
ar
X

iv
:1

10
3.

06
06

v1
  [

q-
fi

n.
C

P]
  3

 M
ar

 2
01

1

Bayesian Model Choice of Grouped t-copula

Xiaolin Luo1∗ Pavel V. Shevchenko2

This version 2 March 2011

1 CSIRO Mathematics, Informatics and Statistics, Australia; e-mail: Xiaolin.Luo@csiro.au

2 CSIRO Mathematics, Informatics and Statistics, Australia; e-mail: Pavel.Shevchenko@csiro.au

∗ Corresponding author

Abstract

One of the most popular copulas for modeling dependence structures is t-copula.

Recently the grouped t-copula was generalized to allow each group to have one mem-

ber only, so that a priori grouping is not required and the dependence modeling is

more flexible. This paper describes a Markov chain Monte Carlo (MCMC) method

under the Bayesian inference framework for estimating and choosing t-copula mod-

els. Using historical data of foreign exchange (FX) rates as a case study, we found

that Bayesian model choice criteria overwhelmingly favor the generalized t-copula.

In addition, all the criteria also agree on the second most likely model and these

inferences are all consistent with classical likelihood ratio tests. Finally, we demon-

strate the impact of model choice on the conditional Value-at-Risk for portfolios of

six major FX rates.

Key words: grouped t−copula, dependence modeling, Bayesian model choice,

Markov chain Monte Carlo, foreign exchange.
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1 Introduction

Copula functions have become popular and flexible tools in modeling multivariate de-

pendence among financial risk factors. In practice, one of the most popular copulas in

modeling multivariate financial data is perhaps the t-copula implied by the multivariate

t-distribution (hereafter referred to as standard t-copula); see Embrechts et al (2001),

Fang et al (2002), and Demarta and McNeil (2005). This is due to its simplicity in terms

of simulation and calibration, combined with its ability to model tail dependence which

is often observed in financial returns data. Papers by Mashal et al (2003) and Breymann

et al (2003) have demonstrated that the empirical fit of the standard t-copula is superior

in most cases when compared to the Gaussian copula. However, the standard t-copula

is often criticized due to the restriction of having only one parameter for the degrees of

freedom (dof), which may limit its ability to model tail dependence in multivariate case.

To overcome this problem, Daul et al (2003) proposed the use of the grouped t-copula,

where risks are grouped into classes and each class has its own standard t-copula with a

specific dof. This, however, requires an a priori choice of classes. It is not always obvious

how the risk factors should be divided into sub-groups. An adequate choice of grouping

configurations requires substantial additional effort if there is no natural grouping, for

example, by sector or class of asset.

Recently, the grouped t-copula was generalized to a new t-copula with multiple dof

parameters (hereafter referred to as generalized t-copula); see Luo and Shevchenko (2010)

and Venter et al (2007). This copula can be viewed as a grouped t-copula with each

group having only one member. It has the advantages of a grouped t-copula with flexible

modeling of multivariate dependences, yet at the same time it overcomes the difficulties

with a priori choice of groups. For convenience, denote the new copula as t̃ν-copula, where

ν = (ν1, ..., νn) denotes the vector of dof parameters and n is the number of dimensions.

Luo and Shevchenko (2010) demonstrated that some characteristics of this new copula in
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the bivariate case are quite different from those of the standard t-copula. For example,

the copula is not exchangeable if ν1 6= ν2 and tail dependence implied by the t̃ν-copula

depends on both dof parameters. The difference between t̃ν- and standard t-copulas, in

terms of impact on Value-at-Risk (VaR) and conditional Value-at-Risk (CVaR) of the

portfolio, can be significant as demonstrated by simulation experiments for the bivariate

case. This difference is even much larger than the difference between Gaussian copula

and the standard t-copula. In examples of maximum likelihood fitting to USD/AUD

and USD/JPY daily return data, standard t-copula was statistically rejected by a formal

Likelihood Ratio test in favour of the t̃ν copula (i.e. dof parameters in the t̃ν-copula were

statistically different).

This paper presents a Bayesian model selection study on the t-copula models in the

multivariate case. We demonstrate how to perform Bayesian inference using Markov chain

Monte Carlo (MCMC) simulations to estimate parameters and make decisions on model

choice. From a Bayesian point of view, model parameters are random variables whose dis-

tribution can be inferred by combining the prior density with the likelihood of observed

data. The complete posterior distribution of the parameters resulting from Bayesian

MCMC allows further analysis such as model selection and parameter uncertainty quan-

tification. Specifically, we solve a variable selection problem in the same vein as discussed

in Cairns (2000). Increasingly, Bayesian MCMC finds new applications in quantitative

financial risk modeling. Recent examples are found in Peters et al. (2009, 2010) for insur-

ance, Shevchenko (2010) for operational risk and Luo and Shevchenko (2010) for credit

risk.

As a case study, we consider the application of modeling dependence among six major

foreign exchange (FX) rates (AUD, CAD, CHF, EUR, GBP and JPY, against USD)

using t-copulas. Following common practice (see e.g. McNeil et al 2005), we use the

GARCH(1,1) model to standardize the log-returns of the exchange rates marginally. Then

the GARCH filtered residuals of the six major FX rates are modeled by a t-copula. In
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this study we consider altogether 33 competing t-copula models: the standard t-copula, 31

grouped t-copulas and the generalized t-copula (i.e. t̃ν-copula). The 31 grouped t-copulas

are a complete set of all possible combinations of two groups from six FXs (see Table 1

for all possible 2-group configurations for the six FX majors).

We present procedures and results of MCMC simulation for t-copula models under

the Bayesian framework. Also, we demonstrate using Bayesian model inference and ac-

tual data, that the generalized t-copula (t̃ν-copula) is convincingly the model of choice

for modeling dependence between six FX majors, among considered 33 t-copula models.

Even compared with the best grouped t-copula chosen from 31 possible two-group config-

urations, the t̃ν-copula is overwhelmingly favoured by the Bayesian factors obtained from

the MCMC posterior distribution. We demonstrate that the joint calibration of grouped

t-copula can be done very efficiently by applying MCMC. Using model parameters esti-

mated from MCMC, we also demonstrate the impact of model choice on CVaR of two

portfolios of six FX majors.

The organisation of this paper is as follows. Section 2 introduces the various t-copula

models and notations. Then it describes the GARCH model filtering for the six FX

majors, and calibration of the t-copula models using the maximum likelihood method.

Section 3 discusses the Bayesian inference formulation, the MCMC simulation algorithm,

the reciprocal importance sampling estimator and the deviance information criterion for

model selection. Direct computing of the posterior model probability is also discussed

in Section 3. Section 4 presents MCMC results and the corresponding Bayesian model

selection, in comparison with the traditional maximum likelihood results and Likelihood

Ratio tests. Examples of portfolio CVaR calculation using selected models and calibrated

parameters are provided in Section 5, demonstrating the impact of model choice on risk

quantification. Concluding remarks are given in the final section.
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2 Model, data and maximum likelihood calibration

It is well known from Sklar’s theorem (see Sklar 1959 and Joe 1997) that any joint

distribution function F with continuous (strictly increasing) margins F1, F2, . . . , Fn has a

unique copula

C(u) = F (F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
n (un)). (1)

The t-copulas are most easily described and understood by a stochastic representation,

as defined below.

2.1 t-copula models

We introduce notation and definitions as follows:

• Z = (Z1, . . . , Zn)
′ is a random vector from the multivariate normal distribution

ΦΣ(z) with zero mean vector, unit variances and correlation matrix Σ.

• U = (U1, . . . , Un)
′ is defined on [0, 1]n domain.

• V is a random variable from the uniform (0,1) distribution independent of Z.

• W = G−1
ν (V ), where Gν(·) is the distribution function of

√

ν/S with S distributed

from the chi-square distribution with ν dof, i.e. W and Z are independent.

• tν(·) is the standard univariate t-distribution and t−1
ν (·) is its inverse.

Then we have the following representations.

Standard t-copula

The random vector

X = W × Z (2)

is distributed from a multivariate t-distribution and random vector

U = (tν(X1), . . . , tν(Xn))
′ (3)
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is distributed from the standard t-copula.

Grouped t-copula

Partition {1, 2, . . . , n} into m non-overlapping sub-groups of sizes n1, . . . , nm. Then the

copula of the random vector

X = (W1Z1, . . . ,W1Zn1
,W2Zn1+1, . . . ,W2Zn1+n2

, . . . ,WmZn)
′, (4)

where Wk = G−1
νk
(V ), k = 1, . . . , m, is the grouped t-copula. That is,

U = (tν1(X1), . . . , tν1(Xn1
), tν2(Xn1+1), . . . , tν2(Xn1+n2

), . . . , tνm(Xn))
′ (5)

is a random vector from the grouped t-copula. Here, the copula for each group is a

standard t-copula with its own dof parameter (i.e. νk is dof parameter of the standard

t-copula for the k-th group).

Generalized t-copula with multiple dof (t̃ν-copula)

Consider the grouped t-copula where each group has a single member. In this case the

copula of the random vector

X = (W1Z1, W2Z2, . . . ,WnZn)
′ (6)

is said to have a t-copula with multiple dof parameters ν = (ν1, . . . , νn), which we denote

as t̃ν-copula. That is,

U = (tν1(X1), tν2(X2), . . . , tνn(Xn))
′ (7)

is a random vector distributed according to t̃ν-copula. Note, all Wi are perfectly depen-

dent.

Remark: Given the above stochastic representation, simulation of the t̃ν copula is

straightforward. In the case of standard t-copula ν1 = · · · = νn = ν and in the case

of grouped t-copula the corresponding subsets have the same dof parameter. Note that,

the standard t-copula and grouped t-copula are special cases of t̃ν-copula.
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From the stochastic representation (6-7), it is easy to show that the t̃ν-copula distri-

bution has the following explicit integral expression

CΣ
ν (u) =

1
∫

0

ΦΣ(z1(u1, s), . . . , zn(un, s))ds (8)

and its density is

cΣν (u) =
∂nCΣ

ν (u)

∂u1 . . . ∂un

=

1
∫

0

ϕΣ (z1(u1, s), . . . , zn(un, s))
n
∏

i=1

[wi(s)]
−1ds/

n
∏

i=1

fνi(xi). (9)

Here:

• zi(ui, s) = t−1
νi
(ui)/wi(s), i = 1, 2, . . . , n;

• wi(s) = G−1
νi
(s);

• ϕΣ(z1, . . . , zn) = exp(−1
2
z′Σ−1z)/[(2π)n/2(detΣ)1/2] is the multivariate normal den-

sity;

• xi = t−1
νi
(ui), i = 1, 2, . . . , n;

• fν(x) = (1 + x2/ν)
−(ν+1)/2

Γ((ν + 1)/2)/[Γ(ν/2)
√
νπ] is the univariate t-density,

where Γ(·) is a gamma function.

The multivariate density (9) involves a one-dimensional integration which makes the

density calculation computationally more demanding than in the case of the standard

t-copula, but still practical using available fast and accurate algorithms for the one-

dimensional integration. If all the dof parameters are equal, i.e. ν1 = · · · = νn = ν,

then it is easy to show that the copula defined by (8) becomes the standard t-copula; see

Luo and Shevchenko (2010) for a proof.

2.2 FX data and GARCH filtering

As a case study we consider modeling dependence between six FXs using t-copulas intro-

duced in previous section. The daily foreign exchange rate data for the six FX majors in
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the period January 2004 to April 2008 (a total of 1092 trading days) were downloaded from

the Federal Reserve Statistical Release (http://www.federalreserve.gov/releases). These

daily data have been certified by the Federal Reserve Bank of New York as the noon buy-

ing rates in New York City. For our purpose, we study the six major currencies (AUD,

CAD, CHF, EUR, GBP and JPY). Rates were converted to USD per currency unit in the

present study, if not already in this convention. This unified convention allows a portfolio

of currencies to be conveniently valued in terms of a single currency, the USD.

Following common practice (see McNeil et al 2005), we use the GARCH(1,1) model

to standardize the log-returns of the exchange rates marginally. The GARCH(1,1) model

calculates the current squared volatility σ2
t as

σ2
t = ω + α(xt−1 − µ)2 + βσ2

t−1, ω ≥ 0, α, β ≥ 0, α + β < 1, (10)

where xt−1 denotes the log-return of an exchange rate on date t− 1. GARCH parameters

ω, α and β are estimated using the maximum likelihood method. Log-return was modeled

as

xt = µ+ σtε
(t), (11)

where µ is the average historical return or drift for the asset and ε(t) is a sequence of

iid random variables referred to as the residuals. The GARCH filtered residuals of the

FX rates were then used to fit the t-copula models. Before the fitting the residuals were

transformed to the (0,1) domain marginally using empirical distributions of the residuals.

2.3 Configuration of grouped t-copula

With six dimensions, the grouped t-copula can have a total of 201 possible combinations

(not counting the standard t-copula and the t̃ν-copula). In this study we concentrate on

the class of configurations with two groups only, which is the next level of complexity

compared with the standard t-copula. This reduces the number of possible grouped t-

copula models to 31. These 31 grouped t-copula models are:
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• 10 models from the complete subset of (3,3) configurations (with two groups and

three members in each group).

• 15 models from the complete subset of (2,4) configurations (with two members in

the first group and four members in the second group).

• 6 models from the complete subset of (1,5) configurations (with one member in the

first group and five members in the second group).

Note, a (1,5) combination is the same as a (5,1) combination, and a (2,4) combination

is the same as a (4,2) combination. So, altogether we have 33 competing models to choose

from – the standard t-copula, the 31 two-grouped t-copula and the generalized t-copula

(t̃ν-copula).

Table 1 lists all 33 models for modeling the six FX majors, their grouping configurations

and parameter notations. In column 2 of Table 1, each pair of parentheses define a sub-

group configuration. The generalized grouped t-copula has six sub-groups with a single

member in each sub-group, while the standard t-copula has one group containing all six

members. Note that for the grouped t-copula, exchanging the two sub-groups makes no

difference – these two configurations have exactly the same combinations of members, so

no new models will emerge from this exchange.

2.4 Maximum likelihood calibration

Consider a random vector of data Y = (Y1, . . . , Yn)
′. To estimate a parametric copula

using observations y(j), j = 1, . . . , K, where K is the number of observations, the first

step is to project the data to the [0, 1]n domain to obtain u(j), using estimated marginal

distributions. In our study the margins are modeled using empirical distributions but it

can also be modeled using parametric distributions or a combination of these methods,

e.g. empirical distribution for the body and a generalized Pareto distribution for the

9



tail of a marginal distribution (McNeil et al 2005, page 233). Given pseudo sample u(j)

constructed using the original data, the copula parameters can be estimated using, for

example, the maximum likehood method or MCMC.

Accurate maximum likelihood estimates (MLEs) of the copula parameters should be

obtained by fitting all unknown parameters jointly. In practice, to simplify the calibration

procedure, correlation matrix coefficients for t-copulas are often calculated pair-wise using

Kendall’s tau rank correlation coefficients τ(Yi, Yj) via the formula (McNeil et al 2005)

Σij = sin
(

1
2
πτ(Yi, Yj)

)

. (12)

Then in a second stage the dof parameters ν1, . . . , νn are estimated. Strictly speaking (12)

is valid for bivariate case only, however in practice it works well for multivariate case too.

It was noted in Daul et al (2003) that formula (12) is still highly accurate even when it is

applied to find the correlation coefficients between risks from the different groups. McNeil

et al (2005) observed that the estimated parameters using Kendall’s tau are identical to

those obtained by joint estimation to two significant digits, confirming good accuracy

of the Kendall’s tau simplification. It was also observed in Luo and Shevchenko (2010)

that the difference in estimated parameters between the Kendall’s tau approximation and

the joint estimation was mostly in the third significant digit and was smaller than the

standard errors for the MLEs. In addition, a study of small sample properties in Luo and

Shevchenko (2010) showed that the bias introduced by the Kendall’s tau approximation

is very small even for a small sample size of 50. In the present work the data sample size

is over 1000. The small bias of the Kendall’s tau approximation is certainly insignificant

when compared with the often large difference existing between dof parameters of different

t-copula models. In other words, using (12) for the correlation coefficients should cause

little material difference in the present model choice study where the difference is expected

to come from different group configurations.

Because the Kendall’s tau approximation is applied pair-wise, we have identical correla-
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tion matrix for all the copula models to be considered. This simplification is computation-

ally very significant for the grouped t-copula for which the calibration using density (9)

is computationally demanding. By using the Kendall’s tau approximation, the number of

unknown parameters reduces from M = n(n+1)/2 to M = n for the generalized grouped

t-copula. With six-dimensions considered in this study, this amounts to a reduction from

21 parameters to only 6. For the grouped t-copula with two groups, this reduction is

from 17 to 2, an even more dramatic reduction. A substantial saving of computing time

is achieved in both cases.

Remark: An accurate calibration of grouped t-copula requires joint estimation of dof

parameters. Sometimes in practice an approximate approach is taken where a grouped

t-copula is calibrated marginally, i.e. each sub-group is calibrated separately using a

standard t-copula. This approximation is not always justified; also it can not be applied

to a generalized t-copula. For a proper and fair comparison between the grouped t-copula

and the generalized grouped t-copula, in this study we perform joint calibration for both

copulas. When the grouped t-copula is calibrated jointly, its density is given by the

integral formula (9), the same as the generalized t-copula, so a proper joint calibration

of the grouped t-copula is also computationally demanding when compared with the

calibration of a standard t-copula.

Let ν be the vector of n dof parameters ν1, . . . , νn (the grouped t-copula is treated as a

special case of t̃ν-copula). Denote the density of the t̃ν-copula evaluated at u(j) as cν(u
(j)),

which can be obtained using (9). Then the MLEs for ν are calculated by maximizing the
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log-likelihood function

ℓU(ν) = ln
K
∏

j=1

cΣν (u
(j))

=

K
∑

j=1

ln





1
∫

0

ϕΣ

(

z
(j)
1 (s), . . . , z(j)n (s)

)

n
∏

i=1

[wi(s)]
−1ds





+
K
∑

j=1

n
∑

i=1

(

1
2
(νi + 1)

)

ln[1 + (x
(j)
i )2/νi]

+K

n
∑

i=1

(

1
2
ln(νiπ) + ln[Γ(1

2
νi)/Γ(

1
2
(νi + 1))]

)

, (13)

where x
(j)
i = t−1

νi
(u

(j)
i ), z

(j)
i (s) = x

(j)
i /wi(s), i = 1, . . . , n, j = 1, . . . , K. In this work we

use the double precision IMSL function DQDAGS, a globally adaptive integration scheme

documented in Piessens et al (1983) for the integration in (9). For the maximization of

(13) the double precision IMSL function DBCPOL is used, which employs a direct search

Simplex algorithm that does not require calculation of gradients.

3 Bayesian inference and MCMC

In this section we describe Bayesian approach and MCMC procedure to estimate t-copulas,

and model selection criteria used to choose the t-copula model. Under the Bayesian

approach, the model parameters θ (in our case θ is just the dof parameter ν) are treated

as random variables. Given a prior distribution π(θ) and a conditional density of the data

given θ (i.e. likelihood) π(y|θ), the joint density of data Y and the model parameters θ

is π(y, θ) = π(y|θ)π(θ). Having observed data Y, the distribution of θ conditional on

Y, the posterior distribution, is determined by Bayes’ theorem

π(θ|y) = π(y|θ)π(θ)
∫

π(y|θ)π(θ)dθ ∝ π(y|θ)π(θ). (14)

The posterior can then be used for predictive inference. There is a large number of useful

texts on Bayesian inference; for a good introduction, see Berger (1985) and Robert (2001).
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3.1 MCMC under Bayesian framework

The explicit evaluation of the normalization constant in (14) is often difficult especially in

high dimensions. The complexity in our case is evident from the log-likelihood expression

(13). The MCMC method provides a highly efficient alternative to traditional techniques

by sampling from the posterior indirectly and performing the integration implicitly.

MCMC is especially suited to a Bayesian inference framework. It facilitates the quan-

tification of parameter uncertainty and model risks. It also allows a unified estimation pro-

cedure that estimates parameters and latent variables. In the last case a special algorithm

called data augmentation can be employed, see Tanner and Wong (1987). The Bayesian

estimates of particular interest from MCMC are the maximum a posterior (MAP) esti-

mate and the minimum mean square error (MMSE) estimate, defined as follows

MAP : θ̂
MAP = argmax

θ
[π(θ|y)], (15)

MMSE : θ̂
MMSE = E[θ|y]. (16)

The MAP and MMSE estimates are the posterior mode and mean respectively. If the

prior π(θ) is constant and the parameter range includes the MLE, then the MAP of the

posterior is the same as MLE.

3.2 Metropolis-Hastings algorithm

In our case study we use the Metropolis-Hastings algorithm first described by Hastings

(1970) as a generalization of the Metropolis algorithm (Metropolis et al 1953). Denote the

state vector at step t as θ(t) and we wish to update it to a new state θ
(t+1). We generate

a candidate θ
∗ from density q(θ|θ(t)), and accept this point as the new state of the chain

with probability given by

α(θ(t), θ∗) = min

{

1,
π(θ∗)q(θ(t)|θ∗)

π(θ(t))q(θ∗|θ(t))

}

. (17)
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If the proposal is accepted, the new state θ
(t+1) = θ

∗, otherwise θ
(t+1) = θ

(t). The single

component Metropolis-Hastings is often more efficient in practice. Here the state variable

θ
(t) is partitioned into components θ(t) = (θ

(t)
1 , θ

(t)
2 , . . . , θ

(t)
n ) which are updated one by one

or block by block. This was the framework for MCMC originally proposed by Metropolis

et al. (1953), and is adapted in this study.

The likelihood is computed as π(y|θ) = exp(ℓy(θ)), where ℓy(θ) is the log-likelihood

given by (13). In computer implementation, we take advantage of the fact that only

one component is updated at each sub-step in the single component Metropolis-Hastings

algorithm by saving and re-using any values not affected by the current updating. For

example, each evaluation of (13) calls for the inverse of the t-distribution for all the

data points and all the dof values. Saving and re-using these inverse values reduce the

calculation by a factor of six for the six-dimensional MCMC computation.

3.3 Bayesian model selection using MCMC

Powerful MCMC methods such as the Gibbs sampler (Gelfand and Smith 1990) and

the Metropolis-Hastings (MH) algorithm (Hastings 1970) enable direct estimation of the

posterior and predictive quantities of interest, but do not lend themselves readily to

estimation of the model probabilities. While one of the most common classical techniques

is the Bayesian Information Criterion (BIC) (Schwarz 1978), many new approaches have

been suggested in the literature.

The most widely used methods include the harmonic mean estimator of Newton and

Raftery (1994), importance sampling (Fruhwirth-Schnatter 1995), the reciprocal impor-

tance sampling estimator (Gelfand and Dey 1994), and bridge sampling (Meng and Wong

1996, Fruhwirth-Schnatter 2004). A comprehensive review of some of these methods

applied to Bayesian model selection can be found in Kass and Raftery (1995).

Consider model M with parameter vector θ. The model likelihood with data y can be
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found by integrating out the parameter θ

π(y|M) =

∫

π(y|θ,M)π(θ|M)dθ, (18)

where π(θ|M) is the prior density of θ in model M . Given a set of H competing models

M = (M1,M2, . . . ,MH), the Bayesian alternative to traditional hypothesis testing is to

evaluate and compare the posterior probability ratio between the models. For model Ml

(1 ≤ l ≤ H), assuming we have some prior knowledge about the model probability π(Ml),

we can compute the posterior probabilities for all models using the model likelihoods

π(Ml|y) =
π(y|Ml) π(Ml)

∑H
h=1 π(y|Mh) π(Mh)

. (19)

Consider two competing models M1 and M2, parameterized by θ[1] and θ[2] respectively.

The choice between the two models can be based on the posterior model probability ratio,

given by

π(M1|y)
π(M2|y)

=
π(y|M1) π(M1)

π(y|M2) π(M2)
=

π(M1)

π(M2)
B12, (20)

where B12 = π(y|M1)/π(y|M2) is the Bayes factor, the ratio of posterior odds of modelM1

to that of model M2. As shown by Lavine and Scherrish (1999), an accurate interpretation

of the Bayes factor is that the ratio B12 captures the change of the odds in favour of model

M1 as we move from prior to posterior. Jeffreys (1961) recommended a scale of evidence

for interpreting Bayes factors, which was later modified by Wasserman (1997). A Bayes

factor B12 > 10 is considered strong evidence in favour of M1. For a detailed review of

Bayes factors, see Kass and Raftery (1995).

Typically, the integral (18) required by the Bayes factor is not analytically tractable

and sampling based methods must be used to obtain estimates of the model likelihoods.

In the current study we choose three methods for model selection:

• direct estimation of the Bayes factor in (20) using Reciprocal Importance Sampling

Estimation presented in Section 3.3.1;
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• deviance information criterion (see Section 3.3.2);

• direct computation of the posterior model probabilities using formula presented in

Section 3.3.3.

3.3.1 Reciprocal Importance Sampling Estimator

Given samples θ(t), t = 1, . . . , N from the posterior distribution obtained through MCMC,

Gelfand and Dey (1994) proposed the reciprocal importance sampling estimator (RISE)

to approximate the model likelihood as

π(y|M) ≈
[

1

N

N
∑

t=1

h(θ(t)|M)

π(y|θ(t),M) π(θ(t)|M)

]−1

, (21)

where h plays the role of an importance sampling density roughly matching the posterior.

Gelfand and Dey (1994) suggested a multivariate normal or t-distribution density with

mean and covariance fitted to the posterior sample.

The RISE estimator can be regarded as a generalization of the harmonic mean estima-

tor suggested by Newton and Raftery (1994). If h = 1 then (21) becomes the harmonic

mean estimator. Other estimators include the bridge sampling proposed by Meng and

Wong (1996), and the Chib’s candidate’s estimator (Chib 1995). In a recent comparison

study by Miazhynskaia and Dorffner (2006), these estimators were employed as competing

methods for Bayesian model selection on GARCH-type models, along with the reversible

jump MCMC. It was demonstrated that the RISE estimator (either with normal or t im-

portance sampling density), the bridge sampling method and the Chib’s algorithm gave

statistically equal performance in model selection, and their performance more or less

matches the much more involved reversible jump MCMC.

3.3.2 Deviance Information Criterion

The deviance information criterion (DIC) is a generalization of the Bayesian information

criterion (Schwarz 1978, Spiegelhalter et al 2002). For a given model M (for simplicity
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we drop notation M in the formula below) the deviance is defined as

D(θ) = −2 log(π(y|θ)) + C, (22)

where the constant C is common to all nested models. Then DIC is calculated as

DIC = 2Eθ[D(θ)]−D(Eθ[θ]) = Eθ[D(θ)] + (Eθ[D(θ)]−D(Eθ[θ])), (23)

where Eθ[·] is the expectation with respect to θ. The expectation Eθ[D(θ)] is a measure

of how well the model fits the data; the smaller its value, the better the fit. The difference

Eθ[D(θ)] − D(Eθ[θ]) can be regarded as the effective number of parameters, the larger

this term, the easier it is for the model to fit the data. So the DIC criterion favours the

model with a better fit but at the same time penalizes the model with more parameters.

Under this setting the model with the smallest DIC value is the preferred model.

3.3.3 Posterior model probabilities

A popular approach for model choice is based on Reversible Jump MCMC (Green 1995).

Here we adopt an alternative proposed recently by Peters et al (2009) based on the

work of Congdon (2006). In this procedure the posterior model probabilities π(Ml|y) are

estimated using the Markov chain in each model as

π(Ml|y) =
N
∑

t=1

Ly(Ml, θ
(t)
[l] )

∑H
h=1Ly(Mh, θ

(t)
[h])

, (24)

where θ
(t)
[l] is the MCMC posterior sample at Markov chain step t for modelMl, Ly(Ml, θ

(t)
[l] )

is the likelihood of y for a given model Ml with parameter vector θ
(t)
[l] , and N is the total

number of MCMC steps after burn-in period. In (24), it is assumed that priors π(θ[l]|Ml)

and π(Ml) are constant.
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4 MCMC simulation results and analysis

Prior distributions . In all MCMC simulation runs, we assume a uniform prior for every

model parameter. The only subjective judgement we bring to the prior is the support

of the dof parameter. Denote the kth dof parameter of the hth t-copula model as ν
(h)
k

(see Table 1). We impose a common lower and upper bounds for all dof components,

specifically 1 = νmin < ν
(h)
k < νmax = 100 . In our case study the support (1, 100) for

dof parameter of the t-distribution should be sufficiently large to allow the posterior to

be implied mainly by the observed data. To make sure the range is sufficiently large, we

also tested a wider range of (1, 200) and found no material difference in the results.

MCMC procedure. The starting value for the Markov chain for each component is

set to a uniform random number drawn independently from the support (νmin, νmax).

In the single component Metropolis-Hastings algorithm, we adopt a truncated Gaussian

distribution as the symmetric random walk proposal density for q(·|·) in (17). For each

component, the mean of the Gaussian density was set to the current state and the variance

was pre-tuned so that the acceptance rate is close to the optimal level. For d-dimensional

target distributions with iid components, the asymptotic optimal acceptance rate has

been reported to be 0.234; see Gelman et al (1997) and Roberts and Rosenthal (2001).

In pre-tuning the variances for all the components we set 0.234 as the target acceptance

rate. In addition, the Gaussian density was truncated below νmin and above νmax to ensure

each proposal was drawn within the support for the parameters. Specifically, for the kth

component at chain step t, the proposal density is

qk(θ
∗|θ(t)k ) =

fN(θ
∗; θ

(t)
k , σk)

FN (νmax; θ
(t)
k , σk)− FN (νmin; θ

(t)
k , σk)

, (25)

where fN(·;µ, σ) and FN(·;µ, σ) are the Gaussian density and distribution functions re-

spectively, with mean µ and standard deviation σ.

An independent Markov chain was run for each of the 33 models listed in Table 1.
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Each run consists of three stages:

• Tuning - tune and adjust the proposal standard deviation to achieve optimal accep-

tance rate for each component.

• “Burn-in” - samples from this period are discarded.

• Posterior sampling - here the Markov chian is considered to have converged to the

stationary target distribution and samples are used for model estimates.

Unless stated otherwise, we use a “burn-in” period of length Nb = 20, 000. We then let

the chain run for an additional N = 100, 000 iterations to generate the posterior samples.

Each step contained a complete update of all components.

MCMC convergence. Figure 1 shows the first 30,000 samples, taken after the burn-in

period, of the dof component ν
(0)
1 for model M0 (i.e. the case of the generalized t-copula).

SinceM0 has the highest parameter dimensions among all the candidate models, in general

it requires the longest length of chains to converge to a stationary distribution. This figure

shows that after the burn-in period the samples are mixing well over the support of the

posterior distribution.

In addition to inspecting the sample paths, we also monitor the autocorrelation of

the samples. Figure 2 shows the autocorrelations over multiple lags computed from the

posterior samples for component ν
(0)
1 of model M0. A useful value to compute from these

autocorrelations for each component is the autocorrelation time defined as

τk = 1 + 2
∞
∑

g=1

ρk(g), (26)

where ρk(g) is the autocorrelation at lag g for component θk. This autocorrelation is

sometimes used to compute an “effective sample size” by dividing the number of samples

by τk. The standard errors for the parameters can then be based on the effective sample

size to compensate for the autocorrelation (see Ripley 1987, Neal 1993). In practice it
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is necessary to cut off the sum in (26) at g = gmax
k where the autocorrelations seem to

have fallen to near zero, because including higher lags adds too much noise (for some

interesting discussion on this issue, see Kass et al. 1998). As shown in Figure 2, in those

well mixed MCMC samples the autocorrelation falls to near zero quickly and stays near

zero at larger lags. For this study we have chosen a gmax
k for each component such that

the autocorrelation at lag gmax
k has reduced to less than 0.01. That is, the autocorrelation

time τk is estimated by

τ̂k ≈ 1 + 2

gmax

k
∑

g=1

ρk(g), gmax
k = min{g : ρk(g) < 0.01}. (27)

The τ̂k values estimated from MCMC output for model M0 are shown in Table 2, along

with the cut-off lag number gmax
k . MCMC convergence characteristics for other compo-

nents and for other models are very similar to those shown here for model M0.

4.1 Bayesian estimates of parameters

This section presents results for posterior mean (MMSE), mode (MAP) and numerical

error due to finite number of MCMC iterations.

4.1.1 Posterior mean and its numerical error

Table 3 shows values for the estimated mean from MCMC posterior samples for all 33

models. The standard errors (numerical error due to finite number of MCMC iterations)

are shown in parentheses and the log-likelihoods corresponding to the estimated means

are in the last column. Since the samples from MCMC are typically serially correlated, the

usual formula for estimating the standard error of a sample mean (i.e. standard deviation

divided by
√
N) will introduce significant under-estimation. Here, we use batch sampling

for the standard error estimate of the MCMC posterior mean; see Gilks et al. (1996).

Consider a MCMC posterior sample y1, y2, ..., yN with length N = Q × L, where L is
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sufficiently large, so that the batch means

ȳq =
1

L

q×L
∑

t=(q−1)L+1

y(t) , q = 1, . . . , Q (28)

are considered approximately independent. Then ȳ = (ȳ1+ · · ·+ ȳQ)/Q and the standard

error of the posterior sample mean ȳ can be approximated by

√

Var(ȳ) ≈ 1√
Q

√

√

√

√

1

Q− 1

Q
∑

q=1

(ȳq − ȳ)2, (29)

Note that Q is the number of quasi-independent batches and L = N/Q is the size of each

batch.

4.1.2 Posterior mode and likelihood ratio tests

Values of the posterior mode taken from the MCMC samples for all the 33 models are

shown in Table 4, along with the corresponding log-likelihood values. Using results of the

maximum likelihood corresponding the posterior mode in Table 4, a classical likelihood

ratio test can be performed to compare model likelihoods.

Consider the null hypothesis that the observed FX daily return data are from distri-

bution described by the grouped t-copula model M1, and the alternative hypothesis that

the data are distributed according to the generalized t-copula model M0. The likelihood

ratio for the two models is simply Λ = L1/L0, where L1 and L0 are the maximum likeli-

hood values (i.e. the likelihood value at the mode) for M1 and M0 respectively. The test

statistic −2 log(Λ) will be asymptotically χ2 distributed with degrees of freedom equal to

the difference in the number of dof parameters in M0 and M1, which is 4 in this case.

We can perform likelihood ratio tests on all other grouped t-copula models (Mh, h =

2, . . . , 31) against the same alternative hypothesis of model M0, the generalized t-copula.

For the standard t-copula the difference in the number of parameters is 5. The test statistic

and the associated p-value (χ2 significance) are given in Table 4. Clearly, according to
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the p-value, all the null hypotheses should be rejected and the alternative hypothesis, the

generalized t-copula model M0, is statistically justified.

Excluding model M0, among the other 32 t-copula models (Mh, h = 1, . . . , 32), the

one achieving the highest likelihood is M27, which is one of the six (1,5) two-group config-

urations. The p-value of this best grouped t-copula model against M0 is 0.0045 which is

still very small, suggesting a rather strong rejection of the grouped t-copula (including the

standard t-copula) in favour of the t̃ν-copula model M0. Achieving the highest likelihood

from the fifteen (2,4) configurations is model M4. It is interesting to notice that both M27

and M4 have three European currencies (CHF, EUR, GBP) in one group (see Table 1),

perhaps reflecting a natural geopolitical and economic grouping.

4.2 Bayesian model choice

While the likelihood ratio test relies on a single point estimate, the Bayesian model choice

makes decisions based on the entire posterior distribution. As discussed in Section 3.3,

three Bayesian inference criteria were used to choose among the 33 t-copula models: RISE

given by (21); DIC given by (23); and the posterior model probabilities (24).

The RISE calculation involves fitting the MCMC posterior samples to a multivariate

normal or t-distribution and taking expectation of the reciprocal likelihood. The DIC

calculation requires taking expectation of the likelihood and the parameters. Column 2

in Table 5 shows the RISE factor B0h = R0/Rh, h = 1, . . . , 32, where Rh is the RISE

value for model Mh. That is, B0h (1 ≤ h ≤ 32) is a measure of strength in the argument

that the generalized t-copula (model M0) is the Bayesian choice. The very large Bayes

factors (B0h > e11 > 5.9× 104) shown in Table 5 overwhelmingly support the generalized

t-copula, confirming the likelihood ratio tests discussed previously. Excluding model M0,

these Bayes factors also point to M27 as the most favoured model among the grouped

t-copulas (Mh, 1 ≤ h ≤ 32) confirming the likelihood ratio tests. The larger the Bayes
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factor B0h, the stronger the case against model Mh (1 ≤ h ≤ 32).

The DIC values for 33 models are shown in column 3 of Table 5. Since only relative

DIC value matters, the common constant in (22) was set in such a way that the DIC

value for model M0 is zero. As shown in Table 5, the DIC value for all the other models is

significantly positive, relative to that of M0. Thus under the DIC criterion the model of

choice is clearly M0, i.e. the generalized t-copula. In addition, similar to the RISE based

Bayes factors and the likelihood tests, the DIC values also pick M27 as the most likely

grouped t-copula model after M0, the same as the RISE factor and the likelihood ratio

test. The larger the DIC value, the stronger the case against the model. It is interesting to

observe that the magnitude of the DIC value is close to that of the logarithm of the Bayes

factor based on the reciprocal importance sampling estimator, when both are evaluated

relative to the same model M0.

As shown by column 4 in Table 5, the results for posterior model probabilities (24)

also agree with the RISE and DIC results, i.e. model M0 has a very high probability of

88%, and model M27 has the second highest probability. If we exclude model M0, then

model M27 has a high probability of 68%. In summary, all three Bayesian choice criteria

point to the same model M0 as the best choice followed by model M27, and these choices

are in agreement with the classical likelihood ratio tests, as shown in Table 4.

5 Conditional Value-at-Risk

Consider a portfolio of six major currencies. Denote the exchange rates (USD per currency

unit) for these currencies at time t by S
(t)
i , i = 1, . . . , 6. Assume we hold λi units for the

ith currency. The portfolio value at time t is then V (t) =
∑6

i=1 λiS
(t)
i . The log-return for

the ith currency at time t+ 1 is given by x
(t+1)
i = lnS

(t+1)
i − lnS

(t)
i . The portfolio loss for
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one time step is then

− δV (t+1) = V (t) − V (t+1) =

6
∑

i=1

λiS
(t)
i

(

1− exp
(

x
(t+1)
i

))

= V (t)
6

∑

i=1

wi

(

1− exp
(

x
(t+1)
i

))

, (30)

where wi = λiS
(t)
i /V (t) is the proportion of the portfolio value in currency i at time t, that

is, it is the dollar weight of the ith currency. Now we wish to simulate the distribution of

portfolio return

Z = −δV (t+1)/V (t) =

6
∑

i=1

wi

(

1− exp
(

x
(t+1)
i

))

≈
6

∑

i=1

−wix
(t+1)
i .

In the present study we model the dependence of the log-returns x
(t+1)
i by one of the

t-copula models as described in the previous sections. Recall that the dof parameters and

their posterior distributions are already obtained by Bayesian MCMC. To focus on the

impact of copula models, we use the standard normal distribution for all the six marginals.

We take the CVaR as our risk measure. Assume that a random variable Z has continuous

density f(·) and distribution F (·). Given a threshold quantile level α, the CVaR above

F−1(α) is defined as

CV aRα[Z] = E[Z|Z ≥ F−1(α)] =
1

1− α

∞
∫

F−1(α)

xf(x)dx, (31)

which is the average of the losses exceeding F−1(α). To demonstrate model impact on

risk quantification, we compare CVaR of the two most likely models, M0 and M27, the

best and the second best models of all 33 candidates. CVaR is calculated numerically

using 107 Monte Carlo simulations with t-copula model parameters given in Table (4).

Table 6 shows CV aR
(M0)
0.99 and CV aR

(M27)
0.99 predicted by models M0 and M27 for two

portfolios (defined by weights in Table 6). Note in both portfolios we have negative

weights (selling the currency) and the weights in each portfolio add to 1.0. As shown

in Table 6, model M27 underestimates the 0.99 CVaR by 16% for the first portfolio, and

24



this underestimate reverses to a slight overestimate for the second portfolio, assuming

the correct estimates are from model M0. The second portfolio is only slightly different

from the first – swapping the position of EUR and CHF (long/short position) in the

first portfolio yields the second portfolio. The two portfolios are deliberately chosen to

demonstrate that the model impact on risk quantification can be in either direction – it

may be overestimation or it may be underestimation, depending on the portfolio. Thus it

is important to choose the most suitable model statistically, such as by means of Bayesian

model inference. Table 7 compares 0.99 CVaR prediction of model M0 with that of model

M4, the most likely model from the (3,3) configuration, for the same two portfolios as

those in Table 6. Here again the 0.99 CVaR for the first portfolio is underestimated by

the incorrect model, and for the second portfolio it is overestimated.

6 Conclusion

This paper describes a Bayesian model choice methodology for t-copula models. As an

illustration, altogether 33 t-copula models of six dimensions were considered: the general-

ized t-copula; the standard t-copula; and 31 grouped t-copula models from the complete

subset of (3,3), (2,4) and (1,5) configurations. MCMC simulations under a Bayesian in-

ference framework were performed to obtain the posterior distribution of dof parameters

for all 33 t-copula models. Using historical data of foreign exchange rates as a case study,

we found that Bayesian model choice based on the RISE, the DIC and the posterior model

probabilities overwhelmingly favors the generalized t-copula model M0. In addition, all

three Bayesian choice criteria point to the same second most likely model M27. These

Bayesian choices are also in agreement with classical likelihood ratio tests.

The impact of model choice on the CVaR for two portfolios of six FX majors was

observed to be significant.

For a comprehensive modeling of multivariate dependence in finance or insurance, there
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are other issues in data analysis that should be addressed carefully, such as time-dependent

correlation parameters and validation. These are not considered in the present study.
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Figure 1: Markov chain paths for parameter ν
(0)
1 of model M0.
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Figure 2: Autocorrelation of Markov chain samples for dof parameter ν
(0)
1 of model M0.
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Table 1: Group configurations and parameters for the 33 t-copula models.

Model Group Configuration Parameters

M0 (AUD), (CAD), (CHF), (EUR), (GBP), (JPY) ν
(0)
1 , ν

(0)
2 , ν

(0)
3 , ν

(0)
4 , ν

(0)
5 , ν

(0)
6

M1 (AUD, CAD, CHF), (EUR, GBP, JPY) ν
(1)
1 , ν

(1)
2

M2 (AUD, CAD, EUR), (CHF, GBP, JPY) ν
(2)
1 , ν

(2)
2

M3 (AUD, CAD, GBP), (CHF, EUR, JPY) ν
(3)
1 , ν

(3)
2

M4 (AUD, CAD, JPY), (CHF, EUR, GBP) ν
(4)
1 , ν

(4)
2

M5 (AUD, CHF, EUR), (CAD, GBP, JPY) ν
(5)
1 , ν

(5)
2

M6 (AUD, CHF, GBP), (CAD, EUR, JPY) ν
(6)
1 , ν

(6)
2

M7 (AUD, CHF, JPY), (CAD, EUR, GBP) ν
(7)
1 , ν

(7)
2

M8 (AUD, EUR, GBP), (CAD, CHF, JPY) ν
(8)
1 , ν

(8)
2

M9 (AUD, EUR, JPY), (CAD, CHF, GBP) ν
(9)
1 , ν

(9)
2

M10 (AUD, GBP, JPY), (CAD, CHF, EUR) ν
(10)
1 , ν

(10)
2

M11 (GBP, JPY), (AUD, CAD, CHF, EUR) ν
(11)
1 , ν

(11)
2

M12 (AUD, CAD), (CHF, EUR, GBP, JPY) ν
(12)
1 , ν

(12)
2

M13 (AUD, CHF), (CAD, EUR, GBP, JPY) ν
(13)
1 , ν

(13)
2

M14 (AUD, EUR), (CAD, CHF, GBP, JPY) ν
(14)
1 , ν

(14)
2

M15 (AUD, GBP), (CAD, CHF, EUR, JPY) ν
(15)
1 , ν

(15)
2

M16 (AUD, JPY), (CAD, CHF, EUR, GBP) ν
(16)
1 , ν

(16)
2

M17 (CAD, CHF), (AUD, EUR, GBP, JPY) ν
(17)
1 , ν

(17)
2

M18 (CAD, EUR), (AUD, CHF, GBP, JPY) ν
(18)
1 , ν

(18)
2

M19 (CAD, GBP), (AUD, CHF, EUR, JPY) ν
(19)
1 , ν

(19)
2

M20 (CAD, JPY), (AUD, CHF, EUR, GBP) ν
(20)
1 , ν

(20)
2

M21 (CHF, EUR), (AUD, CAD, GBP, JPY) ν
(21)
1 , ν

(21)
2

M22 (CHF, GBP), (AUD, CAD, EUR, JPY) ν
(22)
1 , ν

(22)
2

M23 (CHF, JPY), (AUD, CAD, GBP, EUR) ν
(23)
1 , ν

(23)
2

M24 (EUR, GBP), (AUD, CAD, CHF, JPY) ν
(24)
1 , ν

(24)
2

M25 (EUR, JPY), (AUD, CAD, GBP, CHF) ν
(25)
1 , ν

(25)
2

M26 (AUD), (CAD, CHF, EUR, GBP, JPY) ν
(26)
1 , ν

(26)
2

M27 (CAD), (AUD, CHF, EUR, GBP, JPY) ν
(27)
1 , ν

(27)
2

M28 (CHF), (CAD, AUD, EUR, GBP, JPY) ν
(28)
1 , ν

(28)
2

M29 (EUR), (CAD, CHF, AUD, GBP, JPY) ν
(29)
1 , ν

(29)
2

M30 (GBP), (CAD, CHF, EUR, AUD, JPY) ν
(30)
1 , ν

(30)
2

M31 (JPY), (CAD, CHF, EUR, GBP, AUD) ν
(31)
1 , ν

(31)
2

M32 (AUD, CAD, CHF, EUR, GBP, JPY) ν
(32)
1
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Table 2: Autocorrelation estimates and corresponding cut-off lag number.

Parameter ν
(0)
1 ν

(0)
2 ν

(0)
3 ν

(0)
4 ν

(0)
5 ν

(0)
6

τ̂k 8.79 2.23 23.5 23.1 8.41 8.69

gmax
k 23 14 65 57 30 34
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Table 3: MCMC output values of posterior mean, standard error and log-likelihood.

Model Posterior Mean (Standard Error) Log-likelihood

M0

ν
(0)
1 = 15.4(0.79), ν

(0)
2 = 67.3(1.3), ν

(0)
3 = 8.76(0.34),

2353.1
ν
(0)
4 = 6.38(0.20), ν

(0)
5 = 11.6(0.46), ν

(0)
6 = 18.3(1.1)

M1 ν
(1)
1 = 15.1 (0.29), ν

(1)
2 = 9.37 (0.14) 2342.8

M2 ν
(2)
1 = 10.2 (0.15), ν

(2)
2 = 13.4 (0.21) 2338.6

M3 ν
(3)
1 = 18.2 (0.28), ν

(3)
2 = 8.56 (0.09) 2341.9

M4 ν
(4)
1 = 24.4 (0.82), ν

(4)
2 = 7.78 (0.16) 2343.8

M5 ν
(5)
1 = 8.51 (0.13), ν

(5)
2 = 18.7 (0.49) 2341.9

M6 ν
(6)
1 = 13.4 (0.26), ν

(6)
2 = 10.2 (0.16) 2338.6

M7 ν
(7)
1 = 13.6 (0.27), ν

(7)
2 = 10.3 (0.17) 2338.6

M8 ν
(8)
1 = 9.24(0.13), ν

(8)
2 = 15.7 (0.35) 2343.2

M9 ν
(9)
1 = 8.76(0.13), ν

(9)
2 = 14.0 (0.32) 2343.2

M10 ν
(10)
1 = 12.6(0.23), ν

(10)
2 = 11.1 (0.17) 2336.7

M11 ν
(11)
1 = 27.9(4.87), ν

(11)
2 = 8.6 (0.09) 2336.7

M12 ν
(12)
1 = 14.1(0.44), ν

(12)
2 = 10.6 (0.14) 2336.7

M13 ν
(13)
1 = 8.56(0.11), ν

(13)
2 = 13.8 (0.25) 2343.6

M14 ν
(14)
1 = 13.2(0.74), ν

(14)
2 = 11.1 (0.14) 2336.7

M15 ν
(15)
1 = 13.3(0.94), ν

(15)
2 = 11.2 (0.17) 2336.6

M16 ν
(16)
1 = 17.4(0.85), ν

(16)
2 = 9.78 (0.13) 2343.0

M17 ν
(17)
1 = 9.78(0.14), ν

(17)
2 = 12.9 (0.2) 2338.9

M18 ν
(18)
1 = 24.9(4.4), ν

(18)
2 = 8.96 (0.09) 2342.5

M19 ν
(19)
1 = 32.5(7.99), ν

(19)
2 = 8.76 (0.08) 2343.4

M20 ν
(20)
1 = 7.46(0.11), ν

(20)
2 = 16.8 (0.59) 2343.0

M21 ν
(21)
1 = 14.2(0.43), ν

(21)
2 = 10.5 (0.14) 2338.6

M22 ν
(22)
1 = 14.3(0.49), ν

(22)
2 = 10.5 (0.15) 2338.4

M23 ν
(23)
1 = 8.64(0.11), ν

(23)
2 = 14.2 (0.32) 2343.7

M24 ν
(24)
1 = 8.66(0.09), ν

(24)
2 = 13.6 (0.23) 2343.4

M25 ν
(25)
1 = 12.8(0.50), ν

(25)
2 = 11.2 (0.13) 2336.7

M26 ν
(26)
1 = 15.2(1.63), ν

(26)
2 = 11.3 (0.31) 2336.4

M27 ν
(27)
1 = 64.7(3.01), ν

(27)
2 = 9.26 (0.24) 2346.7

M28 ν
(28)
1 = 16.0(1.15), ν

(28)
2 = 11.0 (0.38) 2338.4

M29 ν
(29)
1 = 7.94(0.32), ν

(29)
2 = 12.9 (0.48) 2344.4

M30 ν
(30)
1 = 15.1(1.53), ν

(30)
2 = 11.3 (0.32) 2336.5

M31 ν
(31)
1 = 11.4(0.32), ν

(31)
2 = 1.81 (0.17) 2336.4

M32 ν
(32)
1 = 11.4 (0.14) 2336.8

34



Table 4: MCMC output values of posterior mode, corresponding log-likelihood, likelihood

ratio Λ and p-value comparing Mh with M0.

Model MCMC posterior mode Log-likelihood −2 log(Λ) p-value

M0 ν
(0) = (11.5, 82.4, 7.92, 5.81, 10.3, 14.3) 2354.3 0 N/A

M1 ν
(1) = (14.0, 8.96) 2342.9 22.8 0.00014

M2 ν
(2) = (9.75, 12.6) 2338.7 31.2 <0.00001

M3 ν
(3) = (16.6, 8.22) 2342.1 24.4 <0.0001

M4 ν
(4) = (21.0, 7.49) 2344.1 20.4 0.00042

M5 ν
(5) = (8.17, 16.9) 2342.1 24.4 <0.0001

M6 ν
(6) = (12.6, 9.73) 2338.8 31.0 <0.00001

M7 ν
(7) = (12.8, 9.79) 2338.7 31.2 <0.00001

M8 ν
(8) = (8.84, 14.4) 2343.4 21.8 0.00022

M9 ν
(9) = (8.76, 14.0) 2343.3 22.0 0.00020

M10 ν
(10) = (11.8, 10.5) 2336.9 34.8 <0.000001

M11 ν
(11) = (22.6, 8.68) 2343.0 22.6 0.00015

M12 ν
(12) = (13.1, 10.2) 2338.6 31.5 <0.00001

M13 ν
(13) = (8.23, 13.1) 2343.7 21.3 0.00028

M14 ν
(14) = (11.9, 10.7) 2336.9 34.8 <0.000001

M15 ν
(15) = (11.7, 10.8) 2336.8 34.9 <0.000001

M16 ν
(16) = (15.7, 9.39) 2343.2 22.2 0.00018

M17 ν
(17) = (9.31, 12.7) 2339.0 30.6 <0.00001

M18 ν
(18) = (20.9, 8.66) 2342.7 23.1 0.00012

M19 ν
(19) = (25.2, 8.48) 2343.8 21.1 0.00030

M20 ν
(20) = (7.14, 15.7) 2343.1 22.3 0.00017

M21 ν
(21) = (13.2, 10.1) 2338.5 31.5 <0.00001

M22 ν
(22) = (13.3, 10.1) 2338.5 31.5 <0.00001

M23 ν
(23) = (8.27, 13.4) 2343.8 21.0 0.00031

M24 ν
(24) = (8.31, 12.9) 2343.5 21.7 0.00023

M25 ν
(25) = (11.7, 10.8) 2336.8 34.9 <0.000001

M26 ν
(26) = (11.8, 10.9) 2336.8 34.9 <0.000001

M27 ν
(27) = (68.3, 9.03) 2346.8 15.1 0.0045

M28 ν
(28) = (14.0, 10.5) 2338.6 31.4 <0.00001

M29 ν
(29) = (7.55, 12.2) 2344.5 19.6 0.00060

M30 ν
(30) = (12.0, 10.9) 2336.8 34.9 <0.000001

M31 ν
(31) = (11.4, 11.0) 2336.8 35.0 <0.000001

M32 ν
(32) = (11.1) 2336.9 34.9 <0.00001
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Table 5: Bayes factors B0i, DIC and model probabilities of all candidates.

Model Log(B0h) DIC Model prob. (%) Model prob. (%) excl. M0

M0 0 0 88.5 N/A

M1 16.7 15.8 0.15 1.28

M2 20.1 24.0 < 0.1 < 0.1

M3 16.6 17.5 < 0.1 0.54

M4 16.4 13.0 0.45 3.89

M5 18.7 17.4 < 0.1 0.55

M6 19.3 24.1 < 0.1 < 0.1

M7 21.5 24.3 < 0.1 < 0.1

M8 14.5 15.0 0.12 1.07

M9 18.9 15.1 0.22 1.89

M10 21.9 27.8 < 0.1 < 0.1

M11 18.0 15.6 0.15 1.26

M12 24.9 24.7 < 0.1 < 0.1

M13 14.9 14.3 0.31 2.68

M14 23.2 27.9 < 0.1 < 0.1

M15 25.5 28.0 < 0.1 < 0.1

M16 14.2 15.3 0.20 1.73

M17 21.7 23.7 < 0.1 < 0.1

M18 15.3 16.1 0.12 1.03

M19 15.1 14.1 0.29 2.52

M20 15.1 15.3 0.19 1.64

M21 21.5 24.3 < 0.1 < 0.1

M22 20.6 24.6 < 0.1 < 0.1

M23 17.1 14.1 0.36 3.10

M24 15.4 14.7 0.25 2.22

M25 22.6 27.9 < 0.1 < 0.1

M26 22.2 28.0 < 0.1 < 0.1

M27 11.0 6.73 7.8 68.3

M28 21.0 24.6 < 0.1 < 0.1

M29 16.3 12.7 0.7 6.18

M30 28.0 28.0 < 0.1 < 0.1

M31 22.8 28.1 < 0.1 < 0.1

M32 22.3 28.1 < 0.1 < 0.1
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Table 6: The 0.99 conditional Value-at-Risk (CV aR0.99) predicted by model M0 and M27,

for two portfolios of six major currencies. δ = (CV aRM27

0.99 − CV aRM0

0.99)/CV aRM0

0.99 is the

relative difference of CVaR between M27 and M0. Standard errors are in parentheses.

Portfolio asset weights wi
CV aR

(M0)
0.99 CV aR

(M27)
0.99 δ

(AUD, CAD, CHF, EUR, GBP, JPY)

(0.25, 0.25, 0.8, -0.8, 0.25, 0.25) 1.707 (0.004) 1.425 (0.003) -16.5%

(0.25, 0.25, -0.8, 0.8, 0.25, 0.25) 1.737 (0.003) 1.782 (0.003) 2.6%

Table 7: The 0.99 conditional Value-at-Risk (CV aR0.99) predicted by model M0 and M4,

for two portfolios of six major currencies. δ = (CV aRM4

0.99 − CV aRM0

0.99)/CV aRM0

0.99 is the

relative difference of CVaR between M4 and M0. Standard errors are in parentheses.

Portfolio asset weights wi
CV aR

(M0)
0.99 CV aR

(M4)
0.99 δ

(AUD, CAD, CHF, EUR, GBP, JPY)

(0.25, 0.25, 0.8, -0.8, 0.25, 0.25) 1.571 (0.004) 1.366 (0.003) -13.0%

(0.25, 0.25, -0.8, 0.8, 0.25, 0.25) 1.608 (0.003) 1.732 (0.003) 7.7%
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