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Abstract. - We introduce a stochastic model to explain a double power-law distribution which
exhibits two different Paretian behaviors in the upper and the lower tail and widely exists in social
and economic systems. The model incorporates fitness consideration and noise fluctuation. We
find that if the number of variables (e.g. the degree of nodes in complex networks or people’s
incomes) grows exponentially, normal distributed fitness coupled with exponentially increasing
variable is responsible for the emergence of the double power-law distribution. Fluctuations do not
change the result qualitatively but contribute to the second-part scaling exponent. The evolution
of Chinese airline network is taken as an example to show a nice agreement with our stochastic
model.

Introduction. – Power law behaviors are now perva-
sive in various kinds of studies [1–14], which give an im-
portant class of complex networks, namely the scale-free
networks. However, in some cases, such a single property
is insufficient to describe the distributions in real-world
systems in which scaling law is absent in some regions
or, even more peculiar, changed at some critical points
[15,16]. In contrast to the typical power law, distribution
including two different power-law regions is called dou-
ble power-law whose cumulative distribution, namely the
probability that variable K is larger than a specific value
k, is given by [16]:

P (K > k) = {k
−γ1 , k<kc;

k−γ2 , k>kc
(1)

where γ1 and γ2 are two scaling exponents while kc is the
turning point. This kind of property exists widely in social
and economic systems such as the degree distribution of
airline network, word network or scientist collaboration
network and the distribution of people’s incomes [16–20].
Some works related to double power law concentrate on

how to fit such distribution by a uniform function rather
than treat two power separately. Non-extensive statistical
theory and the combination of different power-law func-
tions were applied to the problem [22, 23]. However these
works cannot tell us how this nontrivial property comes to
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its being. To understand its underlying mechanism, Reed
proposed a model based on geometric Brownian motion
[19]. He proved that such process coupled with exponen-
tial distributed evolution time causes, as he called, a dou-
ble Pareto-lognormal distribution which has a lognormal
body but power-law behaviour in both tails. This distri-
bution is shown to provide an excellent fit to observed data
on incomes and earnings. Dorogovtsev and Mendes pro-
posed another different model aiming to explain the double
power-law degree distribution in word network [24]. The
model is constructed by two mechanisms: the preferen-
tial attachment and the creation of new links between old
nodes which increases with evolution time. By continues
approach, they show the degree distribution has two dif-
ferent scaling exponents, −1.5 for upper tail and −3 for
lower tail.

Although the above two models can explain incomes
and word network respectively, both of them have lim-
itations. In word network model the scaling exponents
are fixed. Thus it cannot explain the distributions with
distinct scaling exponents. While in Reed’s model, the rel-
ative increase rate of incomes is assumed to be the same
for all people. This is far from our knowledge that persons
have heterogeneous ability of making money. Therefore
fitness character must be taken into account to general-
ize the model. Besides, although the previous models re-
produced some characters, the evolution of the real-world

p-1

http://arxiv.org/abs/1103.2001v1


D. D. Han et al.

systems have not been investigated to support their model
assumptions.
In this Letter, a general stochastic model is developed

to explain the double power-law distribution. The model
incorporates fitness consideration and noise fluctuation,
which is general to describe many real-world system evo-
lution. We find normal distributed fitness coupled with
exponentially increasing variables is responsible for the
emergence of the double power-law distribution while fluc-
tuation does not change the result qualitatively but con-
tribute to the scaling exponent. We also investigate the
evolution of CAN to provide evidence for the proposed
model.

Generalized model for double power law. – Let’s
denote ki(t, t

′) the value at time t of the i-th variable
which comes into the system at time t′ and denote N(t)
the number of the total variables in the system at time
t. Regardless of the specific meaning of ki(t, t

′), its evo-
lution pattern usually shares common features. For an
example, the increasing rate of ki is proportional to ki
itself. This is probably caused by the preferential attach-
ment (also called the rich get richer) that widely exists in
self-organized complex systems [4]. Besides, it is natural
to assume that the increasing rate is proportional to some
of its own attributes which is called fitness, denoted as ηi
[25]. In reality fitness can be interpreted as, for exam-
ples, capital, social skills, activity levels of individuals and
population or Gross Domestic Product (GDP) of cities.
The increasing rate can also be influenced by other ingre-
dients which can be normalized to be a time-dependent
factors. But as the first step, let us focus on the simplest
case where such factors are treated as constants. In this
context, the evolution equation of ki(t, t

′) is given by:

dki

dt
= ηiki. (2)

Thus ki grows exponentially as ki(t, t
′) = eηi(t−t′) (assum-

ing ki(t
′, t′) = 1). This directly restricts the form of N(t)

in some systems such as node degree evolution in a net-
work. Limited by its structure, the exponentially growing
degree ki requires the exponentially growingN(t) (or even
faster). Although in some cases such as people’s incomes
N(t) does not encounter this problem, it has also been
assumed to increase exponentially [19]. Therefore we as-
sume

N(t) ∝ ecnt. (3)

The distribution of fitness ηi is critical in our model. As
we will analyze, normal distributed ηi is essential to pro-
duce the double power-law distribution. Note that when
we choose the specific parameters for ηi in a network-
structured system, we meet with the similar problem to
N(t). Since degree of a node can not exceed n(t) − 1, to
keep a long time evolution ηi should be restricted so that
the mean value of ηi, denoted as µη, cannot be far larger
than cn while the standard variance, denoted as ση, should
be bounded properly.

Now let us turn to analyze the distribution un-
der the above-mentioned condition. Using equation
p(ki(t, t

′))dki(t, t′) = f(ηi)dηi, the distribution of ki(t, t
′)

is easily derived to follow a lognormal distribution. Since
the variables are added exponentially, their lifetime, de-
fined as T = t−t′, follows exponential distribution. There-
fore the value of ki we actually examined is lognormal
ki(T ) mixed by exponentially distributed T . Thus the
distribution reads:

p(k) =

∫ tc

0

1√
2πσηkT

e
− (ln(k)−µηT )2

2σ2
ηT2

e−cnTdT, (4)

where tc is the time when we examine p(k). If ση → 0,

1√
2πσηkT

e
− (ln(k)−µηT)2

2σ2
ηT2 → δ(T − ln(k)

µη
) and Eq.(4) gives:

p(k) ∝ k
−(1+ cn

µη
)
ζ(k − eµηtc), (5)

where ζ(k) = {1, k≤0
0, k>0. The variables ki follow a power-law

distribution with a cut-off at kc = eµηtc which is the max-

imum value. On the other hand, 1√
2πσηkT

e
− (ln(k)−µηT)2

2σ2
ηT2 →

0 if ση → ∞ and the integral becomes k independent, indi-
cating a uniform distribution. However this never happens
in a network-structured system since ση is limited as we
have discussed.
For a finite ση > 0, it is difficult to derive analytical

result from Eq.(4). Therefore numerical experiments are
applied to analyze the problem. The simulation is car-
ried out by the following instructions. At each time step
new variables increasing exponentially are added by initial
value 1 and are assigned fitness chosen from a normal dis-
tribution. Then each variable increases its value according
to Eq.(2). We simulate the cumulative distribution for dif-
ferent ση as shown in Fig. 1. When ση = 0, the distribu-
tion follows a power-law form with a cut-off at eµηtc , as we
have discussed above. With the increase of ση, the second
part of the distributions decreases more and more slowly
while their shapes seem to be a power law. It is noteworthy
that the turning point occurs at about kc = eµηtc which
is exact the point at which the cut-off occurs for ση = 0.
Therefore the turning point is expected to increase with
the evolution time tc as kc ∼ eµηtc , as well demonstrated
in Fig. 2.
Another interesting discovery is that with the increase

of ση, the first part of the distributions does not change
significantly. From Fig. 1, we see that all the first part of
the curves superpose the distribution of ση = 0 well. Thus
the first part of p(k) must follow the same power-law distri-
bution as the p(k) of ση = 0 with exponent γ1 = cn

µη
which

is independent of ση. However p(k) will finally become
uniform distribution when ση → ∞. There must have a
transition point σtr at which the first part of the distri-
bution starts to change. By extensive numerical experi-
ments, the transition point is determined to be σtr ≈ µη

2 .
The distributions of ση > σtr are not studied since we only
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Fig. 1: Simulation of the cumulative distribution of variable ki.
The simulation is carried out with µη = 0.15, N(t) = 50e0.088t

and tc = 30. For other µη and exponential increasing N(t), similar
results can be obtained. The study is averaged over 50 realizations.

concern small ση. When ση = σtr, the second part of the
distribution, as seen in Fig. 1, still decreases faster than

k
− cn

µη . This result indicates that for all the ση ≤ σtr, the
second part of the distributions has an upper bound.
Now let us prove that the second part of p(k) has a

lower bound. It is easy to examine that when ln(k) >

(ση

√

ln(t)
t−1 + µη)t, the following inequality is valid:

1√
2πσηkT

e
−

(ln(k)−µηT)2

2σ2
ηT2

e
−cnT

>

1√
2πTσηk

e
−

(ln(k)−µηT)2

2σ2
ηT e

−cnT
. (6)

Since ση is usually very small, the above inequality is
approximately considered to be valid when ln(k) > µηT .
Therefore for any k > eµηtc (namely the second part of
p(k). The following discussion is restricted to this con-
dition), the integral of the left term in Eq.(6) from 0 to
tc must be larger than that of the right term. The inte-
gral of the left term is exactly the degree distribution p(k)
while the integral of the right term, according to Ref. [10],
follows asymptotically a power-law function with the ex-
ponents related to µη, ση and cn. Thus for a specific group
of above exponents, p(k) has a lower bound.
If p(k) is not oscillatory, the existence of the upper and

the lower bound allows ln(p(k))
ln(k) to have a limitation. As-

suming it to be −γ, then p(k) is written as p(k) ∝ l(k)k−γ ,
where l(k) ∼ o(kβ) and k−β ∼ o(l(k)) are valid for any
β > 0 when k → ∞. Therefore for large k, given any
constant u > 1, we have the following inequality:

(uk)−β

k−β
<

l(uk)

l(k)
<

(uk)β

kβ
. (7)

Fig. 2: Simulation of the cumulative distribution of ki at different
tc. The simulation is carried out with µη = 0.15, N(t) = 50e0.088t

and ση = 0.02. Inset: the correlation of kc and tc. The fitted
line (solid line) represents y = 0.6e0.15x , which illustrates that the
turning point kc increases with tc as kc ∼ eµηtc .

Let β → 0, then we have

lim
k→∞

l(uk)

l(k)
= 1. (8)

Note that Eq.(8) is also valid for any constant 0 < u ≤ 1.
This property of l(k) follows directly from the requirement
that p(k) is asymptotically scale invariant. Thus, the form
of l(k) only controls the finite extent of the lower tail and
will not affect its scaling exponent significantly. So the
second part of the p(k) is also power law. For further
study, numerical simulation is applied to determine the
exponent of the second part of p(k), denoted as γ2. It is
found that

γ2 ∼ 1

ση

. (9)

The result is well demonstrated by the simulation as shown
in Fig. 3. It is noteworthy that ση → 0 leads to γ2 → ∞.
The second part of p(k) degenerates naturally to be a cut-
off. The exact formulation of γ2 may also be related to cn
and µη, but extensive simulations indicate that γ2 is much
less sensitive to cn(or µη) than to parameter ση.
So far we have provided a possible model to produce

double power-law distribution. However real complex sys-
tems such as the Internet or WWW usually include fluc-
tuations that may be essential to describe the dynamics
of its evolution [10, 21]. Therefore, a general model must
be able to describe this feature. The generalization can be
carried out by modifying Eq.(2):

dki = ρηikidt+ (1− ρ)(µηdt+ σdw)ki, (10)

where dw is white noise of standard normal distribution
and σ is the standard variance of fluctuations. ρ ∈ [0, 1] is
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Fig. 3: Numerical studies of γ2. The evolution time tc is selected
properly to keep the number of variables at about 1000 while the
initial number of variables equals to 50. The fitted lines (solid line
for µη = 0.15, cn = 0.088 and dashed line for µη = 0.18, cn = 0.1)
is given by γ2 = 0.46+ 0.044

ση
and γ2 = 0.44+ 0.05

ση
, respectively. The

study is averaged over 50 realizations. For other µη and cn, similar
results can be obtained.

a parameter representing the relative contribution of the
noise and the fitness, which can be considered as a measure
of the degree of the disorder in real-world systems. Note
that if ρ = 1, Eq.(10) becomes Eq.(2) while if ρ = 0, it
leads to the geometric Brownian motion. Fluctuation de-
scribed by the term σkidw is based on a general fact that
in real systems such as WWW, site with large number of
connections are likely to lose or gain more links than the
site with small one. The solution of Eq.(10) is solved to be

eρηite(1−ρ)[(µη−0.5σ2)t+σw] which follows lognormal distri-
bution with logarithmic mean ρµηt+ (1− ρ)(µη − 0.5σ2)t
and logarithmic variance (ρσηt)

2+(1−ρ)2σ2t. By the sim-
ilar methods used above, one can verify the distribution
is still a double power law but the second scaling expo-
nent is controlled by parameter ρ. In Fig. 4 we show the
cumulative distribution for different ρ. It is found that
the first part power-law behavior is still independent of
ρ, leading to γ1 = cn

µη
, but the second power-law expo-

nent decreases with ρ. Therefore noise fluctuations do not
change the distribution qualitatively but contribute to the
second scaling exponent.
The present model (Eq.(10)) indicates that evolution of

a complex system may be characterized by two parts: a
leading ingredient influencing the evolution and noise fluc-
tuations. This will be interpreted as follow. Since there
are usually various ingredients related to the evolution of
complex system, practically we cannot take all of them
into account. A feasible method is to consider the most
important ingredient as the fitness while all other minor
ones as contributions to fluctuations. Then parameter ρ

represents how much the leading ingredient contributes to

Fig. 4: Numerical studies of the cumulative distribution for different
ρ. The simulation is carried out with µη = 0.17, N(t) = 50e0.088t

and tc = 30. ’×’ represents ση = σ = 0 and the others represent
ση = σ = 0.02. When ση = σ = 0 the distribution is a power law
independent of ρ. When ση = σ > 0, the first-part scaling exponent
does not change while the second-part exponent decreases with ρ.
The study is averaged over 50 realizations.

the evolution. If the evolution is totally governed by the
leading ingredient, then ρ → 1, indicating a deterministic
pattern. On the other hand, if there is no apparent leading
ingredient, it leads to ρ → 0, indicating a random picture.
Therefore our model is general to describe various real-
world systems which evolve between order and disorder,
and provide a better understanding on their evolution. As
we will see in the following section, CAN is a typical ex-
ample that follows such an evolution mechanism.

An example: Evolution of CAN. – In this section,
we will analyze the evolution of CAN to provide evidence
for our proposed model.

Chinese airline system can be modeled as a complex
network with cities representing nodes and flights repre-
senting edges. The degree of a node is defined as the sum
of the airlines connecting to it. The degree distribution
of CAN has been investigated by several studies which
all indicate a double power-law behavior [16,17,22]. Here
we will report some useful information. First we have ana-
lyzed the total number of nodes N(t) existing at time t. It
grows as N(t) ∝ ecnt with cn ≈ 0.088, which is consistent
with our assumption that nodes increases exponentially.
The number of edges M(t) also increases exponentially
with time as M(t) ∝ ecmt with cm ≈ 0.154. We have
also measured the parameters of the degree distribution
of CAN from 1999 to 2003 and a single year 2008, sum-
marized in Table. 1. The exponent γ1 stabilizes at about
0.51 while γ2 fluctuates from 2.1 to 2.7. Note that the
stabilization of γ1 is indicated by our model where γ1 is
independent of fluctuations. The turning point kc shows
an increase from 18 to 30, which is also consistent with
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Table 1: Two scaling exponents (γ1 and γ2) and the turning
point (kc) of cumulative degree distribution in CAN

1999 2000 2001 2002 2003 2008
γ1 0.46 0.51 0.52 0.51 0.51 0.51
γ2 2.2 2.1 2.5 2.3 2.7 2.7
kc 18 18 20 21 22 30

our result that the turning point increases with evolution
time.
In the present paper the evolution of CAN is studied

by investigating the correlation between GDP and degree.
The economic growth such as the size of tertiary industry
has been recently demonstrated to be a leading ingredient
in shaping the topology of CAN [26]. According to the
discussion in the last section, we consider GDP relates to
the fitness of the corresponding nodes. Note that the evo-
lution of degree can also be studied by directly measuring
the logarithmic ratio of the degree of successive two years.
But this method can neither help to distinguish the iden-
tity of the fitness nor provide useful information of the
corresponding parameters which is important in our anal-
ysis. As shown in Fig. 5, we found that the degree forms
a linear function with its corresponding GDP (R2 > 0.62)
while the fluctuations are obvious. Despite the continu-
ing evolution of both GDP and degree, this correlation
has maintained for at least six years (1998− 2003) since it
has been first observed in 1998. Therefore it provides some
key information about the evolution of degree in CAN and
cannot be viewed as just a coincidence.
Considering the time evolution, the correlation can be

described as:

ki(t) = D(t)Gi(t), (11)

where Gi(t) is the GDP of city i at year t. It grows expo-
nentially as Gi(t) ∝ eλit where λi follows normal distribu-
tion with the mean of 0.18 and the standard variance of
0.02. The strong positive correlation confirms that econ-
omy may govern the evolution of the degree in CAN while
the fluctuations, as we mentioned previously, are consid-
ered to result from some minor ingredients (such as pop-
ulation density, public administration, geographical con-
straints, etc). Both the two aspects contribute to D(t),
leading to an expression given by D(t) = ea(t)eε(t), where
term ea(t) is the time-dependent slope and the term eε(t)

represents the fluctuations.
The specific form of a(t) is easy to be evaluated. Sum-

ming Eq.(11) for all nodes we get 〈D(t)〉 = ea(t) =
2M(t)

∑

i
Gi(t)

∼ e−0.036t, where
∑

i Gi(t) is measured to be

proportional to e0.19t. Thus a(t) = −0.036t. Then
ε(t) can be investigated from data by calculating ε(t) =

ln( ki(t)
Gi(t)

) − a(t). However what we concern here is the

increment of ε(t), defined as dε(t) = ε(t) − ε(t − 1). In
Fig. 6 we plot the distribution of dε(t) for all the five
years. It follows a normal distribution with the mean
of 0 and the standard variance of 0.09. Furthermore we

Fig. 5: The correlation of degree and its corresponding GDP for year
1999 and year 2002. Both of them exhibit linear correlation. 〈Gi(t)〉k
is an average over all the nodes with the same degree k. Note that
the data of the two years are not drawn for better visualization.
(Gi(1999) here increases 2000 from the origin data.) The correlation
does not change from 1998 to 2003.

calculate the self-correlation function of dε(t), defined as
〈dε(t)dε(t + τ)〉 = 1

N(t)

∑

i dεi(t)dεi(t + τ) (τ is the time

interval). As listed in Table. 2, it exhibits very weak
correlation (correlation coefficient < 0.1) when τ 6= 0.
Therefore dε(t) can be regarded as white noise and ex-
pressed as dε(t) = 0.09dw. Then D(t) is written as
D(t) ∼ e0.09w−0.036t. Substituting it into Eq.(11) and ap-
plying differentiation we have [27]

dki = (λi − 0.036)kidt+ 0.09kidw. (12)

Eq.(12) is exact the form of our model which can give rise
to double power-law distribution. To further demonstrate
its agreement with the real evolution of CAN, we simulate
the degree distribution according to Eq.(12). We obtained
γ1 = 0.61 (it can also be calculated from γ1 = cn

µη
=

cn
〈λi〉−0.036 = 0.61), comparable to the first exponent 0.51

while γ2 = 2.84, good agreement with the second exponent
2.7.

Conclusion. – We have proposed a general model to
explain the emergence of the double power-law distribu-
tion. The model incorporates fitness consideration and
noise fluctuation which indicates that evolution of a com-
plex system may be characterized by two parts: a leading
ingredient and noise fluctuations. We find that normal
distributed fitness coupled with exponentially increasing
variables is responsible for the emergence of the double
power-law distribution. Fluctuations do not change the
result qualitatively but contribute to the value of scal-
ing exponent. We have also studied empirically the CAN
which turns out to follow the same evolution pattern as
our proposed model.

We have only discussed the behavior of our model when
ση <

µη

2 . If ση is not much larger than
µη

2 , the distri-
bution still decays like a double power-law but both the
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Fig. 6: The distribution of the increment of ε(t) for all the five
years. The data is binned into classes. The fitted line is p(dε) =

19.4e
(−

(dε)2

2∗0.092
)
. Therefore it follows normal distribution with mean

0 and standard variance 0.09. Inset: The cumulative distribution
of dε(t). It is well fitted by P (dε(t) > dε) = 116erfc( dε

0.127
) where

erfc(x) = 2√
π

∫ ∞

x
e−x2

dx.

exponents are different from previous ones. With the con-
tinuing increasing of ση, the double power-law behavior
turns out to be unconspicuous. It results from that the
second scaling exponent is gradually close to the first one
and finally becomes indistinguishable.

Finally, we would like to mention that we have done
tests for six usual distributions, namely exponential distri-
bution, uniform distribution, power-law distribution, Pois-
son distribution, Rayleigh distribution and Weibull distri-
bution for the fitness instead of normal distribution, the
results show that none of them is able to achieve double
power-law distribution. Therefore we believe that normal
distribution of fitness is a key ingredient responsible for
the double power-law distribution.
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