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Abstract

In this survey paper, we present open problems and conjectures on visibility graphs of

points, segments and polygons along with necessary backgrounds for understanding them.

1 Introduction

The visibility graph is a fundamental structure studied in the field of computational

geometry, geometric graph theory and pose some special challenges [23, 52]. Apart from

theoretical interests, visibility graphs has important applications also. Some of the early

applications include computing Euclidean shortest paths in the presence of obstacles [71]

and decomposing two-dimensional shapes into clusters [95]. For more on the uses of this

class of graphs, see [80, 98].

Let P be a set of n points in the plane (see Figure 1(a)). We say two points pi and pj
of P are mutually visible if the line segment pipj does not contain or pass through any

other point of P . In other words, pi and pj visible if P ∩ pipj = {pi, pj}. If a point pk ∈ P

lies on the segment pipj connecting two points pi and pj in P , we say that pk blocks the

visibility between pi and pj, and pk is called a blocker in P . For example in Figure 1(a),

p4 blocks the visibility between p2 and p6 as p4 lies on the segment p2p6.

The visibility graph (also called the point visibility graph) G of P is defined by associating

a vertex vi with each point pi of P such that (vi, vj) is an undirected edge of G if pi and

pj are mutually visible (see Figure 1(b)). It can be seen that if no three points of P are

collinear, i.e., there is no blocker in P , then G is a complete graph as each pair of points
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Figure 1: (a) A given set of points. (b) The visibility graph of the point set. (c) The

visibility graph drawn on the point set.

in P is visible. Sometimes the visibility graph is drawn directly on the point set, as shown

in Figure 1(c).

Consider the problem of computing the visibility graph G of a point set P . For each

point pi of P , sort the points of P in angular order around pi. If two points pj and pk
are adjacent in the sorted order, check whether pi, pj and pk are collinear points. By

traversing the sorted order, all points of P , that are not visible from pi, can be located in

O(n logn) time. Hence, G can be computed from P in O(n2 log n) time. Using the result

of Chazelle et al. [17] or Edelsbrunner et al. [32], the running time of the algorithm can

be improved to O(n2) by computing sorted angular orders for all points together in O(n2)

time.

Let S be a set of n disjoint line segments (see Figure 2(a)). The endpoints of segments

s1, s2, . . . , sn in S are marked as p1, p2, . . . , p2n, where p2i−1 and p2i are endpoints of

si. Let P be the set of these endpoints p1, p2, . . . , p2n. We say two points pi and pj of

P are mutually visible if the line segment pipj does not intersect any segment si in S.

This definition does not allow the segment pipj to pass through another endpoint pk or

graze along a segment in S. The visibility graph (also called the segment visibility graph

or segment endpoint visibility graph) G of S is defined by associating a vertex vi with

each point pi of P such that (vi, vj) is an undirected edge of G if pi and pj are mutually

visible (see Figure 1(b)). In addition, the corresponding vertices of two endpoints of every

segment in S is also connected by an edge in G. Sometimes the visibility graph is drawn

directly on the segments, as shown in Figure 2(c).

Let P be a simple polygon with or without holes in the plane (see Figure 3(a)). We say

two points a and b in P are mutually visible if the line segment ab lies entirely within
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Figure 2: (a) A given set of segments. (b) The visibility graph of the set of segments.

(c) The visibility graph drawn on the set of segments.
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Figure 3: (a) A polygon. (b) The visibility graph of the polygon. (c) The visibility graph

drawn on the polygon.

P . This definition allows the segment ab to pass through a reflex vertex or graze along

a polygonal edge. The visibility graph (also called the vertex visibility graph) G of P is

defined by associating a node with each vertex of P such that (vi, vj) is an undirected

edge of G if polygonal vertices vi and vj are mutually visible. Figure 3(b) shows the

visibility graph of the polygon in Figure 3(a). Sometimes the visibility graph is drawn

directly on the polygon, as shown in Figure 3(c). It can be seen that every triangulation

of P corresponds to a subgraph of the visibility graph of P .

The problem of computing the visibility graph of a polygon P (with or without holes) or

a set of disjoint segments S is well studied in computational geometry [52, 67, 71, 96].

Asano et al. [10] and Welzl [110] proposed O(n2) time algorithms for this problem. Since,
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at its largest, a visibility graph can be of size O(n2), algorithms of Asano et al. and Welzl

are worst-case optimal. The visibility graph may be much smaller than its worst-case size

of O(n2) (in particular, it can have O(n) edges) and therefore, it is not necessary to spend

O(n2) time to compute it. Hershberger [59] developed an O(E) time output sensitive

algorithm for computing the visibility graph of a simple polygon. Ghosh and Mount [55]

presented O(n logn + E) time, O(E + n) space algorithm for computing visibility graph

of polygon with holes. Keeping the same time complexity, Pocchiola and Vegter [87]

improved the space complexity to O(n).

2 Visibility graph theory: Points

2.1 Visibility Graphs: Recognition, Characterization, and Re-

construction

We have stated earlier how to compute the visibility graph G from a given set of points P .

Consider the opposite problem of determining if there is a set of points P whose visibility

graph is the given graphG. This problem is called the visibility graph recognition problem.

Identifying the set of properties satisfied by all visibility graphs is called the visibility

graph characterization problem. The problem of actually drawing one such set of points

P whose visibility graph is the given graph G, is called the visibility graph reconstruction

problem.

Open Problem 1 Given a graph G in adjacency matrix form, determine whether G is

the visibility graph of a set of points P in the plane.

Open Problem 2 Characterize visibility graphs of point sets.

Open Problem 3 Given the visibility graph G of a set of points, draw the points in the

plane whose visibility graph is G.

2.2 Colouring Visibility Graphs

Consider the problem of colouring the visibility graph G = (V,E) of a point set P . A k-

colouring of G is a function f : V → C for some set C of k colours such that f(v) 6= f(w)

for every edge (vi, vj) ∈ E. If G can be coloured by k colours, G is called k-colourable.

The chromatic number χ(G) is the minimum k such that G is k-colourable. The clique
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Figure 4: (a) The visibility graph of the integer lattice are coloured with four colours.

Only collinear edges of the visibility graph are drawn in the figure. (b) The clique number

of the visibility graph is 4 but the graph requires 5 colours.

number ω(G) is the maximum m such G contains a complete graph of m vertices as a

subgraph. We start with the following lemma of Kára et al. [66].

Lemma 1 Let P = {(x, y) : x, y ∈ Z} be the integer lattice. Then χ(G) = ω(G) = 4.

It can be seen that all collinear lattice points on a line in Figure 4(a) can be coloured by

two colours alternatively. Using this observation, the above lemma proves that the graph

can be coloured by four colours. They also made the following observation.

Lemma 2 If a point set P ⊆ R
2 can be covered by m lines, then χ(G) ≤ 2m.

Figure 4(a) demonstrates that the visibility graph of an integer lattice has a small chro-

matic number (i.e., 4) though the graph contains quadratic number of edges. Observe

that the chromatic number is same as the clique number in this graph but the graph is

not a perfect graph as it contains a cycle of five vertices without chord. For example, the

five lattice points with co-ordinates (2, 5), (1, 3), (5, 8), (8, 3), (5, 1) in Figure 4(a) form a

chordless cycles. However, Kára et al. felt that there is a relationship between the clique

number and chromatic number in visibility graphs of points, and made the following

conjecture.
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Figure 5: Visibility graphs of points with ω(G) ≤ 3 are planar.

Conjecture 1 There exists a function f such that χ(G) ≤ f(ω(G)).

In support of the conjecture, they proved that visibility graphs having ω(G) ≤ 3 are

planar [30] (see Figure 5) and they require at most 3 colours. For ω(G) = 4, they showed

an example (see Figure 4 (b)) that visibility graphs with ω(G) = 4 require 5 colours.

Open Problem 4 Prove that every visibility graph with ω(G) ≤ 4 has χ(G) ≤ 5.

Open Problem 5 Prove Conjecture 1 for visibility graphs with ω(G) = 5.

For visibility graphs with ω(G) ≥ 6, Pfender [86] proved that the conjecture does not

hold as shown in the following lemma.

Lemma 3 For every k, there is a finite point set y ⊂ R
2 such that χ(G) ≥ k and

ω(G) = 6.

2.3 Big Clique in Visibility Graphs

As stated earlier, if all points of P are in general position, i.e., no three points of P are

collinear, the visibility graph G of P is a complete graph, and therefore, ω(G) is the size

of P . Consider a convex polygon formed by points of P . A polygon C is said to be convex

if the line segment joining any two points in C lie inside C. Though any subset X of P
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Figure 6: (a) Any subset of points may not form a convex polygon. (b) In this set of 9

points, no subset of 5 points forms an empty convex polygon.

forms a complete graph in G, these points may not always form a convex polygon in P

(see Figure 6(a)). Even if all points of X are in convex position forming a convex polygon

C, some points of P may lie inside C. Several papers studied these problems for point sets

with or without collinear points. We start with the famous result of Erdös and Szekeres

[39].

Theorem 1 For every positive integer k, there exists a smallest integer g(k) such that

any point set P of at least g(k) points in general position has a subset X of k points that

are the vertices of a convex polygon C.

It may be noted that the existence of the value g(k) runs immediately from the famous

Ramsey theorem [89]. The best known bounds for g(k) are 2k−2 + 1 ≤ g(k) ≤
(

2k−5
k−2

)

+ 1.

The lower and upper bounds are given by Erdös and Szekeres [40], and Tóth and Valtr

[106] respectively. For survey on this problem and many variants, see [13, 16, 76, 106].

Observe that some points of P − X may lie inside C, i.e., C may not be empty (see

Figure 6(a)). In this context, Erdös [37, 38] posed a problem of determining the smallest

positive integer h(k) (if it exists) such that any point set P of at least h(k) points in

general position in the plane has k points that are vertices of an empty convex polygon

C. For an empty triangle, h(3) = 3. For an empty quadrilateral, it can be seen that

h(4) = 5. For an empty pentagon, Figure 6(b) demonstrates h(5) ≥ 10. In fact, Harborth

[57] proved that h(5) = 10. For an empty hexagon, Gerken [48] and Nicolás [79] showed

independently that h(6) ≤ g(9) ≤ 1717 and h(6) ≤ g(25) respectively. On the other hand,

Overmars [84] established a lower bound based on computer experiment that h(6) ≥ 30.

The gap between the bounds has been reduced by Koshelev [65] by showing that h(6) ≤
max{g(8), 400} ≤ 463. For k ≥ 7, h(k) is not bounded as shown by Horton [62].
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Let us consider the other situation where point sets P contain collinear points. So, the

boundary of a convex polygon C formed by a subset of pointsX of P may contain collinear

points. Let Y be the points of X that are on corners of C. The points of Y are called

points in strictly convex position as deletion of any point of Y reduces the area of C. The

Erdös-Szekeres theorem mentioned above generalises to the following theorem [1, 73].

Theorem 2 For every integers ℓ ≥ 2 and k ≥ 3, there exists a smallest integer g(k, ℓ)

such that any point set P of at least g(k, ℓ) points in the plane contains

(i) ℓ collinear points, or

(ii) k points in strictly convex position.

A straightforward upper bound on g(k, ℓ) can be derived as given in [1]. Assume that P

has ℓ−1 collinear points and at most k−1 points in strictly convex position. Let X ⊆ P

be any maximal set of points in strictly convex position. So, every point of P − X is

collinear with two points in X . So,
(|X|

2

)

lines cover all points of P and each line can have

at most ℓ− 3 points of P −X . Therefore, |P | ≤
(|X|

2

)

(ℓ− 3)+ |X| ≤
(

k

2

)

(ℓ− 3)+ k− 1. If

one more point is added to P (i.e., |P | ≤
(

k

2

)

(ℓ−3)+k)), then P must contain ℓ collinear

points or k points in strictly convex position. A tighter upper bound on g(k, ℓ) has been

derived by Abel et al. [1].

Observe that P with g(k, ℓ) points may have k points in strictly convex position but the

convex polygon C formed by these k points may not be empty. So, the visibility graph

G of P having g(k, ℓ) points may not have a clique of size k as some points of P lying

inside C may block the visibility between vertices of C. In the following, we state the

Big-Line-Big-Clique Conjecture of Kára et al. [66].

Conjecture 2 For all integers k ≥ 2 and ℓ ≥ 2, there is an integer n such that any point

set P of at least n points in the plane contains ℓ collinear points, or k mutually visible

points.

It has been shown that a natural approach to settle this conjecture using extremal graph

theory fails [88]. On the other hand, the conjecture is trivially true for ℓ ≤ 3 and for all k

for any point set P having k points. Based on planar graphs shown in Figure 5, Kára et

al. [66] showed that every point set P of at least max{7, ℓ+2} points contains ℓ collinear

points or 4 mutually visible points. Using Theorem 2, Abel et al. [1] proved that the

conjecture is true for k = 5 and for all ℓ. For weaker versions of Conjecture 2 relating

chromatic number with clique size, see Pór and Wood [88].

Open Problem 6 Prove Conjecture 2 for k = 6 or ℓ = 4.
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Figure 7: (a) Q = (q1, q2, . . . , q7) is a blocking set for P = (p1, p2, . . . , p5). (b) Four

collinear points need three blockers.

2.4 Blockers of Visibility Graphs

Let P be a set of n points in the plane. Let Q = (q1, q2, . . . , qj) be another set of points (or

blockers) in the plane such that (i) P ∩Q = ∅ and (ii) every segment with both endpoints

in P contains at least one point of Q (see Figure 7(a)). In other words, there is no edge

in the visibility graph of P ∪ Q that connects two points of P . Any such set Q is called

a blocking set for P . If all points of P are collinear (see Figure 7(b)), then one blocker qi
is placed on the midpoint of each visible pairs in P , and therefore, |P | − 1 blockers are

necessary and sufficient. On the other hand, what is the minimum size of blocking set Q

for P having no three points collinear (see Figure 7(a))? Note that a blocker may block

several pairs of visible points if it is place on intersection points of segments connecting

points of P .

Let b(P ) denote the smallest size blocking set Q for P . Let b(n) denote the minimum

of b(P ) for all P having n points with no three points being collinear. It is obvious that

b(n) ≥ n−1. A better lower bound can be derived using a triangulation of P [74]. Observe

that every edge of a triangulation must contain one blocker. Since every triangulation

has at least 2n− 3 edges, it follows that b(n) ≥ 2n− 3. The lower bound is improved to

b(n) ≥ (25
8
− o(1))n by Dumitrescu et al. [31].

Let us discuss upper bounds on b(n). It is obvious that b(n) ≤
(

n

2

)

. Let µ(P ) denote the

size of the set of midpoints of all
(

n

2

)

segments between points of P . Let µ(n) denote the

minimum of µ(P ) for all P having n points with no three points being collinear. Using

Freiman’s theorem on set addition, Pach [85] has shown that b(n) ≤ µ(n) ≤ n2c
√
logn,

where c is an absolute constant. This shows that if µ(n) is not O(n), it can only be

slightly super-linear. Many authors [31, 74, 88] have stated or conjectured that every set

of points P in general position requires a super-linear number of blockers as given below.
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Open Problem 7 Prove that as n → ∞, b(n)
n

→ ∞.

Let us consider another problem of blockers in a visibility graph introduced by Aloupis

et al. [7]. Let P be a set of points in the plane with some collinear points (see Figure

8). The problem is to assign k ≥ 2 colours to points of P such that (i) if two points are

mutually visible in P , assign different colours to them, and (ii) if two points are not visible

due to some collinear points in P , assign the same colour to both of them. Note that

this method of colouring is different from the standard method of colouring of a graph

due to the additional condition (ii). Any set of points that admits such a colouring with

k colours (for a fixed k) is called a k-blocked point set. Aloupis et al. [7] have made the

following conjecture.

Conjecture 3 For each integer k, there is an integer n such that every k-blocked point

set has at most n points.

Let pi, pj and pl be three points in P such that pi is not visible from both pj and pl. By

condition (ii), all three points should be assigned the same colour. If pj and pl are also

not mutually visible due to a collinear point in P , then the same colour can certainly be

assigned to all three of them. However, if pj and pl are mutually visible, both conditions

(i) and (ii) cannot be satisfied, and therefore, such a colouring is not possible which means

that P is not a k-blocked point set. This implies that points of P that have received the
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Figure 9: Every 2-blocked point set has at most 3 points, and every 3-blocked point set

has at most 6 points

same colour must be an independent set in the visibility graph of P . In other words,

colour classes correspond to partition of points of P into independent sets. Following

lemmas of Aloupis et al. [7] follow from the above discussion.

Lemma 4 At most three points are collinear in every k-blocked point set.

Lemma 5 Each colour class in a k-blocked point set is in a general position.

Let us discuss Conjecture 3 for different values of k. It can be seen from Figure 9 that

every 2-blocked point set has at most 3 points [7]. It follows from the characterization

of 3-colourable visibility graphs by Kára et al. [66] that every 3-blocked point set has at

most 6 points (see Figure 9). Aloupis et al. [7] have proved that every 4-blocked point

set has at most 12 points (see Figure 8). They also made the following conjectures on the

size of blocked point sets.

Conjecture 4 Every k-blocked point set has O(k2) points.

Conjecture 5 In every k-blocked point set, there are at most k points in each colour

class.

2.5 Obstacle Representations of Visibility Graphs

Let P = (p1, p2, . . . , pn) be a set of points in the plane. Let Q = (Q1, Q2, . . . , Qh) be

a set of simple polygons in the plane called obstacles. Construct a graph G such that

11



every point pi of P is represented as a vertex vi of G, and two vertices vi and vj of G

are connected by an edge in G if and only if the line segment pipj does not intersect any

obstacle Qj for all j. We assume that the line segment joining any two points of P does

not pass through a point of P or any vertex of an obstacle, i.e., all points of P and vertices

of all obstacles are in general position. We call the pair (P,Q) as obstacle representation

of G. Polygonal obstacles can be viewed as a generalization of blockers of visibility graphs

discussed earlier.

Consider the problem of obstacle representation of a given graph G of n vertices, which

was introduced by Alpet et al. [8]. Draw every vertex vi of G as a point pi in the plane

and draw obstacles in such a way that every segment pipj intersects an obstacle if and

only if (vi, vj) is not an edge in G. The obstacle number of G is the minimum number of

obstacles required in any obstacle representation of G. Since an obstacle can be placed

to block the visibility between each pair of points,
(

n

2

)

is an upper bound on the obstacle

number of G. We have the following question from Alpet et al. [8].

Open Problem 8 Is the obstacle number of a graph with n vertices bounded above by a

linear function of n?

Regarding the lower bound on obstacle numbers, Alpet et al. [8] have showed that there

exists a graph of n vertices with obstacle number O(
√
log n), which has been improved to

O(n/ log2 n) by Mukkamala et al. [77]. The bound becomes O(n/ logn) if the obstacles

are restricted to convex polygons.

Open Problem 9 Improve the present lower bound O(n/ log2 n) of the obstacle number

of a graph with n vertices.

Regarding the graphs with low obstacle numbers, Alpet et al. [8] and Mukkamala et

al. [77] have studied graphs with obstacle numbers 1 and 2. Mukkamala et al. [77]

showed that for all h ≥ 3, there is a graph with obstacle number exactly h. The following

questions of Alpet et al. [8] are still open.

Open Problem 10 For h > 1, what is the smallest number of vertices of a graph with

obstacle number h?

Open Problem 11 Does every planar graph have obstacle number 1?

12



3 Visibility graph theory: Segments

3.1 Visibility Graphs: Recognition, Characterization, and Re-

construction

In Section 1, we have defined the segment visibility graph G for a given set of disjoint line

segments S (see Figure 2(b)). We have also stated how to compute G from S efficiently.

Consider the opposite problem of determining if there is a set of disjoint segment S whose

visibility graph is the given graph G. This problem is called the segment visibility graph

recognition problem. Identifying the set of properties satisfied by all segment visibility

graphs is called the segment visibility graph characterization problem. The problem of

actually drawing one such set of segment S whose visibility graph is the given graph G,

is called the segment visibility graph reconstruction problem.

All three above problems are open for segment visibility graphs. Only characterization

known is for a sub-class given by Everette et al. [44]. They have characterized those

segment visibility graphs that do not have K5 (a complete graph of five vertices) as a

minor. A graph M is called a minor of a graph G if M can be obtained from G by a

sequence of vertex deletions, edge deletions and edge contractions. Their characterization

gives a straightforward polynomial time algorithm for recognizing this class of graphs.

Open Problem 12 Given a graph G in adjacency matrix form, determine whether G is

the segment visibility graph of a set of disjoint segments S in the plane.

Open Problem 13 Characterize the segment visibility graphs.

Open Problem 14 Given a segment visibility graph G, draw the segments S in the plane

whose visibility graph is G.

3.2 Hamiltonian Cycles in Visibility Graphs

Let G be the segment visibility graph of a given set S of disjoint line segments. Consider

the problem of identifying a Hamiltonian cycle C in G (see Figure 10). A cycle in G

is called a Hamiltonian cycle if the cycle passes through all vertices of G exactly once.

There can be two types of Hamiltonian cycles C in G. Assume that G is drawn directly

on the segments of S and call this embedded segment visibility graph as G′. If no two

segments in G′ corresponding to edges of a cycle C intersect, then C forms the boundary

of a simple polygon in G′. Such cycles are called Hamiltonian circuits [90] (see Figure

13
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Figure 10: (a) The cycle C = (p1, p10, p9, p8, p7, p5, p4, p6, p3, p2, p1) is Hamiltonian but is

self-intersecting. (b) The cycle C = (p1, p9, p10, p7, p8, p6, p5, p4, p3, p2, p1) is a Hamiltonian

circuit as it forms a boundary of a simple polygon. (c) There is no alternating cycle as

both endpoints of the segment p9p10 belong to the convex hull of the segments [91].

10(b)), and the corresponding polygons are called spanning polygons [75] or Hamiltonian

polygons [61]. Otherwise, C corresponds to the boundary of a self-crossing polygon in G′

(see Figure 10(a)). A Hamiltonian polygon Q is called a circumscribing polygon if it has

an additional property that no segment of S lies to the exterior of Q, i.e., each segment

of S is either an edge on the boundary of Q or an internal chord of Q [75] (see Figure

10(b)). Mirzaian [75] made the following conjectures.

Conjecture 6 Every segment visibility graph G contains a Hamiltonian cycle C.

Conjecture 7 Every segment visibility graph G contains a Hamiltonian cycle C that

corresponds to a Hamiltonian circuit in the embedded segment visibility graph G′.

Conjecture 8 Every segment visibility graph G contains a Hamiltonian cycle C that

corresponds to the boundary of a circumscribing polygon in the embedded segment visibility

graph G′.

Observe that if Conjecture 8 is true, then both Conjectures 7 and 6 are also true. However,

Urbe and Watanabe [107] gave a counter-example to Conjecture 8. For special classes of

segments in S, Conjectures 7 was proved by Mirzaian [75] and O’Rourke and J. Rippel [82].

Later, Conjectures 7 was proved for all classes of segments in S by Hoffmann and Tóth

[61] using the result of Bose et al. [15], and they presented an O(n logn) time algorithm
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for locating a Hamiltonian circuit in G′. Since Conjectures 7 is true, Conjectures 6 is also

true.

Observe that the algorithm of Hoffmann and Tóth [61] takes S as an input and then

locates a Hamiltonian circuit in the embedded segment visibility graph G′. Suppose S is

not given as an input but only G is given, then it is not clear how to identify a Hamiltonian

cycle in G in polynomial time as there is no known algorithm for segment visibility graph

reconstruction problem. So, we have the following problems.

Open Problem 15 Given a segment visibility graph G in adjacency matrix form, iden-

tify a Hamiltonian cycle in G in polynomial time.

Open Problem 16 Given a segment visibility graph G in adjacency matrix form, iden-

tify the edges of G that correspond to segments of S.

Consider the problem of identifying a special type of Hamiltonian circuit C in G′ where

every alternate edge of C is a segment of S (see Figure 10(b)). It has been shown by

Rappaport et al. [91] that such an alternating cycle may not always exist in G′ (see

Figure 10(c)). On the other hand, they showed that an alternating cycle always exists if

one endpoint of every segment in S belongs to the convex hull of S. For this special class

of segments, they gave an O(n logn) time algorithm for constructing an alternating cycle.

If G′ does not contain an alternating cycle, it is natural to ask for a longest alternating

path that is present in G′ (see Figure 10(c)). Urratia [108] made the following conjecture

which was proved by Hoffmann and Tóth [60].

Conjecture 9 In the embedded segment visibility graph G′ of a set S of n disjoint seg-

ments, there exists an alternating path containing at least O(logn) segments of S.

3.3 Bar Visibility Graphs

The idea of representing a graph using a visibility relation was introduced in the 1980s as

a model tool for VLSI layout problems [29, 94]. A graph G is called a bar visibility graph

if its vertices v1, v2, . . . , vn can be associated with a set S of disjoint line segments (or,

horizontal bars) s1, s2, . . . , sn in the plane such that vi and vj are joined by an edge in G

if and only if there exists an unobstructed vertical line of sight between si with sj [105].

The set S is called a bar visibility representation of G (see Figure 11). If each line of sight

is required to be a rectangle of positive width, then S is an ǫ-visibility representation of

G (see Figure 11(b)). If each line of sight is a segment (i.e. width is 0), then S is a strong
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Figure 11: (a) A given graph G. (b) An ǫ-visibility representation of G. (c) A strong

visibility representation of G.

visibility representation of G (see Figure 11(c)). Note that if a vertical segment between

two horizontal segments (say, s1 and s3 in Figure 11(c)) passes through an endpoint of

another horizontal segment (i.e., s2), it is considered that the line of sight is obstructed by

the middle horizontal segment. We have the following theorems on the characterizations

and representations of bar visibility graphs [9, 64, 72, 93, 105, 111].

Theorem 3 A graph G admits an ǫ-visibility representation if and only if there is a

planar embedding of G such that all cutpoints of G appear on the boundary of the external

face in the embedding.

Theorem 4 An ǫ-visibility representation of a 2-connected planar graph G of n vertices

can be done in O(n) time.

Theorem 5 Let G be a 2-connected planar graph. If G admits a strong visibility rep-

resentation, then there is no pair of non-adjacent vertices vi and vj of G such that the

removal of vi and vj separates G into four or more components.

Proof: Let c1, c2, . . . , ck for k ≥ 4 be the connected component of G after removing vi
and vj (see Figure 12(a)). Assume on the contrary that G admits a strong visibility

representation (say, R). Let sm denote the horizontal segment in R corresponding to vm
of G.

Consider the situation where there exists a vertical line L between si and sj of R that

does not intersect either of them (see Figure 12(b)). Since every component cl connects

vi to vj in G, there exists a vertex vm of cl for all l such that L intersects the horizontal

segment sm of R. This intersection of L with sm for every component implies that vertices

of different components are connected by edges in G, which is a contradiction.
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Figure 12: (a) A given graph G. (b) L does not intersect si and sj. (c) L intersects both

si and sj.

Consider the other situation where there exists a vertical line L intersecting both si and

sj of R (see Figure 12(c)). So, there are three parts of L due to these intersections. If any

of these parts of L intersects two horizontal segments sm and sp in R where vm and vp
belong to different component in G, then there must be an edge between vm and vp in G,

which is a contradiction. So, each part of L can interest horizontal segments of R coming

only from the same component. Therefore, L cannot intersect horizontal segments of R

coming from more that three different components. Hence, G does not admit a strong

visibility representation, a contradiction. 2

Theorem 6 There exists a 3-connected planar graph G that does not admit a strong

visibility representation.

Theorem 7 Every 4-connected planar graph G admits a strong visibility representation.

Theorem 8 A strong visibility representation of a 4-connected planar graph G of n ver-

tices can be done in O(n3) time.

Let us consider variations of bar visibility graphs. While representing vertices of G as bars,

there is no restriction on the length of horizontal bars. Suppose, a restriction is imposed

that all bars in a visibility representation must have the same length. In that case, we get

another type of visibility graphs which are known as unit bar visibility graphs. Though

there are characterizations for special classes of unit bar visibility graphs [18, 25, 27], no

characterization is known for general graphs. We have the following problems.

Open Problem 17 Characterize unit bar visibility graphs.

Open Problem 18 Is recognition of unit bar visibility graphs NP-complete?
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Figure 13: (a) A given graph G. (b) Representation shows that G is a bar 1-visibility

graph.

Dean et al. [24] introduced another variation of bar visibility graphs called bar k-visibility

graphs, where bars are allowed to see vertically through at most k bars under strong

visibility (see Figure 13). It means that standard bar visibility graphs become bar 0-

visibility graphs. If bars are allowed to see vertically through all other bars (i.e. bar

∞-visibility graphs), then the bar representation gives an interval graph representation.

Formally, a graph G is called a bar k-visibility graph if its vertices v1, v2, . . . , vn can be

associated with a set S of disjoint line segments (or, horizontal bars) s1, s2, . . . , sn in the

plane such that vi and vj are joined by an edge in G if and only if a vertical segment

between si and sj intersects at most k segments of S [24, 47, 58].

Unlike bar visibility graphs, bar k-visibility graphs have not been completely character-

ized. For understanding this class of graphs, Dean et al. [24] considered the problem

of bounding the number of edges of a bar k-visibility graph G. They proved an upper

bounds of (k+1)(3n− 7/2k− 5)− 1 edges for G and conjectured an improve edge bound

of (k + 1)(3n − 4k − 6) which was proved later by Hartke et al. [58]. They also studied

d-regular k-visibility graphs. Dean et al. [24] also proved that 6k + 6 is an upper bound

on the chromatic number of G. We have the following problems [24, 58].

Open Problem 19 Characterize bar k-visibility graphs.

Open Problem 20 Triangle-free non-planar graphs are forbidden subgraphs of bar k-

visibility graphs. Is there any other class of forbidden subgraphs of bar k-visibility graphs?

Open Problem 21 Are there (2k + 2)-regular bar k-visibility graphs for k ≥ 5?
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Open Problem 22 Are there d-regular bar k-visibility graphs with d ≥ 2k + 3?

Open Problem 23 Improve the current upper bound of 6k+6 on the chromatic number

of a bar k-visibility graph.

Dean et al. [24] also studied the thickness of bar k-visibility graphs. The thickness of a

graph G is defined as the minimum number of planar graphs whose union is G. Exact

values of thickness is know for very few classes of graphs [78]. Dean et al. proved an

upper bound of 4 for the thickness of bar 1-visibility graphs, and conjectured that bar

1-visibility graphs actually have thickness of at most 2. The conjecture was disproved by

Felsner and Massow [47] by constructing a bar 1-visibility graph having thickness 3. For

a special class of bar 1-visibility graphs, Felsner and Massow [47] presented an algorithm

for partitioning the edges into two planar graphs showing that the thickness of this special

class of graphs is 2. We have the following problems [24].

Open Problem 24 It has been shown that the thickness of a bar k-visibility graph is

bounded by 2k(9k − 1). Can this upper bound be improved?

Open Problem 25 The crossing number of a graph is the minimum possible number of

crossings with which the graph can be drawn in the plane. What is the largest crossing

number of a bar k-visibility graph?

Open Problem 26 The genus of a graph is the minimal integer g such that the graph

can be embedded on a surface of genus g. What is the largest genus of a bar k-visibility

graph?

Bar visibility graphs have been generalized to rectangle visibility graphs by considering

both vertical and horizonal visibility among bars having non-zero thickness [14, 26, 81,

92, 104]. A graph G is called a rectangle visibility graph if it can be realized by closed

isothetic rectangles in the plane, with pairwise disjoint interiors, with vertices representing

rectangles in such a way that two vertices vi and vj of G are connected by an edge if and

only if their corresponding rectangles are vertically or horizontally visible from each other

by a beam of unobstructed visibility of finite width. Unlike bar visibility graphs, no

characterization of rectangle visibility graphs are known, and moreover, Shermer [99] has

shown that the problem of recognizing them is NP-complete. We have the following

problem.

Open Problem 27 Characterize rectangle visibility graphs.
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4 Visibility graph theory: Polygons

4.1 Visibility Graph Recognition

In Section 1, we have defined the vertex visibility graph G for a given simple polygon P

(see Figure 3(b)). We have also stated how to compute G from P efficiently. Consider

the opposite problem of determining if there is a simple polygon P whose visibility graph

is the given graph G. This problem is called the visibility graph recognition problem for

polygons. The general problem of recognizing a given graph G as the visibility graph of a

simple polygon P is yet to be solved. However, this problem has been solved for visibility

graphs of spiral polygons [41, 42] and tower polygons [19].

Open Problem 28 Given a graph G in adjacency matrix form, determine whether G is

the visibility graph of a simple polygon P .

Open Problem 29 Is the problem of recognizing visibility graphs in NP?

Ghosh [50, 52] presented three necessary conditions for recognizing visibility graphs G

of a simple polygon P under the assumption that a Hamiltonian cycle C of G, which

corresponds to the boundary of P , is given as input along with G. It can be seen that this

problem is easier than the actual recognition problem as the edges of G corresponding

to boundary edges of P have already been identified. Assume that the vertices of G are

labeled with v1, v2, . . . , vn and C = (v1, v2, . . . , vn) is in counterclockwise order. An edge

in G connecting two non-adjacent vertices of a cycle is called a chord of the cycle. A cycle

w1, w2, . . . , wk in G is called ordered if the vertices w1, w2, . . . , wk follow the order in C.

The Hamiltonian cycle C is an ordered cycle of all n vertices in G.

Necessary condition 1. Every ordered cycle of k ≥ 4 vertices in a visibility graph G of

a simple polygon P has at least k − 3 chords.

Proof: Since an ordered cycle of k vertices in G corresponds to a sub-polygon P ′ of k

vertices in P , the ordered cycle must have at least k − 3 chords in G as P ′ needs k − 3

diagonals for triangulation of P ′. 2

A pair of vertices (vi, vj) in G is a visible pair (or invisible pair) if vi and vj are adjacent

(respectively, not adjacent) in G. The vertices from vi to vj on C in counterclockwise

order are denoted as chain(vi, vj). Let va be a vertex of chain(vi, vj) for i < j such that

no two vertices vk ∈ chain(vi, va−1) and vm ∈ chain(va+1, vj) are connected by an edge in

G. Then va is called a blocking vertex for the invisible pair (vi, vj) (see Figure 14(a) and
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Figure 14: (a) For the invisible pair (v4, v6), v5 is the blocking vertex. (b) The invis-

ible pair (v2, v5) does not have any blocking vertex. (c) The blocking vertex v3 cannot

simultaneously block the visibility of invisible pairs (v2, v8) and (v4, v7).

Figure 14(b)). Intuitively, blocking vertices correspond to reflex vertices of the polygon

though all blocking vertices in G may not be reflex vertices in P .

Necessary condition 2. Every invisible pair (vi, vj) in the visibility graph G of a simple

polygon P has at least one blocking vertex.

Proof: Since (vi, vj) is an invisible pair in G, the Euclidean shortest path in P between vi
and vj makes turns at reflex vertices of P , and therefore, each of these reflex vertices is a

blocking vertex for (vi, vj) in G. 2

Let va be a blocking vertex in G for two invisible pairs (vi, vj) and (vk, vl). Traverse the

Hamiltonian cycle C from va in counterclockwise order. If both vk and vl are encountered

before vi and vj during the traversal, then (vi, vj) and (vk, vl) are referred as separable

with respect to va. In Figure 14(c), invisible pairs (v2, v8) and (v4, v7) are separable with

respect to the blocking vertex v3.

Necessary condition 3. Two separable invisible pairs (vi, vj) and (vk, vl) in the visibility

graph G of a simple polygon P must have distinct blocking vertices.

Proof: Let (vi, vj) and (vk, vl) be two separable invisible pairs and the vertex va is their

sole blocking vertex. So, va must be a reflex vertex in P . Since the visibility in P between

vi and vj as well as between vk and vl can only be blocked by va and the sub-polygons

of P corresponding to ordered cycles vi, va, vj, . . . , vi and va, vk, . . . , vl, va are disjoint, va
cannot simultaneously block the visibility between vi and vj and between vk and vl in P .

2
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It has been pointed out by Everett and Corneil [41, 43] that these three conditions are

not sufficient as there are graphs that satisfy the three necessary conditions but are not

visibility graphs of any simple polygon. These counterexamples can be eliminated once the

third necessary condition is strengthened. It have been shown by Srinivasraghavan and

Mukhopadhyay [101] that the stronger version of the third necessary condition proposed

by Everett [41] is in fact necessary.

Necessary condition 3′. There is an assignment in a visibility graph such that no

blocking vertex va is assigned to two or more minimal invisible pairs that are separable

with respect to va.

On the other hand, the counterexample given by Abello, Lin and Pisupati [5] shows

that the three necessary conditions of Ghosh [50] are not sufficient even with the stronger

version of the third necessary condition. In a later paper by Ghosh [51], another necessary

condition is identified which circumvents the counterexample of Abello, Lin and Pisupati

[5].

Necessary condition 4. Let D be any ordered cycle of the visibility graph G of a simple

polygon P . For any assignment of blocking vertices to all minimal invisible pairs in G, the

total number of vertices of D assigned to the minimal invisible pairs between the vertices

of D is at most |D| − 3.

Proof: Let P ′ be the subpolygon of P such that the boundary of P ′ corresponds to D. If

every blocking vertex va ∈ D is assigned to some minimal invisible pair between vertices

of D, va becomes a reflex vertex in P ′. So, the sum of internal angles of P ′ is more than

(|D|−2)180◦ contradicting the fact that the sum of internal angles of any simple polygon

of |D| vertices is (|D| − 2)180◦. 2

It has been shown later by Streinu [102, 103] that these four necessary conditions are also

not sufficient. It is not clear whether another necessary condition is required to circumvent

the counter example. For more details on the recognition of visibility graphs, see Ghosh

[52].

Open Problem 30 Given a graph G in adjacency matrix form along with a Hamiltonian

cycle C of G, determine whether G is the visibility graph of a simple polygon P whose

boundary corresponds to the given Hamiltonian cycle C.

Everett [41] presented an O(n3) time algorithm for testing Necessary Condition 1 which

was later improved by Ghosh [51, 52] to O(n2) time. Ghosh also gave an O(n2) time

algorithm for testing Necessary Condition 2. Das, Goswami and Nandy [22] showed that

Necessary Condition 3′ can be tested in O(n4) time. We have the following theorem.
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Theorem 9 Given a graph G of n vertices and a Hamiltonian cycle C in G, Necessary

Conditions 1, 2 and 3′ can be tested in O(n4) time.

Open Problem 31 Design an algorithm for testing Necessary Condition 4 in polynomial

time.

4.2 Visibility Graph Characterization

The problem of identifying the set of properties satisfied by all visibility graphs of simple

polygons is called the visibility graph characterization problem for polygons. Let us

state some results on the problems of characterizing visibility graphs for special classes

of simple polygons. The earliest result is from ElGindy [36] who showed that every

maximal outerplanar graph is a visibility graph of a simple polygon, and he suggested an

O(n logn) algorithm for reconstruction. If all reflex vertices of a simple polygon occur

consecutively along its boundary, the polygon is called a spiral polygon. Everett and

Corneil [41, 42] characterized visibility graphs of spiral polygons by showing that these

graphs are a subset of interval graphs which lead to an O(n) time algorithm. Choi, Shin

and Chwa [19] characterized funnel-shaped polygons, also called towers, and gave an O(n)

time recognition algorithm. Visibility graphs of towers are also characterized by Colley,

Lubiw and Spinrad [20] and they have shown that visibility graphs of towers are bipartite

permutation graphs with an added Hamiltonian cycle. If the internal angle at each vertex

of a simple polygon is either 90 or 270 degrees, then the polygon is called a rectilinear

polygon. If the boundary of a rectilinear polygon is formed by a staircase path with

two other edges, the polygon is called a staircase polygon. Visibility graphs of staircase

polygons have been characterized by Abello, Eg̃eciog̃lu, and Kumar [2]. Lin and Chen

[69] have studied visibility graphs that are planar.

For the characterization of visibility graphs of arbitrary simple polygons, Ghosh has shown

that visibility graphs do not possess the characteristics of perfect graphs, circle graphs or

chordal graphs. On the other hand, Coullard and Lubiw [21] have proved that every tricon-

nected component of a visibility graph satisfies 3-clique ordering. This property suggests

that structural properties of visibility graphs may be related to well-studied graph classes,

such as 3-trees and 3-connected graphs. Everett and Corneil [41, 43] have shown that there

is no finite set of forbidden induced subgraphs that characterize visibility graphs. Abello

and Kumar [3, 4] have suggested a set of necessary conditions for recognizing visibility

graphs. However, it has been shown in [51] that this set of conditions follow from the last

two necessary conditions of Ghosh. For more details on the characterization of visibility

graphs, see Ghosh [52].
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Open Problem 32 Characterize visibility graphs of simple polygons.

4.3 Visibility Graph Reconstruction

The problem of actually drawing a simple polygon P whose visibility graph is the given

graph G, is called the visibility graph reconstruction problem for polygons. Let us mention

some of the approaches on the visibility graph reconstruction problem. It has been shown

by Everett [41] that visibility graph reconstruction is in PSPACE. This is the only upper

bound known on the complexity of the problem. Abello and Kumar [4] studied the

relationship between visibility graphs and oriented matroids, Lin and Skiena [70] studied

the equivalent order types, and Streinu [102, 103] and O’Rourke and Streinu [83] studied

psuedo-line arrangements. Everett and Corneil [41, 43] have solved the reconstruction

problem for the visibility graphs of spiral polygons and the corresponding problem for

the visibility graph of tower polygons has been solved by Choi, Shin and Chwa [19].

Reconstruction problem with added information has been studied by Coullard and Lubiw

[21], Everett, Hurtado, and Noy [45], Everett, Lubiw, and O’Rourke [46], Jackson and

Wismath [63].

Open Problem 33 Draw a simple polygon whose visibility graph is the given graph G.

4.4 Hamiltonian Cycle in Visibility Graphs

A Hamiltonian cycle is a cycle in an undirected graph which visits each vertex exactly once

and also returns to the starting vertex. The Hamiltonian cycle problem is to determine

whether a Hamiltonian cycle exists in a given graph G. Observe that G may contain

several Hamiltonian cycles, and G may be visibility graph for a Hamiltonian cycle and is

not a valid visibility graph for another Hamiltonian cycle in G.

Open Problem 34 Given the visibility graph G of a simple polygon P , determine the

Hamiltonian cycle in G that corresponds to the boundary of P .

4.5 Minimum Dominating Set in Visibility Graphs

A dominating set for a graph G = (V,E) is a subset D of V such that every vertex not

in D is joined to at least one member of D by some edge. The minimum dominating

set problem in visibility graphs corresponds to the art gallery problem in polygons which

has been shown to be NP-hard [68, 70]. Following the approximation algorithm for the
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art gallery problem for polygons given by Ghosh [49, 53], a minimum dominating set of

visibility graph can be computed with an approximation ratio of O(logn).

Open Problem 35 Design a constant factor approximation algorithm for computing

minimum dominating set of visibility graphs.

4.6 Maximum Hidden Set in Visibility Graphs

An independent set is a set of vertices in a graph with no two of which are adjacent.

Independent sets in visibility graphs are known as hidden vertex sets. Shermer [97] has

proved that the maximum hidden vertex set problem on visibility graphs is also NP-hard.

However, the problem may not remain NP-hard if the Hamiltonian cycle corresponding

to the boundary of the simple polygon is given as an input along with the visibility graph.

With this additional input, Ghosh, Shermer, Bhattacharya and Goswami [56] have shown

that it is possible to compute in O(ne) time the maximum hidden vertex set in the

visibility graph of a very special class of simple polygons called convex fans, where n and

e are the number of vertices and edges of the input visibility graph of the convex fan

respectively. Hidden vertex sets are also studied by Eidenbenz [33, 34], Ghosh et al. [54]

and Lin and Skiena [70].

Open Problem 36 Given the visibility graph G of a simple polygon P along with the

Hamiltonian cycle in G corresponding to the boundary of P , determine the maximum

hidden set of G.

Open Problem 37 Design an approximation algorithm for computing maximum hidden

set of visibility graph.

4.7 Maximum Clique in Visibility Graphs

A clique in a graph is a set of pairwise adjacent vertices. The problem of computing the

maximum clique in the visibility graph is not known to be NP-hard. Observe that the

maximum clique in a visibility graph corresponds to the largest empty convex polygon in-

side the corresponding polygon. Algorithms for computing largest empty convex polygons

has been reported by several authors [12, 28, 35]. However, for each of these algorithms,

the input is either a polygon [35] or a point set [12, 28]. Spinrad [100] has discussed pos-

sible approaches for computing maximum clique using the notion of triangle-extendible

ordering which is essentially a transitive orientation of the graph.
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Open Problem 38 Given a visibility graph G in adjacency matrix form, compute a

maximum clique of G.

Open Problem 39 Determine whether a set of vertices of a visibility graph has a triangle-

extendible ordering in polynomial time.

If the Hamiltonian cycle in a visibility graph corresponding to the boundary of the polygon

is given along with the visibility graph as an input, Ghosh, Shermer, Bhattacharya and

Goswami [56] have presented anO(n2e) time algorithm for computing the maximum clique

in the visibility graph G of a simple polygon P . Here n and e are number of vertices and

edges of G respectively.

4.8 Counting Visibility Graphs

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if and only if there is a

bijection f that maps vertices of V1 to the vertices of V2 such that an edge (v, w) ∈ E1 if

and only if the edge (f(v), f(w)) ∈ E2. It has been shown by Ghosh [52] that the number

of non-isomorphic visibility graphs of simple polygons of n vertices is at least 2n−4. On

the other hand, a straightforward application of Warren’s theorem [109] shows that the

number of visibility graphs is at most 2O(n logn) [100].

Open Problem 40 Improve the lower and upper bounds on the number of non-isomorphic

visibility graphs of simple polygons.

Let G1 and G2 be the visibility graphs of simple polygons P1 and P2 respectively. Let

C1 (or C2) denote the Hamiltonian cycles in G1 (respectively, G2) that corresponds to

the boundary of P1 (respectively, P2). Polygons P1 and P2 are called similar if and only

if there is a bijection f that maps adjacent vertices on the boundary of P1 to that of

boundary of P2 such that f(G1) = G2 [70]. It has been shown [11] that similarity of P1

and P2, each of n vertices, can be determined in O(n2) time. Therefore, given G1 and G2

along with C1 and C2, the corresponding visibility graph similarity problem can also be

solved in O(n2) time. It has been shown by Lin and Slkiena [70] that two simple polygons

with isomorphic visibility graphs may not be similar polygons.

4.9 Representing Visibility Graphs

Although the most natural form of representation for visibility graphs would be to use

coordinates of the points, this is not useful if we are looking for a space efficient represen-

tation. Lin and Skiena [70] have proved that visibility graphs require endpoints to have
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exponential sized integers. However, it is not known whether singly exponential sized

integers are sufficient. It is important because if we could guarantee that the number of

bits in the integer is polynomial, then visibility graph recognition is in NP [100].

Open Problem 41 Can all endpoints of a visibility graph be assigned integer coordinates

such that the integers use a polynomial number of bits?

A natural form of storage is studied by Agarwal et al. [6] which uses a relatively small

number of bits to store a visibility graph. However, the representation is neither space

optimal, nor adjacency information can be retrieved in constant time. However, it is

the most significant reduced space representation which is currently known. The authors

consider the problem of representing a visibility graph as a covering set of cliques and

complete bipartite graphs so that every graph in the set is a subset of G, and every edge

is contained in at least one of the graphs of the covering set. Their proposed algorithm

constructs a covering set which has O(n log4 n) bits. It can be shown that any covering

set requires Ω(n log2 n) bits on some visibility graphs [100]. Given this gap between upper

and lower bounds on this natural form of representation, we have a number of problems.

Open Problem 42 Give a tight bound (with respect to order notation) on the number

of bits used in an optimal covering set of a visibility graph.

Open Problem 43 Find a covering set which matches the above bound in polynomial

time.
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