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Abstract. To construct a no-arbitrage defaultable bond market, we work on
the state price density framework. Using the heat kernel approach (HKA for
short) with the killing of a Markov process, we construct a single defaultable
bond market that enables an explicit expression of a defaultable bond and credit
spread under quadratic Gaussian settings. Some simulation results show that
the model is not only tractable but realistic.

Keywords: (non-)systematic risk, state price density, killed HKA, Markov
functional model, quadratic Gaussian.

1. Introduction

The HKA, which is an abbreviation of “Heat Kernel Approach to interest rate
modelling, was introduced by one of the authors and his collaborators in [2]. Briefly
speaking, HKA is a systematic method to produce a tractable interest rate model
which is “Markov functional” in the sense of Hunt-Kennedy-Pelsser [8]. In the
fundamental paper [2], four different types of implementation methods are intro-
duced. Namely, 1) Eigenfunction models 2) Weighted HKA 3) Killed HKA and 4)
Trace Approach. As is pointed out in [2], the eigenfunction models are tailor-made
for swaption pricing, and a deeper understanding for its mathematical structure
leads to the trace approach, which is mathematically most involved. The weighted
HKA is extended to time-inhomogeneous setting and applied to information-based
models by J. Akahori and A. Macrina [1].

In the present paper, we will demonstrate how the Killed HKA is applied to the
modelling of defaultable bonds by constructing a market where the market price
of risk and the default probability are “built in the same block” (whose precise
meaning will be given later). We stress that the HKA is basically a state-price
density approach where everything is written under the physical= statistical mea-
sure. Since the HKA furthermore gives an analytically tractable model in nature,
the framework proposed in this paper would be promising in respect of modelling
defaultable markets.

The organization of the present paper is as follows. After recalling the plain-
vanilla HKA in section 2.1 and the killed HKA in section 2.2, we shall give the main
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result, a framework with in the Killed HKA to model a defaultable bond market in
section 3. In section 4, we will give some simulation results of an explicit example
with a quadratic form of Wiener process.
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2. Heat Kernel Approach

Here we briefly recall the approach.

2.1. Plain-Vanilla HKA. We work on a probability space (Ω,F ,P) with filtration
{Ft}t≥0. Now we consider a general Markov process {Xx

t }t≥0,x∈S on a polish space
S.
Definition 2.1. Let X be an S-valued Markov process. We shall say that a function
p satisfies the propagation property if

(1) E[p(t,Xx
s )] = p(t+ s, x)

holds for any t, s ≥ 0 and x ∈ S.
The following fact is initialized by [3] and developed in [2].

Proposition 2.1 (Akahori et al. [2]). Let X be a S-valued Markov process, λ be a
positive function on the half line, and p be a function with the propagation property.
The bonds market given by

(2) Pf (t, T ) =
p(λT + T − t,Xx

t )

p(λt, Xx
t )

is an arbitrage free market.

Example 2.1 (Generic Example). Take a measurable, bounded h : S → R≥0, then

(3) p(t, x) := E[h(Xx
t )]

satisfies the propagation property (1). In fact, by the Markov property, we have

E [p(t,Xs)] = E
[

E
[

h(X
Xx

s

t )
]]

= E
[

E
[

h(Xx
t+s)|FX

s

]]

= E
[

h(Xx
t+s)

]

= p(t+ s, x).

Proof. Let πt = p(λt, X
x
t ). By the propagation property of p and the Markov

property of X , we have

Pf (t, T ) =
E [πT |Ft]

πt
=

E [p(λT , X
x
T )|Ft]

p(λt, Xx
t )

=
E
[

p(λT , X
Xx

t

T−t)
]

p(λt, Xx
t )

=
p(λT + T − t,Xx

t )

p(λt, Xx
t )

.

This means π is the state price density of the market. �

It should be noted that we do not assume πt to be a supermartingale in [2], i.e.
in economic terms we do not assume positive short rates. The four implementation
methods mentioned in the introduction is introduced in [2] to obtain supermartin-
gales out of a propagator, or equivalently to obtain positive rate models.
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2.2. The Killed HKA. We then recall, and give a more detailed description to,
the Killed HKA1. Let V be a non-negative measurable function on S. Put Y y

t =

y +
∫ t

0
V (Xx

s ) ds for y ∈ R. Let us define

(4) q(t, x) = E[exp (−
∫ t

0

V (Xx
s ) ds)].

Then the function

q(t, x, y) = e−yq(t, x),

satisfies propagation property with respect to (Xx, Y y);

(5) E[q(s,Xx
t , Y

y
t )] = q(t+ s, x, y).

In fact, by the Markov property of X , we have

E[e−Yt+s |Ft] = E[e−Ys(θt)|Ft]× e−Yt = E[e−Ys |Xt]× e−Yt ,

where θ is the shift operator. Thus we obtain

E[q(s,Xx
t , Y

y
t )] = E[e−Y y

t q(s,Xx
t )] = E[e−Y y

t e−Y y
s ◦θt ] = q(t+ s, x, y).

This fact ensures that the bond market model constructed as

(6) P (t, T ) =
q(λT + T − t,Xx

t )

q(λt, Xx
t )

,

where λ is an increasing function, is arbitrage-free since we can choose

πt = q(λt, Xt) exp(−
∫ t

0

V (Xs) ds)

as a state price density of the market. In fact,

E[πT |Ft] = E[ E[exp (−
∫ T+λT

T

V (Xx
u) du)|FT ] exp(−

∫ T

0

V (Xs) ds) |Ft]

= E[exp (−
∫ T+λT

t

V (Xx
u ) du) |Xt] exp(−

∫ t

0

V (Xs) ds)

= q(λT + T − t,Xt) exp(−
∫ t

0

V (Xs) ds) = πt
q(λT + T − t,Xt)

q(λt, Xt)
.

Note that the bond price P is decreasing in T since q is increasing in t, which is
ensured by the positivity of V . Thus we obtain a positive rate model.

3. HKA to Defaultable Bond

This section is the main part of the present paper. Let us now consider a de-
faultable bond in the following situation:

(1) The bond pays a unit account at the maturity T unless it defaults.
(2) At the default time τ , nothing will be recovered.
(3) The state variable is a Markov process {Xx

t ; t ≥ 0}, which is observable in
the market.

1This part is shared with [9].
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(4) The default probability is completely determined through the information
of X in the following manner; the hazard rate of the default time on the

filtration FX is given by E[1{τ>t}|FX
t ] = exp

(

−
∫ t

0

V (Xx
u ) du

)

where FX

is the natural filtration on X and V is a non-negative measurable function.
(5) The default come as a “surprise” to the market. To be precise, the market

filtration {Gt} is defined as Gt = σ(Xs, {τ ≤ s}; s ≤ t) and assume that
FX

0 = {Ω, ∅} = G0.

(6) A state price density of the market is given by πt := q(λt, Xt) = E

[

exp

(

−
∫ λt

0

V (Xx
u) du

)]

where q is defined as (4) and λ is a non-decreasing function.

Note that the assumptions 1–5 may be natural (except assumption 2, which
assumes zero recovery) and very generic, while the last assumption is very specific
in that the function V controls both the market price of a risk as well as the default
probability of a bond. Very heuristically speaking, this market is fully subject to
the risk of a defaultable bond.

We stress that this is just a toy model, which exhibits how the killed HKA is
applied to a defaultable market modeling. The following is established in [9]:

Theorem 3.1. Under the above assumptions 1–6,

(i) the price Pd(t, T ) of a defaultable zero coupon bond is given by

(7) Pd(t, T ) = 1{τ>t}
q(λT + T − t,Xx

t )

q(λt, Xx
t )

,

(ii) the price Pf (t, T ) of a default-free bond is given by

(8) Pf (t, T ) =
q̂(λT + T − t, T − t,Xx

t )

q(λt, Xx
t )

,

where

(9) q̂(t, s, x) = E

[

exp

(

−
∫ t

s

V (Xx
u) du

)]

,

(iii) and then the “credit spread” is given by

(10) ∂T log
q̂(λT + T − t, T − t,Xx

t )

q̂(λT + T − t, 0, Xx
t )

.

Remark 3.1. Note that the “credit spread” makes no sense when τ ≤ t, so we can
only think of the case that τ > t.

Proof. The proof is based on the following fundamental lemma due to Dellacherie
(see [6]): For any FX

T -integrable random variable Z and 0 < t < T , we have

E[1{τ>T}Z|Gt] =
1{τ>t}

E[1{τ>t}|FX
t ]

E[1{τ>T}Z|FX
t ].

Hence, we have

Pd(t, T ) =
1

πt

1{τ>t}

E
[

1{τ>t}|FX
t

] E
[

1{τ>T}πT |FX
t

]

.

Then by a Markov property and a Tower property,

E
[

1{τ>T}πT |FX
t

]

= E
[

E
[

1{τ>T}|FX
T

]

q(λT , X
x
T ) | FX

t

]

,
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and by the assumption that E[ 1{τ>t} | FX
t ] = exp

(

−
∫ t

0

V (Xx
u) du

)

E
[

E
[

1{τ>T} | FX
T

]

q(λT , X
x
T ) | FX

t

]

= exp

(

−
∫ t

0

V (Xx
u ) du

)

E
[

e−
∫

T

t
V (Xx

s ) dsq(λT , X
x
T ) | FX

t

]

.

Here applying the fact of the equation (5), we have

E
[

e−
∫

T

t
V (Xx

s ) dsq(λT , X
x
T )|FX

t

]

= q(λT + T − t,Xx
t ),

so that

Pd(t, T ) = 1{τ>t}
q(λT + T − t,Xx

t )

q(λt, Xx
t )

.

On the other hand, (ii) follows a Markov property and a Tower property. And it is
known that the “credit spread” is given by

−∂T log
Pd(t, T )

Pf (t, T )
.

Here since Pd(t, T ), Pf (t, T ) are (i), (ii) respectively,

−∂T log
Pd(t, T )

Pf (t, T )
= ∂T log

E
[

q(λT , X
x
T )|FX

t

]

q(λT + T − t,Xx
t )

when τ > t. Then by a Markov property and a Tower property,

E
[

q(λT , X
x
T )|FX

t

]

= E

[

e−
∫ λT +T−t

T−t
V (X

Xx
t

s ) ds

]

= q̂(λT + T − t, T − t,Xx
t ).

Hence, we obtain

−∂T log
Pd(t, T )

Pf (t, T )
= ∂T log

q̂(λT + T − t, T − t,Xx
t )

q(λT + T − t,Xx
t )

.

�

4. Quadratic Example

Now we give some simulation results of an explicit example, where X is a d-

dimensional Wiener process and V (x) = β2|x|2

2 (β > 0). Let q(t, x) and q̂(t, x) be
as in (4), (9), then they are explicitly given by

(11) q(t, x) = (coshβt)
−d/2

exp

(

−βx2

2

sinhβt

coshβt

)

,

and
(12)

q̂(t, x) = ( coshβ(t− s) + βs sinhβ(t− s) )
−d/2

exp

(

−βx2

2

tanhβ(t− s)

1 + βs tanhβ(t− s)

)

,

which result from Lemma 6.1, Corollary 6.1 in the Appendix. Hence, we obtain the
analytic expression of the bond prices. The following simulated yield curves (Fig.1)
and (Fig.2) implied by a default-free bond as

− 1

T
logPf (t, T )

are obtained by using (8) and (12). Here the parameters are set to be β = 0.1,
x = 0.01, 10, 20, 30, λt = et/10, and the present time t = 0 in (Fig.1), β = 1.8 and
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λt = et/100 in (Fig.2). Then x-axis stands for the maturities ranging from one year
to ten years and y-axis does for the price of a default-free bond.

Figure 1. Simulated
yield curves implied by a
default-free bond when
λt = et/10

Figure 2. Simulated
yield curves implied by a
default-free bond when
λt = et/100

(Fig.1) and (Fig.2) show increasing the value of x does not make the curve shift
upward, but also cause a “hump” in the curve, which can not be observed in the
normal affine model, with the proper choice of λ. Moreover, using the formula (10)
and (12), we obtain the following simulated credit spread curves as (Fig.3). Here

the parameters are set to be λt =
√
t, β = 0.1, 0.2, ..., 1, x = 0, and the present

time t = 0.

Figure 3. Simulated credit spread curves

As usual, the lower the credit rating of a defaultable bond is, the wider the
spread is, and it is non-decreasing in the maturity time. Moreover, the spread of a
defaultable bond lower rated is much wider in the maturity time than the one of a
bond higher rated. It should be thought that (Fig.3) shows this fact.
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5. Conclusions

We have introduced a way of constructing a single defaultable bond market model
under the physical measure P by applying the killed HKA. We have also presented
some simulation results in the quadratic case. Comparing the well-known Hull-
White model, we can have observed a complex “hump” in the yield implied by a
default-free bond, which comes from the parameter λ.

6. Appendix

Lemma 6.1. Let X be a d-dimensional Wiener process starting at x. For α, β ≥ 0,
it holds

E[e−α|Xx
t |

2− β2

2

∫
t

0
|Xx

s |2 ds]

=







(

coshβt+ 2α
β sinhβt

)−d/2

exp
(

−βx2

2
β sinh βt−2α cosh βt
β cosh βt+2α sinh βt

)

β > 0,

(2αt+ 1)−d/2 exp
(

− αx2

2αt+1

)

β = 0.

(13)

This is well-known formula and there are many ways to prove it. One way is
presented in [9].

The following is an immediate consequence of Lemma 6.1:

Corollary 6.1. Let X be a d-dimensional Wiener process starting at x. For β > 0,
it holds

E

[

e−
β2

2

∫
t

s
|Xx

v |2 dv

]

=(coshβ(t− s) + βs sinhβ(t− s))
−d/2

× exp

(

−βx2

2

sinhβ(t− s)

coshβ(t− s) + βs sinhβ(t− s)

)

.

Proof. By a Markov property, a Tower property, and Lemma 6.1,

E

[

e−
β2

2

∫
t

s
|Xx

v |
2 dv

]

= E

[

E

[

e−
β2

2

∫
t

s
|Xx

v |2 dv | FX
s

] ]

= E

[

E

[

e−
β2

2

∫
t−s

0
|Xx

v |2 dv |Xx
s

] ]

= coshβ(t− s)
−d/2

E

[

exp

(

−β|Xx
s |2
2

sinhβ(t− s)

coshβ(t− s)

)]

.

The proof is complete by replacing α by β
2

sinh β(t−s)
cosh β(t−s) in Lemma 6.1. �
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8 YÛTA INOUE AND TAKAHIRO TSUCHIYA

[8] P. J. Hunt, J. E. Kennedy, and A. Pelsser “Markov-functional interest rate models”, Finance
and Stochastics, 2000, vol.4, number 4, 391–408 .

[9] Y. Inoue and T. Tsuchiya: “HKA to Single Defaultable Bond”, to appear in Proceedings of
The 42nd ISCIE International Symposium on Stochastic Systems Theory and Its Applica-
tions, 2011.

[10] C. Rogers: “One for all”, Risk 10, 57-59, March 1997.


	1. Introduction
	Acknowledgement
	2. Heat Kernel Approach
	2.1. Plain-Vanilla HKA
	2.2. The Killed HKA

	3. HKA to Defaultable Bond
	4. Quadratic Example
	5. Conclusions
	6. Appendix
	References

