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Abstract

For each pair of positive integers r, s, there is a so-called Kac representation (r, s) associated with a
Yang-Baxter integrable boundary condition in the lattice approach to the logarithmic minimal model
LM(1, p). We propose a classification of these representations as submodules of Feigin-Fuchs modules,
and present a conjecture for their fusion algebra. The proposals are tested using a combination of the
lattice approach and applications of the Nahm-Gaberdiel-Kausch algorithm. We also discuss how the
fusion algebra may be extended by inclusion of the modules contragredient to the Kac representations,
and determine a polynomial fusion ring isomorphic to the extended fusion algebra.
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1 Introduction

The logarithmic minimal models LM(p, p′) were introduced in [1]. As logarithmic conformal field
theories [2, 3, 4, 5], they arise in the continuum scaling limit of an infinite family of Yang-Baxter
integrable lattice models labelled by the pair of coprime integers p, p′. For each pair of positive integers
r, s ∈ N, there is a so-called Kac representation associated with an integrable boundary condition in the
lattice model [6, 7]. Despite their importance, these Kac representations are in general rather poorly
understood as modules over the Virasoro algebra. Their characters are known empirically from the
lattice approach, but this is in general not sufficient to determine the underlying representations.

Fusion can be implemented on the lattice without detailed knowledge of the structure of the
Kac representations. This gives significant insight into the fusion algebra generated from repeated
fusion of the Kac representations and has led to a concrete conjecture for the so-called fundamental
fusion algebra and its representation content [6, 7]. This fundamental fusion algebra is generated from
repeated fusion of the fundamental Kac representations (2, 1) and (1, 2), but does not involve all Kac
representations. The lattice implementation of fusion also provides further information on the structure
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of the representations themselves, but certain crucial questions are left unanswered. However, the fusion
rules should be compatible with the outcome of the Nahm-Gaberdiel-Kausch (NGK) algorithm [8, 9],
thus providing an additional tool to determine the fusion rules in LM(p, p′). The NGK algorithm has
played a prominent role in the study of fusion in the so-called augmented cp,p′ models [9, 10] as well
as in [11, 12] on critical percolation and related models. Alternative approaches to the computation of
fusion rules in these models are discussed in [13, 14].

The logarithmic minimal models are non-rational conformal field theories as they contain infinitely
many Virasoro representations. Some of these can be organized in finitely many extended represen-
tations associated with new integrable boundary conditions [15, 16, 17]. This is referred to as the
W-extended picture of the logarithmic minimal models, and the extension is believed to be with re-
spect to the triplet Wp,p′ algebra [18, 19, 20]. Due to its ‘rational nature’, these W-extended models
have been studied extensively, see [21] and references therein.

Here we consider the infinite family of logarithmic minimal models LM(1, p). We propose a
classification of the Kac representations (r, s) for all r, s ∈ N as submodules of Feigin-Fuchs modules [22],
and present a conjecture for their fusion algebra. We thus find that the only higher-rank representations
generated by repeated fusion of the Kac representations are the rank-2 modules Rb

r already present in
the fundamental fusion algebra. The proposals are tested using a combination of the lattice approach
and applications of the NGK algorithm. Under some natural assumptions about the continuum scaling
limit of the lattice model, some results are in fact exact rather than conjectural. We also discuss how the
fusion algebra may be extended by inclusion of the modules contragredient to the Kac representations,
and determine polynomial fusion rings isomorphic to the Kac fusion algebra and its contragredient
extension.

2 Logarithmic minimal model LM(1, p)

The logarithmic minimal model LM(1, p) is a logarithmic conformal field theory with central charge

c = 1− 6
(p− 1)2

p
(2.1)

Here we are mainly interested in the Virasoro representations associated with the boundary condi-
tions appearing in the lattice approach to LM(1, p) as described in [1, 7], but consider also other
representations.

2.1 Kac representations

Before describing the representations associated with boundary conditions, let us recall some basic
facts about highest-weight modules over the Virasoro algebra with central charge given by (2.1). For
each pair of positive Kac labels r, s ∈ N, the highest-weight Verma module of conformal weight ∆r,s is
denoted by Vr,s where ∆r,s is given by the Kac formula

∆r,s =
(rp− s)2 − (p− 1)2

4p
, r, s ∈ Z (2.2)

As indicated, it is convenient to consider also negative or vanishing Kac labels, in particular when
applying the Kac-table symmetries

∆r,s = ∆−r,−s, ∆r,s = ∆r+k,s+kp, k ∈ Z (2.3)
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The distinct conformal weights appearing in (2.2) appear exactly once in the set

{∆r,s; r ∈ N, s ∈ Z1,p} (2.4)

where we have introduced the notation

Zn,m = Z ∩ [n,m] (2.5)

The Verma module Vr,s has a proper submodule at Virasoro level rs given by Vr,−s (where Vr,−s =
Vr′,s′ for some r′, s′ ∈ N), allowing us to define the quotient module

Qr,s = Vr,s/Vr,−s (2.6)

Its character is given by

χ[Qr,s](q) =
q

1−c
24

+∆r,s

η(q)

(

1− qrs
)

=
q(rp−s)

2/4p

η(q)

(

1− qrs
)

(2.7)

where q is the modular nome while the Dedekind eta function is given by

η(q) = q1/24
∏

m∈N

(1− qm) (2.8)

This module is in general not irreducible. The irreducible highest-weight module Mr,s of conformal
weight ∆r,s is obtained by quotienting out the maximal proper submodule of Vr,s, and we denote its
character by

chr,s(q) = χ[Mr,s](q) (2.9)

For
s = s0 + kp, s0 ∈ Z1,p−1; k ∈ N0 (2.10)

the character of the quotient module Qr,s can be written as

χ[Qr,s](q) =

min(2r−1,2k)
∑

j=0

chr+k−j,(−1)js0+(1−(−1)j )p/2(q) (2.11)

There is also a so-called Kac representation (r, s) for each pair of positive Kac labels r, s ∈ N. It
is associated with a Yang-Baxter integrable boundary condition in the lattice approach to LM(1, p)
[1, 7] and arises in the continuum scaling limit. As we will discuss, these Kac representations can
be irreducible, fully reducible or reducible yet indecomposable as modules over the Virasoro algebra.
They are all of rank 1 as the dilatation generator (the Virasoro mode L0) is found to be diagonalizable.
Empirically, the Virasoro character of the Kac representation (r, s) is identical to the character (2.7)
of the quotient module Qr,s

χr,s(q) = χ[Qr,s](q) (2.12)

Aside from its character and its rank-1 nature, it is not, however, a priori clear from the lattice what
type of Virasoro module the Kac representation (r, s) actually is. A typical dilemma is the distinction
between a reducible yet indecomposable module and the direct sum of its irreducible subfactors. By
construction, the indecomposable module has the same character as the direct sum but they are nev-
ertheless inequivalent due to the indecomposable nature of the former. The situation can be rather
intricate, as we will argue below, since some Kac representations are found to be non-highest-weight
representations. Our assertion is that they can all be viewed as submodules of Feigin-Fuchs modules,
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see (2.28) and (2.32), for example. In particular, despite the character identity (2.12), we thus assert
that (r, s) and Qr,s in general differ as representations.

It follows from the character expressions that (r, s) is irreducible for s ∈ Z1,p and that (1, kp) is
irreducible for k ∈ N, thus giving rise to the identifications (1, rp) ≡ (r, p) [7]. These are the only
irreducible Kac representations. For consistency of the fusion algebra (see Section 4.2 in [7]), the Kac
representation (r, kp) is fully reducible

(r, kp) =

r+k−1
⊕

j=|r−k|+1,by 2

(j, p) (2.13)

The remaining Kac representations were not fully characterized in [7]. Below, we offer a conjecture for
the classification of the full set of Kac representations.

2.2 Rank-2 representations

The infinite family
{Rb

r ; r ∈ N, b ∈ Z1,p−1} (2.14)

of reducible yet indecomposable modules of rank 2 arises from repeated fusion of irreducible Kac
representations [7]. This follows by isolating Rb

r in

(1, b+ 1)⊗ (1, rp) =

b
⊕

β

Rβ
r , b ∈ Z1,p−1 (2.15)

for example, as b increases from 1 to p− 1. Here we have introduced the summation convention

N
⊕

n

Rn =

N
⊕

n=ǫ(N), by 2

Rn, ǫ(N) =
1− (−1)N

2
= N (mod 2) (2.16)

and extended the notation Rb
r by writing

R0
r ≡ (1, rp) ≡ (r, p) (2.17)

for the irreducible rank-1 module (r, p). The rank-2 module Rb
r is characterized by the structure

diagram

Rb
1 :

M2,b

M1,p−b M1,p−b←−

տւ

, Rb
r :

Mr+1,b

Mr,p−b Mr,p−b

Mr−1,b

←−

տւ

ւտ

, r ∈ Z≥2 (2.18)

where an arrow from the irreducible subfactor M to the irreducible subfactor M ′ indicates that vectors
in M are mapped not only to vectors in M itself but also to vectors in M ′ by the action of the Virasoro
algebra. An arrow from one copy of M to another copy of M indicates that L0 is non-diagonalizable
and that the module is of rank 2. Representations of rank ρ > 2 are not present here, but would
otherwise require ρ copies of a given irreducible subfactor suitably arranged in a chain and connected
by aligned arrows. The character of the rank-2 module Rb

r follows from the structure diagram (2.18)
and is given by

χ[Rb
r](q) = (1− δr,1)chr−1,b(q) + 2chr,p−b(q) + chr+1,b(q) (2.19)

According to the fusion algebra conjectured in Section 3.2, no additional rank-2 modules nor higher-
rank modules are generated from repeated fusion of the full set of Kac representations (r, s).
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2.3 Reducible yet indecomposable Kac representations

There is a pair of Feigin-Fuchs modules corresponding to each Verma module Vr,s. We denote them by
F→r,s and F←r,s, and they can be constructed by reversing every second arrow in the structure diagram
for Vr,s. The arrow on F→r,s indicates that vectors in Mr,s are mapped not only to vectors in Mr,s itself
but also to vectors in the next subfactor by the action of the Virasoro algebra. Similarly, the arrow
on F←r,s indicates that vectors in Mr,s can be reached from vectors in the next subfactor. Likewise,
we can associate a pair of Feigin-Fuchs modules to every quotient module Qr,s. For 2r − 1 < 2k, the
Feigin-Fuchs modules corresponding to Qr,s are characterized by the structure diagrams

Q→r,s : Mk−r+1,p−s0 →Mk−r+2,s0 ←Mk−r+3,p−s0 → . . .←Mk+r−1,p−s0 →Mk+r,s0

Q←r,s : Mk−r+1,p−s0 ←Mk−r+2,s0 →Mk−r+3,p−s0 ← . . .→Mk+r−1,p−s0 ←Mk+r,s0

(2.20)

For 2r − 1 > 2k, the Feigin-Fuchs modules corresponding to Qr,s are characterized by the structure
diagrams

Q→r,s : Mr−k,s0 →Mr−k+1,p−s0 ←Mr−k+2,s0 → . . .→Mr+k−1,p−s0 ←Mr+k,s0

Q←r,s : Mr−k,s0 ←Mr−k+1,p−s0 →Mr−k+2,s0 ← . . .←Mr+k−1,p−s0 →Mr+k,s0

(2.21)

By construction, we have
χ[Q→r,s](q) = χ[Q←r,s](q) = χ[Qr,s](q) (2.22)

In all cases, the Feigin-Fuchs modules Q→r,s and Q←r,s are contragredient to each other where the con-
tragredient A∗ to a module A is obtained by reversing all structure arrows between its irreducible
subfactors. It follows that χ[A∗](q) = χ[A](q) and that A∗∗ = A.

Since we know the structure of the Kac representation (r, s) for s ≤ p (irreducible) or s = kp (fully
reducible), we now consider the cases where s is of the form (2.10) for k ≥ 1.

Highest-weight assumption. The Kac representation (1, s0 + kp) is the indecomposable highest-
weight module

(1, s0 + kp) = Q→1,s0+kp = Q1,s0+kp = V1,s0+kp/V1,s0+(k+2)p : M1,s0+kp →M1,(k+2)p−s0 (2.23)

It is emphasized that, a priori, this Kac representation could be the direct sum of its two irreducible
subfactors or contragredient to the highest-weight module (2.23). Consistency of the fusion algebra ex-
cludes the first possibility, though. To appreciate this, let us initially compare certain fusion properties
of the Kac representation (1, p + 1) with the similar properties of the direct sum (1, p − 1) ⊕ (2, 1) of
its constituent subfactors. According to the fundamental fusion algebra [7], we have

[

(1, p − 1)⊕ (2, 1)
]

⊗
[

(1, p − 1)⊕ (2, 1)
]

= 2(1, 1) ⊕ (3, 1) ⊕ 2(2, p − 1)⊕

p−3
⊕

β

Rβ
1 (2.24)

On the other hand, it is observed from the lattice that the decomposition of the fusion product (1, p+
1)⊗ (1, p+1) for small p contains rank-2 Jordan cells linking the two copies of the irreducible subfactor
M1,1 = (1, 1). This is incompatible with (2.24) as the former indicates the presence of the rank-2

module Rp−1
1 (2.18) in the decomposition, in accordance with the conjectured fusion rule (3.7)

(1, p + 1)⊗ (1, p + 1) = (1, 2p + 1)⊕

p−1
⊕

β

Rβ
1 (2.25)
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More generally, the lattice approach provides similar evidence for the indecomposability of (1, s0+kp).
We thus find that

(1, s0 + kp) 6= (k, p − s0)⊕ (k + 1, s0) (2.26)

since the lattice approach indicates the presence of Rp−1
1 in the decomposition of the fusion product

(1, s0 + kp)⊗ (1, s0 + kp), while the decomposition of the fusion product of (k, p− s0)⊕ (k+1, s0) with
itself follows from the fundamental fusion algebra

[

(k, p− s0)⊕ (k + 1, s0)
]

⊗
[

(k, p − s0)⊕ (k + 1, s0)
]

= 2(1, 1) ⊕ . . . (2.27)

and contains two unlinked copies of M1,1.
We are still faced with the problem of identifying the Kac representations (1, s0 + kp) as highest-

weight modules or as the corresponding contragredient modules. As indicated, here we assume that they
are highest-weight modules and then study the implications of this assumption. We will nevertheless
return to this question in Section 2.4 and Section 3.

Structure conjecture. For s = s0 + kp, k ∈ N, the Kac representation (r, s) is the Feigin-Fuchs
module

(r, s) =







Q→r,s, 2r − 1 < 2k

Q←r,s, 2r − 1 > 2k
(2.28)

Below, we present arguments in support of this conjecture by combining results from the lattice ap-
proach with results from applications of the NGK algorithm based on (2.23).

2.3.1 Evidence for the structure conjecture

Fusion can be implemented on the lattice without detailed knowledge of the structure of the Kac
representations. The Kac representation (r, s) itself is actually constructed by fusing the ‘horizontal’
Kac representation (r, 1) with the ‘vertical’ Kac representation (1, s)

(r, s) = (r, 1) ⊗ (1, s) (2.29)

Under the assumption (2.23), we have applied the NGK algorithm to many fusion products of this
kind and they all corroborate the structure conjecture (2.28). Some of our findings and observations
are summarized in the following with additional details deferred to Appendix A.

In the decomposition of a fusion product examined using the NGK algorithm, the vectors appearing
at Nahm level 0 are the ones which are not the image of negative Virasoro modes. These vectors
constitute the minimal set of vectors from which the entire (decomposable or indecomposable) module,
arising as the result of the fusion product, can be generated by the action of negative Virasoro modes
only. It thus suffices to analyze a fusion product at Nahm level 0 in order to identify this minimal set
of vectors. This knowledge is then sufficient to distinguish between a highest-weight module like (2.23)
and its contragredient module. Indeed, the minimal set of vectors associated with the highest-weight
module in (2.23) consists of only one vector, namely |∆1,s0+kp〉, whereas the minimal set associated
with the contragredient module consists of the two vectors |∆1,s0+kp〉 and |∆1,(k+2)p−s0〉.

Once we know this minimal set, we can use our knowledge of the character χr,s(q) to deduce the
number and conformal weights of the vectors appearing at higher Nahm levels. This is very helpful
when determining the otherwise evasive spurious subspaces appearing in the NGK algorithm, see Ap-
pendix A.
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Singular vector conjecture. With the normalization convention for singular vectors used in Ap-
pendix A.2, we conjecture that at Nahm level 0 in the fusion product (2, 1) ⊗ (1, s)

|∆2,1〉 × |λ1,s〉 = −
(

s−1
∏

j=1

(p + j)(p − j)

p

){

L−1 × I + s−1
2 I × I

}

|∆2,1〉 × |∆1,s〉 (2.30)

We have verified this remarkably simple expression explicitly for s ≤ 6. The action of the co-
multiplication of L0 on the corresponding two-dimensional initial vector space is given by

∆(L0)|∆2,1〉 × |∆1,s〉 = (∆2,1 +∆1,s)|∆2,1〉 × |∆1,s〉+ L−1|∆2,1〉 × |∆1,s〉

∆(L0)L−1|∆2,1〉 × |∆1,s〉 = p∆1,s|∆2,1〉 × |∆1,s〉+ (∆2,1 +∆1,s + 1− p)L−1|∆2,1〉 × |∆1,s〉(2.31)

It follows readily from (2.30) that a spurious subspace at Nahm level 0 is generated by setting the
singular vector |λ1,s〉 = 0 if and only if s ≤ p, in which case this subspace is one-dimensional. For
s ≤ p, the matrix realization of ∆(L0) is therefore one-dimensional and is given by ∆2,s, reflecting that
the Kac representation (2, s) is irreducible for all s ≤ p. For s > p, it follows from (2.31) that the
two-dimensional matrix realization of ∆(L0) is diagonalizable and has eigenvalues ∆1,s−p and ∆1,s+p.
For s = kp, this is in accordance with the decomposition (2.13), while for s = s0 + kp, it is accordance
with the structure conjecture (2.28).

At Nahm level 0, we have confirmed the structure conjecture (2.28) in many cases. In some
of these, we have continued the analysis to higher Nahm level and always with affirmative results.
Details of the analysis for (2, 3) in critical dense polymers LM(1, 2) appear in Appendix A.4 and are
summarized by the structure diagram

(2, 3) = Q←2,3 : V(0)← V(1)→ V(3) (2.32)

where V(∆) denotes the irreducible highest-weight module of conformal weight ∆.

2.4 Contragredient Kac representations

We recall our working assumption (2.23) that the reducible yet indecomposable Kac representation
(1, s0 + kp) is the highest-weight module Q→1,s0+kp and not its contragredient module Q←1,s0+kp. It then

follows from the structure diagram (2.18) that the rank-2 module Rb
r admits the short exact sequence

0→ (1, rp − b)→ Rb
r → (1, rp + b)→ 0 (2.33)

It also admits the short exact sequence

0→ (r, p − b)→ Rb
r → (r, p + b)→ 0 (2.34)

in terms of the (for r 6= 1) reducible yet indecomposable non-highest-weight module (r, p + b).
As Virasoro modules, the Feigin-Fuchs modules contragredient to the ones appearing in (2.28),

namely

(r, s)∗ =







Q←r,s, 2r − 1 < 2k

Q→r,s, 2r − 1 > 2k
(2.35)

are perfectly well defined. An immediate application is to provide alternative characterizations of the
rank-2 module Rb

r in terms of short exact sequences as we have

0→ (1, rp + b)∗ → Rb
r → (1, rp − b)∗ → 0

0→ (r, p + b)∗ → Rb
r → (r, p − b)∗ → 0

(2.36)
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noting that the rank-2 modules are invariant under reversal of structure arrows

(Rb
r)
∗ = Rb

r (2.37)

For r > 1, the rank-2 module Rb
r thus admits four independent non-trivial short exact sequences. This

is in accordance with the structure diagram (2.18) for Rb
r as it follows from the diagram that Rb

r has
four inequivalent proper submodules. We also note that a fully reducible (in particular irreducible)
module is identical to its contragredient module

(r, s)∗ = (r, s), r ∈ N; s ∈ Z1,p−1 ∪ pN (2.38)

It seems natural to expect that the category or family of representations appearing in the full-
fledged logarithmic conformal field theory LM(1, p) is closed under reversal of structure arrows in the
sense that the contragredient module to a module in the category is also in the category. Above, we
have only considered the Virasoro modules associated with boundary conditions [1, 7], namely the Kac
representations (r, s) and the rank-2 modules Rb

r. As already mentioned, these rank-2 modules are
invariant under reversal of structure arrows, whereas the only invariant Kac representations are the
fully reducible ones (including the irreducible ones). As a consequence of the indicated expectation,
the contragredient Kac representations (2.35) should also be members of the invariant category. This
situation resembles the logarithmic minimal models LM(p, p′) in the so-called W-extended picture
[15, 17] in which the modules associated with boundary conditions only constitute a subcategory of the
full category if p > 1. This idea was originally put forward and examined in [23] and has since been
studied in more detail [24, 25, 26, 27]. In Section 3.3, we discuss how the fusion algebra generated by
the Kac representations may be extended by the inclusion of the contragredient Kac representations.

3 Fusion algebras

3.1 Fundamental fusion algebra

There are infinitely many fusion (sub)algebras associated with LM(1, p). The fundamental fusion

algebra [7]
〈

(1, 1), (2, 1), (1, 2)
〉

(3.1)

in particular, is generated from the two fundamental Kac representations (2, 1) and (1, 2) in addition
to the identity (1, 1). This fusion algebra involves all the irreducible Kac representations and all the
rank-2 representations (2.14). On the other hand, no reducible yet indecomposable Kac representations
arise as the result of repeated fusion of the fundamental Kac representations. The fundamental fusion
algebra has two canonical subalgebras

〈

(1, 1), (2, 1)
〉

,
〈

(1, 1), (1, 2)
〉

(3.2)

3.2 Kac fusion algebra

The Kac fusion algebra is generated by the full set of Kac representations

〈

(r, s); r, s ∈ N
〉

(3.3)

and its description is a main objective of this work. To appreciate this fusion algebra, it is instructive
to examine its vertical component

〈

(1, s); s ∈ N
〉

(3.4)
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which is characterized by the fusion rules of the vertical component 〈(1, 1), (1, 2)〉 of the fundamen-
tal fusion algebra supplemented by the fusion rules involving the reducible yet indecomposable Kac
representations (1, s0 + kp). To describe (3.4), we introduce the sign function

sg(n) =

{

1, n > 0

−1, n < 0
(3.5)

Since this function only appears in conjunction with certain constraints, the value sg(0) turns out to
be immaterial.

Fusion conjecture. The vertical component of the Kac fusion algebra satisfies

〈

(1, s); s ∈ N
〉

=
〈

(1, b + kp),Rb
r; b ∈ Z0,p−1, k ∈ N0, r ∈ N

〉

(3.6)

where we recall R0
r ≡ (1, rp) and set (1, 0) ≡ Rβ

0 ≡ 0, and is characterized by the fusion rules1

(1, b+ kp)⊗ (1, b′ + k′p) =
k+k′−1
⊕

j=|k−k′|+1, by 2

p−|b−b′|−1
⊕

β

Rβ
j ⊕

k+k′
⊕

j=|k−k′+sg(b−b′)|+1, by 2

|b−b′|−1
⊕

β

Rβ
j

⊕

b+b′−p−1
⊕

β

Rβ
k+k′+1 ⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1,by 2

(1, β + (k + k′)p)

Rb
r ⊗ (1, b′ + k′p) =

( r+k′−1
⊕

j=|r−k′|+1,by 2

p−|b−b′|−1
⊕

β

Rβ
j ⊕

r+k′−sg(p−b−b′)
⊕

j=|r−k′−1+sg(p−b−b′)|+1, by 2

|p−b−b′|−1
⊕

β

Rβ
j

⊕

r+k′−2
⊕

j=|r−k′−1|+1,by 2

p−|p−b−b′|−1
⊕

β

Rβ
j ⊕

r+k′
⊕

j=|r−k′+sg(b−b′)|+1, by 2

|b−b′|−1
⊕

β

Rβ
j

⊕
b′−b−1
⊕

β

Rβ
r+k′ ⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1,by 2

Rβ
r+k′

)

/(1 + δb,0)

Rb
r ⊗R

b′

r′ =

( r+r′
⊕

j=|r−r′|,by 2

(

2− δj,|r−r′|
)

{

|b−b′|−1
⊕

β

⊕
(

1− δj,r+r′
)

p−|p−b−b′|−1
⊕

β

}

Rβ
j

⊕
{

r+r′−sg(p−b−b′)
⊕

j=|r−r′−1+sg(p−b−b′)|+1, by 2

⊕

r+r′−1
⊕

j=|r−r′+1−sg(p−b−b′)|+1,by 2

}

|p−b−b′|−1
⊕

β

Rβ
j

⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1, by 2

Rβ
r+r′ ⊕

p−|b−b′|−1
⊕

β=|p−b−b′|+1,by 2

Rβ
r+r′−1 ⊕

p−b−b′−1
⊕

β

Rβ
r+r′−1

⊕
r+r′−1
⊕

j=|r−r′|+1,by 2

(

2− δj,r+r′−1

)

p−|b−b′|−1
⊕

β

Rβ
j

)

/{(1 + δb,0)(1 + δb′,0)} (3.7)

The divisions by (1 + δb,0), for example, ensure that the fusion rules for R0
r match those for (1, rp).

Evidence for this fusion conjecture is presented in Section 3.2.2 and Section 3.2.3.

1This revises the conjecture in [28] for the decomposition of the fusion product (1, 2j1 − 1)⊗ (1, 2j2 − 1) in LM(1, 2),
see also Appendix B.
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Mnemonically, the fusion rules (3.7) are reconstructed straightforwardly using the underlying sl(2)
structure [7]. This structure is evident from the lattice where defects can be annihilated in pairs thus
implying that the fusion product of two Kac representations (1, s) and (1, s′) can be decomposed, up
to indecomposable structures, as a sum of Kac representations

(1, s)⊗ (1, s′) = (1, |s − s′|+ 1)
?
⊕ (1, |s − s′|+ 3)

?
⊕ . . .

?
⊕ (1, s + s′ − 1) (3.8)

The question marks indicate that the sums can be direct or indecomposable. The sl(2) structure of the
fusion product (1, s)⊗ (1, s′) is thus encoded in the character decomposition

χ
[

(1, s)⊗ (1, s′)
]

(q) = χ
[

(1, |s − s′|+ 1)⊕ (1, |s − s′|+ 3)⊕ . . .⊕ (1, s + s′ − 1)
]

(q)

=

s+s′−1
∑

s′′=|s−s′|+1, by 2

χ1,s′′(q)

=

min{s,s′}−1
∑

t=0

χ1,s+s′−2t−1(q) (3.9)

Following the discussion of short exact sequences in Section 2.4, we may view the rank-2 module Rb
r

as an indecomposable combination of the two Kac representations (1, rp − b) and (1, rp + b), that is,

Rb
r = (1, rp− b)⊕i (1, rp + b) (3.10)

Utilizing this, we introduce the ‘forgetful functor’ F by

F [(1, s)] = (1, s), F [Rb
r] = (1, rp− b)⊕ (1, rp+ b), F [A⊗ B] = F [F [A] ⊗F [B]] (3.11)

and apply it to the various fusion products such as

F [(1, s) ⊗ (1, s′)] =

s+s′−1
⊕

s′′=|s−s′|+1,by 2

(1, s′′) (3.12)

We note that applying F does not correspond to moving to the Grothendieck ring associated with
characters since we are working here with the reducible yet indecomposable Kac representations (1, rp±
b). Clearly, F does not have an inverse, but on fusion products, we can devise a prescription that
reintroduces the rank-2 modules in a unique and well-defined way. To appreciate this, let us consider
the fusion product (1, s) ⊗ (1, s′) in (3.12) and initially focus on the Kac representation (1, s′′1) with
minimal Kac label s′′1 = |s−s′|+1. Depending on p, this will appear as the submodule (1, rp−b) of the
rank-2 module Rb

r if and only if the matching module (1, rp + b) also appears in the decomposition in
(3.12). If not, the Kac representation (1, s′′1) will appear ‘by itself’ in the decomposition of the fusion
product. Having completed the examination of (1, s′′1), we remove it together with its potential partner
(1, rp + b) from the direct sum in (3.12) and repeat the analysis for (1, s′′2) corresponding to the new
minimal Kac label s′′2. This algorithm is continued until all the Kac representations in (3.12) have been
accounted for. This prescription also works for more complicated fusion products than (1, s) ⊗ (1, s′)
and always yields a unique and well-defined result, namely the fusion rules given in (3.7). Loosely
speaking, the prescription corresponds to writing the decomposition of a fusion product in terms of
Kac representations and then forming rank-2 modules whenever possible, starting with the lowest Kac
label and moving up.
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3.2.1 Full Kac fusion algebra

To describe the full Kac fusion algebra, we note that the horizontal component 〈(r, 1); r ∈ N〉 is
characterized by the ordinary sl(2) fusion rules

(r, 1) ⊗ (r′, 1) =
r+r′−1
⊕

r′′=|r−r′|+1,by 2

(r′′, 1), r, r′ ∈ N (3.13)

and that the lattice description implies not only (2.29) but also [7]

Rb
r = (r, 1) ⊗Rb

1, r ∈ N (3.14)

The fusion rules of the full Kac fusion algebra now follow straightforwardly using the requirement of
commutativity and associativity as we then have

(r, b+ kp)⊗ (r′, b′ + k′p) =
(

(r, 1) ⊗ (r′, 1)
)

⊗
(

(1, b+ kp)⊗ (1, b′ + k′p)
)

Rb
r ⊗ (r′, b′ + k′p) =

(

(r, 1) ⊗ (r′, 1)
)

⊗
(

Rb
1 ⊗ (1, b′ + k′p)

)

Rb
r ⊗R

b′

r′ =
(

(r, 1) ⊗ (r′, 1)
)

⊗
(

Rb
1 ⊗R

b′
1

)

(3.15)

The last of these relations is not needed to determine the full Kac fusion algebra but must be satisfied
for self-consistency of the fusion algebra. The fusion rules needed to complete the full Kac fusion
algebra are

(r, b+ kp)⊗ (r′, b′ + k′p) =
r+r′−1
⊕

i=|r−r′|+1,by 2

{ k+k′−1
⊕

j=|k−k′|+1, by 2

i+j−1
⊕

ℓ=|i−j|+1,by 2

p−|b−b′|−1
⊕

β

Rβ
ℓ

⊕

k+k′
⊕

j=|k−k′+sg(b−b′)|+1, by 2

i+j−1
⊕

ℓ=|i−j|+1,by 2

|b−b′|−1
⊕

β

Rβ
ℓ

⊕

i+k+k′
⊕

ℓ=|i−k−k′−1|+1, by 2

b+b′−p−1
⊕

β

Rβ
ℓ ⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1,by 2

(i, β + (k + k′)p)

}

Rb
r ⊗ (r′, b′ + k′p) =

( r′+j−1
⊕

ℓ=|r′−j|+1,by 2

{ r+k′−1
⊕

j=|r−k′|+1,by 2

p−|b−b′|−1
⊕

β

⊕

r+k′
⊕

j=|r−k′+sg(b−b′)|+1,by 2

|b−b′|−1
⊕

β

⊕
r+k′−2
⊕

j=|r−k′−1|+1,by 2

p−|p−b−b′|−1
⊕

β

⊕

r+k′−sg(p−b−b′)
⊕

j=|r−k′−1+sg(p−b−b′)|+1,by 2

|p−b−b′|−1
⊕

β

}

Rβ
ℓ

⊕
r+r′+k′−1

⊕

ℓ=|r−r′+k′|+1,by 2

{ b′−b−1
⊕

β

⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1,by 2

}

Rβ
ℓ

)

/(1 + δb,0) (3.16)

It follows, in particular, that the fundamental fusion algebra (3.1) is a subalgebra of the Kac fusion
algebra (3.3). The fusion rules for critical dense polymers LM(1, 2) are summarized in Appendix B.

Recalling that R0
r ≡ (1, rp) ≡ (r, p), it is noted that the representations

{

Rb
r; r ∈ N, b ∈ Z0,p−1

}

(3.17)

form an ideal of the Kac fusion algebra. This is in accordance with the expectation that these repre-
sentations are projective.
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3.2.2 Evidence for the fusion conjecture: lattice approach

The lattice approach to the logarithmic minimal model LM(1, p) [1, 7] is based on a loop model with
loop fugacity

β = −2 cos π
p (3.18)

Here we are interested in the model defined on strips of width N . To describe the vertical Kac
representations and their fusions, it suffices to consider the hamiltonian defined by

H = −

N−1
∑

j=1

ej (3.19)

where {ej ; j ∈ Z1,N−1} is the set of Temperley-Lieb generators acting on N strands. The character of
the Kac representation (1, s) arises in the scaling limit of the spectrum of the hamiltonian acting on
link states with exactly s − 1 defects. Viewing these defects as linked to the right (or left) boundary,
the Kac representation is associated with the corresponding boundary condition. There are N − 1 link
states with exactly N − 2 defects and our choice of canonical ordering of these link states is

⋂
∣

∣

∣

∣ . . .
∣

∣

∣

∣ ,
∣

∣

⋂
∣

∣ . . .
∣

∣

∣

∣ , . . . . . . ,
∣

∣

∣

∣ . . .
∣

∣

∣

∣

⋂

(3.20)

We refer to [28] for more details.
Fusion is implemented diagrammatically by considering non-trivial boundary conditions on both

sides of the bulk. In the diagrammatic description of the fusion product (1, s) ⊗ (1, s′), there are thus
s− 1 and s′− 1 links emanating from the left and right boundaries, respectively. As links from the left
boundary can be joined with links from the right boundary to form half-arcs above the bulk, the number
of defects propagating through the bulk is given by s+ s′− 2− 2t where 0 ≤ t ≤ min{s, s′}− 1. In the
last expression in (3.9), the integer t labels the number of such half-arcs linking the two boundaries.
For given t, we thus have s− t−1 and s′− t−1 half-arcs linking the bulk to the left and right boundary,
respectively.

As usual, we group the link states according to their number of half-arcs linking the bulk to the
boundaries and order these groups with increasing such numbers. The resulting matrix representation
of the hamiltonian is then upper block-triangular with vanishing blocks beyond the first super-diagonal
of blocks. It is recalled that we do not anticipate Jordan cells of ranks greater than 2 in the hamiltonian.
To examine Jordan cells of rank 2 formed between neighbouring blocks on the diagonal, it thus suffices
to analyze the upper block-triangular matrix defined by the four adjacent blocks spanned diagonally
by the said two blocks. This gives insight into the appearance of rank-2 modules of the type R1

r .
Beyond neighbouring blocks, care has to be taken, though, since some non-trivial Jordan cells require
or are formed using ‘ligatures’. This is indeed the case for Rb

r for b > 1 since such a rank-2 module
can be viewed as an indecomposable sum (3.10) of two Kac representations corresponding to boundary
conditions differing in numbers of defects by 2b > 2. The responsible Jordan cells are thus formed
between blocks which are not neighbours.

As illustration of this ‘ligature phenomenon’, we consider the matrix

M =





a 1 0
0 b 1
0 0 a



 (3.21)

For a 6= b, its Jordan canonical form reads

J = S−1MS =





b 0 0
0 a 1
0 0 a



 (3.22)

13



where

S−1 =





0 −σ 1
σ 1 0
0 0 1



 , S =





σ−2 σ−1 −σ−2

−σ−1 0 σ−1

0 0 1



 , σ = a− b (3.23)

That is, a rank-2 Jordan cell is formed between the two copies of the degenerate eigenvalue a. If, on
the other hand, we eliminate the second row and column from M before examining the possibility of
a rank-2 Jordan cell, we end up with the diagonal matrix diag(a, a). A search for non-trivial Jordan
cells can therefore not be conducted this naively, and focus here is on neighbouring blocks. That is,
we are only concerned with the appearance of rank-2 modules of the type R1

r . It is also noted that
permutations alone cannot resolve the indicated problems associated with treating blocks which are
not neighbours. This is again illustrated by the matrix M in (3.21) which is similar to

P−1MP =





a 0 1
0 a 0
0 1 b



 , P =





1 0 0
0 0 1
0 1 0



 (3.24)

However, the matrix P−1MP is not upper block-triangular with vanishing blocks beyond the first
super-diagonal of blocks.

Now, let us implement the fusion product (1, s)⊗ (1, s′) for s, s′ > 1 on a lattice of limited system
size

N = s+ s′ − 2− 2t, t = 0, 1, . . . ,min{s, s′} − 1 (3.25)

for some t in the range given. This means that the bulk can accommodate up to N defects while there
must be at least t half-arcs linking the two boundaries. In the decomposition (3.8), the t rightmost
Kac representations are therefore not present while the remaining ones are

(1, s)⊗ (1, s′)
∣

∣

N
= (1, |s − s′|+ 1)

?
⊕ . . .

?
⊕ (1, s + s′ − 3− 2t)

?
⊕ (1, s + s′ − 1− 2t) (3.26)

To gain insight into whether the final sum in this decomposition is direct or indecomposable, we will

now characterize when a non-trivial Jordan cell is formed in the hamiltonian H
(N)
s,s′ between the two

neighbouring blocks corresponding to N − 2 or N defects, respectively. For N = 6, using the ordered
basis (3.20), the corresponding matrix realization of the hamiltonian is given by

−H
(6)
s,s′ =

























β 1 0 0 0 δs−t,2

1 β 1 0 0 δs−t,3

0 1 β 1 0 δs−t,4

0 0 1 β 1 δs−t,5

0 0 0 1 β δs−t,6

0 0 0 0 0 0

























(3.27)

The extension to general N is straightforward and discussed in Appendix C. We thus find that H
(N)
s,s′

is diagonalizable unless there exists j0 ∈ Z1,N−1 for which β + 2cos j0π
N = 0 and sin j0(s−t−1)π

N 6= 0 in

which case the Jordan canonical form of H
(N)
s,s′ contains a single non-trivial Jordan cell. This cell is of

rank 2 and has diagonal elements 0. It follows that this non-trivial Jordan cell appears if and only if

p | (s+ s′ − 2− 2t), p ∤ (s− t− 1) (3.28)
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Since the pair of conditions q | (n +m) and q ∤ n implies q ∤ m, we may restore the symmetry between
s and s′ in (3.28) by redundantly including p ∤ (s′ − t − 1). This symmetry is a manifestation of the
commutativity of the fusion product (1, s) ⊗ (1, s′), of the equivalence of the left- and right-sided de-
compositions of the diagrammatic implementation of this fusion product, and of the choice of canonical
ordering of the link states with N − 2 defects (3.20).

This exact result (3.28) for finite system sizes is in accordance with the fusion rule (3.7) for
(1, s) ⊗ (1, s′). Indeed, assuming that the observed Jordan-cell structures survive in the continuum
scaling limit, the result provides valuable insight used to determine whether the particular sum

(1, s) ⊗ (1, s′) = . . . (1, s + s′ − 3− 2t)
?
⊕ (1, s + s′ − 1− 2t) . . . (3.29)

in the decomposition (3.8) of the fusion product is direct or indecomposable. From the lattice analysis
above, we thus conclude that it is indecomposable due to the presence of non-trivial Jordan cells if and
only if the conditions in (3.28) are satisfied. For this to be compatible with the conjectured fusion rules,
the latter must predict that the rank-2 module R1

r appears (with multiplicity 1) in the decomposition
of (1, s)⊗ (1, s′) if and only if

∃ τ ∈ Z1,min{s,s′}−1 : rp = |s− s′|+ 2τ, τ 6∈ pN (3.30)

Writing τ = a+ ℓp, this is easily verified.
From the lattice approach, we now know where certain Jordan cells appear in the decomposition of

(1, s)⊗ (1, s′), but in general, this is not sufficient to determine the various representations. In critical
dense polymers LM(1, 2), for example, we have thus found that

(1, 3) ⊗ (1, 3) = (1, 1) ⊕i (1, 3)
?
⊕ (1, 5) (3.31)

where the indecomposable sum is due to the formation of non-trivial Jordan cells. The lattice approach
offers an additional clue. Continuing the examination of (3.31), we note that the link states associated
with the subfactor (1, 1) (corresponding to t = 2) and the link states associated with the subfactor
(1, 3) (corresponding to t = 1) all contain a half-arc linking the two boundaries. Ignoring this common
spectator half-arc, the diagrammatic description becomes equivalent to the lattice implementation of
the fusion product

(1, 2) ⊗ (1, 2) = R1
1 (3.32)

Alternatively, we may focus on the link states associated with the subfactors (1, 3) and (1, 5) correspond-
ing to t = 1 or t = 0, respectively. Unlike before, this does not correspond to a single fusion product.
The only candidate with the same number of defects propagating through the bulk is (1, 2) ⊗ (1, 4),
but this is associated with link states with 1 and 3 links emanating from the left and right boundaries,
respectively. We thus conclude that the fusion product (1, 3) ⊗ (1, 3) contains the rank-2 module R1

1

as a subfactor, that is,

(1, 3) ⊗ (1, 3) = R1
1

?
⊕ (1, 5) (3.33)

Below, we supplement this lattice analysis of the fusion product (1, 3) ⊗ (1, 3) by applications of the
NGK algorithm.

3.2.3 Evidence for the fusion conjecture: NGK algorithm

A priori, the right side of (3.33) could correspond to a single indecomposable representation (since
it remains to be established that (3.17) is the set of projective representations). According to the
conjectured fusion rules (3.7), however, the full decomposition reads

(1, 3) ⊗ (1, 3) = R1
1 ⊕ (1, 5) (3.34)
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To test this, we have applied the NGK algorithm to the fusion product (1, 3) ⊗ (1, 3), assuming that
(1, 3) is a highest-weight module. Details of this analysis to Nahm level 2 appear in Appendix A.5,
and they confirm the fusion rule (3.34). They also confirm that the Kac representation (1, 5) is a
highest-weight module and not its contragredient module. Likewise in LM(1, 2), we have confirmed
the fusion rule

(1, 3) ⊗ (1, 5) = R1
2 ⊕ (1, 7) (3.35)

and the highest-weight property of (1, 7) to Nahm level 3.
As observed in Section 3.4 below, the vertical Kac representations (1, s) are all generated from

repeated fusion of (1, 2) and (1, p + 1). In accordance with the results of the NGK algorithm, it is
therefore natural to expect that the Kac representations (1, s) thereby generated are all highest-weight
modules provided that (1, p+1) is. It thus suffices to assume that (1, p+1) is a highest-weight module.

Refined highest-weight assumption. The Kac representation (1, p + 1) is a highest-weight Vi-
rasoro module. Repeated fusion subsequently ensures that all vertical Kac representations (1, s) are
highest-weight Virasoro modules.

Our analysis does not, however, provide direct arguments for the assumption that the Kac representa-
tion (1, p+1) is a highest-weight module. As we will see below, the fusion rules actually turn out to be
independent of whether (1, p+1) is indeed a highest-weight module or the corresponding contragredient
module.

3.3 Contragredient extension

It is stressed that the set
J Kac =

{

(r, s),Rb
r; r, s ∈ N, b ∈ Z1,p−1

}

(3.36)

of representations appearing in the Kac fusion algebra exhausts the set of representations associated
with boundary conditions in [1, 7]. Extending this set by the contragredient Kac representations

J Kac → J Cont = J Kac ∪
{

(r, s)∗; r, s ∈ N
}

(3.37)

gives rise to the larger fusion algebra

〈

(r, s), (r, s)∗,Rb
r; r, s ∈ N, b ∈ Z1,p−1

〉

(3.38)

A priori, additional representations could be generated by repeated fusion of the representations listed.
However, preliminary evaluations of a variety of fusion products seem to suggest that the extended
fusion algebra (3.38) closes on the set of representations listed. To describe this fusion algebra, we
introduce

Cn[(r, s)] =







(r, s), n > 0

(r, s)∗, n < 0
(3.39)

In our applications, C0[(r, s)] only appears if (r, s) is irreducible in which case

C0[(r, s)] = (r, s) = (r, s)∗, s ∈ Z1,p−1 ∪ pN (3.40)

where we have extended the definition of C0 to all fully reducible representations (2.38).

Contragredient fusion conjecture. The fusion rules involving contragredient Kac representations
in the extended fusion algebra (3.38) are given by or follow readily from

(r, s)∗ ⊗ (r′, s′)∗ =
(

(r, s)⊗ (r′, s′)
)∗
, Rb

r ⊗ (r′, s′)∗ = Rb
r ⊗ (r′, s′) (3.41)
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and

(1, b + kp)⊗ (1, b′ + k′p)∗ =

k+k′
⊕

j=|k−k′|+2,by 2

p−|p−b−b′|−1
⊕

β

Rβ
j ⊕

k+k′−sg(p−b−b′)
⊕

j=|k−k′|+1,by 2

|p−b−b′|−1
⊕

β

Rβ
j

⊕

(b−b′)sg(k′−k)−1
⊕

β

Rβ
|k−k′| ⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1,by 2

Ck−k′ [(1, β + |k − k′|p)](3.42)

where b, b′ ∈ Z0,p−1 and k, k′ ∈ N0.

Since (r, 1) is irreducible, we thus have

(r, s)∗ = (r, 1)∗ ⊗ (1, s)∗ = (r, 1) ⊗ (1, s)∗ (3.43)

from which it follows that the general fusion product (r, s) ⊗ (r′, s′)∗ can be computed as

(r, s) ⊗ (r′, s′)∗ =
(

(r, 1) ⊗ (r′, 1)
)

⊗
(

(1, s)⊗ (1, s′)∗
)

(3.44)

This yields the general fusion rule

(r, b+ kp)⊗ (r′, b′ + k′p)∗ =

r+r′−1
⊕

i=|r−r′|+1,by 2

{ k+k′
⊕

j=|k−k′|+2,by 2

i+j−1
⊕

ℓ=|i−j|+1,by 2

p−|p−b−b′|−1
⊕

β

Rβ
ℓ

⊕

k+k′−sg(p−b−b′)
⊕

j=|k−k′|+1,by 2

i+j−1
⊕

ℓ=|i−j|+1,by 2

|p−b−b′|−1
⊕

β

Rβ
ℓ

⊕

i+|k−k′|−1
⊕

ℓ=|i−|k−k′||+1,by 2

(b−b′)sg(k′−k)−1
⊕

β

Rβ
ℓ

⊕

p−|p−b−b′|−1
⊕

β=|b−b′|+1,by 2

Ck−k′[(i, β + |k − k′|p)]

}

(3.45)

In general, the fusion rules are not invariant under replacement by contragredient modules as illustrated
by

(1, 1)∗ ⊗ (r, s) = (r, s) 6= (r, s)∗ = (1, 1) ⊗ (r, s)∗, p < s 6= kp (3.46)

These trivial fusion rules are encoded in (3.45) and correspond to r′ = 1, b′ = 1, k′ = 0 or r = 1, b =
1, k = 0, respectively. As a consequence of (3.41), we note that the extended fusion algebra contains
the two isomorphic fusion subalgebras

〈

(r, s),Rb
r ; r, s ∈ N, b ∈ Z1,p−1

〉

≃
〈

(r, s)∗,Rb
r; r, s ∈ N, b ∈ Z1,p−1

〉

(3.47)

of which the first one is the Kac fusion algebra. It is also noted that the representations in (3.17) form
an ideal of the extended fusion algebra, still in accordance with the representations being projective.

The fusion rules (3.42) can be obtained by extending the applications of the forgetful functor
(3.11) with

F [(1, s)∗] = (1, s) (3.48)
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and subsequently modifying the prescription or algorithm discussed following (3.12). In that discussion,
we formed rank-2 modules starting with the lowest Kac label – now we start we the greatest Kac label.
That is, after applying the forgetful functor to the fusion product (1, s)⊗ (1, s′)∗

F [(1, s) ⊗ (1, s′)∗] =

s+s′−1
⊕

s′′=|s−s′|+1,by 2

(1, s′′) (3.49)

we initially focus on the Kac representation (1, s′′1) with maximal Kac label s′′1 = s+ s′− 1. Depending
on p, this will appear as the submodule (1, rp+ b) of the rank-2 module Rb

r if and only if the matching
module (1, rp − b) also appears in the decomposition in (3.49). If not, the (contragredient) Kac rep-
resentation Cs−s′ [(1, s

′′
1)] will appear ‘by itself’ in the decomposition of the fusion product. If a rank-2

module is not formed for s = s′, the two options (1, s′′1) and (1, s′′1)
∗ turn out to be identical. Having

completed the examination of (1, s′′1), we remove it together with its potential partner (1, rp− b) from
the direct sum in (3.49) and repeat the analysis for (1, s′′2) corresponding to the new maximal Kac
label s′′2. As before, this algorithm is continued until all the Kac representations in (3.49) have been
accounted for. It is straightforward to verify that this prescription yields the fusion rules (3.42).

3.4 Polynomial fusion rings

Together with the fact that the fundamental fusion algebra is a subalgebra of the Kac fusion algebra,
the fusion rules

(1, 2) ⊗ (1, kp + b) = (1, kp + b− 1)⊕ (1, kp + b+ 1)

(1, p + 1)⊗ (1, kp + b) =

p−b
⊕

β

Rβ
k ⊕

b−2
⊕

β

Rβ
k+1 ⊕ (1, (k + 1)p + b) (3.50)

demonstrate that the Kac fusion algebra is generated from repeated fusion of the Kac representations

{

(1, 1), (2, 1), (1, 2), (1, p + 1)
}

(3.51)

that is,
〈

(r, s); r, s ∈ N
〉

=
〈

(1, 1), (2, 1), (1, 2), (1, p + 1)
〉

(3.52)

It is therefore natural to expect that this fusion algebra is isomorphic to a polynomial ring in the three
entities X ↔ (2, 1), Y ↔ (1, 2) and Z ↔ (1, p + 1). This is indeed what we find.

Proposition 1. The Kac fusion algebra is isomorphic to the polynomial ring generated by X, Y and
Z modulo the ideal (Pp(X,Y ), Qp(Y,Z)), that is,

〈

(r, s); r, s ∈ N
〉

≃ C[X,Y,Z]/
(

Pp(X,Y ), Qp(Y,Z)
)

(3.53)

where
Pp(X,Y ) =

[

X − 2Tp(
Y
2 )

]

Up−1(
Y
2 ), Qp(Y,Z) =

[

Z − Up(
Y
2 )

]

Up−1(
Y
2 ) (3.54)

For r ∈ N, k ∈ N0 and b ∈ Z0,p−1, the isomorphism reads

(r, kp + b) ↔ Ur−1(
X
2 )

(

Ukp+b−1(
Y
2 ) +

[

Zk − Uk
p (

Y
2 )

]

Ub−1(
Y
2 )

)

Rb
r ↔

2

1 + δb,0
Ur−1(

X
2 )Tb(

Y
2 )Up−1(

Y
2 ) (3.55)
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where Tn(x) and Un(x) are Chebyshev polynomials of the first and second kind, respectively.

Proof. The relation Pp(X,Y ) = 0 corresponds to the identification (2, p) ≡ (1, 2p) and encodes
(r, p) ≡ (1, rp) more generally, cf. (3.59), while the relation Qp(Y,Z) = 0 follows from the fusion rule

(1, p)⊗ (1, p + 1) =

p−2
⊕

β

Rβ
1 ⊕ (1, 2p) (3.56)

The remaining fusion rules are then verified straightforwardly in the polynomial ring. Here we only
demonstrate the two fusion rules in (3.50). The first of these follows immediately from the recursion
relation for the Chebyshev polynomials. To show the second of the fusion rules, we note the basic
decomposition rules

Um(x)Un(x) =

m+n
∑

j=|m−n|,by 2

Uj(x), 2Tm(x)Un−1(x) = Un+m−1(x) + sg(n−m)U|n−m|−1(x) (3.57)

where U−1(x) = 0. As a consequence, we have

Up−1(x)

k−1
∑

j=0

Uk−j−1
p (x)Ujp+b−2(x) = Ub−1(x)U

k
p (x)− Ukp+b−1(x) (3.58)

which is established by induction in k and shows that the expression on the right side is divisible by
Up−1(x). This is of importance when multiplied by Z due to the form of Qp(Y,Z). With the additional
observation that

Ur−1(
X
2 )Up−1(

Y
2 ) ≡ Urp−1(

Y
2 ) (mod Pp(X,Y )) (3.59)

which follows by induction in r, the second fusion rule readily follows. �

Extending the arguments just presented for the Kac fusion algebra, one finds that the extended Kac
fusion algebra (3.38) is also generated from repeated fusion of a small number of Kac representations

〈

(r, s), (r, s)∗; r, s ∈ N
〉

=
〈

(1, 1), (2, 1), (1, 2), (1, p + 1), (1, p + 1)∗
〉

(3.60)

and that it is isomorphic to a polynomial ring.

Proposition 2. The extended Kac fusion algebra is isomorphic to the polynomial ring generated by
X, Y , Z and Z∗ modulo the ideal (Pp(X,Y ), Qp(Y,Z), Qp(Y,Z

∗), Rp(Y,Z,Z
∗)), that is,

〈

(r, s), (r, s)∗ ; r, s ∈ N
〉

≃ C[X,Y,Z,Z∗]/
(

Pp(X,Y ), Qp(Y,Z), Qp(Y,Z
∗), Rp(Y,Z,Z

∗)
)

(3.61)

where the polynomials Pp and Qp are defined in (3.54) while

Rp(Y,Z,Z
∗) = ZZ∗ − U2

p (
Y
2 ) (3.62)

For r ∈ N, k ∈ N0 and b ∈ Z0,p−1, the isomorphism reads

(r, kp + b) ↔ Ur−1(
X
2 )

(

Ukp+b−1(
Y
2 ) +

[

Zk − Uk
p (

Y
2 )

]

Ub−1(
Y
2 )

)

(r, kp + b)∗ ↔ Ur−1(
X
2 )

(

Ukp+b−1(
Y
2 ) +

[

(Z∗)k − Uk
p (

Y
2 )

]

Ub−1(
Y
2 )

)

Rb
r ↔

2

1 + δb,0
Ur−1(

X
2 )Tb(

Y
2 )Up−1(

Y
2 ) (3.63)
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Proof. Compared to the proof of Proposition 1, the essential new feature is the appearance of Z∗.
The relation Qp(Y,Z

∗) = 0 plays the same role for the contragredient Kac representations and Z∗ as
Qp(Y,Z) = 0 does for the Kac representations and Z. This yields the part of the polynomial ring
corresponding to (3.47). The relation Rp(Y,Z,Z

∗) = 0 corresponds to the fusion rule

(1, p + 1)⊗ (1, p + 1)∗ = (1, 1) ⊕

p−3
⊕

β

Rβ
1 ⊕R

1
2 (3.64)

To establish the general fusion rule (3.42) in the ring picture, we first use induction in n to establish

U2n
p (Y2 )Z

m ≡ Zm +
n−1
∑

j=0

Um+2j
p (Y2 )Up−1(

Y
2 )Up+1(

Y
2 ) (mod Qp(Y,Z)), n ∈ N (3.65)

and similarly for Z replaced by Z∗. This is needed when reducing

Zk(Z∗)k
′

≡ U2min(k,k′)
p (Y2 )

{

Zk−k′, k ≥ k′

(Z∗)k
′−k, k < k′

(mod Rp(Y,Z,Z
∗)) (3.66)

For simplicity, we let k ≥ k′ in which case we find

(1, b+ kp)⊗ (1, b′ + k′p)∗ ↔
[

Zk−k′ − Uk−k′
p (Y2 )

]

Ub−1(
Y
2 )Ub′−1(

Y
2 ) + Ukp+b−1(

Y
2 )Uk′p+b′−1(

Y
2 ) (3.67)

This polynomial expression is recognized as corresponding to the right side of (3.42). �

4 Conclusion

We have discussed the representation content and fusion algebras of the logarithmic minimal model
LM(1, p). We have thus proposed a classification of the entire family of Kac representations as sub-
modules of Feigin-Fuchs modules and presented a conjecture for their fusion algebra. To test these
proposals, we have used a combination of the lattice approach to LM(1, p) and applications of the
NGK algorithm. We have also discussed a natural extension of the representation content by inclusion
of the modules contragredient to the Kac representations, and we have presented a conjecture for the
corresponding fusion algebra. This extended fusion algebra was then shown to be isomorphic to a
polynomial fusion ring which was described explicitly.

Continuing the work in [29] on a Kazhdan-Lusztig-dual quantum group for the logarithmic minimal
model LM(1, p), fusion of Kac representations is considered in [30]. The corresponding fusion algebra
appears to be equivalent to the one discussed here. This is a very reassuring observation for both
methodologies and offers independent evidence for the Kac fusion algebra discussed here.

The work presented here pertains to the logarithmic minimal models LM(1, p), but the methods
used in obtaining the various results are expected to extend straightforwardly to the general family
of logarithmic minimal models LM(p, p′). We hope to discuss the corresponding classification of Kac
representations and their fusion algebras elsewhere. The case LM(2, 3) is particularly interesting as it
describes critical percolation.

We find the remarkably simple expression (2.30) in the singular vector conjecture very intriguing.
Preliminary results indicate that it can be extended from ∆2,1 to general ∆r,1 and even to general
logarithmic minimal models LM(p, p′). We also hope to discuss this elsewhere.
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A Nahm-Gaberdiel-Kausch algorithm

Here we summarize some of the ingredients in the NGK algorithm, but refer to the original papers
[8, 9] as well as [10, 11] for more details.

A.1 Co-multiplication

We are interested in the co-multiplications given by

∆(Ln) =
n
∑

m=−1

(

n+ 1
m+ 1

)

Lm × I + I × Ln, n ∈ Z≥−1 (A.1)

and

∆(L−n) =

∞
∑

m=−1

(−1)m+1

(

n+m− 1
m+ 1

)

Lm × I + I × L−n, n ∈ Z≥2

∆̃(L−n) = L−n × I + (−1)n+1
∞
∑

m=−1

(

n+m− 1
n− 2

)

I × Lm, n ∈ Z≥2 (A.2)

This should not be confused with the notation for conformal weights. Useful examples of the co-
multiplications are

∆(L2) = L−1 × I + 3L0 × I + 3L1 × I + L2 × I + I × L2

∆(L1) = L−1 × I + 2L0 × I + L1 × I + I × L1

∆(L0) = L−1 × I + L0 × I + I × L0

∆(L−1) = L−1 × I + I × L−1

∆(L−2) =
(

. . .− L2 × I + L1 × I − L0 × I + L−1 × I
)

+ I × L−2

∆̃(L−2) = L−2 × I −
(

. . . + I × L2 + I × L1 + I × L0 + I × L−1
)

(A.3)

A.2 Singular vectors

We denote the singular vector appearing at level rs in the highest-weight Verma module Vr,s by |λr,s〉
and normalize it by setting the coefficient to Lrs

−1 equal to 1. For r = 1, 2, 3, 4, 5, the singular vector
|λr,1〉 is given by

|λ1,1〉 =
{

L−1
}

|∆1,1〉

|λ2,1〉 =
{

L2
−1 − pL−2

}

|∆2,1〉

|λ3,1〉 =
{

L3
−1 − 4pL−2L−1 + 2p(2p − 1)L−3

}

|∆3,1〉

|λ4,1〉 =
{

L4
−1 − 10pL−2L

2
−1 + 9p2L2

−2 + 2p(12p − 5)L−3L−1 − 6p(6p2 − 4p+ 1)L−4
}

|∆4,1〉

|λ5,1〉 =
{

L5
−1 − 20pL−2L

3
−1 + 64p2L2

−2L−1 + 6p(14p − 5)L−3L
2
−1 − 64p2(3p − 1)L−3L−2

− 12p(24p2 − 14p + 3)L−4L−1 + 8p(3p − 1)(24p2 − 14p+ 3)L−5
}

|∆5,1〉 (A.4)
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The singular vectors |λ1,s〉 follow from these by application of the general relation

|λr,s〉 = |λs,r〉
∣

∣

p→1/p
(A.5)

A.3 Nahm level, basis and spurious subspace

At Nahm level n ∈ N0, the co-multiplications ∆(L−m) and ∆̃(L−m) vanish for m > n. At level 0, all
co-multiplications of negative Virasoro modes thus vanish. It follows, in particular, that

Li
−1 × Lj

−1 = (−1)jLi+j
−1 × I (A.6)

at level 0. Furthermore, from

∆(L0)
{

Lℓ
−1 × I

}

|∆〉 × |∆′〉 =
{

Lℓ+1
−1 × I +

(

∆+∆′ + ℓ
)

Lℓ
−1 × I

}

|∆〉 × |∆′〉 (A.7)

it follows by induction that

0 =
{

Lk
−1 × I

}

|∆〉 × |∆′〉 ⇒ 0 =
{

Lℓ
−1 × I

}

|∆〉 × |∆′〉, ℓ ≥ k (A.8)

Let us consider the fusion product (r, 1)⊗ (1, s) assuming that (1, s) is the highest-weight module
Q1,s while recalling that (r, 1) = Qr,1. As an initial vector space for the examination of this fusion
product at Nahm level 0, we may consider

{

{

Lℓ
−1 × I

}

|∆r,1〉 × |∆1,s〉; ℓ ∈ Z0,r−1

}

(A.9)

or the similar set based on s vectors of the form {I × Lℓ
−1}|∆r,1〉 × |∆1,s〉. Indeed, we can use the

vanishing of the singular vector |λr,1〉 in

|λr,1〉 × |∆1,s〉 (A.10)

to express the vector {Lr
−1 × I}|∆r,1〉 × |∆1,s〉 first in terms of vectors of the form {(L−n1

. . . L−nj
)×

I}|∆r,1〉 × |∆1,s〉 where j < r and subsequently in terms of the initial vectors (A.9)

{

Lr
−1 × I

}

|∆r,1〉 × |∆1,s〉 =
{

r−1
∑

ℓ=0

αr
ℓL

ℓ
−1 × I

}

|∆r,1〉 × |∆1,s〉 (A.11)

The relation (A.7) then allows us to ignore {Lk
−1× I}|∆r,1〉× |∆1,s〉 for k > r. For r = 2, in particular,

the decomposition (A.11) reads

L2
−1 × I = −pL−1 × I + p∆1,sI × I (A.12)

The initial vector space Qs
r,1⊗Q

n
1,s at Nahm level n is constructed as the tensor product of the “spe-

cial subspace” Qs
r,1 = {Lℓ

−1|∆r,1〉; ℓ ∈ Z0,r−1} of Qr,1 and the space Qn
1,s = {L−k1 . . . L−km|∆1,s〉; k1 +

. . .+ km ≤ n} of states up to Virasoro level n in Q1,s. Depending on the model (labelled by p) and the
second fusion factor (1, s), the linear span of the initial vector space may contain a spurious subspace
[9] generated by linear relations on the initial vector space. The fusion space (Qr,1 ⊗Q1,s)

n
f at Nahm

level n is the complement to the spurious subspace of Qs
r,1 ⊗Qn

1,s.
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A.4 Kac representation (2, 3) in critical dense polymers LM(1, 2)

We consider the fusion (2, 1)⊗ (1, 3) = (2, 3) for p = 2. The Kac representation (2, 1) is the irreducible
highest-weight module Q2,1 = M2,1 = V(1) generated from the highest-weight vector |∆2,1〉 where

|λ2,1〉 =
(

L2
−1 − 2L−2

)

|∆2,1〉 = 0, ∆2,1 = 1 (A.13)

The Kac representation (1, 3) is the reducible yet indecomposable highest-weight module Q1,3 generated
from the highest-weight vector |∆1,3〉 where

|λ1,3〉 =
(

L3
−1 − 2L−2L−1

)

|∆1,3〉 = 0, ∆1,3 = 0 (A.14)

Here we analyze the fusion (2, 1) ⊗ (1, 3) = (2, 3) up to Nahm level 2 and find that the eight-

dimensional space Qs
2,1 ⊗Q2

1,3 containing the fusion space
(

Q2,1 ⊗Q1,3

)2

f
of our interest also contains

a two-dimensional spurious subspace defined by the relations

0 =
{

L−1 × L−1 + I × L2
−1

}

|∆2,1〉 ⊗ |∆1,3〉

0 =
{

2I × L−1 + 2L−1 × L−1 + 4I × L−2 − L−1 × L2
−1 + 2L−1 × L−2

}

|∆2,1〉 ⊗ |∆1,3〉 (A.15)

Likewise, we find

(

Q2,1 ⊗Q1,3

)1

f
=

(

Qs
2,1 ⊗Q1

1,3

)/(

0 = 2|∆2,1〉 ⊗ L−1|∆1,3〉+ L−1|∆2,1〉 ⊗ L−1|∆1,3〉
)

(

Q2,1 ⊗Q1,3

)0

f
= Qs

2,1 ⊗Q0
1,3 (A.16)

The Virasoro generator ∆(L0) is diagonalizable on the spaces
(

Q2,1⊗Q1,3

)n

f
, n = 0, 1, 2, with suitably

normalized eigenvectors given by

|0〉0 = 3L−1|∆2,1〉 ⊗ |∆1,3〉

|1〉0 =
{

I × I + L−1 × I
}

|∆2,1〉 ⊗ |∆1,3〉 (A.17)

|0〉1 = −3|∆2,1〉 ⊗ L−1|∆1,3〉

|1〉1 =
{

I × I − L−1 × I − 2I × L−1
}

|∆2,1〉 ⊗ |∆1,3〉

|2〉1 =
{

L−1 × I + I × L−1
}

|∆2,1〉 ⊗ |∆1,3〉 (A.18)

and

|0〉2 =
{

I × L−1 + L−1 × L−1 + 2I × L−2 + L−1 × L−2
}

|∆2,1〉 ⊗ |∆1,3〉

|1〉2 =
{

2I × L−1 + L−1 × L−1 + 3I × L−2 + L−1 × L−2
}

|∆2,1〉 ⊗ |∆1,3〉

|2〉21 =
{

2I × L−1 + 2I × L−2 + L−1 × L−2
}

|∆2,1〉 ⊗ |∆1,3〉

|2〉22 =
{

2I × I − L−1 × I − I × L−1 − L−1 × L−1 − 2I × L−2
}

|∆2,1〉 ⊗ |∆1,3〉

|3〉21 =
{

− I × I + L−1 × I + 2I × L−1 + 3I × L−2 + L−1 × L−2
}

|∆2,1〉 ⊗ |∆1,3〉

|3〉22 =
{

− 2I × I + 2L−1 × I + 2I × L−1 + L−1 × L−1 + 2I × L−2
}

|∆2,1〉 ⊗ |∆1,3〉 (A.19)

When restricting from level 2 to level 1, it is |2〉22 which becomes |2〉1, while the somewhat unusual
normalizations of |0〉0 and |0〉1 follow from the normalization of |0〉2 under similar level restrictions.
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The actions of the Virasoro generators L±1 and L±2 on these states are also examined using the
co-multiplication and we find that the non-trivial actions read

L−2|0〉 = 3|2〉1, L2|2〉1 = −
1
3 |0〉, L1|1〉 = −

1
3 |0〉, L2|2〉2 = −|0〉

L−1|1〉 = |2〉2, L−1|2〉2 = |3〉2, L−2|1〉 = |3〉1

L1|2〉2 = 2|1〉, L1|3〉1 = 3|2〉2, L1|3〉2 = 6|2〉2, L2|3〉1 = 3|1〉, L2|3〉2 = 6|1〉
(A.20)

where the level indications have been omitted. With

{|0〉, |2〉1} ⊂ V(0)

{|1〉, |2〉2, |3〉1, |3〉2}
/(

0 = |3〉2 − 2|3〉1
)

⊂ V(1)

{|3〉2 − 2|3〉1} ⊂ V(3) (A.21)

this is in accordance with the conjectured structure (2.32) of the non-highest-weight module (2, 3)
appearing in the fusion (2, 1) ⊗ (1, 3) = (2, 3). It is noted that

|3〉sing = |3〉2 − 2|3〉1 (A.22)

corresponds to the singular vector at Virasoro level 2 in (1, 5) from which the submodule V(3) is
generated, and that the reducible yet indecomposable highest-weight module (1, 5) admits the short
exact sequence

0→ V(3)→ (1, 5)→ V(1)→ 0 (A.23)

A.5 Fusion product (1, 3)⊗ (1, 3) in critical dense polymers LM(1, 2)

Here we analyze the fusion product (1, 3) ⊗ (1, 3) up to Nahm level 2 in LM(1, 2). We use the
singular vector (A.14) and find that the twelve-dimensional space Qs

1,3 ⊗ Q2
1,3 containing the fusion

space
(

Q1,3 ⊗Q1,3

)2

f
also contains a two-dimensional spurious subspace defined by the relations

0 =
{

2L−1 × L−1 − 2L−1 × L2
−1 − L2

−1 × L2
−1 + L−1 × L−2 + 2L2

−1 × L−2
}

|∆1,3〉 ⊗ |∆1,3〉

0 =
{

L2
−1 × L−1 + L−1 × L2

−1

}

|∆1,3〉 ⊗ |∆1,3〉 (A.24)

Likewise, we find

(

Q1,3 ⊗Q1,3

)1

f
=

(

Qs
1,3 ⊗Q1

1,3

)/(

0 = 2L−1|∆1,3〉 ⊗ L−1|∆1,3〉+ L2
−1|∆1,3〉 ⊗ L−1|∆1,3〉

)

(

Q1,3 ⊗Q1,3

)0

f
= Qs

1,3 ⊗Q0
1,3 (A.25)

The conjectured decomposition of the fusion product (1, 3)⊗(1, 3) is described by the structure diagram

R1
1 ⊕ (1, 5) :

V(1)

V(0)0 V(0)1←−

տւ
⊕

Ṽ(3)

Ṽ(1)

տ

(A.26)

The indices on the irreducible highest-weight modules V(0) and the tildes on the irreducible subfactors
of (1, 5) are immaterial but introduced for ease of reference to the different modules. The rank-2 module
R1

1 is generated by the action of the Virasoro modes on the vectors |0〉0 and |0〉1 where

L0|0〉1 = |0〉0 (A.27)
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while the highest-weight module (1, 5) is generated from the vector ˜|1〉. At Nahm level 2, we should
then recover

{|0〉0, L−2|0〉0} ⊂ V(0)0

{|0〉1, L−2|0〉1} ⊂ V(0)1

{L−1|0〉1, L
2
−1|0〉1} ⊂ V(1) (A.28)

and

{ ˜|1〉, L−1 ˜|1〉, L2
−1

˜|1〉, L−2 ˜|1〉}
/(

0 = (L2
−1 − 2L−2) ˜|1〉

)

⊂ Ṽ(1)

{(L2
−1 − 2L−2) ˜|1〉} ⊂ Ṽ(3) (A.29)

satisfying
L0L−2|0〉1 = 2L−2|0〉1 + L−2|0〉0, L2(L

2
−1 − 2L−2) ˜|1〉 = 0 (A.30)

in particular. This is confirmed when considering

|0〉0 =
(

0, 0, 0, 0, 1, 0,−1, 0, 2, 1
)

L−2|0〉0 =
(

0, 0, 0, 0, 6, 0, 0, 0, 6, 3
)

|0〉1 =
(

− 3, 2,−1
2 , 0, 1, 0, 0, 0, 1, 0

)

+ α|0〉0

L−2|0〉1 =
(

0,−6, 3, 0,−5, 0, 0,−3,−2,−5
2

)

+ αL−2|0〉0

L−1|0〉1 =
(

0, 0, 0,−3, 0, 0, 3
2 , 0,−3, 0

)

L2
−1|0〉1 =

(

0,−6, 3, 0, 0,−3,−3, 0, 6, 0
)

(A.31)

and

˜|1〉 =
(

0, 0, 0,−2, 8, 0,−3, 0, 10, 4
)

L−1 ˜|1〉 =
(

0, 4,−2, 0,−4,−2, 2, 0,−4, 0
)

L2
−1

˜|1〉 =
(

0,−8, 8, 0, 8, 0,−4, 0, 8, 0
)

L−2 ˜|1〉 =
(

0,−4, 4, 0, 8, 0, 0, 0, 12, 4
)

(A.32)

in the ordered basis
{

I × I, L−1 × I, L2
−1 × I, I × L−1, L−1 × L−1, I × L2

−1, L−1 × L2
−1,

I × L−2, L−1 × L−2, L
2
−1 × L−2

}

|∆1,3〉 ⊗ |∆1,3〉
(A.33)

The parameter α in (A.31) is free and corresponds to a gauge transformation.

B Kac fusion algebra for critical dense polymers LM(1, 2)

The Kac fusion algebra for critical dense polymers LM(1, 2) satisfies

〈

(r, s); r, s ∈ N
〉

=
〈

(r, 2), (r, 2j − 1), Rr; r, j ∈ N
〉

(B.1)
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where Rr = R
1
r . The fusion rules are

(r, 2) ⊗ (r′, 2) =

r+r′−1
⊕

ℓ=|r−r′|+1,by 2

Rℓ

(r, 2) ⊗ (r′, 2j′ − 1) =
r+r′−1
⊕

ℓ=|r−r′|+1,by 2

ℓ+j′−1
⊕

k=|ℓ−j′+ 1

2
|+ 1

2

(k, 2)

(r, 2) ⊗Rr′ =

r+r′
⊕

ℓ=|r−r′|

(

2− δℓ,|r−r′| − δℓ,r+r′
)

(ℓ, 2)

(r, 2j − 1)⊗ (r′, 2j′ − 1) =

r+r′−1
⊕

ℓ=|r−r′|+1,by 2

j+j′−3
⊕

k=|j−j′|+1,by 2

ℓ+k−1
⊕

i=|ℓ−k|+1,by 2

Ri ⊕

r+r′−1
⊕

ℓ=|r−r′|+1,by 2

(ℓ, 2j + 2j′ − 3)

(r, 2j − 1)⊗Rr′ =
r+r′−1
⊕

ℓ=|r−r′|+1,by 2

ℓ+j−1
⊕

k=|ℓ−j+ 1

2
|+ 1

2

Rk

Rr ⊗Rr′ =

r+r′
⊕

ℓ=|r−r′|

(

2− δℓ,|r−r′| − δℓ,r+r′
)

Rℓ (B.2)

where it is noted that some summations are in steps of 1 while others are in steps of 2. The vertical
fusion rule

(1, 2j − 1)⊗ (1, 2j′ − 1) =

j+j′−3
⊕

ℓ=|j−j′|+1,by 2

Rℓ ⊕ (1, 2j + 2j′ − 3) (B.3)

revises the similar formula in [28].

C Jordan canonical form of the hamiltonian H
(N)
s,s′

Let us introduce the d× d square matrix D = D(d)

D =























0 1
1 0 1

1 0 1
1 0

. . .

0 1
1 0























(C.1)

It has d eigenvalues

αj = 2cos
jπ

d+ 1
, j ∈ Z1,d (C.2)
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all of which are distinct. The associated eigenvectors can be normalized as

vj =

















sin jπ
d+1
...

sin ijπ
d+1
...

sin djπ
d+1

















, i, j ∈ Z1,d (C.3)

The matrix D is diagonalized by K = K(d) constructed by concatenating the eigenvectors (C.3). That
is,

K−1DK = diag(α1, . . . , αd) (C.4)

where

Kij =

√

2

d+ 1
sin

ijπ

d+ 1
, i, j ∈ Z1,d (C.5)

satisfying
K−1 = Kt = K (C.6)

We can construct the hamiltonian H
(N)
s,s′ discussed in Section 3.2.2 as the block matrix

−H
(N)
s,s′ =

(

Dβ δ(N−1)

01×(N−1) 0

)

(C.7)

where Dβ = D
(N−1)
β is the (N − 1)× (N − 1) square matrix

Dβ = D + βI, β = −2 cos π
p (C.8)

while the entries of the (N − 1)-vector δ(N−1) are

δ
(N−1)
j = δj,s−t−1, j ∈ Z1,N−1 (C.9)

The matrix −H
(N)
s,s′ is similar to

− H̄
(N)
s,s′ = −K̄−1H

(N)
s,s′ K̄, K̄ =

(

K 0(N−1)×1
01×(N−1) 1

)

(C.10)

that is,

− H̄
(N)
s,s′ =



























β + 2cos π
N 0 . . . . . . 0

√

2
N sin (s−t−1)π

N

0
. . .

...
...

... β + 2cos jπ
N

...
√

2
N sin j(s−t−1)π

N
...

. . . 0
...

... β + 2cos (N−1)π
N

√

2
N sin (N−1)(s−t−1)π

N

0 . . . . . . . . . 0 0



























(C.11)

Since two similar matrices have the same Jordan canonical form, this simple result facilitates a straight-

forward analysis of the Jordan decomposition of H
(N)
s,s′ itself. From β+2cos jπ

N 6= β+2cos j′π
N for j 6= j′,

it follows that H
(N)
s,s′ is diagonalizable if β 6= −2 cos jπ

N for all j ∈ Z1,N−1. It is also readily seen that

H
(N)
s,s′ is diagonalizable if β + 2cos j0π

N = sin j0(s−t−1)π
N = 0 for some j0 ∈ Z1,N−1, while H

(N)
s,s′ is non-

diagonalizable if there exists j0 ∈ Z1,N−1 for which β = −2 cos j0π
N and sin j0(s−t−1)π

N 6= 0.
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