters are in line with financial studies measured at daily 

intervals indicating that past volatility impacts current volatility.  Also the parameters 

indicate strict stationarity with the summation of the GARCH coefficients being less 

than one.  Persistence of past squared returns and volatility is strongest for the 

Portuguese and UK futures respectively and investors should be aware of dependency 

in their investment strategies where volatility is not constant.  Analysis of the Ljung-

Box statistics confirms this strong serial dependence for the returns series.  The 

conditional specification appears well specified however, with negligible serial 

correlation resulting in near iid filtered returns series.  Advantageously, the extreme 

value scaling law for the multi-period setting is employed for these iid variables. 

INSERT TABLE 3 HERE 

 

                                                                                                                                                                      
dependency.  The associated number of tail estimates, mhkkp, is extrapolated based on the modified Hill 
estimator. 
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The quantile statements are derived from the tail estimates, and values for the semi-

parametric Hill estimator are given in table 4 for the returns and filtered series.  

Importantly, a lack of stability in the Hill estimates can affect the VaR measures and 

their qualitative inference.  The extent of the problem is such that a 'Hill horror plot' 

illustrating the variability of tail index estimates for different thresholds is beneficial 

(Embrechts et al., 1997).  Given the possible variability in tail estimates, a pragmatic 

approach is adopted in the development of risk management measures by combining 

previously supported techniques.  First, it follows Phillips et al. (1996), and calculates 

an optimal threshold value for each contract based on a bootstrap procedure of m = 

Mn = {λn2/3} where λ is estimated adaptively by λ = γ1/21/2(n/m2(γ1 - γ2)2/3.  Second 

it takes account of small sample bias and the impact of tail clusters by using the 

modified Hill estimator, γhkkp, proposed by Huisman et al. (2001).  Finally a related 

qualitative approach that ensures that Hill estimates do not suffer from instability is 

obtained from a Hill plot.   

INSERT TABLE 4 HERE 

 

The importance of appropriate tail estimation procedures is evident from comparing 

methods.  Huisman et al. (2001) find that the small sample bias results in lower tail 

estimates and this is removed by their modified estimator as can be seen by a 

comparison with the Phillips et al. (1996) estimates.  The Hill estimator used in the 

quantile estimates remain stable as demonstrated by the Hill plot for the IBEX index 

in figure 2 detailing stable estimates over a range of threshold values.  Concentrating 

on the Huisman et al. (2001) estimates the modified small sample values range 

between two and four, verifying previous studies on financial returns (Loretan and 

Phillips, 1994).  The existence of a finite second moment is supported using a 
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difference in means statistic giving credence to the use of stationary GARCH models 

and appropriateness of the α-root scaling law. An inverse relationship exists between 

tail estimates and the degree of tail fatness suggesting that the Portuguese PSI20 

contract exhibits greater potential for more extreme returns for prospective investors.  

Unfortunately it is in times of financial disasters that the role of tail fatness and the 

associated extreme returns become paramount.  Here risk management procedures 

face possible crises and accurate modelling of these events is vital. 

INSERT FIGURE 2 HERE 

 

A spectrum of single-period, and multi-period using the α-root scaling law, 

unconditional VaR estimates is presented in table 5.  These estimates suggest that, for 

example, there is a 95% probability that the loss on the BEL20 contract is less than or 

equal to 1.45%, with the MIF contract being most risky.  For the 99.5% level the 

Portuguese PSI20 contract is now most risky with a VaR of 6.32%.  The multi-period 

quantiles for blocks of trading days relying only on the relatively high frequency daily 

data are presented in the last six columns.  Dealing with the lower probability level, 

the VaR for the BEL20 contract is 5.30% for weekly intervals with an expected 

occurrence of once every 200 weeks (1/1 – p) on average, in comparison to 12.65% 

for the most risky PSI20 futures with the same occurrence ratio.  The Swiss contract 

has the lowest potential for exteme losses.  These multi-period estimates do not 

require further estimation and benefit from measurement efficiency by using the high 

frequency daily data to measure the tail estimator. 

INSERT TABLE 5 HERE 
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Switching our attention to the conditional risk management measures the single-

period and multi-period forecasted VaR estimates are given in table 6.  As all returns 

are calculated upto February 28 1999, the forecasts are for single-periods and multi-

periods beginning 1 March 1999.13  The dynamic estimates rely on the filtered series, 

Z, which is a (near) iid series, and conditional mean and volatility values obtained 

through iteration of the AR(1)-GARCH (1, 1) process.  The VaR estimates reach as 

high as 12.15% for the PSI20 contract with 99.5% confidence for weekly periods 

whereas the lowest comparable estimate occurs for the BEL20 contract.  In general 

most of the contracts exhibit higher conditional daily VaRs indicating higher volatility 

during the February 1999. 

INSERT TABLE 6 HERE 

 

There are clearly diverging results between conditional and unconditional 

environments with an increase (decrease) in tail risk occurring for the PSI20 (BEL20) 

futures in the time-varying context.  These conditional measures are weighted towards 

the trading environment leading upto March 1 and any volatility considerations 

affecting specific contracts at that time would affect the estimated dynamic risk 

measures.  Thus investors should be aware of the important impact of the time 

dependent conditional environment in their development of risk management 

procedures to avoid disasters associated with extreme returns.   

 

These multi-period conditional forecasts scale the single-period estimates, and as 

noted, this scaling law is strictly applicable for an iid process as evidenced by the 

dependence structure of the filtered returns sequences in table 2.  This extends the 

                                                           
13 The forecasts for the Danish KFX and Swiss contracts are exceptions to this, dealing with 19 
December 1998 and 1 July 1999 respectively.   
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single-period case advocated by McNeil and Frey (2000) by exploiting Feller’s 

theorem to apply the α-root scaling law (n1/α).  Also, the multi-period forecasts have 

the advantage that the conditional environment is not measured at lower frequencies 

thereby avoiding losing the unique stylised features of relatively high frequency 

realisations and avoiding the dampening of volatility estimates.   

 

Previous studies have compared methods over single-periods for the unconditional 

setting and found that the much-used normal distribution underestimates tail 

behaviour and associated risk measures relative to extreme value theory.  

Furthermore, these results reverse over multi-periods where the gaussian n scaling 

law overestimates VaR estimates relative to the α-root scaling law (Dacorogna et al., 

1995).  The use of GARCH models assuming a gaussian underlying distribution is 

extremely popular in the finance literature and industry, and quantile measures are 

presented in table 6 from fitting a GARCH (1, 1) specification.14   

 

These estimates allow for comparison between gaussian and extreme value risk 

measures.  First, the unconditional underestimation assuming normality is 

substantiated for the conditional VaRs demonstrating the impact of the unconditional 

assumptions of the GARCH model.  Furthermore, this underestimation reverses to 

become an overestimation when scaling upwards to multi-periods, for example, the 

95% VaR for the Danish KFX contract over 2 days increases to 2.54% (2.63%) for 

                                                           
14 For example, the widely applied RiskMetrics� method is a special case of such a GARCH model.  
Here they assume the unconditional environment is gaussian and they specify the persistence 
parameters of 0.94 for past volatility with the ARCH coefficient equal to 0.06.  This results in the 
IGARCH specification.   
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extreme value (gaussian) estimates.15  Thus as the futures data exhibit finite variance, 

the expansion of the n  scaling law for normality exceeds that of the extreme value 

α-root scaling law even in a time-varying setting.  On moving to larger intervals the 

divergence between gaussian and extreme value estimates increases further with the 

95% VaR for the KFX contract now becoming 3.29% and 4.16% respectively.  Risk 

management procedures should be adjusted given these results.  Namely, conditional 

estimates assuming normality underestimates potential risk and should incorporate an 

additional risk element, whereas in contrast, the scaling procedure of normality 

overestimates the impact of conditional attributes leading to trading practices that are 

too conservative.      

 

5 SUMMARY AND CONCLUSION 

This paper presents market risk measures accounting for the fat-tailed characteristic of 

futures returns.  Extreme value methods based on order statistics model the tail values 

of a distribution in an unconditional and conditional setting.  The conditional risk 

estimates rely on using an AR(1)-GARCH (1, 1) filter.  These conditional measures 

profit from applying the parametric GARCH model leaving near iid filtered returns 

allowing for the α-root scaling law giving multi-period estimates.  Scaling allows risk 

managers to assess likelihood of losses across intervals estimated parsimoniously and 

efficiently.  An application for a range of European stock index futures is given so 

investors can infer risk patterns across markets and develop trading strategies 

according to their risk preferences. 

 

                                                           
15 Not all contracts exhibit larger Gaussian estimate for this multi-period setting, for example the 
BEL20 contract, however there is a reversal for this contract in extending to larger periods, and in 
general, this reversal should take place on moving to some multi-period interval. 
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The risk management process is aided considerably by the procedures detailed in this 

paper.  For instance, as accurate risk measures rely on appropriate modelling it is 

important to use the modified small sample Hill estimator minimising overestimation 

of tail fatness. Furthermore, the impact of the conditional distribution on risk 

estimates is explored.  Investors can now update their decision making process by 

focusing on volatility levels for the current period by applying the most recent price 

information.  These volatility levels are time-varying and periods of high (low) 

volatility result in an increase (decrease) in unconditional VaR estimates.  This paper 

finds that the Portuguese futures exhibit the most volatile market environment 

resulting in the highest conditional VaR estimates.  In general the futures exhibit 

diverging potential for extreme returns in comparing the conditional and 

unconditional estimates providing risk managers with distinct risk profiles. 

 

These conditional measures are easily scaled for lower frequencies using the α-root 

scaling law giving the most efficient multi-period risk estimates.  By way of 

comparison scaled conditional estimates assuming the underlying distribution is 

gaussian are computed.  The results confirm the underestimation of risk estimates for 

a single-period setting albeit for the conditional environment.  Furthermore, for multi-

period settings the n  scaling law results in overestimation of the conditional 

estimates relative to the extreme value α-root scaling law.  Investors should be aware 

that the normality estimates result in too conservative risk estimates even in a 

conditional environment and adjust their capital reserves accordingly.   
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Figure 1 

 

Q-Q Plot of AEX Futures Contract 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This figure plots the quantile of the empirical distribution of the AEX futures index 
returns against the normal distribution.  The straight line represents a gaussian 
quantile plot whereas the curved line represents the quantile plot of the empirical 
distribution of the AEX contract.  The extent to which these AEX returns diverge 
from the straight line indicates the fat-tail characteristic.   
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Figure 2 
 

Hill Plot for Lower Tail Returns of IBEX Contract 

 
 
The figure represents a Hill plot for various thresholds, m, determining whether there 
is stability of the Hill estimates. 
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Table 1 
Simulated GARCH (1, 1) with Student-t innovations and Scaling Procedure 

  Single-period Multi-period 
 n = 1 n = 2 n = 4 n = 5 

Quantile      

rp95 7.0413 9.1925 12.0010 13.0764 
 (7.0900) (8.4315) (10.0268) (10.6020) 

rp99 13.0764 17.0714 22.2869 24.2842 
  (13.6000) (16.1732) (19.2333) (20.3367) 
The values in this table represent averages of 200 replications from a sample size of 
2000.  The blocks for the multi-periods used are n = 2, n = 4 and n = 5 corresponding 
to 2 days, 4 days and weekly intervals.  The quantile estimates are based on Huisman 
et al. (2001) tail estimates for the simulated data.  The theoretical quantiles are in 
parentheses. 
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Table 2 
 

Summary Details of European Stock Index Futures Analysed 
Contract Country Period Unit Root Skewness Kurtosis Normality 

BEL20 Belgium 01/12/1992 -1156.75 -0.11† 4.4 0.07 
KFX Denmark 01/06/1992 -1648.93 -0.33 5.19 0.08 
CAC40 France 01/12/1988 -2466.2 -0.08† 3.36 0.05 
AEX Holland 01/12/1990 -2631.2 -0.33 5.94 0.08 
DAX Germany 01/12/1988 -1973.46 -0.56 8.31 0.08 
MIF30 Italy 01/12/1994 -1142.23 -0.06† 2.27 0.06 
OBX Norway 01/12/1992 -1550.45 0.32 97.69 0.18 
PSI20 Portugal 01/10/1996 -546.65 -0.87 7.95 0.11 
IBEX35 Spain 01/06/1992 -1634.7 -0.49 4.72 0.07 
OMX Sweden 01/03/1990 -2364.04 -0.27 8.93 0.07 
FTSE100 UK 01/06/1984 -2321.14 -1.18 18.78 0.05 
SWISS Switzerland 01/12/1990 -1709.49 -0.5 9.3 0.06 
Datastream provided the data.  The period gives the respective starting dates for each 
contract and ends on 23/2/99 for all except KFX (18/12/1998) and Switzerland 
(30/06/1999).  The Phillips Perron test examines for unit roots.  Normality is 
examined with the Kolmogorov-Smirnov test.  † represent insignificant at the five 
percent level. 
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Table 3 
 
Conditional Modelling of European Stock Index Futures  

Contract AR αααα0000 αααα1111 ββββ1111 R(12) R2(12) Z(12) Z2(12) 
BEL20 0.077 9.46E-07 0.049 0.915 41.488 321.104 12.720 14.350 
 (0.027) (3.96E-07) (0.011) (0.018) 0.000 0.000 [0.390] [0.279] 
KFX 0.049 1.73E-06 0.064 0.876 12.110 318.665 14.310 9.214 
 (0.024) (5.55E-07) (0.011) (0.020) 0.437 0.000 [0.281] [0.685] 
CAC40 0.006 3.14E-06 0.050 0.902 27.361 348.855 19.950 3.434 
 (0.020) (8.90E-07) (0.008) (0.015) 0.007 0.000 [0.068] [0.992] 
AEX -0.050 1.03E-06 0.046 0.918 36.448 258.129 13.020 0.493 
 (0.022) (3.72E-07) (0.008) (0.013) 0.000 0.000 [0.368] [1.000] 
DAX -0.008 1.45E-06 0.060 0.889 40.749 961.226 19.130 5.304 
 (0.020) (3.68E-07) (0.009) (0.014) 0.000 0.000 [0.085] [0.947] 
MIF30 -0.034 5.27E-06 0.071 0.875 32.027 445.698 14.450 8.521 
 (0.032) (2.25E-06) (0.016) (0.027) 0.001 0.000 [0.273] [0.743] 
OBX 0.067 -1.74E-16 0.094 0.600 11.564 45.477 0.009 0.035 
 (0.020) (9.74E-16) (0.003) (0.035) 0.481 0.000 [1.000] [1.000] 
PSI20 0.134 1.68E-06 0.120 0.781 30.401 187.883 8.310 6.213 
 (0.040) (9.10E-07) (0.028) (0.038) 0.002 0.000 [0.761] [0.905] 
IBEX35 -0.007 4.38E-06 0.050 0.891 25.791 423.089 18.030 13.710 
 (0.024) (1.53E-06) (0.010) (0.022) 0.011 0.000 [0.115] [0.320] 
OMX 0.006 4.90E-06 0.060 0.876 16.061 324.787 8.716 35.330 
 (0.021) (1.13E-06) (0.010) (0.017) 0.188 0.000 [0.727] [0.000] 
FTSE100 0.012 1.25E-06 0.043 0.928 20.213 49.866 15.100 2.353 
 (0.016) (3.11E-07) (0.006) (0.009) 0.063 0.000 [0.236] [0.999] 
SWISS -0.033 4.53E-06 0.060 0.806 25.160 1065.037 18.040 1.342 
  (0.025) (1.34E-06) (0.014) (0.042) 0.014 0.000 [0.114] [1.000] 
The AR-GARCH specification assumes student-t innovations with 4 degrees of 
freedom.  Marginal significance levels using Bollerslev-Wooldridge standard errors 
are displayed by parentheses.  Ljung-Box test are for the returns (R) and filtered (Z) 
series.  Ljung-Box test are for the squared returns (R2) and squared filtered (Z2) series.    
Marginal significance levels for the Ljung-Box tests given in brackets.  * denotes 
significance at the 5% level.   
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Table 4 
 
Downside Tail Estimates for Stock Index Futures 
    Returns Filtered Returns 
Contract mp γγγγp mhkkp γγγγhkkp mp γγγγp mhkkp γγγγhkkp 
BEL20 63 2.81 45 3.02 68 3.30 51 3.98
  (0.35) (0.45) (0.40) (0.56)
KFX 72 2.65 40 2.86 80 2.88 36 3.56
  (0.31) (0.45) (0.32) (0.59)
CAC40 100 2.97 89 3.25 102 3.95 117 3.51
  (0.3) (0.34) (0.39) (0.32)
AEX 93 3.04 64 3.24 91 3.26 85 3.15
  (0.32) (0.41) (0.34) (0.34)
DAX 109 2.93 65 3.05 100 4.01 105 4.1
  (0.28) (0.38) (0.4) (0.40)
MIF30 55 3.31 25 3.3 59 3.54 53 4.06
  (0.45) (0.66) (0.46) (0.56)
OBX 71 2.04 22 2.45 69 3.23 40 3.14
  (0.24) (0.52) (0.39) (0.50)
PSI20 41 1.91 18 2.32 43 2.41 21 3.51
  (0.3) (0.55) (0.37) (0.77)
IBEX35 74 2.62 25 2.92 80 3.41 109 3.26
  (0.3) (0.58) (0.38) (0.31)
OMX 88 2.59 17 2.85 96 3.46 85 3.4
  (0.28) (0.69) (0.35) (0.37)
FTSE100 126 2.99 127 3.00 126 4.22 211 3.75
  (0.27) (0.27) (0.38) (0.26)
SWISS 72 2.81 61 3.02 81 2.96 46 3.09
    (0.33)  (0.39)  (0.33)  (0.46)
Hill tail estimates, γ, are calculated for each futures index returns, and filtered returns 
series using the AR(1)-GARCH(1, 1) model detailed in text.  The number of values in 
the respective tails, mp, and the associated Hill estimates, γp, follows Phillips et al. 
(1996).  The number of values in the respective tails, mhkkp, and the associated Hill 
estimates, γhkkp, follows Huisman et al. (2001).  Standard errors are presented in 
parenthesis for each tail value.   
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Table 5 
 
Single-period and Multi-period Unconditional VaR Estimates for European Stock 
Index Futures 

  Single-period Multi-period 
 rp95 rp99.5  rp95   rp99.5  

Contract n = 1   n = 2 n = 4 n = 5 n = 2 n = 4 n = 5 
BEL20 1.45 3.11 1.83 2.30 2.47 3.92 4.93 5.30
KFX 1.81 4.06 2.31 2.95 3.19 5.17 6.59 7.12
CAC40 2.45 4.19 3.04 3.76 4.02 5.19 6.42 6.87
AEX 2.01 4.09 2.49 3.08 3.30 5.06 6.27 6.72
DAX 1.75 3.73 2.20 2.76 2.97 4.68 5.88 6.32
MIF30 2.65 5.32 3.26 4.03 4.31 6.56 8.09 8.66
OBX 1.56 4.01 2.08 2.76 3.02 5.31 7.05 7.73
PSI20 2.42 6.32 3.26 4.39 4.83 8.52 11.49 12.65
IBEX35 2.36 5.18 2.99 3.79 4.09 6.57 8.33 9.00
OMX 2.55 5.73 3.26 4.15 4.49 7.31 9.32 10.08
FTSE100 1.62 3.50 2.05 2.58 2.78 4.41 5.56 5.99
SWISS 1.39 2.99 1.75 2.21 2.37 3.76 4.73 5.09
The values in this table represent the unconditional VaR quantiles for different 
confidence intervals, for example rp95 is the 5% level.  The estimates use Hill 
estimators based on the Huisman et al. (2001) procedure.  The blocks of returns used 
are two days n = 2, four days n = 4 and five days (weekly) n = 5.  Values are 
expressed in percentages.   
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Table 6 
 
Single-period and Multi-period Conditional VaR Estimates for European Stock Index 
Futures 

  Single-period Multi-period 
 rp95 rp99.5  rp95   rp99.5  

Contract n = 1   n = 2 n = 4 n = 5 n = 2 n = 4 n = 5 
BEL20 1.81 3.29 2.16 2.57 2.72 3.91 4.65 4.92 
 (1.49) (3.24) (2.10) (2.97) (3.32) (4.58) (6.48) (7.24) 
KFX 2.09 3.90 2.54 3.09 3.29 4.74 5.76 6.14 
 (1.86) (3.89) (2.63) (3.72) (4.16) (5.50) (7.77) (8.69) 
CAC40 2.41 4.64 2.94 3.58 3.81 5.65 6.88 7.33 
 (2.02) (4.16) (2.86) (4.04) (4.51) (5.89) (8.33) (9.31) 
AEX 2.39 5.16 2.97 3.70 3.98 6.44 8.02 8.61 
 (1.92) (3.84) (2.71) (3.84) (4.29) (5.43) (7.69) (8.59) 
DAX 2.24 4.01 2.66 3.14 3.32 4.75 5.62 5.94 
 (1.62) (3.54) (2.29) (3.23) (3.62) (5.00) (7.07) (7.91) 
MIF30 3.27 5.66 3.88 4.60 4.86 6.71 7.96 8.41 
 (2.78) (5.28) (3.94) (5.57) (6.23) (7.47) (10.57) (11.81) 
OBX 1.49 3.75 1.86 2.33 2.50 4.69 5.87 6.31 
 (1.47) (4.36) (2.08) (2.94) (3.29) (6.16) (8.71) (9.74) 
PSI20 2.76 7.68 3.36 4.10 4.36 9.36 11.40 12.15 
 (2.47) (6.49) (3.49) (4.94) (5.52) (9.18) (12.99) (14.52) 
IBEX35 2.60 5.14 3.21 3.97 4.25 6.36 7.87 8.43 
 (2.34) (5.90) (3.31) (4.68) (5.23) (8.35) (11.80) (13.20) 
OMX 2.62 5.06 3.21 3.93 4.20 6.21 7.61 8.13 
 (2.40) (5.69) (3.39) (4.79) (5.36) (8.04) (11.37) (12.72) 
FTSE100 2.20 4.03 2.65 3.19 3.39 4.85 5.83 6.19 
 (1.68) (3.59) (2.38) (3.36) (3.76) (5.08) (7.18) (8.03) 
SWISS 1.78 3.58 2.23 2.79 2.99 4.48 5.60 6.02 
  (1.45) (3.00) (2.06) (2.91) (3.25) (4.24) (6.00) (6.71) 
The values in this table represent the conditional VaR quantiles for different 
confidence intervals, for example rp95 is the 5% level.  The estimates use Hill 
estimators based on the Huisman et al. (2001) procedure from the AR(1)-GARCH(1, 
1) filtered returns.  The blocks of returns used are two days n = 2, four days n = 4 and 
five days (weekly) n = 5.  Conditional estimates from fitting a GARCH (1, 1) model 
with normal innovations are in parentheses.  Values are expressed in percentages.   
  
 


