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Abstract We investigate the use of Malliavin calculus in order to calculate the Greeks of
multidimensional complex path-dependent options by simulation. For this purpose, we ex-
tend the formulas employed by Montero and Kohatsu-Higa to the multidimensional case.
The multidimensional setting shows the convenience of the Malliavin Calculus approach
over different techniques that have been previously proposed. Indeed, these techniques may
be computationally expensive and do not provide flexibilityfor variance reduction. In con-
trast, the Malliavin approach exhibits a higher flexibilityby providing a class of functions
that return the same expected value (the Greek) with different accuracies. This versatility for
variance reduction is not possible without the use of the generalized integral by part formula
of Malliavin Calculus. In the multidimensional context, wefind convenient formulas that
permit to improve the localization technique, introduced in Fournié et al and reduce both
the computational cost and the variance. Moreover, we show that the parameters employed
for variance reduction can be obtainedon the flightin the simulation. We illustrate the ef-
ficiency of the proposed procedures, coupled with the enhanced version of Quasi-Monte
Carlo simulations as discussed in Sabino, for the numericalestimation of the Deltas of call,
digital Asian-style and Exotic basket options with a fixed and a floating strike price in a
multidimensional Black-Scholes market.
Key Words: Greeks, Risk-Management, Quasi-Monte Carlo Methods, Malliavin Calculus.

1 Introduction and Motivation

Risk-sensitivities, also called Greeks, are fundamental quantities for the risk-management.
Greeks measure the sensitivities of a portfolio of financialinstruments with respect to the
parameters of the underlying model. Mathematically speaking, a greek is the derivative of
a financial quantity with respect to (w.r.t.) any of the parameters of the problem. As these
quantities measure risk, it is important to calculate them quickly and with a small order of
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error. In general, the computational effort required for anaccurate calculation of sensitivities
is often substantially greater than that required for priceestimation.

The problem of greeks calculation can be casted as follows. Suppose that the financial
quantity of interest is described byE [ψ (X(α))Y] (i.e., the price of a derivative contract),
whereψ : R → R is a measurable function andX andY are two random variables (r.v.s).
The greek, that we denoteθ , is the derivative w.r.t. the parameterα :

θ(α) =
∂

∂ α
E [ψ (X(α))Y] = E

[

∂
∂ α

ψ (X(α))Y

]

.

The most common of the Greeks are notably, Delta, Gamma, Vega, Theta, Rho. These quan-
tities are relatively simple to calculate for plain vanillacontracts in the Black-Scholes (BS)
market. However, their evaluation is a complex and demanding task for exotic derivative
contracts such as Asian-style basket options where no closed-formula is known.

The simplest and crudest approach is to employ the Monte Carlo (MC) estimation of
E [ψ (X(α))Y] for two or more values ofα and then use finite-difference approximations.
However, this approach can be computationally intensive and can produce large biases and
large variances in particular ifψ = 11A, whereA is a measurable set. A variant is thekernel
method(see Montero and Kohatsu-Higa [10]) which generalizes finite-difference methods
using ideas taken from the kernel density estimation.

Several alternatives have been proposed without finite-difference approximation.Path-
wise methods(see Glasserman [4]) treat the parameter of differentiation α as a parameter
of the evolution of the underlying model and differentiate this evolution. However, this ap-
proach is not always applicable, notably whenψ is not smooth (for instanceψ = 11A). At
the other extreme, thelikelihood method ratio(see Glasserman [4]) puts the parameter in
the measure describing the underlying model and differentiates this measure. Even if the
likelihood method ratio is applicable to non-smooth functions it may provide high-variance
estimators. Indeed, compared to the pathwise method (when applicable), it displays a higher
variance. Summarizing, these two alternatives involve twomain ideas: differentiating the
evolution or differentiating the measure, respectively.

In this paper we investigate the use of Malliavin Calculus inorder to employ (Quasi)-
Monte Carlo (QMC) simulations for the evaluation of the sensitivities of complex multi-
dimensional path-dependent options. The multidimensional setting shows the very conve-
nience of the Malliavin Calculus approach over the different techniques that have been pro-
posed. Indeed, Malliavin Calculus allows to calculate sensitivities as expected values whose
estimation is a natural application of MC methods. Formally:

θ(α) = E

[

∂
∂ α

ψ (X(α))Y

]

= E [ψ (X(α))H] .

whereH is a r.v. depending onX andY.
In the context of multidimensional options, we extend the formulas employed by Mon-

tero and Kohatsu-Higa [11] to the multidimensional case. This approach gives a certain
flexibility and provides a class of functions (different r.v.s H) returning the same expected
value (the sensitivity) but with different accuracies.

Indeed, the previously mentioned alternative techniques may be computationally expen-
sive in the multidimensional case and do not provide flexibility for variance reduction. This
versatility for variance reduction is not possible withoutthe use of the generalized inte-
gral by part formula of Malliavin Calculus. Advanced techniques such as the kernel density
estimation or more recent approaches such as the Vibrato Monte Carlo in Gilles [3] are
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difficult to employ and computationally demanding in multi-dimensions. In order to avoid
to use the Malliavin technique, Chen and Glasserman [1] haveillustrated a procedure that
produces “Malliavin Greeks” without Malliavin Calculus. However, since this procedure in-
volves both pathwise and likelihood ratio methods, the estimators of the formulas for the
sensitivities in Chen and Glasserman [1] have a high variance.

For these purposes we find convenient representations ofH that permit to enhance the
localization technique introduced in Fournié et al. [2] andreduce both the computational
cost and the variance. Moreover, we show that the parametersemployed for the variance
reduction can be obtainedon the flightin the simulation by adaptive techniques. We illus-
trate the efficiency of the proposed procedures, coupled with the enhanced version of QMC
simulations discussed in Sabino [16], for the numerical estimation of the Deltas of call,
digital Asian-style and Exotic basket options with a fixed and a floating strike price in a
multidimensional BS market.

The paper is organized as follows. Section 2 is a short introduction on Malliavin Cal-
culus, Section 3 derives the formulas employed for the computation of the Deltas of call
Asian basket options with floating and fixed strike, Asian digital options and exotic options.
Section 4 illustrates the enhanced QMC approach that we adopt and describes in details how
to get the localization parameters with adaptive (Q)MC techniques; Section 5 discusses the
numerical experiments of the study and finally Section 6 summarizes the most important
results and concludes the paper.

2 Malliavin Calculus: Basic Results and Notation

The aim of this section is to briefly introduce the basic results from Malliavin Calculus and
to fix the notation we adopt in the rest of the paper. For more information on this subject,
we refer the reader to the book by Nualart [13].

Consider the probability space(Ω ,F ,P) where we define theM-dimensional Brown-

ian motionW(t) = (W1(t), . . . ,WM(t)), t ∈ [0,T] and given 0= t(n)0 , t(n)1 , . . . , t(n)n , divide the

interval [0,T] into n subintervalsIk = [t(n)k , t(n)k+1), k= 0, . . . ,n−1. The superscripts indicates

the fineness of the subdivision of[0,T]. Now denote the vector∆ (n)
k =

(

∆ (n)
k,1 , . . . ,∆

(n)
k,M

)

where∆ (n)
k,i =Wi(t

(n)
k+1)−Wi(t

(n)
k ).

Now consider a smooth function with polynomial growthφ : Rn×M → R, φ ∈ C ∞
p , of

the formφ = φ(∆ (n)
0 , . . . ,∆ (n)

n−1). Finally we consider the following space:

Sn =
{

φ(∆ (n)
0 , . . . ,∆ (n)

n−1);φ ∈ C
∞
p

}

⊂ L
2 (Ω ) , (1)

where(Sn)n≥1 form an increasing sequence inL 2 (Ω ).

Definition 1 The unionS =
(

⋃

n≥1Sn
)

⊂ L 2 (Ω ) is called simple functional space and
its elements are called simple functionals.

We now can define the Malliavin derivative operator.

Definition 2 Let φ ∈ S , then there exists n∈ N
∗ such thatφ = φ(∆ (n)). The Malliavin

derivative operatorD =
(

D1, . . . ,DM
)

of φ at a point s∈ Ik is defined as

Dm
s φ =

n−1

∑
k=0

∂ φ
∂xk,m

(∆ (n)
0 , . . . ,∆ (n)

n−1)11I (n)k
(s). (2)



4

Let us precise the notation. We havexk =
(

xk,1, . . . ,xk,M
)

, soxk corresponds to the increment

vector∆ (n)
k and the m-th component xk,m corresponds to the m-th component∆ (n)

k,m.

Moreover we give the following definition.

Definition 3 Introduce onS the norm

‖F‖2
1,2 = ‖F‖L 2(Ω)+‖DF‖L 2([0,T]×Ω),

the setD1,2 is the closure ofS with respect (w.r.t.)‖ · ‖1,2.

Finally we define the Skorohod integralδ Sk.

Definition 4 The adjoint ofD in L 2 (Ω × [0,T]) is the operator:

δ Sk : u = (u1, . . . ,um) ∈ dom
(

δ Sk)→ δ Sk(u) (3)

which by definition satisfies forφ ∈ D
1,2 andu ∈ dom

(

δ Sk
)

M

∑
m=1

E

[

∫ T

0
Dm

s (φum(s))ds

]

= E

[

φ
M

∑
m=1

δ Sk
m (um)

]

= E
[

φδ Sk(u)
]

. (4)

Equation (4) is known as duality relation.
It can be shown (see Nualart [13]) that ifu(t) is an Ito process, the Skorohod integral

coincides with the Ito integral ofu andDsu = 0 if s≥ t .
We now list some identities and useful results that will be employed in the rest of this

paper. Proofs can be found in Nualart [13].

1. ∀F1, . . . ,Fd ∈ D
1,2 we haveφ(F1, . . . ,Fd) ∈ D

1,2 and∀m= 1, . . . ,M

Dm
s φ =

d

∑
k=1

∂ φ
∂xk

(F1, . . . ,Fd)Dm
s Fk. (5)

For example, leta∈ R
M we have

Dm
s exp

(

M

∑
i=1

aiWi(t)

)

= amexp

(

M

∑
i=1

aiWi(t)

)

11[0,t](s) (6)

2. Letφ(t) be an adapted process we have:

Dm
s

∫ T

0
φ(t)dWm(t) = φ(s)+

∫ T

s
Dm

s φ(t)dWm(t), (7)

and

Dm
s

∫ T

0
φ(t)dt =

∫ T

s
Dm

s φ(t)dt, (8)

3. If φ ∈ D
1,2, u ∈ dom

(

δ Sk
)

, andφu ∈ dom
(

δ Sk
)

then

δ Sk(φu) = φδ Sk(u)−
M

∑
m=1

∫ T

0
um(s)D

m
s φds. (9)
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3 Multidimensional Malliavin Sensitivities

Consider for simplicity a complete market whose risky assets,Si , i = 1, . . . ,M, are driven by
the following dynamics (in the risk-neutral measure):

dSi(t) = rSi(t)dt+Si(t)σi(t)dBi(t) i = 1, . . . ,M, (10)

Si(0) = xi ,

wherer is the constant risk-free rate,σ (t)= (σ1(t), . . . ,σM(t)) is the vector of the volatilities
process andB(t) is the vector of theM-dimensional Brownian motion in the risk-neutral
measure withdBi(t)dBm(t) = ρim(t)dt; ρ is the correlation matrix among the Brownian
motions (it can be stochastic). The existence of the vector processσ (t) is guaranteed by
theorem 9.2.1 in Shreve [18]. Applying the risk-neutral pricing formula (see Shreve [18]),
the calculation of the price at timet of any European derivative contract with maturity date
T boils down to the evaluation of an (discounted) expectation:

a(t) = exp(−r(T − t))E [ψ |Ft ], (11)

the expectation is under the risk-neutral probability measure andψ is a genericFT -measurable
variable that determines the payoff of the contract.

In order to apply Malliavin Calculus we need to write the above dynamics in terms of
uncorrelated Brownian motions:

dSi(t) = rSi(t)dt+Si(t)σi(t)
M

∑
m=1

αim(t)dWm(t) i = 1, . . . ,M

Si(0) = xi ,

where∑M
m=1 αim(t)αkm(t) = ρik(t),a.s. and we have definedσim(t) = σi(t)∑M

m=1 αim(t),a.s..
Hereafter we denoteδ Kr andδ D the Kronecker delta and the Dirac delta, respectively.

Naturally at timeT we haveψ = a(T), a.s..
The following proposition generalizes the formula in Montero Kohatsu-Higa [11] to the

multidimensional case.

Proposition 1 Assuming the dynamics (12) let m(T) be aFT -measurable r.v. (it can depend
on the entire trajectory) and considerψ = ψ(m(T)). Denote Gk the partial derivative

Gk =
∂m(T)

∂xk
, k= 1, . . . ,M, (12)

Suppose thatψ ∈ D
1,2, the k-th delta (the k-th component of the gradient) is

∆k =
∂a(0)
∂xk

= e−rT
E
[

ψ ′Gk
]

= e−rT
E

[

ψ
M

∑
m=1

δ Sk
m (Gkum)

]

, (13)

whereu = (u1, . . . ,uM) ∈ dom(δ Sk), z= (z1, . . . ,zm) ∈ dom(δ Sk), Gku ∈ dom(δ Sk) and

um(s) =
zm(s)

∑M
h=1

∫ T
0 zh(s)Dh

sm(T)ds
M

∑
h=1

∫ T

0
zh(s)D

h
sm(T)ds 6= 0, a.s.
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The derivativeψ ′ may have no mathematical sense indeed, the aim of the proposition is to
overtake the problem with the formalism of distributions and Malliavin Calculus.

Proof Compute

Dh
sψ = ψ ′Dh

sm(T) h= 1, . . . ,M. (14)

Supposez∈ dom(δ Sk) and multiply the above equation byzh(t) and byGk; then sum for all
h= 1, . . . ,M and integrate:

M

∑
h=1

∫ T

0
Gkzh(s)D

h
sψ(T)ds=

M

∑
h=1

∫ T

0
Gkzh(s)ψ ′(T)Dh

sm(T)ds. (15)

ψ ′Gk does not depend ons and due to the definition ofu we can write

ψ ′Gk =
M

∑
m=1

∫ T

0
um(s)GkD

m
s ψ(T))ds. k= 1, . . . ,M (16)

Finally compute the expected value of both sides of (16)

E
[

ψ ′Gk
]

= E

[

M

∑
m=1

∫ T

0
um(s)GkD

m
s ψds

]

. (17)

By duality

∆k = E

[

ψδ Sk(Gku)
]

k= 1, . . . ,M, (18)

and this concludes the proof.

3.1 Greeks in the Multidimensional Black-Scholes Market

In this section we apply Proposition 1 to the case of a multidimensional Black-Scholes
market where the volatilities vector process in Equation (12) is not stochastic (for simplicity
we consider constant volatilities and correlations). The main advantage of the Malliavin
approach over different techniques, for example the methods in Gilles [3] and the Chen and
Glasserman [1], is that Proposition 1 allows the possibility of variance and computational
reduction due to the flexibility in choosing either the processu, or betterz. The methods
illustrated in Gilles [3] and Chen and Glasserman [1] are difficult to employ if we assume a
multidimensional dynamics and they do not allow versatility for variance reduction.

We consider the casezh = αkδ Kr
hk ; h,k= 1, . . . ,M, αk = 1,∀k. Namely, in order to com-

pute thek-th delta we consider only thek-th term of the Skorohod integral reducing the
computational cost. In particular, this choice is motivated by the fact that we can enhance
the localization technique introduced by Fourné et al. [2].With this setting we need to con-
trol only δ Sk

k (·) and then only thek-th component ofW(t). This enhancement is not possible
with other approaches that furnish only a fixed representation of the components of the mul-
tidimensional deltas.

Under the above assumptions for the vector processz, we explicitly derive the multidi-
mensional deltas for the following exotic options in the BS market:
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1. Discretely monitored Asian basket options with fixed strike. Assumet1 < t2 · · ·< tN =T,
whereT is the maturity of the contract and the payoff function

ψ =

(

M

∑
i=1

N

∑
j=1

wi j Si (t j)−K

)+

, (19)

whereK is the strike price and∑i, j wi j = 1. In this case we have

Gk =
1
xk

N

∑
j=1

wk jSk(t j)

and

m(T) =
M

∑
i=1

N

∑
j=1

wi j Si (t j) .

We then calculate the following quantities

Lk=

∫ T

0
Dk

sm(T)ds=
M

∑
i=1

N

∑
j=1

wi j Si(t j)t jσik,

Ak =

∫ T

0
Dk

sGkds=
N

∑
j=1

w jkSk(t j)t jσkk(s) =
N

∑
j=1

w jkSk(t j)t jσk

Bk =
∫ T

0
Dk

sLkds=
N

∑
j=1

wi j Si(t j)t
2
j σ 2

ik,

and hence

∆k = E

[

ψδ Sk
k

(

Gk

LK

)]

, k= 1, . . . ,M. (20)

Due to the equation (9) we can write the the Skorohod integralabove fork = 1, . . . ,M
as:

δk

(

Gk

LK

)

=
Gk

LK
Wk(T)−

1

L2
k

(

Lk

∫ T

0
Dk

sGkds−Gk

∫ T

0
Dk

sLkds

)

=
Gk

LK

(

Wk(T)+
Bk

Lk

)

−
Ak

Lk
.

(21)
With another choice ofz, for instancezh = αh, ∆k would depend linearly on the whole
M-dimensional Brownian motion, making the localization technique less efficient.

2. Discretely monitored Asian basket options with floating strike K(T) = ∑M
i=1 Si (T)

M . For
simplicity we assumewi j =

1
MN∀i, j. The calculation is similar to the previous payoff

function, indeed we can writeψ = n(T)+ where

n(T) = m(T)−K(T).

In analogy, we have

Fk =
∂n(T)

xk
= Gk−

Sk(T)
Mxk

= Gk−Tk,

Mk =

∫ T

0
Dk

sn(T)ds= Lk−

∫ T

0
Dk

sK(T) = Lk−
∑M

i=1 Si(T)Tσik

M
= Lk−Uk,

∫ T

0
Dk

sFkds=Ak−

∫ T

0
Dk

sTkds= Ak−
Sk(T)Tσk

Mxk
= Ak−Vk,

∫ T

0
Dk

sMkds=
∫ T

0
Dk

sLkds−
∫ T

0
Dk

sUkds= Bk−
∑M

i=1 Si(T)T2σ 2
ik

M
= Bk−Pk,
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with the quantitiesTk,Uk,Vk,Pk,∀k automatically defined by the above equations. Then

∆k = E

[

ψδ Sk
k

(

Fk

MK

)]

, k= 1, . . . ,M. (22)

and

δk

(

Fk

MK

)

=
Fk

MK

(

Wk(T)+
Bk−Pk

Mk

)

−
Ak−Vk

Mk
. (23)

3. Digital Asian basket options with fixed strike.

ψ = 11m(T)≥K . (24)

This type of payoff function fulfills the hypotheses of Proposition 1 and we might adopt
equation (20). However, due to the properties of the Dirac delta δ D and Proposition 1
we can write

∆k =e−rT
E
[

δ D
K (m(T))Gk

]

=e−rT
E

[

δ D
K (m(T))φ

(

m(T)−K
h

)

Gk

]

=e−rT
E

[

ψ
M

∑
m=1

δ Sk
m (Gkφum)

]

,

where we assume thatφ , φ ′ are square integrable,φ(0) = 1, φGk is Skorohod integrable
∀k= 1, . . . ,M andh> 0. The aim of this setting is to reduce the variance of the MC esti-
mator of∆k by tuning the localization functionφ around the strikeK with a convenient
choice of the parameterh (see Kohatsu-Higa and Patterson [7]).
Under this assumption the Skorohod integral in equation (13) becomes:

δ Sk
(

φ
(

m(T)−K
h

)

Gku
)

= φ
(

m(T)−K
h

)

Gkδ Sk(u)−
M

∑
m=1

∫ T

0
um(s)D

m
s (φGk)ds

where form= 1, . . . ,M

Dm
s

(

φ
(

m(T)−K
h

)

Gk

)

= φ
(

m(T)−K
h

)

Dm
s Gk+

Gk

h
φ ′

(

m(T)−K
h

)

Dm
s m(T),

then the Skorohod integralδ Sk
(

φ
(

m(T)−K
h

)

Gku
)

is

φ
(

m(T)−K
h

)

Gkδ Sk(u)−
φ
(

m(T)−K
h

)

∑M
m=1

∫ T
0 um(s)Dm

s Gkds

∑M
m=1

∫ T
0 um(s)Dm

s m(T)ds
−

Gk

h
φ ′

(

m(T)−K
h

)

.

(25)
Finally, with our choice for the simple processu the last equation becomes:

φ
(

m(T)−K
h

)

Gkδ Sk(u)−
φ
(

m(T)−K
h

)

Ak

Lk
−

Gk

h
φ ′

(

m(T)−K
h

)

, (26)

whereδ Sk(u) depends on the terms that we have found in the case of Call Asian basket
options.
It is worthwile to say that the same localization procedure and the Malliavin approach
adopted for digital options can be employed for the computation the Gamma (second
order derivative) for Call Asian basket options.
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3.2 Greeks for Exotic Options

In Proposition 1 we have supposed that the payoff functionψ depends onm(T) only. With
the notation adopted in the BS setting, suppose for instance, thatψ =max(m(T)−K,K(T)−K,0),
whereK is a fixed price, now we cannot rely on Proposition 1 to derive the expression of
the sensitivities of such an exotic option. Hereψ depends separately on two random vari-
ablesm(T) andK(T). In the following we extend Proposition 1 in order to allow such a
dependence.

Proposition 2 Assuming the dynamics (12) supposeψ = ψ(X,Y). For simplicity we set
r = 0, denote Gk =

∂Y
∂xk

and Tk =
∂X
∂xk

. Let u and p be two simple processes belonging to

dom(δ Sk). Define the followingFT-measurable r.v.s:

a1 =
M

∑
m=1

∫ T

0
um(s)D

m
s Xds, a2 = ∑M

m=1
∫ T

0 um(s)Dm
s Yds (27)

b1 =
M

∑
m=1

∫ T

0
pm(s)D

m
s X, b2 = ∑M

m=1
∫ T

0 pm(s)Dm
s Yds (28)

O1 =
M

∑
m=1

∫ T

0
Tkum(s)D

m
s ψds, O2 = ∑M

m=1
∫ T

0 Gkpm(s)Dm
s ψds (29)

U1 =
b2−

b1Gk
Tk

a1b2−a2b1
, U2 =

a2Tk
Gk

−a1

a1b2−a2b1
. (30)

Finally, suppose that a1b2−a2b1 6= 0,a.s. and U1Tku−U2Gkp is Skorohod integrable, we
have:

∆k =
∂E [ψ(X,Y)]

∂xk
=∆k =E [Tk∂Xψ(X,Y)+Gk∂Yψ(X,Y)] =E

[

ψ(X,Y)
M

∑
m=1

δ Sk
m (U1Tkum−U2Gkpm)

]

,

(31)
where∂X and∂Y denote the partial derivatives with respect to the first and second variable,
respectively.

Proof Compute:
Dm

s ψ(X,Y) = ∂XψDm
s X+∂YψDm

s Y. (32)

As done in the proof of Proposition 1, multiply forTk andum, sum for allmand integrate:

M

∑
m=1

∫ T

0
Tkum(s)D

m
s ψds=

M

∑
m=1

∫ T

0
Tkum(s)D

m
s Xds+

M

∑
m=1

∫ T

0
Tkum(s)D

m
s Yds. (33)

Now repeat the procedure above consideringGk andph(s), we have

M

∑
m=1

∫ T

0
Gkpm(s)D

m
s ψds=

M

∑
m=1

∫ T

0
Gkpm(s)D

m
s Xds+

M

∑
m=1

∫ T

0
Gkpm(s)D

m
s Yds. (34)

We rewrite Equations (33) and (33) as a linear system

{

O1 = a1Tk∂Xψ +a2Tk∂Yψ
O2 = b1Gk∂Xψ +g2Gk∂Yψ (35)
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Our aim is to computeTk∂Xψ(X,Y) + Gk∂Yψ(X,Y) such that we can apply the duality
relation. After some algebra we get that

Tk∂Xψ =
b2GkO1−a2TkO2

Gk (a1b2−a2b1)
,

Gk∂Yψ =
a1TkO2−b1GkO1

Tk (a1b2−a2b1)

and

Tk∂Xψ +Gk∂Yψ =
O1

(

b2−
b1Gk

Tk

)

−O2

(

a2Tk
Gk

−a1

)

a1b2−a2b1
, (36)

then we have

∆k = E [O1U1−O2U2] = E

[

M

∑
m=1

∫ T

0
(U1Tkum(s)−U2Gkpm(s))Dm

s ψds

]

, (37)

by duality

∆k = E

[

ψ
M

∑
m=1

δ Sk
m (U1Tkum−U2Gkpm)

]

(38)

and this concludes the proof.

We can adapt the result of Proposition 2 to the BS market. Again the Malliavin Calculus
approach is very versatile and permits to reduce the computational burden and the variance
of the MC by enhancing the localization technique. As done before we considerum(s) =
δ Kr

mk,∀sandpm(s) = sδ Kr
mk,∀s, in order to fulfill the hypothesis of Proposition 2.

The formula for thek-th component of the delta is

∆k = E
[

ψ(X,Y)
(

δ Sk
k (U1Tk)−δ Sk

k (sU2Gk)
)]

, (39)

and the two Skorohod integrals are respectively:

δ Sk
k (U1Tk) =U1TkWk(T)−U1

∫ T

0
Dk

sTkds−Tk

∫ T

0
Dk

sU1ds, (40)

δ Sk
k (U2Gk) =U2Gk

∫ T

0
sdWk

s −Gk

∫ T

0
sDk

sU2ds−U2

∫ T

0
sDk

sGkds. (41)

In the MC estimation we can simulate the first term in the aboveequation relying on the
equality:

∫ T

0
sdWk(s) = TWk(T)−

∫ T

0
Wk(s)ds,

where
∫ T

0 Wk(s)ds is approximated by a sum at the pointst1, . . . , tN = T.
In our numerical experiments we considerψ = max(m(T)−K,K(T)−K,0) where

m(T) andK(T) have been defined in Section 3.1. The terms in Equations (40) and (41)
have been obtained as in Section 3.1.
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4 Simulation Setting

In this section we briefly describe the numerical setting that we adopt for the QMC esti-
mation of the Greeks by the Malliavin approach formulas. We briefly illustrate the QMC
method and discuss how to conveniently find the parameters ofthe localization technique
on the flyby adaptive simulation.

4.1 The Quasi-Monte Carlo Framework

ConsiderI =E[ψ(X)]whereX is ad-dimensional random vector andψ :Rd →R, the QMC

estimator ofI is ÎQMC =
∑

NS
n=1ψ(Xn)

NS
, NS is the number of simulations, as for the standard

MC. However the pointsX i are not pseudo-random but are obtained by low-discrepancy se-
quences. Low-discrepancy sequences do not mimic randomness but display better regularity
and distribution (see Niederreiter [12] for more on this subject). We do not enter into the de-
tails of QMC methods and their properties, we just stress thefact that such techniques do not
rely on the central limit theorem and the error bounds are given by the well known Hlawka-
Koksma inequality. Some randomness is then introduced in order to statistically estimate
the error of the estimation by the sampled variance; this task is achieved by a technique
calledscrambling(see Owen [15]). The randomized version of QMC is called Randomized
Quasi-Monte Carlo (RQMC).

In our numerical estimation we use a randomized version of the Sobol’ sequence with
Sobol’s property A, that is one of the most used low-discrepancy sequences (it is also a
digital net).

Finally, in order to improve the efficiency of RQMC and reducethe effect of the so-
calledcurse of dimensionality, we employ the Linear Transformation (LT) technique intro-
duced in Imai and Tan [5] in the enhanced version illustratedin Sabino [16,17]. The aim
of the LT algorithm is to concentrate the variance ofψ into the components with higher
variability so that we may profit from the higher regularity of low-discrepancy points and
then reduce the nominal dimension ofψ .

We briefly describe the LT algorithm. Consider ad dimensional normal random vector
T ∼ N (µ;Σ ), a vectorw = (w1, . . . ,wd) ∈ R

d and let f (T) = ∑d
i=1 wiTi be a linear com-

bination ofT. Let C be such thatΣ = CCT and assumeε ∼ N (0, Id) with T L
= Cε . The

LT approach considersC asC =CLT =CCHA, with CCH the Cholesky decomposition ofΣ .
Then, in the linear case, we can define:

gA(ε) := f (CCHAε) =
d

∑
k=1

αkεk+µ ·w, (42)

whereαk = CLT
·k ·w = A·k ·B, k= 1. . . ,d andB = (CCH)Tw while C·k andA·k are thek-th

columns of the matrixC andA, respectively. In the linear case, setting

A∗
·1 =±

B
‖B‖

, (43)

with arbitrary remaining columns with the only constrain thatAAT = Id, leads to the follow-
ing expression:

gA(ε) = µ ·w±‖B‖ε1. (44)
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This is equivalent to reduce the effective dimension in the truncation sense to 1 and this
means to maximize the variance of the first componentε1.

In a non-linear framework, we can use the LT construction, which relies on the first
order Taylor expansion ofgA:

gA(ε)≈ gA(ε̂)+
d

∑
l=1

∂gA(ε̂)
∂ εl

∆εl . (45)

The approximated function is linear in the standard normal random vector∆ε ∼ N (0, Id)
and we can rely on the considerations above. The first column of the matrixA∗ is then:

A·1
∗ = arg max

A·1∈Rd

(

∂gA(ε̂)
∂ ε1

)2

(46)

Since we have already maximized the variance contribution for
(

∂gA(ε̂)
∂ε1

)2
, we might con-

sider the expansion ofg aboutd−1 different points in order to improve the method using
adequate columns. More precisely Imai and Tan [5] propose tomaximize:

A·k
∗ = arg max

A·k∈Rd

(

∂gA(ε̂k)

∂ εk

)2

(47)

subject to‖A·k
∗‖= 1 andA·j

∗ ·A·k
∗ = 0, j = 1, . . . ,k−1,k≤ d.

Although equation (43) provides an easy solution at each step, the correct procedure
requires that the column vectorA·k

∗ is orthogonal to all the previous (and future) columns.
Imai and Tan [5] propose to chooseε̂ = ε̂1 =E[ε ] =0, ε̂2=(1,0, . . . ,0), . . . ε̂k =(1,1,1, . . . ,0, . . . ,0),
where thek-th point hask−1 leading ones. We refer to Sabino [16,17] for the details of a
fast and convenient implementation of this algorithm.

4.2 Enhancing the Localization Technique

The aim of the localization technique introduced in Fourniéet al. [2] is to reduce the variance
of the MC estimator for the sensitivities by localizing the integration by part formula around
the singularity. In the following, for simplicity, we illustrate the localization technique in the
case of vanilla call options.

Fournié et al. [2] found that a (possible) expression for thedelta of a call option is:

∆ =
∂
∂x

E
[

erT (S(T)−K)+
]

= E

[

erT (S(T)−K)+
W(T)
xTσ

]

. (48)

When the one-dimensional Brownian motionW(T) is large, the term(S(T)−K)+W(T)
becomes even larger and has a high variance. The idea is to introduce a localization function
around the singularity atK.

For δ > 0, set

Hδ (y) =







0, f or y≤ K−δ ,
y−K+δ

2δ f or y∈ [K−δ ,K +δ ],
1 f or y≥ K+δ ,

(49)
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andG(z) =
∫ 0
−∞ Hδ (y)dy, then considerFδ (z) = (z−K)+−Gδ (z). Consequently, we have:

∆ = erT
E

[

Hδ (S(T))
∂S(T)

∂x

]

+erT
E

[

Fδ (S(T))
W(T)
xTσ

]

(50)

Fδ vanishes forz≤ K−δ andz≥ K+δ , thusFδ (S(T))W(T) vanishes whenW(T) is large.
The same analysis, with similar results, is valid for the call-style Asian options and the

exotic option analyzed in Section 3. Indeed, it suffices to replaceS(T) with the average
∑i, j wi j Si(t j) in the equations above and consider anif, elsestatement to select the local-
ization function when the strike price is stochastic or the option is exotic. In addition, in
the above options formulas, the role of the “weight” termW(T)

xTσ is played by the Skorohod
integral. We remark that the formulas that we derived to compute thek-th component of the
delta display weights that depend only on the Skorohod intergral w.r.t. thek-th component
of the multidimensional Brownian motion permitting to better control the variance. If we
would have chosen to control all the components of the Skorohod integral, taking all non-
zero components of the simple vector processu, we would have needed to tune different
M Brownian motions making the localization technique less efficient and computationally
more expansive.

The choice of the parameterδ is of fundamental importance for the result of the local-
ization technique because it influences the variance of the MC estimator. In the following
we describe how to employ anon the flyefficient value based on adaptive MC simulations.
For ease of notation, we consider once more a vanilla call option payoff bearing in mind that
the same applies to the payoffs under study. In such cases we need to make the substitution
illustrated above. A good candidate forδ would be the one that minimizes the variance of
the second term in equation (50).

δ ∗ = argmin
δ>0

Var

[

Fδ (S(T))W(T)
xσT

]

(51)

and deriving w.r.t.δ :

Var

[

−
Hδ (S(T))W(T)

xσT

]

=Var

[

−
W(T)
xσT

(S(T)−K)−δ
2δ

]

= 0. (52)

At this point we findδ such that:

W(T)
xσT

(S(T)−K)−δ
2δ

= 0, P−a.s. (53)

then

δ =
(S(T)−K)W(T)

xσT
W(T)
xσT

. (54)

In order to have an operative parameter we then consider the following approximation:

δ =
Var

[

(S(T)−K)W(T)
xσT

]

Var
[

W(T)
xσT

] . (55)

As already mentioned, the considerations here above are still valid for the computation of the
greeks of the options we are considering. As already illustrated, it suffices to replaceW(T)

xTσ
with the Skorohod integral and that is the reason why we have always shown the term this



14

Table 1 Inputs Parameters

Si(0) = 100, ∀i = 1. . . ,M
r = 5%
T = 1
σi = 10%+ i−1

9 40% i = 1. . . ,M
ρil = 50% i, l = 1. . . ,M

term explicitly in the calculations above. The same substitutions must be made to calculate
eachδ for the each component of the Delta of the call type Asian basket and exotic options
since these results hold true in the multidimensional setting as well.

In the spirit of adaptive MC techniques (see for instance Jourdain [6]), the variance
above can be easily estimated by a MC simulation and then, by fixing the same random
draws, one runs a second MC simulation in order to estimate the greeks.

In the case of one dimensional digital options the computation is slightly different.
Kohatsu-Higa and Patterson [7] claim that a good candidate for δ is:

δ =

( ∫ ∞
0 φ ′(z)2dz

∫ ∞
0 φ(z)2dzE [δ Sk(u)2]

)1/2

. (56)

Knowing thatE
[

δ Sk(u)
]

= 0, under the assumption thatφ(z) = e−|z|, we have

δ =
(

Var
[

δ Sk(u)
])−1/2

. (57)

The above parameter can be easily estimated by an adaptive MCsimulation in the multidi-
mensional setting as illustrated for call-type options.

We note that in our formulas the computation of thek-th delta depends only on thek-
th component of the Skorohod integral making the localization technique easier to apply
and the parameterδ easy to calculate. Once more, we remark the fact that these variance
and computational reduction considerations are not possible without using the Malliavin
Calculus approach.

5 Numerical Investigations

In this section we discuss the results of the (R)QMC estimation based of the proposed ap-
proaches. We considerM = 5 andM = 10 underlying securities and an equally-spaced time
grid with N = 64 time points. Hence, the effective dimension of the (R)QMCsimulation is
either 320 or 640. We estimate the multidimensional Deltas (with respect to each underlying
asset) of each contract discussed before. The parameters chosen for the simulation are listed
in Table 1.

We adopt RQMC simulations, based on the enhanced version illustrated in Section 4.1,
and consists of 32 replications each of 2048 random points. These random draws are ob-
tained from a Matoûsek affine plus random digital shift scrambled version (see Matoûsek [9])
of the Sobol sequence satisfying Sobol’s property A (see Sobol [19]). We also avoid gen-
erating the 320 or 640-dimensional Sobol’ sequence by usinga Latin Supercube Sam-
pling (LSS) method (Owen [14]). Briefly, this sampling mechanism is a scheme for cre-
ating a high-dimensional sequence from sets of lower-dimensional sequences. For instance,
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a 640-dimensional low discrepancy sequence can be concatenated from 13 sets of a 50-
dimensional low discrepancy sequence by appropriately randomizing the run order of the
points (the last concatenation neglects the last 10 dimensions). For theoretical justification
of the LSS method, see Owen [14].

The computation is implemented in MATLAB on a laptop with an Intel Pentium M,
processor 1.60 GHz and 1 GB of RAM. We compute all the optimal columns for the LT
technique in Section 4.1. Such an LT construction is optimalif the integrand function is the
payoff of the option and hence is optimal for price estimation. In contrast, our goal is the
computation of the Deltas and this would not seem to be the optimal choice. However, if
we would have applied the LT for the integrand function givenby the Malliavin approach
we would have got as many LT-decomposition matrices as the number of assets (one for
each delta). This setting would remarkably increase the CPUtime making the estimation
less convenient. The numerical experiments below justify our assumption.

5.1 Call with fix and floating Strike

As a first experiment, we compute the Deltas of an Asian basketoption with fixed and float-
ing strike. We compare the estimated values of the Deltas andthe accuracies obtained with
different approaches: finite differences, localization with different parameters and finally
localization coupled with adaptive parameters. The choiceof the parameters for the local-
ization and finite difference techniques is of fundamental importance because it influences
the variance of the estimator (see for instance L’Ecuyer [8]). The numerical derivative is
often calculated assumingδ = 1% (in our case 1% of the initial price of the underlying
securities); this may not be the optimal choice. In addition, in the multidimensional compu-
tation (gradient estimation) one should consider different δ . Our approach based on adaptive
techniques overtakes this problem by calculating the parameterson the fly. These parameters
are optimal meaning that they provide the minimal variance of the estimator (in the sense
described in Section 4.2). Table 2 and Table 3 show the results with different approaches ob-
tained for an at-the-money Asian call with fixed and floating strike andM = 10 underlying
assets. All the estimated values are in statistical accordance but display different accuracies.
The finite difference errors are higher than those obtained with localization (with the exemp-
tion of δ = 5%). In particular, when the strike is floating, this technique returns a completed
biased Delta associated with the highest volatility. Finally, finite difference estimations re-
quire a computational effort that is 2.43 times higher that those obtained with localization.
The adaptive localization and standard localization perform equally well with the former
having slightly better precision and the advantage of selecting better localization parameters
for each component.

In order to have a complete picture of the sensitivity of the discussed techniques, we
repeat the experiment considering onlyM = 4 assets and several strike prices. This further
analysis cannot be performed for Asian option with floating strike. Figure 2 and 1 show the
estimated Deltas and errors, respectively. Since for at-the-money options the finite difference
approach provided lower accuracy, we avoided to report its results. In term of precision, in
this setting as well, the standard localization withδ = 1% and the adaptive localization
return the most accurate results. In particular, these two approaches perform equally well
with the former one having a more constant trend across all the moneyness.
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Adaptive Localization Fin. Diff.
δ = 1% δ = 5% δ = 10% δ = 1%

∆ ±err ∆ ±err ∆ ±err ∆ ±err ∆ ±err
5.43 0.18 5.43 0.28 5.4 2.9 5.43 0.19 5.43 0.31
5.50 0.23 5.50 0.30 5.5 2.7 5.50 0.26 5.51 0.49
5.58 0.29 5.57 0.30 5.6 2.9 5.58 0.34 5.60 0.52
5.66 0.30 5.65 0.33 5.6 2.9 5.66 0.39 5.69 0.98
5.74 0.39 5.73 0.41 5.7 3.0 5.74 0.35 5.79 0.81
5.82 0.43 5.81 0.44 5.8 3.1 5.83 0.50 5.88 0.87
5.90 0.45 5.89 0.40 5.9 2.9 5.91 0.52 5.99 1.27
5.98 0.35 5.97 0.41 6.0 3.0 6.00 0.51 6.10 0.87
6.07 0.47 6.05 0.40 6.0 3.2 6.09 0.58 6.20 1.40
6.16 0.50 6.13 0.51 6.1 3.0 6.17 0.64 6.29 1.12

Table 2 Call Option with Fixed Strike,M = 10: At-the-Money Deltas and Errors (×100).

Adaptive Localization Fin. Diff.
δ = 1% δ = 5% δ = 10% δ = 1%

∆ ±err ∆ ±err ∆ ±err ∆ ±err ∆ ±err
0.04 0.19 0.04 0.19 0.04 0.17 0.04 0.13 0.04 0.11
0.12 0.20 0.12 0.23 0.11 0.30 0.12 0.19 0.13 0.19
0.19 0.32 0.19 0.35 0.19 0.32 0.20 0.26 0.22 0.33
0.27 0.36 0.27 0.38 0.27 0.36 0.28 0.32 0.31 0.44
0.34 0.29 0.35 0.37 0.34 0.45 0.36 0.43 0.41 0.45
0.42 0.35 0.43 0.35 0.42 0.47 0.45 0.44 0.51 0.63
0.50 0.39 0.50 0.47 0.50 0.47 0.53 0.51 0.61 0.77
0.58 0.50 0.59 0.55 0.58 0.61 0.62 0.57 0.71 0.98
0.67 0.45 0.67 0.55 0.67 0.64 0.71 0.51 0.81 1.65
0.74 0.64 0.75 0.64 0.75 0.58 1.72 233.73 7×104 2×207

Table 3 Call Option with Floating Strike,M = 10: Deltas and Errors (×100).

5.2 Digital Call

The aim of this subsection is to describe the results of our numerical investigation assuming
Asian digital options. The following discussion and description have a double purpose. Since
the payoff of digital option can be seen as the derivative (inthe sense of distribution) of
the payoff of a call option, the methodology and the localization parameters described in
Section 3.1 can be be rearranged and used to compute the Gamma(and cross sensitivities
in the multidimensional setting) of a call option (naturally with some changes). In addition,
the Delta of a digital option is a more demanding task due to the irregular payoff that is
pathologically not differentiable.

We repeat the organization of our discussion as done for the Asian call options and con-
sider only a fixed strike price. Table 4 shows the estimated multidimensional Deltas and
their errors for an at-the-money digital option onM = 10 underlying securities. The best ac-
curacy with the standard localization technique is not achieved anymore withδ = 1%, that
means that in some situations it is not the optimal choice. Incontrast, the adaptive local-
ization is the best performing technique in terms of precision. It returns better localization
parameters that provide an unbiased estimator with lower variance.

As done before, we run a QMC simulation considering onlyM = 4 assets and analyze
the results by varying the strike price. Figure 3 and 4 show the estimated Deltas and errors,
respectively. Once more the adaptive localization approach displays the lowest error.
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Fig. 1 Call Option with Fixed Strike,M = 4: Estimation Errors.
Adaptive: Solid Line, Loc.δ = 0.01: Dashed line, Loc.δ = 0.1: Dotted line, Loc.δ = 0.05: Dash-dotted
line.

Adaptive Localization Fin. Diff.
δ = 1% δ = 5% δ = 10% δ = 1%

∆ ±err ∆ ±err ∆ ±err ∆ ±err ∆ ±err
0.30 0.15 0.30 0.75 0.31 3.8 0.30 0.18 0.30 0.19
0.29 0.23 0.29 0.86 0.31 3.5 0.29 0.31 0.29 0.27
0.29 0.29 0.30 0.74 0.31 3.6 0.29 0.31 0.28 0.34
0.29 0.45 0.29 0.80 0.30 3.2 0.28 0.38 0.28 0.45
0.29 0.48 0.29 0.78 0.31 3.6 0.28 0.41 0.26 0.49
0.29 0.56 0.29 0.88 0.31 3.4 0.27 0.49 0.25 0.49
0.28 0.56 0.28 0.82 0.31 3.6 0.27 0.64 0.24 0.65
0.27 0.55 0.28 0.98 0.30 3.6 0.25 0.48 0.23 0.50
0.27 0.58 0.28 0.80 0.29 3.9 0.24 0.72 0.22 0.77
0.27 0.60 0.27 0.86 0.30 3.4 0.24 0.70 0.20 0.60

Table 4 Digital Option with Fixed Strike,M = 10: At-the-Money Deltas and Errors.
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Fig. 2 Call Option with Fixed Strike,M = 4: Estimated Deltas with the Adaptive Localization.

5.3 Exotic Option

As a last experiment we perform a QMC numerical simulation inorder to estimate the Deltas
of an exotic option. Table 5 and Figures 5 and 6 present the results of this experiment. In this
last example all the approaches perform equally well, and the exotic structure of the payoff
makes its estimator unsensitive to the different localization parameter. The finite difference
is also performing well but is less precise if we take into account the computational burden
that is 2.61 times higher.

6 Concluding Remarks

In this paper we have investigated the use of Malliavin calculus in order to calculate the
Greeks of multiasset complex path-dependent options by QMCsimulation. As a first re-
sult we have derived the multidimensional version of the formulas obtained by Montero
and Kohatsu-Higa [11] in the single asset case.The multidimensional setting shows the ad-
vantage of the Malliavin Calculus approach over alternative techniques that have been previ-
ously proposed. These different techniques are hard to implement and in particular, are com-
putationally time consuming when considering multiasset derivative securities. In addition,
their estimators potentially display a high variance (see for instance Chen and Glasserman
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Fig. 3 Digital Option with Fixed Strike,M = 4: Estimation Errors.
Adaptive: Solid Line, Loc.δ = 0.01: Dashed line, Loc.δ = 0.1: Dotted line, Loc.δ = 0.05: Dash-dotted
line.

Adaptive Localization Fin. Diff.
δ = 1% δ = 5% δ = 10% δ = 1%

∆ ±err ∆ ±err ∆ ±err ∆ ±err ∆ ±err
6.4 1.1 6.5 1.3 6.5 1.8 6.5 0.8 6.5 1.0
6.6 1.6 6.6 1.2 6.6 1.8 6.6 1.0 6.6 1.1
6.8 1.3 6.7 1.2 6.7 1.9 6.7 0.9 6.8 1.3
7.0 1.5 6.9 1.4 6.9 1.7 6.9 1.2 6.9 2.0
7.2 1.9 7.0 1.1 7.0 1.8 7.1 1.1 7.1 2.0
7.4 1.5 7.2 1.4 7.2 1.8 7.2 1.3 7.3 2.2
7.6 1.7 7.3 1.4 7.3 1.9 7.4 1.3 7.5 2.1
7.8 1.9 7.5 1.5 7.5 1.6 7.5 1.7 7.7 2.1
8.0 2.1 7.6 1.5 7.6 1.7 7.7 1.4 7.9 2.4
8.2 1.7 7.8 1.7 7.8 1.8 7.9 1.5 8.1 1.8

Table 5 Exotic,M = 10: At-the-Money Deltas and Errors (×100).
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Fig. 4 Digital Option with Fixed Strike,M = 4: Estimated Deltas with the Adaptive Localization.

[1]). In contrast, the use of the generalized integral by part formula of Malliavin Calculus
gives enough flexibility in order to find unbiased estimatorswith low variance. In the multi-
dimensional context, we have found convenient formulas that are easy and flexible to employ
and permit to improve the localization technique. Finally,we have performed a detailed
analysis on how the localization parameters can influence the precision of the estimators.
Moreover, we have proposed an alternate approach, based on adaptive (Q)MC techniques
that returns convenient parameters that can be obtainedon the flightin the simulation. This
approach provides a better precision with the same computational burden. However further
studies would be necessary to enhance its accuracy assumingdifferent dynamics and payoff
functions.

The proposed procedures, coupled with the enhanced versionof Quasi-Monte Carlo
simulations as illustrated in Sabino [16], are discussed based on the numerical estimation of
the Deltas of call, digital Asian-style and Exotic basket options with a fixed and a floating
strike price in a multidimensional Black-Scholes market.
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Fig. 5 Exotic Option,M = 4: Estimation Errors.
Adaptive: Solid Line, Loc.δ = 0.01: Dashed line, Loc.δ = 0.1: Dotted line, Loc.δ = 0.05: Dash-dotted
line.
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